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Abstract 

A novel numerical study is undertaken to assess the influence of the frequency domain 

(FD) attributes of wavelet analysis filter banks for vibration-based structural damage 

detection and localization using the relative wavelet entropy (RWE): a damage-sensitive 

index derived by wavelet transforming linear response acceleration signals from a 

healthy/reference and a damaged state of a given structure subject to broadband excitations. 

Four different judicially defined energy-preserving wavelet analysis filter banks are 

employed to compute the RWE pertaining to two benchmark structures via algorithms which 

can efficiently run on wireless sensors for decentralized structural health monitoring. It is 

shown that filter banks of compactly supported in the FD wavelet bases (e.g., Meyer wavelets 

and harmonic wavelets) perform significantly better than the commonly used in the literature 

dyadic Haar discrete wavelet transform filter banks since they achieve enhanced frequency 

selectivity among scales (i.e., minimum overlapping of the frequency bands corresponding to 

adjacent scales) and, therefore, reduce energy leakage and facilitate the interpretation of 

numerical results in terms of scale/frequency dependent contributors to the RWE. Moreover, 

it is demonstrated that dyadic DWT filter banks with large constant Q values (i.e., ratio of 

effective frequency over effective bandwidth) are better qualified to capture damage 

information associated with high frequencies. Finally, it is concluded that wavelet analysis 

filter banks achieving non-constant Q analysis are most effective for RWE-based stationary 

damage detection as they are not limited by the dyadic DWT discretization and can target the 

structural natural frequencies in cases these are a priori known. 
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1. Introduction and motivation 

Vibration-based structural health monitoring (VSHM) techniques are commonly 

employed to detect and to localize damage in engineering structures and structural 

components due to degradation over time under operational conditions, or due to 

extreme/accidental events and loading (e.g., Doebling et al. 1998). VSHM relies on 

acquisition and processing of structural response acceleration signals recorded by sensors 

(accelerometers) placed on vibrating structures which are excited by dynamic (i.e., time-

varying) or impulsive forces. Whether ambient (operational) or purposely induced, the 

excitation forces for VSHM should, ideally, have a low amplitude, such that structures 

vibrate in the linear regime, and a flat Fourier spectrum over a sufficiently wide range of 

frequencies, such that an adequate number of (linear) modes of vibration are excited (e.g., 

Ewins 2000, Reynders 2012). Then, global damage detection and even localization of 

damage (in densely instrumented structures) are achieved by observing changes to the values 

of damage-sensitive indices derived from linear response acceleration signals acquired at the 

current (potentially damaged) state of a structure with those pertaining to a past (reference or 

“healthy”) structural state (e.g., Worden et al. 2007). These damage-sensitive indices may 

coincide with the dynamic/modal properties (e.g., natural frequencies) or mechanical 

properties (e.g., stiffness coefficients) of the monitored structure, or be derived from them 

(e.g., modal curvatures, strain energy, etc.) (e.g., Humar et al. 2006). Alternatively, data-

driven damage indices, not amenable to any physical/structural interpretation (but related to 

the physics of the problem), have also been considered in conjunction with statistical signal 

processing techniques for the purpose at hand. Damage detection approaches based on the 

latter indices are sometimes more effective since they employ computational tools not 

considered in standard linear structural dynamics approaches, such as the wavelet transform 

(WT) (e.g., Yen and Lin 2000, Sun and Chang 2004), while they are not limited by physical 

considerations.  

In this context, Ren and Sun (2008) proposed the use of the relative wavelet entropy 

(RWE) as an index for structural damage detection and localization derived from the WT of 

linear response acceleration signals. Note that the WT represents any given signal on the 
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time-scale plane by projecting it onto a collection of double-indexed localized in time 

oscillatory functions (wavelets) generated by scaling and translating in time a single “mother” 

wavelet function (e.g. Daubechies 1992). Depending on the properties of the mother wavelet, 

each scale considered in the WT can be assigned an effective (central) frequency and an 

effective bandwidth. In this regard, if an energy-preserving analysing wavelet basis is used, 

the squared magnitude of the WT maps the energy of a signal on the time-frequency plane 

(see also Cohen 1995). Under this condition, the damage detection capability of the RWE 

relies on detecting changes to the energy distribution of (or to the information carried by) 

response acceleration signals between the healthy and the damaged state across the different 

scales considered in the WT spanning certain frequency bands. Indeed, the definition of the 

RWE is closely related to the Shannon wavelet entropy introduced by Blanco et al. (1998) for 

signal characterization in certain biomedical applications, based on the information carried by 

the WT in time and in frequency. 

Ren and Sun (2008) verified the potential of the RWE to serve as a damage-sensitive 

index by considering experimental data pertaining to a beam and to a composite bridge 

excited by impulsive/hammer force. In computing the RWE, the authors considered a non-

smooth Daubechies (or Haar) wavelet basis implemented in a wavelet analysis digital filter 

bank yielding a quite efficient to compute discretized version of the WT, the so-called 

discrete wavelet transform (DWT) (e.g. Daubechies 1992, Goswami and Chan 1999). 

Recognizing the potential of the RWE for damage detection in practical VSHM applications, 

Yun et al. (2011) considered arrays of battery operated wireless sensors computing locally on 

on-board micro-processors the DWT and, thus, being able to derive the RWE in a 

decentralized computationally-efficient manner aiming to reduce the power consumption of 

sensors and, therefore, to prolong their battery life: a very important practical consideration in 

cost-effective VSHM using wireless sensor networks (Lynch 2007). More recently, Lee et al. 

(2014) adopted the RWE to detect faulty/damaged connections in pin-jointed truss structures 

by considering healthy connections as a reference (healthy state), and processing signals 

recorded at all healthy and faulty connections acquired from a single vibration test. 

In all the above studies, the RWE was derived from linear structural response 

acceleration signals to detect “stationary” damage, that is, damage not evolving in time due to 

extreme external loads (e.g., due to earthquakes, hurricanes, etc.). Stationary damage is 

inferred by changes to the energy distribution across the WT scales of response acceleration 

signals from the healthy and the damaged state. Intuitively, these changes are associated with 
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a shift of the natural frequencies due to damage. In this regard, it is natural to expect that the 

use of wavelet bases (or, equivalently, wavelet analysis filter banks) capable of resolving fine 

differences in the signal energy distribution in the frequency domain, or among the wavelet 

analysis scales, renders the RWE more effective for stationary damage detection. However, 

the Haar (non-smooth Daubechies) wavelet filter bank employed by Ren and Sun (2008) to 

compute the RWE is known to have significant overlapping between the frequency bands 

corresponding to different wavelet analysis scales (e.g., Vetterli and Herley 1992). Indeed, 

Yun et al. (2011) reported the problem of signal energy leakage among wavelet scales 

(spectral leakage) in using Haar wavelets for RWE-based damage detection, which renders 

the interpretation of the RWE values a challenging task. Further, in the above work, limited 

results using a smooth (higher-order) Daubechies wavelet filter bank, which attains improved 

frequency resolution attributes compared to the Haar wavelet basis, were provided and the 

authors noted that the use of different analysis wavelets influences the obtained RWE values. 

However, the authors neither did they attempt any direct comparison between different 

wavelet filter banks, nor did they provide recommendations to indicate a preferable wavelet 

filter bank. Moreover, despite being computationally efficient, the standard dyadic (octave) 

frequency domain discretization of the DWT used in Ren and Sun (2008) and Yun et al. 

(2011) does not facilitate a detailed characterization of high frequency content. This 

limitation may hinder damage detection and localization based on changes to the energy of 

response acceleration signals related to the higher modes of vibration (e.g., Yen and Lin 

2000). The continuous wavelet transform (CWT) considered by Lee et al. (2014) may 

overcome the latter limitation, but at the expense of significant computational cost which may 

not be cost-efficient to be accommodated by wireless sensors.  

The above literature review reveals the lack of pertinent comparative studies and of 

practical recommendations on what analysis wavelet basis should be used to facilitate RWE-

based damage detection, while ensuring that the underlying WT is computationally affordable 

to be implemented in wireless sensor networks for VSHM. To this end, this paper tests the 

hypothesis that enhanced structural damage localization via the RWE can be achieved by 

using orthogonal (energy-preserving) wavelet filter banks which (i) have enhanced frequency 

selectivity among scales and (ii) maintain the same frequency resolution along the frequency 

domain. The latter consideration entails a non-constant Q wavelet filter bank analysis (e.g., 

Brown 1991), that is, wavelet bases in which the ratio of the central or characteristic 

frequency over the effective bandwidth of wavelets at different scales does not remain the 



5 
 

same. To this aim, the Meyer wavelet basis for DWT (e.g., Misiti et al. 2000) and the 

harmonic wavelet basis (Newland 1994) are herein considered, for the first time in the 

literature, alongside smooth and non-smooth Daubechies wavelet bases to gauge their 

effectiveness for RWE-based damage detection by examining scale or frequency dependent 

contributions to the RWE index vis-à-vis. All four considered wavelet bases can be 

efficiently computed using either standard wavelet filter banks of finite impulse response 

filters or fast Fourier Transform (FFT)-based algorithms. Notably, wireless sensors with on-

board processors able to perform these standard signal processing operations are available 

(Lynch 2007). 

The remainder of this paper is organized as follows. Section 2 provides a concise 

background on the WT focusing on energy preserving wavelet analysis filter banks, while 

section 3 reviews the RWE for stationary structural damage detection. Next, section 4 

presents the four different wavelet analysis filter banks considered in this work and discusses 

their frequency domain attributes. Finally, section 5 furnishes novel numerical data for RWE-

based damage detection using different wavelet filter banks pertaining to two different 

benchmark structures excited by stationary and non-stationary broadband forcing functions, 

while section 6 summarizes concluding remarks and points to future work. 

2. A review on the wavelet transform and energy preserving wavelet analysis filter 

banks 

2.1.The continuous wavelet transform (CWT) 

Consider a real signal x(t) of finite energy E in the axis of time t, or in time domain (TD), 

expressed by 

2 21( ) ( ) .
2

E x t dt X dω ω
π

∞ ∞

−∞ −∞
= =∫ ∫

 
(1)  

In the above equation, X(ω) is the complex-valued continuous-time Fourier transform 

(CTFT) defined by  

( ) ( ) ,i tX x t e dtωω
∞

−∞
= ∫  (2) 

in which i is the imaginary unit and the bar over a function denotes complex conjugation. 

The Fourier amplitude spectrum (FAS) |X(ω)| maps/projects the signal x(t) onto the frequency 
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domain (FD), ω, with the sharpest possible resolution, since the non-decaying in time 

sinusoidal (harmonic) function eiω0t  with frequency ω0 becomes a “delta function” at ω0 in 

the FD. Moreover, the relation (1) implies that the transformation in (2) preserves the signal 

energy and, therefore, the square of the FAS normalized by the signal energy, |X(ω)|2/E, can 

be interpreted as the energy distribution carried by the signal x(t) on the FD, averaged at all 

times (see e.g. Cohen 1995).  

Further, consider the continuous wavelet transform (CWT) defined as (e.g. Daubechies 

1992, Goswami and Chan 1999) 

( ) ( )1, ,t bC a b x t ψ dt
aa

∞

−∞

− =  
 ∫

 
(3) 

which projects the signal x(t) onto a collection of localized in time oscillatory waveform 

functions (“wavelets”) generated by scaling in time, via the positive scale parameter α, and 

by translating in time, via the time position parameter b, a single finite energy function ψ(t). 

The latter function is the so-called “mother wavelet”. For the purposes of this work, it is 

important to note that the square of the magnitude of the CWT normalized by the signal 

energy, |C(α,b)|2/E, can be interpreted as an estimator of the signal energy distribution on the 

joint time-frequency plane (see e.g. Cohen 1995). This is because: firstly, the CWT in (3) 

preserves the energy of the original signal; secondly, the parameter b is a time-related index 

defining the origin in time of each wavelet considered in the analysis for a fixed scale a; and, 

thirdly, the scale parameter a can be related to an effective frequency via the equation 

= ,c
eff

ω
ω

a  
(4) 

where ωc is the central or the dominant frequency of the (unscaled) mother wavelet FAS 

|Ψ(ω)|. Therefore, the CWT in (3) “scans” the signal x(t) in the TD by varying the parameter 

b to detect frequency components that pertain to a specific effective frequency and 

bandwidth. The latter two FD attributes of CWT depend on the scale α and on the properties 

of the mother wavelet. 

2.2.The discrete wavelet transform (DWT) and wavelet filter banks 

In many practical numerical applications, the CWT in (3) is computed by considering a 

set of particular values for the parameters a and b following a dyadic discretization scheme. 



7 
 

According to this scheme, the scaling parameter is expressed by α=2–j while the time position 

parameter is expressed b=k ⋅ a=k ⋅ 2–j where j and k are integer numbers j, k ∈ Z. The 

convolution integral in (3) becomes (e.g. Daubechies 1992, Goswami and Chan 1999)  

[ ] ( ) ( )/ 21 , 2 2 .
2 2

j j
jj j

kC C k x t ψ t k dt
∞

−∞

  = = − 
  ∫

 
(5) 

A further time discretization of the integral in (5) to accommodate finite duration 

discrete-time R-length signals x[r]=x(r/fs); r=0,1,…,R-1, where fs is the sampling rate, yields 

the so-called discrete wavelet transform (DWT). Notably, the DWT can be efficiently 

computed by means of a digital filter bank comprising a sufficient number of the (same) 

“building block” repeated in series as shown in Figure 1 in a multi-resolution analysis 

framework (Daubechies 1992, Vetterli and Herley 1992, Goswami and Chan 1999). Each 

building block corresponds to a particular scale or analysis “level” and consists of a high-pass 

filter with coefficients h[n]; n=1,2,…,N, a low-pass filter with coefficients g[n]; n=1,2,...,N, 

and a dyadic down-sampler (i.e., a mechanism of reducing the sampling rate by retaining 

every other sample of the input discrete-time signal) applied to the output of each of the 

previous filters. These filters are designed such that no energy is lost during 

transformation/processing of the input signal. At each level corresponding to the scale a=2-j 

the spectrum of the input discrete-time signal is split into two parts separating the high 

frequency components, represented by the “detail” sequence of wavelet coefficients DJ+1-j 

upon down-sampling, from the low frequency components, represented by the 

“approximation” sequence of coefficients AJ+1-j upon down-sampling (see e.g. Vetterli and 

Herley 1992). The full DWT requires J=log2R total number of levels to be considered and at 

each level the number of coefficients in the output sequences upon down-sampling is R/2(J+1-

j). Therefore, the DWT is non-redundant: it produces exactly R coefficients given an R-long 

discrete-time signal which preserve the signal energy E.  

 
Figure 1: Typical dyadic discrete wavelet transform (DWT) analysis filter bank with J=3 scales for 

processing R=8 long discrete-time signals. 
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In this respect, the processing of a given signal by a DWT filter bank begins by 

extracting, first, the highest frequency components at the lowest scale (i.e., for the largest j 

value) and proceeds at each level by extracting lower and lower frequencies, that is, the 

values of j follow a descending order: j=J,J-1,…,1 (see also Figure 1). The detail (or wavelet) 

coefficients at each scale capture only the part Ej of the total signal energy defined as 

[ ] 2
,j j

k
E C k= ∑

 
(6) 

where it is understood that summation is over all coefficients DJ+1-j at scale j. Then, the 

total energy of the signal is retrieved by summing the energy over all J scales, that is,  

[ ] 2

j j
j j k

E E C k= =∑ ∑∑
 

(7) 

under the assumption that the energy of the approximation coefficient at the final analysis 

level is negligible. To this end, note that the ratio  

,j
j

E
p

E
=

 
(8) 

gives the fraction of the total signal energy, contained within a particular frequency band 

corresponding to the j scale of the DWT analysis filter bank. It, therefore, characterizes a 

discretized version of the Fourier transform-based function |X(ω)|2/E within this band. 

Notably, the width and location on the frequency axis of the frequency band corresponding to 

a scale j does not only depend on the value of j, but also on the FD attributes of the filter h[n] 

or, equivalently, on the FD attributes of the underlying analysis mother wavelet. In the 

following section, a structural damage sensitive index, introduced in Ren and Sun (2008), is 

briefly presented which relies on computing the ratio in (8) of acceleration response signals 

from dynamically excited linear structures. Further, in section 4, the FD attributes of DWT 

filter banks using different analysing mother wavelets are presented, while the influence of 

these attributes for vibration-based structural damage detection is numerically demonstrated 

in section 5. 

3. The relative wavelet entropy for structural damage detection 

Introduced by Blanco et al. (1998), the Shannon wavelet entropy is defined as  
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SWE ln( ),j j
j

p p= −∑
 

(9) 

where pj is the positive ratio in (8) with 0≤pj≤1 (i.e., pj qualifies as a probability 

distribution) and the summation involves all scales considered in an energy preserving DWT 

filter bank to transform a given signal x(t). The SWE was proved to be an effective 

quantitative measure to characterize the information carried by signals at different scales (or 

corresponding frequencies) and time instants in certain biomedical applications (e.g., Blanco 

et al. 1998, Rosso et al. 2004). Interpreted from a structural dynamics viewpoint, the SWE of 

the acceleration response signal of a white noise excited lightly damped linear single degree 

of freedom structural system will attain a relatively small value compared to the SWE of the 

response signal of a white noise excited structure with multiple degrees of freedom. This is 

because the energy of the former signal will be well-localized in the FD around the natural 

frequency of the system and, ideally, will be captured by a single pj corresponding to the 

scale containing this frequency. The value of this particular pj will be close to unity and, 

therefore, its contribution to the sum in (9) will be almost zero as the term ln(pj) will be 

almost zero, and so will be the contributions of the ratios from all other scales whose value 

will be close to zero. However, the energy of the response signal of a multi-degree of 

freedom structure will be spread around the various different natural frequencies of the 

structure. Consequently, there will be several non-zero contributions to the sum in (9) and the 

overall value of SWE will be large. Clearly, the SWE is maximized for a white noise signal 

implying a highly “disordered” process, while the SWE of a very narrowband signal (close to 

a pure sinusoid) will be almost zero implying an “ordered” process. 

To this end, note that structural damage causes a shift to the natural frequencies of a 

structure and this should reflect in changes to the values of the scale-dependent energy ratios 

in (8) obtained from linear structural response acceleration signals commonly considered in 

VSHM. In this regard, Ren and Sun (2008) proposed the use of the relative wavelet entropy 

defined by 

RWE ln ,j
j

j j

p
p

q
 

=   
 

∑
 

(10) 

as a structural damage sensitive index. In the last equation, pj is the scale dependent 

energy ratio in (8) obtained from a response acceleration signal measured at a particular 
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location of the damaged-state structure and qj is the scale dependent energy ratio in (8) from a 

response acceleration signal measured at the same point of the healthy-state structure. For 

structures with negligible damage close to the measurement location, it is expected that pj≈qj 

for all considered j scales and thus RWE attains a negligible value, corresponding to an 

ordered process. For damaged structures, it is expected that the two ratios will differ across 

some of the scales due to a shift to the natural frequencies of the system yielding a large 

RWE value, corresponding to a “disordered” process. Larger values of RWE are expected at 

measurements points close to the damage and, therefore, comparing the RWE values 

computed from an array of sensors may achieve damage localization (Ren and Sun 2008, 

Yun et al. 2011).  

Note that the RWE index in (10) is independent of time aiming to detect stationary 

structural damage. Since the underlying information for the detection of such kind of damage 

is associated with signal energy distribution in the FD, it is intuitive to expect that the RWE is 

strongly dependent on the FD properties of the wavelet filter bank used to compute the 

energy ratios appearing in (10) and the quality of FD resolution. The FD properties of four 

different wavelet filter banks are discussed in the next section focusing on the frequency 

resolution and selectivity across different scales. The influence of using different wavelet 

filter banks to the effectiveness of the RWE as a damage detection index for stationary 

damage is numerically assessed in Section 5. 

4. Frequency domain attributes of Daubechies, Haar, Meyer, and harmonic wavelet 

analysis filter banks 

4.1.Daubechies wavelet analysis filter banks 

Unlike the CWT in (3), the DWT discussed in section 2.2 does not require an analytical 

definition for the mother wavelet ψ(t). Instead, it allows for different families of analysing 

wavelet functions to be indirectly defined by means of appropriately constructed filters g[n] 

and h[n]; n=1,2,…,N in Figure 1. This is the case of the Daubechies family of wavelets, 

denoted by DN, which are defined via a single N-length finite impulse response (FIR) filter 

construction due to I. Daubechies (e.g. Daubechies 1992), and are widely used within the 

DWT multi-resolution analysis framework. Daubechies wavelets are constructed to be 

compactly supported in the TD forming orthogonal analysis bases within each scale and 
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across all dyadic scales. Consequently, they achieve sharp localization of signal energy in TD 

and preserve the input signal energy. 

Nevertheless, the excellent TD localization capabilities of Daubechies wavelets, comes at 

the cost of relatively poor FD localization and discrimination across scales in typical 

Daubechies DWT filter banks. These issues are illustrated in Figure 2(a) which plots the 

FAS, |Ψ(ω/2j)|, of D20 Daubechies wavelets (defined using an N=20-long FIR filter reported 

in Daubechies 1992) for four adjacent scales. These FASs have been obtained by Fourier 

transforming D20 wavelets at different scales (Figures 2(b) and 2(c) plot two such wavelets). 

The wavelets are obtained by means of a standard algorithm which constructs recursively the 

so-called scaling function, φ(t), at first, and, then, the associated wavelet function at each 

considered scale j by relying on the following two-scale equations (see Goswami and Chan 

1999) 

1
1(2 ) [ ] (2 ),j j

n
φ t g n φ t n+= −∑

 
(11) 

1
1(2 ) [ ] (2 ).j j

n
ψ t h n φ t n+= −∑

 
(12) 

The sequence g1[n] in (11) are the N coefficients of the FIR filter defining the DN 

wavelets. Further, in (12), h1[n]=(–1)ng1[1–n]. Note that the signal analysis FIR filters 

appearing in Figure 1 for the DN wavelets are defined as g[n]=0.5 ⋅ g1[–n] and h[n]=0.5 ⋅ (–1)n 

g1[n+1] (quadrature mirror construction). 

 

Figure 2: Daubechies D20 wavelets for four different scales j from a filter bank with J=16 total 
number of scales and Q= 0.46: (a) Normalized to the peak value FAS |Ψ(ω/2j)|, (b) 
wavelet in TD at scale j=11, and (c) wavelet in TD at scale j=14. 

Figure 2(a) shows clearly that the FASs of a Daubechies wavelet basis, as implemented 

in a dyadic DWT filter bank, exhibit significant overlapping among the different scales and 

have a relatively poor frequency selectivity among scales j especially in the lower frequencies 

(see also Vetterli and Herley 1992). In fact, being compactly supported in the TD, 

Daubechies wavelets are infinitely supported in the FD: their FAS comprises one main 
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dominant lobe and several lower periodic sidelobs at higher frequencies. This is a 

consequence of the so-called uncertainty principle which holds for any Fourier pair: 

enhancing the energy localization of a function in the TD deteriorates its frequency resolution 

(i.e., widens its effective bandwidth) and vice versa (e.g., Cohen 1995). Note that the D20 

wavelets shown in Figure 2 are rather smooth and their side lobs at higher frequencies are 

negligible. However, this is not the case for lower-order Daubechies wavelets. As a limiting 

case, Figure 3 provides similar plots as Figure 2 for the lowest possible order of Daubechies 

wavelets, D2, also known in the literature as “Haar” wavelets. The side lobs of the FASs of 

Haar wavelets are significant, while the frequency selectivity among scales in the lower 

frequencies is rather poor. Consequently, the use of such filter banks renders the task of 

assigning any single frequency band to the signal energy captured at a particular scale in (6), 

Ej, a rather challenging task. 

 
Figure 3: Daubechies D2 (or Haar) wavelets for four different scales j from a filter bank with J=16 

total number of scales and Q= 0.49: (a) Normalized to the peak value FAS |Ψ(ω/2j)|, (b) 
wavelet in TD at scale j=11, and (c) wavelet in TD at scale j=14. 

4.2.Meyer wavelet filter banks 

Unlike the Daubechies wavelets which are compactly supported in the TD, the Meyer 

(mother) wavelet is compactly supported in the FD defined as (e.g. Daubechies 1992) 

3 2 4exp( / 2)sin 1 ;
2 2 3 3

3 4 8Ψ( ) exp( / 2)cos 1 ;
2 2 3 3

                                         0 ;        

π π πiω v ω ω
π

π π πω iω v ω ω
π

otherwise

   − ≤ ≤     
    = − ≤ ≤     


  

(13) 

In the last equation, the auxiliary function v(u) controls the smoothness of the FAS of 

Meyer wavelets and, therefore, their rate of decay in the TD. A common smoothing function 

of choice is (e.g. Daubechies 1992, Misiti et al. 2000) 
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[ ]4 2 3(35 84 70 20 ) ; 0,1
( ) .

                                        0  ;
u u u u u

v u
otherwise

 − + − ∈= 
  

(14) 

Orthogonal Meyer wavelet bases can be readily constructed and used to obtain energy 

preserving CWT in (3). In fact, Lee et al. (2014) considered the Meyer CWT to identify the 

potentially damaged connections in trusses by relying on the RWE from signals measured at 

healthy and damaged connections from a single excitation test. However, there exist DWT 

filter bank constructions comprising FIR filters (as in Figure 1) that approximate the Meyer-

based CWT using a dyadic FD discretization scheme Misiti et al. (2000). Such a Meyer DWT 

filter bank is used in the numerical applications of section 5 since it is much more efficient to 

compute and therefore more likely to be adopted in computing wavelet coefficients on on-

board micro-processors for wireless sensors used in VSHM (e.g., Lynch 2007, Yun et al. 

2011). 

Figure 4(a) plots the FAS of Meyer wavelets at four adjacent scales. Compared to the 

Daubechies wavelets of Figures 2(a) and 3(a), overlapping in the FD is observed only 

between neighbouring wavelet scales and there are no side lobs at high frequencies. 

Therefore, DWT filter banks of Meyer wavelets attain enhanced frequency selectivity among 

scales compared to Daubechies wavelets. However, as in the case of Daubechies wavelet 

filter banks, the frequency resolution deteriorates in higher frequencies as the wavelets 

becomes better localized in TD at lower scales (larger values of j). This issue is further 

discussed in the following sub-section. 

 

Figure 4: Meyer wavelets for four different scales j from a filter bank with J=16 total number of 
scales and Q= 0.68: (a) Normalized to the peak value FAS |Ψ(ω/2j)|, (b) wavelet in TD at 
scale j=11, and (c) wavelet in TD at scale j=14. 

4.3.Constant Q-analysis wavelet filter banks 

The ability of the square magnitude of the CWT and of the DWT (i.e., of the |C(α,b)|2 and 

of the |Cj[k]|2, respectively) to resolve the frequency components of any signal in time relies 

on the scaling operation and on the oscillatory form of the wavelets. Specifically, as the 
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scaling parameter a takes on smaller values (or as j assumes higher values in the case of 

DWT) the wavelets are compressed in the TD. However, the number of the wavelet zero-

crossings (i.e., oscillations) remain the same and, thus, the wavelet FAS becomes wider, due 

to the uncertainty principle, while it shifts towards higher frequencies since the effective 

frequency in (4) increases. The above points can be readily observed in Figures 2 and 3: the 

width of the main lobe of the wavelet FΑS widens as the average frequency content, 

characterized by the central or the peak frequency of the main lobe, increases. This well-

known property of the standard CWT in (5) is called constant-Q analysis, where Q is defined 

as the ratio of the effective frequency over the effective bandwidth at each analysis level or 

scale (see also Brown 1991). Consequently, the dyadic DWT filter banks assume a constant 

Q across scales or analysis levels (note that the value of Q is reported for the filter banks of 

Figures 2 to 4). 

In many signal analysis applications a constant Q-analysis is favourable. This is because 

high-frequency components in time-series are usually well-localized in time, while low-

frequency trends are well-spread in time. Nevertheless, this is not necessarily true in 

processing acceleration response signals from dynamically excited linear structures whose 

location of the dominant frequency components on the FD depends on the structural natural 

frequencies. The natural frequencies of lightly damped linear structures are well-localized in 

the FD and may lie anywhere on the frequency axis. In this regard, the use of non-constant Q 

wavelet analysis filter banks is a reasonable consideration in order to target natural 

frequencies related to higher modes of vibration effectively. The wavelet family presented in 

the next subsection can readily achieve custom-made non-constant Q wavelet analysis filter 

banks. These considerations have important practical implications to the effectiveness of the 

RWE in (10) for structural damage localization purposes as will be numerically illustrated in 

section 5. 

4.4.Harmonic wavelet filter banks 

Introduced by Newland (1994), the harmonic wavelet transform (HWT) proved to be a 

potent tool for structural damage detection of yielding multi-storey building structures under 

severe earthquake excitation Spanos et al. (2007). The HWT incorporates a basis of complex-

valued functions with compactly supported box-like FAS (harmonic wavelets). A “general” 

harmonic wavelet at scale j centred at the k/(p[j]-m[j]) position in time can be written in the 

frequency domain as (see e.g. Giaralis and Spanos 2009) 
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where Το is the total length (duration) of the time interval considered in the analysis. In 

the last equation, the sequences (vectors) p and m contain integer positive numbers. It was 

shown in Newland (1994), that a collection of harmonic wavelets spanning adjacent non-

overlapping intervals at different scales on the FD forms a complete orthogonal basis. This 

can be achieved by proper definition of the p and m sequences. Then, the HWT, computed by 

substituting the inverse Fourier transform of (15) in (5), produces coefficients Cj[k] which 

preserve the input signal energy. 

Importantly, note that at scale j the effective bandwidth of the HWT is (p[j]-m[j])2π/Το 

and the central frequency is (p[j]+m[j])π/Το. In this respect, it can be readily seen that HWT 

enables arbitrary frequency resolution within any given range of frequencies. Furthermore, 

the effective frequency band at each scale is defined directly in the FD in a straightforward 

manner. Therefore, the HWT provides for exceptional freedom in defining “frequency bins” 

of arbitrary width which, theoretically, do not overlap (note though that some overlapping 

does occur in practical computation of the HWT since “ideal” band-pass filters cannot be 

numerically implemented). This is not the case for typical wavelet families (e.g., Meyer and 

Daubechies families) whose frequency content at each scale is implicitly defined by means of 

a single scalar (i.e., the scaling parameter). An example of four neighbouring scales as part of 

a basis with constant-width “frequency bins” is shown in Figure 5(a) where the central 

frequency of each scale is noted by a broken line. Such a basis leads to a non-constant Q-

analysis. Still, constant Q-analysis with dyadic discretization of the typical DWT can be 

accommodated by the HWT by taking m[j]=2j and p[j]=2j+1. 
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Figure 5: Harmonic wavelets 10Hz constant bandwidth filter bank: (a) FAS for 4 different scales with 
central frequencies denoted by broken lines, (b) real part harmonic wavelet with 15Hz 
central frequency, (c) real part harmonic wavelet with 35Hz central frequency. 

Nevertheless, the aforementioned “freedom of choice” of HWT comes at the cost of 

relatively poor time localization as evidenced by comparing the wavelets plotted in TD in 

Figure 5 compared to those in Figures 2 to 4. In fact, harmonic wavelets can be viewed as the 

complex counterpart of the so-called “Shannon wavelets” associated with the Littlewood-

Paley basis (see for example Daubechies 1992 and Vetterli and Herley 1992), which are well-

known for their poor time localization properties. Still, for stationary damage detection, poor 

time-localization attributes is of secondary importance. From a computational viewpoint, 

robust fast Fourier transform (FFT)-based algorithms have been proposed by Newland (1994) 

and Newland (1999) for the efficient computation of non-redundant as well as for redundant 

HWT on the FD. A custom-made implementation of Newland’s FFT-based algorithm is used 

to compute non-constant Q HWT considered in section 5. 

5. Numerical Assessment of different wavelet families for relative wavelet entropy-

based damage detection 

5.1.Benchmark Structural Models 

For the purposes of this study, finite element (FE) models corresponding to a healthy and 

a damaged state of two different structures, namely, an aluminum space truss and a simply 

supported steel beam, are considered. Note that lab specimens of similar structures have been 

adopted by Ren and Sun (2008), i.e., a simply supported beam, and by Yun et al. (2011), i.e., 

a space truss, to attest the applicability of the RWE for damage detection from linear response 

acceleration signals obtained by tethered and by wireless sensors, respectively. 

In particular, the 8-bay simply supported aluminium truss of Figure 6 is considered, 

which is based on Humar et al. (2006) as a benchmark structure to assess the performance of 

various vibration-based techniques for damage detection. The truss comprises 100 tubular 
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members and each bay is a cube with 707mm long side. The members shown in dark grey in 

Figure 6 have 22mm diameter and 1mm wall thickness, while the members shown in light 

grey are 30mm in diameter and 1.5mm wall thickness. The truss is modelled in SAP2000 FE 

commercial software using standard linear one-dimensional elements. Gravitational masses 

of 0.44kg are lumped at each of the 36 nodes of the FE model. Additional gravitational 

masses of 1.75kg are assigned to nodes 1,7,30, and 34, and of 2.75kg are assigned to nodes 

20, 26, and 32. These additional masses ensure that the first six natural frequencies 

corresponding to predominantly bending mode shapes along the vertical plane of the truss are 

“clustered” together in pairs as reported in Table 1 below (see also Humar et al. 2006). A 

damaged state of the truss structure is further modelled by reducing the axial rigidity of the 

two truss members shown in red in the right panel of Figure 6 by 50%. 

 

  

Figure 6: Space truss FE models: healthy state (left panel) and damaged state (right panel). 

Furthermore, a 5m long steel IPE300-profiled beam resting on simple supports at both 

ends is also modelled using the standard FE method. The beam has cross-sectional area of 

53.8cm2 and in-plane moment of inertia along its “strong axis” of 8360cm4. It is modelled in 

SAP2000 FE software using the grid of 4-node shell elements with 6 degrees-of-freedom 

(DOF) per node shown in Figure 7. The material mass density is taken equal to 7849kg/m3 

and the elastic modulus is equal to 210GPa. A damaged state of the above beam is further 

modelled by reducing the cross-sectional area by 50% at the mid-span and at the quarter 

spans as shown in Figure 7.  

 

 

Figure 7: Steel beam FE models: healthy state (upper panel) and damaged state (bottom panel). 
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Table 1 lists the natural frequencies corresponding to the first three vertical 

(gravitational) in-plane modes of vibration of the considered FE models obtained by means of 

standard modal analysis. In all the ensuing dynamic analyses a critical damping ratio of 1% 

for all vibration modes is assumed. 

Table 1: Natural frequencies corresponding to in-plane vertical bending mode shapes for the FE 
models shown in Figures 6 and 7. 

 

Space Truss Model Steel Beam Model 

 

Healthy Damaged Healthy Damaged 

mode [Hz] [Hz] [Hz] [Hz] 

1 73.6 68.9 54.9 49.3 

2 188.8 179.9 153.1 79.5 

3 300.5 292.6 313.5 173.7 

 

5.2.Excitation forcing functions and response acceleration signals 

Two different types of dynamic forcing functions are considered to excite the above FE 

models for reasons discussed later in the text: a 50s-long harmonic excitation with unit 

amplitude and linearly increasing frequency within the range of 0.1Hz to 320Hz (sine sweep), 

and a 40s-long realization of a zero-mean Gaussian white noise process with single-sided 

unit-amplitude power spectrum band-limited to 500Hz. Both functions are sampled at 

1000Hz rate. Figure 8(a) plots the first 4s of the sine sweep (SS) excitation and Figure 8(b) 

plots the white noise (WN) sample excitation normalized by its peak value. Further, Figure 

8(c) plots the FAS of the SS normalized by its mean value and Figure 8(d) plots the FAS of 

the WN. It is seen that the considered forcing functions have a practically flat FAS within a 

sufficiently wide frequency range to excite the structural natural frequencies of the 

considered FE models listed in Table 1. Therefore, both functions qualify for experimental 

forced vibration testing for damage detection using electromechanical shakers (Ewins 2000). 

However, in this study, forced vibration tests are simulated as described below. 
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Figure 8: Sine-sweep (only first 4s shown) and white noise forcing functions in the time domain, (a) 

and (b), and in the frequency domain, (c) and (d), respectively. 

Standard linear response history analyses are undertaken in SAP2000 FE software to 

obtain response acceleration signals of the FE models in Figures 6 and 7 exposed to the 

excitations of Figure 8. For the case of the space truss FE models, the forcing functions are 

applied to node 5 along the gravitational axis (see Figure 6). For each individual forcing 

function, the vertical response acceleration time traces are obtained at 9 equidistant 

measurement points coinciding with the nodes 1 to 9 of the FE model in Figure 6. For the 

case of the beam models, the forcing functions are applied as point loads along the vertical 

axis at mid-span in the middle of the upper flange. For each individual forcing function, the 

vertical response acceleration traces are obtained at 15 measurement nodes along the length 

of the beam located on the upper flange (nodes 1 to 15 indicated in Figure 7). 

The thus obtained acceleration time-histories are treated as structural response signals 

corresponding to standard forced vibration experimental testing in a noise-free environment 

and are wavelet transformed by different filter banks introduced in the following section. In 

this respect, it is important to note that the two forcing functions of Figure 8 differ (I) in the 

TD: the WN excitation is a quasi-stationary signal (i.e., a finite duration signal whose 

frequency and amplitude properties do not change in time), while the SS excitation is non-

stationary having an evolving in time frequency content, and (II) in the FD: the WN 

excitation has a higher cut-off frequency at 500Hz than the SS at 320Hz. Consequently, the 

properties of the response acceleration signals will also be different in (I) the TD and in (II) 

the FD.  
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To illustrate point (I), the acceleration response signals at the quarter-span of the 

damaged beam model obtained for the SS and from the WN excitations are plotted in Figures 

9(a) and 9(b), respectively. The corresponding FASs normalized to their peak value are 

shown in Figures 9(c) and 9(d): they are identical exhibiting two spikes at the first and the 

third natural frequency (the forcing function applied at mid-span cannot excite the second 

mode shape of the beam). However, the response signal of the WN excitation is stationary in 

time, while the response signal for SS excitation is non-stationary characterized by two 

prominent “bursts” in time. The first low-frequency burst corresponds to resonance of the SS 

input with the first natural frequency of the beam (left-most spike of the FAS), while the 

second burst has higher frequencies due to resonance of the SS excitation with the third 

natural frequency of the beam (right-most spike of the FAS). The reason for considering both 

sets of response signals (stationary and non-stationary) is to test whether the above 

differences in the TD might influence the potential of the RWE for damage detection 

depending on the wavelet filter bank used, given that the time localization capabilities of 

certain wavelet families considered (in particular of the harmonic wavelets in Figure 5) are 

poor. 

 
Figure 9: Response acceleration signals recorded at node 3 of the damaged beam in Figure 7 under 

sine-sweep and white noise excitation in the time (a) and (b), and in the frequency domain 
(c) and (d), respectively.  

To illustrate point (II), the acceleration response signals at node 4 of the damaged space 

truss model obtained for the SS and from the WN excitations are plotted in Figures 10(a) and 

10(b), respectively. Similar comments, as before, hold for the differences of these signals in 

the TD. However, in this case, the corresponding FASs normalized to their peak value shown 

in Figures 10(c) and 10(d), are not identical. The WN force excites additional higher order 
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mode shapes with natural frequencies lying, purposely, outside the bandwidth of the SS 

excitation. The influence of this additional broadband high frequency content to the 

interpretation of RWE values computed using different wavelet filter banks is examined and 

discussed in subsequent sections. 

 

Figure 10: Response acceleration signals recorded at node 4 of the damaged space truss in Figure 7 
under sine-sweep and white noise excitation in the time (a) and (b), and in the frequency 
domain (c) and (d), respectively.  

5.3.Wavelet analysis filter banks and scale-dependent relative wavelet entropy 

The response acceleration signals from the healthy and damaged FE models obtained as 

detailed in the previous sub-section are first normalized by the energy of the corresponding 

forcing functions, their potential non-zero mean value is subtracted, and finally wavelet 

transformed using various different energy preserving wavelet filter banks. Specifically, two 

16-scale dyadic DWT filter banks are considered implementing smooth Daubechies D20 and 

non-smooth Daubechies D2 (or Haar) wavelets, attaining almost the same (constant) Q value: 

Q≈0.46 for the D20 and Q≈0.49 for the Haar filter bank. Furthermore, a Meyer wavelet basis 

approximated by a 16-scale dyadic FIR DWT filter bank of approximately Q≈0.68 constant 

(i.e., significantly higher that the two Daubechies filter banks) is also considered. The 

effective bandwidth (accounting only for the main lobes of the FAS for the Daubechies 

wavelets) and the characteristic frequency at which the wavelet FAS is maximized for the 

first 10 DWT analysis levels of the above three filter banks are reported in Table 2. To 

facilitate the interpretation of the results presented in the following section, the FAS of the 

D20, D2, and Meyer wavelets corresponding to the 4 analysis scales indicated by bold fonts 

in Table 2 have been plotted in Figures 2, 3, and 4, respectively. The DWT for all the above 
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filter banks is carried out using the built-in functions of the MATLAB-based wavelet toolbox 

developed by Misiti et al. (2000). 

Table 2: Frequency domain attributes of the first 10 analysis levels for the considered wavelet filter 
banks  

Analysis 

Level 

(scale) 

D20 Daubechies 

wavelet filter bank 

(Q≈0.46) 

D2 Daubechies or 

Haar wavelet filter 

bank (Q≈0.49) 

Meyer wavelet filter 

bank (Q≈0.68) 

Effective 

range  

(Hz)* 

Effective 

Frequency 

(Hz)* 

Effective 

range 

(Hz)* 

Effective 

Frequency 

(Hz)* 

Effective 

range (Hz) 

Effective 

Frequency 

(Hz) 

1 (j=16) 
70.62-

812.14 
342.11 0-1024 498.05 

179.2-

674.13 
331.68 

2 (j=15) 
45.85-

412.66 
171.05 0-558 249.03 

85.33-

341.33 
165.84 

3 (j=14) 
21.48-

207.66 
85.53 0-267 124.51 

42.67-

170.67 
82.92 

4 (j=13) 
10.41-

100.66 
42.76 0-130 62.26 22.4-85.33 41.46 

5 (j=12) 5.13-51.29 21.38 0-64 31.13 11.2-42.67 20.73 

6 (j=11) 2.55-25.45 10.69 0-32 15.56 5.33-21.33 10.37 

7 (j=10) 1.27-12.68 5.35 0-16 7.78 2.8-10.67 5.18 

8 (j=9) 0.63-6.33 2.67 0-8 3.89 1.4-5.33 2.59 

9 (j=8) 0.32-3.16 1.34 0-4 1.95 0.67-2.67 1.30 

10 (j=7) 0.16-1.63 0.67 0-2 0.97 0.35-1.32 0.65 

*Values accounting for only the main lobe of the FAS of the scaled wavelets 
 

Additionally, the considered signals are also processed by means of a harmonic wavelet 

basis of 128 adjacent non-overlapping “frequency bins” (scales) of constant width equal to 

3.91Hz spanning the range of 0-500 Hz on the frequency axis. The non-constant Q HWT 
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analysis is carried out by means of a custom-made code implementing the FFT-based 

algorithm described by Newland (1994 and 1999). 

Next, the relative wavelet energy in (6) is computed from the wavelet coefficients of the 

response acceleration signals (healthy and damaged states) at each scale of the 4 different 

wavelet filter banks. Subsequently, the following “scale-dependent” contributor to the overall 

RWE in (10) is calculated for all measurement points of the damaged models 

( )RWE ln j
j

j

p
j p

q
 

=   
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(15) 

In the last equation, qj is the relative wavelet energy at scale j computed from the 

simulated response signals of the “healthy” FE models, while pj is the relative wavelet energy 

at scale j corresponding to response signals of the damaged state. The consideration of the 

above scale-dependent RWE(j) makes possible to discriminate the contributions to the overall 

in (10) from each wavelet analysis level. Therefore, it serves well the purpose of assessing 

the influence of the FD attributes of the different wavelet filter banks considered (i.e., 

frequency selectivity among scales and Q value) to the computed values of the RWE index. 

Finally, it is noted that no hard-thresholding is applied to the RWE as has been proposed by 

Ren and Sun (2008) to sharpen damage localization by keeping only the values of the RWE 

above a certain threshold. This is because this study focuses on gauging the influence of 

using different wavelet filter banks to the computation of the RWE across different scales, 

rather than the potential of RWE for damage localization. The latter issue is well-established 

in the literature (Ren and Sun 2008, Yun et al. 2011, Lee et al. 2014). Therefore, the next sub-

section presents and discusses “raw” scale-dependent RWE(j) data obtained from the various 

analyses undertaken without any further filtering or processing. 

5.4.Numerical results and discussion 

The scale-dependent RWE(j) in (16) derived using the different wavelet bases previously 

presented is plotted in three-dimensional bar charts for the space truss FE model (Figures 11-

14) and for the beam FE model (Figures 15-17) discussed in section 5.1 subject to the 

excitations of Figure 8. The RWE(j) bars are stacked along a frequency axis, labelled after 

the effective or central frequencies corresponding to each wavelet analysis level or 

corresponding scale j considered, and along a spatial axis, labelled after the points on the FE 

models in Figures 6 and 7 at which the response acceleration signals are recorded. A large 
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value of the RWE(j) at a particular frequency and measurement point indicates a potential 

local damage at the considered point captured by a change to the response signal energy 

between the damaged state and the healthy state structure carried by the damaged state signal 

at the considered frequency. Therefore, large values of the RWE(j) are expected at scales 

containing the natural frequencies of the damaged state reported in Table 1. Moreover, in all 

bar-charts of Figures 11-17 an additional row along the spatial axis located at the origin of the 

frequency axis and denoted by the symbol Σ is incorporated, which plots the RWE in (10), 

that is, the sum of the scale dependent RWE(j) across all scales as considered by Ren and Sun 

(2008). 

By examining, first, the set of RWE plots in Figures 11(a)- 14(a) (space truss excited by 

the non-stationary SS force bandlimited to 320Hz of Figure 8(a)), it is noted that acceptable 

damage localization is achieved for all four filter banks considered in this study indicated by 

large RWE values at the 3rd and 7th measurement points. In the case of the smooth 

Daubechies D20 wavelets and of the Meyer wavelets, the RWE values are contributed from a 

single scale (j=13) or analysis level 4, with effective ranges that contain the first damaged 

natural frequency of the space truss (at 68.9Hz), as shown in Table 2. However, in the case of 

the Haar wavelet basis, certain non-zero RWE values are also contributed from the j=15 scale 

(at only three measurement points), centred at a frequency close to the third damaged natural 

frequency at 292.6Hz. The D20 and Meyer wavelets cannot capture this change since the 

central frequency at j=15 is much lower from the third damaged natural frequency, while at 

the highest scale (j=16) the corresponding frequency band spanned is so wide that no changes 

to the information carried by the response signals associated with the third mode shape can be 

resolved. Notably, this is not the case with the harmonic wavelets which resolve consistently, 

at all measurement points, changes to both the first and the third natural frequencies due to 

damage. Therefore, the non-constant Q harmonic wavelet filter bank with, theoretically, zero 

overlapping among scales offers a more robust RWE-based damage detection compared to 

the other DWT filter banks as it draws information about the damage from both the excited 

mode shapes at all measurement points. 

Focusing next on the set of RWE plots in Figures 11(b)-14(b) (space truss excited by the 

stationary WN force bandlimited to 500Hz shown in Figure 8(b)), it is seen that while the 

Meyer filter bank captures the energy changes associated with modes of vibration above 

400Hz, the D20 wavelets cannot resolve these changes. This is attributed to the enhanced 

resolution at high frequencies that the Meyer filter bank has compared to the D20 filter bank 
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reflected on the higher Q value. In particular, note that at j=15 scale both the above filter 

banks have almost the same “central” or effective frequency and, therefore, the bandwidth 

spanned by the Meyer wavelet at that scale is approximately 50% smaller than the D20 filter 

bank, i.e., almost equal to the ratio of their Q values (0.68/0.46). Moreover, it is observed that 

non-zero RWE values are contributed by two different scales j=13 and 14 for the Meyer and 

the D20 filter banks. Since only a single natural frequency exists within the frequency bands 

spanned by these two scales, it is concluded that this is due to wavelet energy (spectral) 

leakage caused by the significant overlapping of the frequency bands of the above adjacent 

scales. More importantly, it is seen that the Haar wavelet filter bank fails to produce results 

amenable to a physically meaningful interpretation (Figure 12(b)). The non-zero RWE values 

are contributed from scales having very low effective natural frequencies. This phenomenon 

can only be attributed to the existence of significant side lobs of the FAS of Haar wavelets 

across scales in conjunction with the existence of broadband high frequency content in the 

considered set of response acceleration signals (compare the plots in Figure 3(a) and Figure 

8(d)). As in the case of response signals from the SS excitation, the harmonic wavelet filter 

bank is able to resolve accurately the shifts of natural frequencies as they reflect to changes to 

the wavelet energy distribution captured by the RWE. Clearly, the fact that the two sets of 

response acceleration signals examined (i.e., due to the SS and WN excitations) have very 

different time-domain properties does not affect the ability of harmonic wavelets to represent 

correctly the frequency content even for the highly non-stationary signals despite their 

relatively poor time localization capabilities. 

 

(a) 

 

(b) 

Figure 11: Scale-dependent RWE(j) in (16) and RWE in (10) (denoted by Σ) using the Daubechies 
D20 wavelet filter bank of Table 2 for the space truss of Figure 6 subject to (a) the sine-
sweep and (b) the white noise excitation in Figure 8. 
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(a) 

 

(b) 

Figure 12: Scale-dependent RWE(j) in (16) and RWE in (10) (denoted by Σ) using the Daubechies D2 
(or Haar) wavelet filter bank of Table 2 for the space truss of Figure 6 subject to (a) the 
sine-sweep and (b) the white noise excitation in Figure 8. 

 

(a) 

 

(b) 

Figure 13: Scale-dependent RWE(j) in (16) and RWE in (10) (denoted by Σ) using the Meyer wavelet 
filter bank of Table 2 for the space truss of Figure 6 subject to (a) the sine-sweep and (b) 
the white noise excitation in Figure 8. 

 

(a) 

 

(b) 

Figure 14: Scale-dependent RWE(j) in (16) and RWE in (10) (denoted by Σ) using a 128-scale 
harmonic wavelet filter bank (3.91Hz bandwidth per scale) for the space truss of Figure 6 
subject to (a) the sine-sweep and (b) the white noise excitation in Figure 8. 
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Turning the attention to the RWE plots for the case of the beam FE model (Figures 15-

17) it is seen that the Haar wavelet basis yields reasonable RWE values, as in the case of the 

truss structure excited by the SS forcing function, which clearly identify the location of the 

damage in the middle of the beam and indicate that two more locations of potential damage 

exist closer to the supports of the beam. However, significant leakage of the scale-dependent 

RWE(j) across scales is observed due to the poor frequency selectivity of the Haar wavelet 

filter bank. In the case of the Meyer wavelet filter bank, no energy leakage across scales is 

observed, but damage is detected based on the changes of the wavelet energy associated with 

a single (the 3rd) mode shape which dominates the overall response as seen is Figure 9 (the 

right-most spike in the reported FASs has a significant higher amplitude from the left-most). 

Lastly, the non-constant Q harmonic wavelet filter bank yields non-zero RWE(j) 

contributions associated with wavelet energy changes between the healthy and the damaged 

state for both the excited modes (1st and 3rd) with insignificant leakage. 

 

(a) 

 

(b) 

Figure 15: Scale-dependent RWE(j) in (16) and RWE in (10) (denoted by Σ) using the Daubechies D2 
(or Haar) wavelet filter bank of Table 2 for the beam of Figure 7 subject to (a) the sine-
sweep and (b) the white noise excitation in Figure 8. 

 
(a) 

 
(b) 

Figure 16: Scale-dependent RWE(j) in (16) and RWE in (10) (denoted by Σ) using the Meyer wavelet 
filter bank of Table 2 for the beam of Figure 7 subject to (a) the sine-sweep and (b) the 
white noise excitation in Figure 8. 
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(a) 

 

(b) 

Figure 17: Scale-dependent RWE(j) in (16) and RWE in (10) (denoted by Σ) using a 128-scale 
harmonic wavelet filter bank (3.91Hz bandwidth per scale) for the beam of Figure 7 
subject to (a) the sine-sweep and (b) the white noise excitation in Figure 8. 

Overall, the above numerical results suggest that the adopted harmonic wavelet basis 

spanning non-overlapping frequency bands among scales and maintaining the same level of 

(high) resolution for the full range of frequencies of interest is always able to discriminate 

changes to the distribution of the signal energy between the damaged and the healthy states 

manifested by a shift of all the excited structural natural frequencies. This is achieved no 

matter whether the recorded signals are stationary or non-stationary in the TD and with 

negligible spectral leakage which renders the interpretation of the results a straightforward 

task. This is not always the case for the dyadic DWT bases which capture structural damage 

manifested by non-zero RWE(j) values only when a particular scale corresponds to a 

relatively narrow band of frequencies and has an effective/central frequency lying close to a 

structural natural frequency. Further, in cases of severe overlapping of frequency bands 

among scales significant spectral leakage across scales is seen, which does not facilitate the 

interpretation of the results. 

As a final remark, it is emphasized that the herein considered harmonic wavelet basis is 

not necessarily a recommended and, by no means, an optimal approach for wavelet 

transforming response acceleration signals for RWE-based damage detection. It has only 

been used in this study as an “extreme case” of a basis with good FD attributes vis-à-vis the 

standard dyadic DWT filter banks considered in the literature. Apart from the HWT 

discussed in section 4.4, the wavelet packet transform (WPT), which relaxes the strict dyadic 

discretization of the DWT to “zoom-in” specific frequency bands of interest and is applicable 

to any energy-preserving wavelet family, can be used to “target” natural frequencies of a 

given structure and, therefore, to capture changes to the wavelet energy distribution of 
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response signals associated with structural damage (e.g., Yen and Lin 2000, Sun and Chang 

2004). After all, the HWT can be loosely interpreted as a WPT of a Littlewood-Paley wavelet 

basis (Vetterli and Herley 1992). Still, a harmonic wavelet basis with constant frequency 

resolution across scales may be used as a reasonable approach for RWE-based damage 

detection where the natural frequencies of the (damaged) structure are not a priori known. In 

this case, a HWT with coarser resolution than what has been employed in this study (i.e., a 

reduced number of scales or wider bandwidth/scale) should be considered to keep the 

computational cost low for practical implementation, especially in the case of decentralized 

VSHM using wireless sensors (Yun et al. 2011). In cases some prior knowledge about the 

natural frequencies of a given structure is available, a customized WPT (e.g., Yen and Lin 

2000, Sun and Chang 2004) or a HWT spanning frequency bins of non-constant width (e.g., 

Giaralis and Spanos 2009) can be employed to achieve enhanced frequency resolution in the 

vicinity of the known natural frequencies and, therefore, to yield more efficient RWE-based 

damage detection. 

6. Concluding remarks 

A comprehensive numerical study was undertaken to assess the influence of the 

frequency domain (FD) attributes of wavelet analysis filter banks for structural damage 

detection and localization relying on the concept of the relative wavelet entropy (RWE): a 

well-established in the literature damage-sensitive index derived by wavelet transforming 

linear response acceleration signals from a healthy/reference and a damaged state of a given 

structure subject to broadband excitations. This work was motivated by a lack of comparative 

studies and practical recommendations for the computation of the RWE and by the 

observation that stationary (i.e., non-evolving in time) damage is detected by changes to the 

energy distribution of response acceleration signals from the healthy and the damaged state 

across the wavelet scales (or, equivalently, along the frequency axis), associated with damage 

induced shift of the natural frequencies. 

Specifically, linear response history analyses were conducted to obtain response 

acceleration signals at equidistant locations of two benchmark structures, namely a space 

truss and a simply supported steel beam, under healthy and damaged conditions. The 

structures were modelled using standard finite element methods and were excited by two 

different broadband forcing functions: a non-stationary sine-sweep and a stationary finite 
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duration sample of Gaussian white noise process. Four energy-preserving wavelet analysis 

filter banks with different FD attributes were employed to wavelet transform the response 

acceleration signals via algorithms which can be efficiently run on wireless sensors used for 

decentralized vibration-based structural health monitoring. RWE values for all sets of signals 

processed by the different wavelet filter banks were reported vis-à-vis. Focus was given on 

the scale-dependent contributors to the total RWE values to examine the ability of the 

different wavelet filter banks to resolve changes to the response signals’ energy distribution 

on the FD indicative of structural damage. 

The reported numerical data suggest that frequency selectivity and resolution across the 

scales of the wavelet analysis filter bank, which are strongly dependent on the FD properties 

of the underlying wavelet basis, are the key for achieving enhanced RWE-based stationary 

damage detection/localization drawing information about damage from multiple mode 

shapes. It was shown that the extensively used in the literature compactly supported in time 

non-smooth Daubechies (or Haar) wavelets in conjunction with the standard dyadic DWT 

suffer from significant energy leakage across scales and may not be able to detect damage 

based on information carried at relatively high frequencies (or higher modes of vibration). 

Wavelet filter banks with enhanced frequency selectivity among scales (i.e., minimum 

overlapping of the frequency bands corresponding to adjacent scales), reduce spectral leakage 

of the signal energy and facilitate the results interpretation as the non-zero contributors to the 

RWE values can be clearly associated with different natural frequencies/ modes of vibration. 

Hence, the use of compactly supported in the frequency domain wavelets, such as Meyer 

wavelets and harmonic wavelets are preferable. Moreover, it was demonstrated that dyadic 

DWT filter banks with large constant Q values (i.e., ratio of effective frequency over 

effective bandwidth) are better qualified to capture damage information associated with high 

frequencies. Finally, it was concluded that wavelet analysis filter banks achieving non-

constant Q analysis, such as harmonic wavelet bases, are most effective for RWE-based 

stationary damage detection as they are not limited by the dyadic DWT discretization and can 

achieve any level of frequency resolution anywhere on the FD, as deemed appropriate. It is 

considered reasonable to use harmonic wavelet bases of constant effective bandwidth for all 

scales in cases no particular structural natural frequencies are targeted (e.g., since they may 

not be known a priori), while case-dependent wavelet packet transform or harmonic wavelets 

with non-constant effective bandwidths can be used to target specific a priori known 

structural natural frequencies. 



31 
 

It is envisioned that the herein drawn qualitative remarks and practical recommendations 

on the efficiency of different energy-preserving wavelet bases to resolve structural damage 

will not only facilitate the use of the RWE for damage detection, but will also be useful for 

vibration-based structural health monitoring using compressive sensing data acquisition 

techniques (Baraniuk 2007). These techniques can derive the significant wavelet coefficients 

of signals in a single data acquisition step, provided that a wavelet basis with reduced spectral 

leakage across scales is utilized. Therefore, they may significantly reduce the computational 

cost and power consumption in wireless sensors for VSHM. Such considerations fall well 

beyond the scope of this paper and will be addressed by the authors in subsequent works. 
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