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Abstract 28 
Classical probability theory has been influential in modeling decision processes, despite 29 
empirical findings that have been persistently paradoxical from classical perspectives. For 30 
such findings, some researchers have been successfully pursuing decision models based on 31 
quantum theory. One unique feature of quantum theory is the collapse postulate, which 32 
entails that measurements (or in decision making, judgments) reset the state to be 33 
consistent with the measured outcome. If there is quantum structure in cognition, then 34 
there has to be evidence for the collapse postulate. A striking, a priori prediction, is that 35 
opinion change will be slowed down (under idealized conditions frozen) by continuous 36 
judgments. In physics, this is the quantum Zeno effect. We demonstrate a quantum Zeno 37 
effect in decision making in humans and so provide evidence that advocates the use of 38 
quantum principles in decision theory, at least in some cases.     39 
 40 
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Introduction 45 
The question of the descriptive and normative foundations of decision making has been a 46 
focus of scientific inquiry since antiquity. One influential approach has been classical, 47 
Bayesian probability theory. Bayesian principles are supported by powerful justifications 48 
(e.g., the Dutch book theorem) and strong, entrenched intuition. Bayesian models are 49 
considered normative, that is, they describe how decisions ‘should’ be taken, given the 50 
information available. Although research on rationality typically concerns human decision 51 
making, Bayesian principles are often motivated from adaptive considerations, that are 52 
equally relevant to human and non-human decision makers (1). 53 

Bayesian cognitive models have been successful (2). However, occasionally, 54 
researchers have observed a persistent divergence between Bayesian prescription and 55 
behavior. These results are most famously associated with the influential Tversky, 56 
Kahneman research tradition; e.g. (3), where the decision makers are humans, but there 57 
have also been studies showing other animals, such as macaques, displaying similar 58 
violations of Bayesian prescription (4). These findings have created deep theoretical 59 
divides, with some researchers rejecting entirely a role for formal probability theory in 60 
cognitive modeling.   61 

As long recognized, the Bayesian framework for probabilistic inference is not the 62 
only one. We call quantum theory (QT) the rules for assigning probabilities from quantum 63 
mechanics, without the physics. QT has characteristics, such as contextuality and 64 
interference, which align well with intuition about cognitive processes. Some researchers 65 
have been exploring whether QT could provide an alternative, formal basis for cognitive 66 
theory (5-10). Note that QT cognitive models are unrelated to the highly controversial 67 
quantum brain hypothesis (11). If there is (some) quantum structure in cognition, then 68 
cognitive processes must be consistent with the collapse postulate in QT, which requires 69 
that the cognitive state changes when a measurement (e.g., decision) is performed to reflect 70 
the measurement outcome. The idea that decisions can have a constructive influence is not 71 
new (12-13). However, on the assumption of quantum structure in cognition, we are led to 72 
the striking prediction that intermediate judgments can inhibit opinion change (in a specific 73 
way predicted by QT), even in the presence of accumulating evidence. In physics, it can be 74 
predicted that a continuously observed unstable particle never decays (14); this remarkable 75 
effect is called the Quantum Zeno (QZ) effect. If a similar effect can be observed in decision 76 
making, this would provide compelling evidence for a role for QT in cognitive theory. Note 77 
that it has previously been suggested that a version of the QZ effect is present in bistable 78 
perception (15), however we aim to improve on this by presenting a formalism more 79 
amenable to direct testing. 80 

In our experiments, participants read a story about a hypothetical murder suspect, 81 
Smith. Smith was initially considered innocent by most participants. Then, at each time step, 82 
participants were presented with an (approximately) identically strong piece of evidence 83 
suggesting that Smith was in fact guilty. The task was designed as a generic situation of 84 
opinion change, from presented information. We develop a QT model for how the opinion 85 
state (regarding Smith’s guilt) changes with evidence, and we also construct a Bayesian 86 
model of the same process, which matches the QT model in the case of no intermediate 87 
judgments.  From the QT model, we extract the surprising prediction of a QZ effect when 88 
intermediate judgments are made and contrast this with the prediction of the Bayesian 89 
model. 90 
 91 
The quantum Zeno prediction in decision making 92 
We begin with an idealized model for opinion change in our experiments, designed to 93 
illustrate the effect. Consider a 2D quantum system, whose state space is spanned by two 94 
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orthogonal states I and G, corresponding to the beliefs that Smith is either Innocent or 95 
Guilty. Presentation of evidence is represented by a rotation of the state such that an initial 96 
state I evolves towards G  with time (pieces of evidence).  97 

The probability that a measurement of the state will reveal I, at each of     judgments 98 

at times   ⁄    
 ⁄    is (assuming a typical time independent Hamiltonian, all derivations 99 

in supplementary material):  100 

    (         
 

 
      

  

 
  )       (
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Here   is a dimensionless constant that encodes the effect of the evidence in the absence of 102 
intermediate judgments. As the number of measurements, N, increases, there is a 103 
decreasing probability that the system will change from I to G.  As    , the probability 104 
that the system will change state vanishes, even after large times (number of pieces of 105 
evidence). This is the famous QZ effect (14), often described informally as proof that ‘a 106 
watched pot never boils’. (The name comes from the (loose) analogy with Zeno’s arrow 107 
paradox (16).) 108 
 109 
The Quantum Model 110 

The derivation leading to Eq.(1) involves a number of assumptions that will not hold 111 
in realistic decision making settings. However we can still predict a weakened QZ effect, as a 112 
slowing down (in a specific way) of the evolution of the measured opinion state, even under 113 
more realistic conditions. Two assumptions need to be relaxed. First, realistic 114 
measurements are not perfectly reliable. For each measurement, there is a small probability 115 
that a participant will incorrectly provide a response not matching his/her cognitive state. 116 
This is problematic when several identical measurements are made, since error rates may 117 
compound. Imperfect measurements require the use of positive-operator valued measures 118 
(POVMs), instead of projection operators. Instead of freezing as    , some evolution may 119 
still occur, but it will depend only on details of the imperfect measurements (17).  120 

Second, evolution of cognitive variables will not, in general, be well modeled by a 121 
time independent unitary evolution. For the situation of interest, we may still assume the 122 
dynamics are approximately unitary (see the supplementary material for more details).  123 
However it may be that the weight given by participants to a piece of evidence depends on 124 
its position in the sequence of evidence, implying a primacy or recency effect. In order to 125 
capture this we must employ time dependent unitary evolution. 126 

A form for the time dependent unitary evolution general enough for our purposes is 127 
(15,18) 128 

 (     )     (      (     ))  
where    is one of the Pauli matrices (19). The function  (     ) specifies the angle a 129 
participant’s cognitive state is rotated through when presented with pieces of evidence    130 
through   . A form for  (     ) involving two parameters is proposed in the supplementary 131 
material. If    is the time of presentation of the     piece of evidence, then 132 

 (     )   ∑    

 

     

    (     )  

Here the    represent the strengths of the individual pieces of evidence, as measured in 133 
isolation. Thus the first piece of evidence in a sequence is given a weight     the second is 134 
given weight     

  , and so on. 135 
Since we expect the cognitive state to tend towards a fixed point as we accumulate 136 

more evidence, it seems natural to assume that presenting a piece of evidence later in a 137 
sequence should have a smaller effect on the cognitive state than if the same piece of 138 
evidence had been presented earlier. This is functionally equivalent to assuming 139 
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diminishing returns. However other types of order effect have been observed in studies of 140 
belief updating (20), and this form for  (     ) can also encode a recency effect, depending 141 
on the parameter    142 
 The effect of imperfect judgments is encoded by a simple POVM operator with one 143 
free parameter,    The parameter   reflects how error-less measurements are. For example, 144 
if a participant considers Smith innocent, then the probability of responding innocent is 145 
only    , leaving a probability to respond guilty of  . Full details are given in the 146 
supplementary material. 147 

Using the above, we can show that:  148 
        149 

    (      |      )  (   )     ( (   ))   (   )    ( (   )) 

(2) 150 
 Eq(2) allows us to determine   and  (   ), from empirical classical data on the 151 
probability of judging Smith’s innocence, assuming innocence initially, and varying the 152 
number of pieces of evidence presented (without intermediate judgments). 153 

We can also use Eq(2), together with some assumptions about the way judgments 154 
change the cognitive state classically, to construct a Bayesian model of the same decision 155 
making process. We will do this below, but we note that in the case of no intermediate 156 
judgments the QT and Bayesian models will coincide. This means that we can use data 157 
obtained in the absence of any intermediate judgments to fix all the parameters in both the 158 
QT and Bayesian models.  Our central predictions, of the specific way in which intermediate 159 
judgments affect opinion change, will therefore be parameter free. 160 
 161 
The Quantum Zeno Prediction 162 
We are now ready to develop the prediction of a QZ effect in this decision making setting.  163 
We will show that a participant deciding Smith’s innocence will be less likely to change 164 
his/her initial opinion as the number of intermediate judgments increases. In the 165 
supplementary material we compute the probability of judging innocent at each of the 166 
intermediate judgments and the final one (N in total), given an initial innocence judgment. 167 
By analogy with the physics case, this can be called survival probability (14). The result is;                                        168 
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The first term in this expression corresponds to the probability that the cognitive state is 171 
always consistent with innocent, and all the judgments reflect this. The second term 172 
corresponds to possibility that the state changes between the second to last and final 173 
judgments, but the participant nevertheless responds ‘innocent’ due to the imperfect 174 
measurements.  Further terms would correspond to more judgments not matching the 175 
cognitive state, or to the state changing back from innocent to guilty, these terms are 176 
negligible compared to those included in Eq.(3). If     ,    , and the   ’s are equal then 177 
Eq(3) reduces to Eq(1). 178 
 179 
Constructing a matched Bayesian model 180 
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The QT model assumes that evidence changes the opinion state (as determined by Eq(2)), 181 
that judgments may be imperfect, and that judgments are constructive. The third property 182 
is the characteristically quantum one, so with the first two elements, we constructed an 183 
alternative, Bayesian model for survival probability.  It is helpful to denote by    the event 184 
where a participant believes Smith is innocent, and    the event where a participant 185 
responds that Smith is innocent, and similarly for guilty. 186 
 The expression we are interested in is the Bayesian analogue of Eq.(3); the survival 187 
probability after T pieces of evidence have been presented, given that N judgments have 188 
been made. This is 189 

     (            )      (                       
(   ) 

 
            

 

 
|       ) 

We want to construct this so that it matches the quantum expression in the case of no 190 
intermediate judgments (N=1). We will sketch how to do this here, full details are given in 191 
the supplementary materials.  192 

As already noted, because Eq(2) does not involve any intermediate judgments it 193 
may be interpreted classically. We can therefore read off, 194 

    (            |            )      ( (   )) 

    (            |            )      ( (   )) 
    (            |            )  (   )     (            |            )    
    (            |            )  (   )     (            |            )    

(since the probabilities for judgments given cognitive states do not depend on the time, we 195 
may denote them simply as     (  |  ) etc.) The probabilities involving transitions from 196 
Guilty cognitive states to Innocent ones are assumed to be 0. We therefore have our 197 
Bayesian survival probability for the case of no intermediate judgments. 198 
 When there are intermediate judgments made we need to know the appropriate 199 
function   (     ) for the evolution of the state. The form we have been using for  (     ) 200 
for the QT model is difficult to motivate in the Bayesian case because the strength of the 201 
primacy/recency effect depends on the time since the last judgment rather than on the total 202 
time, effectively being ‘reset’ after every judgment. This is very natural from a QT 203 
perspective, however the judgments are not expected to have such an effect classically. It is 204 
therefore more plausible to consider a slightly different function in the classical case, 205 
  (     ), given by 206 

  (     )   ∑   

 

     

   (   )  

This differs from  (     ) only in the fact that the function multiplying the evidence 207 
strength depends only on how many pieces of evidence have been presented before it, and 208 
not on whether any intermediate judgments have been made. Note that   (    )  209 
 (    ) since the quantum and classical models should agree in the absence of 210 
intermediate judgments. In particular this means fitting either function to the data in the 211 
absence of intermediate judgments produces the same set of parameters,     for both 212 
models. 213 
 In fact we could continue to use the function  (     ) in the Bayesian analysis if we 214 
desire, despite the fact it is poorly motivated. It turns out that the Bayesian model performs 215 
better when using   (     ), so we will work exclusively with this.  216 
 We can use the information above to derive a prediction for the Bayesian survival 217 
probability. To do so we make two assumptions, first that   is small, and secondly that the 218 
probabilities involving transitions from Guilty cognitive states to Innocent ones are 219 
negligible. We can then show (details in the supplementary material)  220 
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(4)  221 
The main feature of the Bayesian prediction is a reduction of survival probability 222 

with more intermediate judgments, because of a probability of error at each judgment. This 223 
contrasts sharply with the QT prediction, Eq.(3). We are now ready to test the Bayesian and 224 
QT predictions in a realistic decision making scenario.  225 

We noted above that the Bayesian model does not include constructive influences 226 
from intermediate judgments. Would it be possible to include such influences? One way to 227 
do this might be to regard the memory of having made a previous judgment of 228 
guilt/innocence as additional evidence in favor of that conclusion. At the very least such an 229 
approach would be ad hoc, but it would also require fine tuning to ensure such a model 230 
reproduced the qualitative features of the QT model. We will not pursue these ideas further 231 
here.  232 
 233 
Experimental Investigation 234 
 235 
Participants 236 
We ran the same experiment twice (Experiment 1 and Experiment 2), with different 237 
samples, solely as a replication exercise. Thus, we describe the two experiments together. 238 
For Experiment 1, we recruited 450 experimentally naïve participants, from Amazon Turk. 239 
Participants were 49% male and 50% female (1% did not respond to the gender question). 240 
Most participants’ first language was English (98%) and the average age was 34.8. For 241 
Experiment 2, we recruited 581 experimentally naïve participants from CrowdFlower. 242 
Participants were 39% male and 61% female (<1% did not respond to the gender question). 243 
Most participants’ first language was English (96%) and the average age was 37.4.  Apart 244 
from the recruitment process, the experimental materials were identical for both 245 
experiments. The experiment lasted approximately 10 minutes; Amazon Turk participants 246 
were paid $0.50 and CrowdFlower participants $1.00.  247 
 248 
Materials and Procedure  249 
The experiment was implemented in Qualtrics. Participants were first provided with some 250 
basic information about the study and a consent form, complying with the guidelines of the 251 
ethics committee of the Department of Psychology, City University London. If participants 252 
indicated their consent to take part in the study, then they received further instructions (see 253 
below), otherwise the experiment terminated.   254 

Our paradigm extends the one of Tetlock (21), which was designed to test for 255 
primacy effects in decision making. After the screens regarding ethics information and 256 
consent, all participants saw the same initial story, regarding Smith, a hypothetical suspect 257 
in a murder: “Mr. Smith has been charged with murder. The victim is Mr. Dixon. Smith and 258 
Dixon had shared an apartment for nine months up until the time of Dixon’s death. Dixon 259 
was found dead in his bed, and there was a bottle of liquor and a half filled glass on his 260 
bedside table. The autopsy revealed that Dixon died from an overdose of sleeping pills. The 261 
autopsy also revealed that Dixon had taken the pills sometime between midnight and 2 am. 262 
The prosecution claims that Smith slipped the pills into the glass Dixon was drinking from, 263 
while the defense claim that Dixon deliberately took an overdose.” 264 
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Participants were then given a short set of questions regarding some details of what 265 
they had just read, in order to check that they were engaging with the task. These questions 266 
were intended to reinforce memory of the story details and to check for participants who 267 
were not concentrating on the experiment. The small number of participants who failed to 268 
correctly answer these questions were excluded from subsequent analysis. Participants 269 
were then asked whether they thought Smith was likely to be guilty or innocent, based on 270 
the information provided in the vignette, and to provide a brief justification for their 271 
response, as a further check that they were adequately concentrating on the task and to 272 
reinforce memory for the response. After every judgment in the study, participants also saw 273 
a screen reminding them of their response.  The first response is critical, since all quantum 274 
model predictions are based on knowledge of the initial (mental) state. Most participants 275 
(Experiment 1: 95%, Experiment 2: 89%) initially assumed innocence, and so we excluded 276 
participants who initially assumed guilt. (Those participants in fact saw an analogous 277 
experimental procedure, with innocent rather than guilty evidence, however the number of 278 
participants involved was too small to allow meaningful conclusions to be drawn.) 279 
 Participants were split into six groups. The first group was presented with 12 pieces 280 
of evidence suggesting that Smith was guilty (participants were told they would only see 281 
evidence presented by the prosecution and not by the defense). Each piece of evidence was 282 
designed (and pilot tested) to be individually quite weak (Table S1), but cumulatively the 283 
effect was quite strong. In fact, participants were directly told that each piece of evidence 284 
would be likely to be weak and/or circumstantial. After reading all 12 pieces of evidence, 285 
participants were again asked whether they thought Smith was guilty or innocent, and again 286 
asked to justify their choice. Participants in the other five groups were shown the same 287 
evidence in the same way, and asked to make the same final judgment, but were also asked 288 
to make intermediate judgments (and justify their responses). These intermediate 289 
judgments were worded in the same way as the initial and final ones, and were requested at 290 
intervals of either 1, 2, 3, 4 or 6 pieces of evidence. A small number of participants gave 291 
justifications for their judgments suggesting they were not properly engaging with the task, 292 
and were therefore excluded from the analysis. 293 

The order of presentation of the evidence was partly randomized. The pieces of 294 
evidence were split into four blocks of three pieces of evidence each.  The order of the 295 
blocks was fixed, but the order of the pieces of evidence within each block was randomized. 296 
The reason we randomized evidence order in this way, rather than say simply randomizing 297 
the order of presentation of all pieces of evidence, is that there are a total of 12!, or about 298 
480 million, possible orderings of the evidence, so it is impossible to capture a 299 
representative sample of the orderings by simple randomization.  300 

After the main part of the experiment, participants were shown the evidence they 301 
had encountered, and were asked to rate the strength of each piece on a (1-9) scale (Table 302 
S1).  303 
 304 
Results and model fits 305 
Empirical assessment involved two steps. First, without intermediate judgments  (ie at the 306 
first judgment made after having seen some evidence) the data is classical and simply 307 
informs us how opinion changes with evidence. Using Eq(2), we can determine   and 308 
 (     ) i.e., the parameter specifying the POVMs for Smith’s innocence, guilt and the 309 
function specifying the way evidence alters the opinion state (the same parameter values 310 
are used in both the Bayesian and QT models). Second, we examined whether the 311 
intermediate judgments produce the QZ effect (a slowing down of opinion change, as 312 
predicted by the QT model, Eq(3)) or not (in which case the Bayesian model should fit 313 
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better). The predictions about intermediate judgments from the models were assessed after 314 
parameter fixing, the first step; they are a priori and parameter free. 315 

In order to determine  (     ), we need to know the   ’s for each piece of evidence. 316 
These are the parameters indicating the relative strength of each piece of evidence and they 317 
were fixed directly, using the participant ratings for each piece of evidence at the end of the 318 
task (see supplementary material on fixing the parameters; Table S1). Unfortunately due to 319 
an error in the way the experiment was coded, the exact order in which participants saw the 320 
pieces of evidence was not recorded. Therefore we set the    for each piece of evidence in a 321 
given block equal to the average of the reported strengths for the evidence in that block. 322 
This is unlikely to cause problems, since the order of presentation of evidence was anyway 323 
randomized within blocks. 324 

The best fit parameters were obtained by minimizing the sum of the squared 325 
deviations between the predictions of Eq(2) and the data. For Experiment 1, and 326 
considering the t=3 data point an outlier, the best fit for Eq(2) is obtained with   327 
              and        , giving an    of .996 and a BIC of -27.8 . For Experiment 2, 328 
the best fit parameters are                  and         , giving an    of 0.99 and 329 
a BIC of -23.1. (BICs computed following (22).) The two parameter sets are not equal for the 330 
two experiments, a fact we attribute to sampling variation (the demographics of Amazon 331 
Turk and CrowdFlower are likely different.) The results of the fitting are shown in Figure 1. 332 
(Note that throughout this paper we show error bars corresponding to the 95% Highest 333 
Density Interval (HDI) of the posterior distribution for the relevant probabilities, given an 334 
initial uniform prior (23).) 335 
  For small t,     (      |      ) is non-linear and (extrapolated) not equal to 1 at 336 
t=0. This result justifies our assumption of imperfect measurements. The data from the two 337 
experiments show marked differences. In Figure 1a, for large t,     (      |      ) is close 338 
to linear with increasing t. Linearity implies that belief change is proportional to the 339 
number of pieces of evidence, which seems an obvious expectation for a rational participant 340 
(while the belief state is far from guilty). However, it is unclear whether     (      |      ) 341 
eventually becomes linear in Figure 1b. Also, more participants gave an initial judgment of 342 
‘guilty’ in Experiment 2, compared to Experiment 1 (5% vs 11%). Despite distinct 343 
behavioral patterns across Experiments 1, 2, Eq(2) provided excellent fits in both cases. 344 
Note that the best fit values of   are positive in both cases, confirming our expectation of 345 
diminishing returns (equivalently, there is a primacy effect, regarding evidence strength.) 346 

Now that the model parameters have been fixed for both the QT and Bayesian 347 
models, we can use Eq(3) and Eq(4) to compute survival probabilities, for different 348 
numbers of intermediate judgments. 349 

 350 
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A.  B.  
Figure 1. Setting the parameters (opinion change without intermediate judgments): 351 
    (      |      )  for the first judgment a participant made, after having seen different 352 
numbers of pieces of evidence. A) Experiment 1 (Amazon Turk). Note the obvious outlier at 353 
three pieces of evidence. (N=64, 71, 70, 73, 71, 75 for each data point) B) Experiment 2 354 
(CrowdFlower). (N=73, 81, 95, 88, 89, 90). Data points are participant averages and error 355 
bars show 95% HDI of the posterior. 356 
 357 
 Empirical results for     (            ) clearly favor the QT model (Figure 2).  The 358 
Bayes factors are         for Experiment 1 and         for Experiment 2. (Bayes 359 
Factors computed following (22).) The classical intuition is reduction of survival probability 360 
with more intermediate judgments, because of a probability of error at each judgment. For 361 
the QT model, in Experiment 1, we have a clear QZ effect, as survival probability generally 362 
increases with N. In Experiment 2, behavior shows a tension between diminishing returns 363 
and QZ. With one intermediate judgment, the resetting of diminishing returns means that 364 
later pieces of evidence are weighted more strongly than in the case of no intermediate 365 
judgments, hence the dip in survival probability. With more intermediate judgments, 366 
eventually the QZ effect dominates. The leveling off, or for Experiment 1 the dip in the 367 
survival probability for large N is an effect of the imperfect judgments. 368 

There is an alternative test of the QT vs Bayesian models. We can employ Eq(3) and 369 
Eq(4) to compute survival probabilities for the condition where there is a judgment after 370 
every piece of evidence (number of pieces of evidence presented T, and number of 371 
judgments N, vary, but T/N fixed to 1). Again, the data clearly favor the QT model (Figure 3). 372 
The Bayes Factors in this case are         for Experiment 1 and         for Experiment 373 
2.  374 

 

 A.  

 

B.  
Figure 2. Evaluating the models: Survival probability for N intermediate judgments, for the 375 
QT, Bayesisn models, against empirical results (A: Experiment 1, N=75, 71, 73, 70, 71, 64, 376 
for each data point; B: Experiment 2, N=90, 89, 88, 95, 81, 73.). Data points are participant 377 
averages and error bars show 95% HDI of the posterior. 378 
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A 

 
B 

Figure 3. Evaluating the models: Survival probability after each judgment, for the condition 380 
with 12 judgments (A: Experiment 1, N=64 for all data points; B: Experiment 2, N=73 for all 381 
data points). Data points are participant averages and error bars show 95% HDI of the 382 
posterior. 383 
 384 
Concluding remarks 385 
Understanding how opinions change (or not) as a result of accumulating evidence is crucial 386 
in many situations. We have shown here that opinion change depends not just on the 387 
evidence presented, but can also be strongly effected by making intermediate judgments, in 388 
the particular way predicted by the quantum model. Because the QT model was fixed with 389 
classical data, this striking prediction follows from a structural feature of quantum theory, 390 
the collapse postulate, and not from parameter fixing. Our results show that decision theory 391 
needs to incorporate opinion influences from judgments. They also have practical 392 
implications. The employed paradigm has analogies with realistic (e.g., courtroom) 393 
assessment of evidence; if e.g. witnesses are expected to reach unbiased conclusions, then 394 
the effect of continuous requests for intermediate opinions should be factored in. Likewise, 395 
the advent of interactive news web sites (e.g., bbc.co.uk) means that readers can express 396 
opinions on news items when reading them, directly and through social media. We raise the 397 
possibility that frequent expressions of opinion may prevent change in opinion, even in the 398 
presence of compelling contrasting evidence.  399 

More generally, behaviors paradoxical from Bayesian perspectives have often been 400 
interpreted as boundaries in the applicability of probabilistic modeling. Strictly speaking 401 
this is not true, since one can always augment Bayesian models with extra variables or 402 
interactions, however such models may lack predictive power, or simply be too post hoc. 403 
The QT cognition program provides an alternative: perhaps some of these paradoxical 404 
findings reveal situations where cognition is better understood using QT. Evidence for the 405 
collapse postulate in decision making constitutes a general test of the applicability of 406 
quantum principles in cognition and adds to the growing body of such demonstrations (8).  407 

While this work has focused on human decision making similar issues apply to 408 
animal decision making in general. The adaptive arguments employed to motivate Bayesian 409 
principles for humans (1,24) apply equally to non-humans too. Thus, whether Bayesian 410 
principles are relevant in animal cognition is an issue of considerable theoretical interest. Is 411 
there evidence for constructive influences in animal decision making? A recent study 412 
showed that, in the three-door paradigm, pigeons do not show a bias towards repeating a 413 
choice when that choice was a guess (25), which is in contrast to behavior seen in humans. 414 
This suggests perhaps judgments are less constructive for pigeons than for humans. Clearly 415 
the available evidence is far too preliminary to enable strong conclusions. Nevertheless, the 416 
demonstration of a QZ effect for humans raises the possibility that a similar effect exists in 417 
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non-human decision makers. Resolving this question will have potentially ground-breaking 418 
implications for understanding the differences between human and non-human mental 419 
processes. 420 
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   492 
Derivation leading to Equation (1)  493 
This derivation explains the basic Quantum Zeno effect, under idealized conditions. The 494 
idealized situation referred to in the main text concerns a 2D quantum system, evolving 495 
under a unitary time independent Hamiltonian.  496 

We prepare our system such that the initial state is | ⟩ at t=0 and let it evolve for a 497 
total time      We are interested in the probability that measurements performed on the 498 

state at each of the times   ⁄ ,   
 ⁄ …T will confirm that the state is still | ⟩. We have that:  499 

    (         
 

 
      

  

 
  )  |(   
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| ⟩|

 

 |⟨ | 
 

   

 | ⟩|
   

(S1) 500 

For a two-level system and a time independent Hamiltonian, transition probabilities 501 

typically take the form |⟨ |     | ⟩|
 

     (   ). In physical applications, E is usually an 502 

energy variable. Here, it can be thought of as the average strength of a piece of evidence, 503 
since Et is the rotation angle of the mental state, when presented with t pieces of evidence. 504 
Eq(S1) then readily leads to the expression, which is Eq(1) in the main text: 505 

    (         
 

 
      

  

 
  )       (

 

 
)   

where   is a dimensionless constant. 506 
 507 
Unitary dynamics and POVMs 508 
In this section we motivate the particular choice of dynamics and measurement operators 509 
used in the quantum and Bayesian models.  We will use this in the next section to derive 510 
Eq.(2), which is crucial in the present modeling, since it allows the setting of all parameters 511 
with classical data and thus prior to testing for the QZ effect.  512 



 13 

 In general, in situations such as the one we consider, the most appropriate form of 513 
dynamics would be non-unitary. This is because the expected evolution of the mental state 514 
is basically like a decay towards a fixed state, the guilty ray, since all the evidence 515 
participants encounter is that Smith is guilty and thus, asymptotically, participants must 516 
become certain that Smith is guilty.  517 
 However, there are two features of our experimental set up that mean that we never 518 
need consider mental states close to the guilty ray. First, all participants initially think Smith 519 
is innocent, and the evidence we present is designed to be weak, so that the probability that 520 
participants judge Smith to be guilty never rises above 50% (as evidenced in the data, e.g., 521 
see Figure 2). This means that the evolution by itself never leads to a state close to the guilty 522 
state. Thus, the only way a participant’s mental state can end up close to the guilty state is 523 
by collapsing to this state, if the participant answers that Smith is guilty at one of the 524 
intermediate judgments. However, since our analyses were restricted to survival 525 
probability, we need not model the further evolution of the mental state after a guilty 526 
response. Thus, the only states whose dynamics we are interested in are those far from the 527 
guilty state. For these states the fact that the true evolution has a fixed point can, to a good 528 
approximation, be ignored, and so the dynamics of such states may be treated as unitary. Of 529 
course it is ultimately an empirical question whether this approximation allows for a good 530 
fit to the data. In addition, in future work, if it becomes relevant to explore a broader range 531 
of experimental manipulations within this paradigm and/or conditions for the mental state, 532 
then non-unitary dynamics could be employed.  533 
 So far, we have argued that we can model the dynamics of the cognitive state as 534 
unitary. However it turns out we need to consider time dependent unitary dynamics in 535 
order to capture the expected behavior of the cognitive state. This is essentially because we 536 
must allow for the fact that the ‘strength’ of a piece of evidence may depend on its serial 537 
position in the list of evidence presented. It is reasonable (especially in light of earlier 538 
remarks about the fact we expect the true evolution to have a fixed point) that we should 539 
expect to see a primacy effect, or equivalently diminishing returns, in the weight 540 
participants attach to different pieces of evidence. However when we explicitly introduce a 541 
form for the evolution in the next section we shall allow for the possibility of either a 542 
primacy or a recency effect, and leave it as an empirical question which behavior we see.  543 

We also want to discuss the choice of POVMs to model the measurements. The 544 
particular POVMs we use simply model the impact of some noise on the measurements, so 545 
that the outcomes are no longer perfectly correlated with the cognitive state. Recall that the 546 

projectors representing Innocent and Guilty are given by    (
  
  

)     (
  
  

). The 547 

corresponding POVM operators that we use are    (
    

  
)     (

  
    

), where   548 

encodes the degree of noise. If a participant considers Smith innocent, so that the cognitive 549 

state is | ⟩  ( 
 
), then the probability of responding innocent is only    , leaving a 550 

probability to respond guilty of  . Since   is a parameter whose value we estimate from the 551 
data it may be that the best fit is provided by    , in which case we recover the usual 552 
formalism of projective measurements. Note that the version of the collapse postulate that 553 
applies to POVMs is that after a measurement of the POVM E, which yields the answer ‘yes’, 554 

the state changes according to | ⟩  
√ | ⟩

|√ | ⟩|
. For more on POVMs see (26). 555 

 556 
Derivation of Equation (2). 557 
We can now proceed to derive Eq.(2) in the main text. At time 0 participants have not yet 558 
heard any evidence and at each time step participants are presented with evidence which 559 
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supports the possibility of Smith’s guilt. The probability that at     a participant initially 560 
responds that Smith is innocent is given as:  561 

    (      )  ⟨ |  | ⟩  (   )|⟨ | ⟩|   |⟨ | ⟩|   (S2) 562 
where    is the POVM for innocent. This expression tells us that any participant who 563 
answers innocent for this initial judgment (before encountering any evidence) may be 564 
assumed to be in state | ⟩ with probability     and in state | ⟩ with probability  .  565 
 The general form of the transition probability for a time-dependent Hamiltonian is 566 

given by     (           )  |⟨ |   ∫   
 

 
 ( )| ⟩|

 

. Then, the probability that a participant 567 

answers innocent after seeing t pieces of evidence, without any intermediate judgments, 568 
given an initial response of innocent, is  569 
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(S3) 570 
 To progress, we must make some assumptions regarding the Hamiltonian, H(t). The 571 
Hamiltonian for any system in a two-dimensional Hilbert space can be written as a sum of 572 
the identity operator plus the three Pauli matrices, each with a time-dependent prefactor. 573 
As argued elsewhere (15, 18), it is reasonable to simplify the general expression for the 574 

time-dependent Hamiltonian of cognitive bivalued systems to  ( )   ( )    ( ) (
  
  

), 575 

where  ( ) is a function of time. Let us next define  (     )  ∫     ( )
  

  
, which 576 

incidentally is dimensionless. Then, Eq(S3) can be written as 577 
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which is Eq(2) in the main text.  578 
 579 
Understanding the function  (     ), fixing it from data, and the Interpretation of the 580 
parameters 581 
Both the quantum and classical models for opinion change involve the parameter  , which 582 
takes into account erroneous responses, and the function  (     ), which tells us how the 583 
opinion state changes with accumulating evidence. In this section we describe how the 584 
function  (    ) can be specified, how to estimate it from empirical data, and how to 585 
interpret its parameters.  586 

Recall, the function  (     ) controls the change of the mental state, as a result of 587 
considering       pieces of evidence, assuming that a judgment was made at   . 588 
Therefore a naïve guess at this function would simply be the sum of the relative strengths of 589 
all pieces of evidence considered, multiplied by an overall constant, i.e. 590 

 (     )    ∑   

 

     

 

However the weight given to a piece of evidence may depend on its position in the 591 
sequence. Pieces of evidence that come later after a judgment may have less impact on the 592 
opinion state than pieces of evidence that come immediately after a judgment, or vice versa. 593 
Thus a better choice is, 594 
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 (     )   ∑   

 

     

 (       ) 

 595 
where the function  ( ) is a monotonic function of  . The choice of argument is made so that 596 
 (    )       ( ), and we take  ( )    by convention.  597 
 Note that the argument of  ( ) reflects the number of pieces of evidence seen since 598 
the last judgment was made, not the total number of pieces of evidence seen. This is very 599 
natural in the quantum model, since the idea is that the process of making a judgment 600 
‘collapses’ the knowledge state back to the initial state (assuming an ‘innocent’ judgment.) 601 
This implies the state post-judgment should have the same sensitivity to evidence as the 602 
initial state, and so any primacy/recency effects should be reset. However this argument 603 
cannot be made in a Bayesian model, since ‘collapse’ is a characteristically quantum feature. 604 
Therefore the Bayesian model will involve a slightly different function,   (     ), where 605 

  (     )   ∑   

 

     

 (     ) 

There are many choices for the function  ( )  We will make the choice  (   606 

    )     (     ) , so that overall we have:  607 
      608 

 (     )  ∑     

 

     

    (     )  
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    (   )  

(S4) 610 
A positive value of   corresponds to a primacy effect, or diminishing returns, whereas a 611 
negative value of   corresponds to a recency effect. This form for  ( ) may be motivated by 612 
considering a continuous analogue of the process of evidence presentation. Thus, our choice 613 
of  (     )  involves two free parameters,    . Note that there is no fitting regarding the 614 
relative strength parameters in Eq(S4),   . For a particular piece of evidence i,    615 

                               

                                          
, where both averages are across participants. Crucially 616 

the fact that we have reduced the determination of the functions  (     ) and   (     )  to 617 
the identification of two parameters means we can fix  (     ) and    (     )given data 618 
on  (   ), which in turn means we can fix it from data which does not concern 619 
intermediate judgments. The relative strength of the pieces of evidence, ie the    are given 620 
in Table 1S. 621 

The parameter   is simply a factor that converts between evidence strength and 622 
angle of rotation of the opinion state. It is related to the overall strength of the prosecution’s 623 
case, but it does not have a particularly interesting interpretation. 624 

The parameter   is more interesting. Its inverse square root indicates the number of 625 
pieces of evidence after which the primacy or recency effect starts to have a large impact on 626 
the effect of additional evidence. For example, in Experiment 1, the best fit was for         627 
This tells us that diminishing returns starts to play a role after around 10 pieces of evidence, 628 
so we would not expect to see much impact from this in the results. This is evident in Figure 629 
2A, where we see a pure QZ effect. In contrast, in Experiment 2 the best fit was for 630 
          This suggests diminishing returns should start to have an impact on behavior, 631 
after about 6 pieces of evidence. We can see this both in Figure 1B, where there is an 632 
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obvious change in behavior from 6 to 12 pieces of evidence, and also in Figure 2B. In Figure 633 
2B the noticeable dip in survival probability takes place between one judgment (i.e., only 634 
one judgment after all evidence has been presented) and two judgments. This is equivalent 635 
to considering the evidence either as one group of 12 pieces (evidence after 6 pieces would 636 
have a low impact, broadly speaking) or as two groups of 6 pieces of evidence (according to 637 
the quantum model, in this case, after 6 pieces of evidence and one judgment, the following 638 
6 pieces of evidence would also be taken into account in the same way as the original 6; 639 
hence, the survival probability drops – more bias that Smith is guilty).  640 

The best fit value for   was approximately 3% in Experiment 1 and 1% in 641 
Experiment 2. This means that a participant whose cognitive state is perfectly aligned with 642 
the innocent ray may still have a   1% or 3% chance of answering that Smith is guilty, when 643 
queried. While this does not appear high for any individual judgment, in an experiment 644 
which employs more than two or three judgments, the cumulative error rate can quickly 645 
increase beyond 5%. Therefore, with multiple judgments, even in the presence of a simple 646 
procedure and very clear instructions (as in the present work), the possibility that 647 
participants respond incorrectly (i.e., in a way inconsistent with their mental state) needs to 648 
be incorporated in any modeling. The difference in the value of   between Experiment 1 and 649 
Experiment 2 explains why there is a dip in survival probability for large N in Experiment 1 650 
(Figure 2A) but this is not observed in Experiment 2 (Figure 2B). 651 
 652 
Computing the (quantum) survival probability, for N intermediate measurements 653 
(Equation 3) 654 
This section presents the derivation for the quantum survival probability. Following the 655 
usual convention in this work of denoting innocence with | ⟩, we have that: 656 
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(S5) 660 
These probabilities are quite complicated and it is not necessary to give the full 661 

expression for every value of N here. However, we can simplify them quite considerably by 662 
noting that both   and    ( (     )) are small compared to 1. Doing this allows us to write 663 

(this is Eq(3) in the main text):  664 
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(3) 665 

Note that Eq(3) has a reasonably clear interpretation. The first term is the 666 
probability that the state never changes, multiplied by the probability that the N imperfect 667 
measurements all come out in the expected way (i.e., that Smith is innocent). The second 668 
term represents the probability that the state changes between the second to last and last 669 
measurements, but that the last measurement fails to detect this change. Further terms 670 
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either represent earlier changes in the state, and so more failed detections, or the state 671 
changing back to innocent from guilty (the probability for this last possibility is expected to 672 
be negligible for other reasons, since a participant who thinks Smith is guilty is very 673 
unlikely to revert and respond that Smith is innocent, after seeing more guilty evidence).  674 
  675 
Bayesian survival probability 676 
To derive a Bayesian expression for survival probability, we will assume that the process of 677 
making a judgment does not affect the mental state, but, as judgments are imperfect, there 678 
is a small probability,  , of making incorrect responses (that is, providing an answer which 679 
does not reflect the mental state).  680 

As noted in the main text, much of the information we need to build a Bayesian 681 
model can be extracted from Eq(2). Recall that we denote by    the event where a 682 
participant believes Smith is innocent, and    the event where a participant responds that 683 
Smith is innocent, and similarly for guilty. Then from Eq(2) we have, 684 

    (            |            )      ( (   )) 

    (            |            )      ( (   )) 
    (  |  )  (   )     (   |   )    
    (  |  )  (   )     (  |  )    

The probabilities involving transitions from Guilty cognitive states to Innocent ones are 685 
assumed to be 0, as in the quantum model. 686 
 The Bayesian survival probability is equal to, 687 
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We need two assumptions to allow us to write this in terms of quantities we know. The first 688 
is that   is small, and the second is that transition probabilities from    to    are small. The 689 
first of these is justified by appeal to the data, the second by the nature of the empirical set 690 
up, since we only present evidence implying Smith’s guilt. Given these two assumptions, we 691 
can show, 692 
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This follows because the probability of transitioning back to    from    is essentially 0, and 693 
it is very unlikely that the state    is incorrectly classified by more than one judgment. Thus 694 
the only non-negligible possibility other than that the cognitive state was always aligned 695 
with innocent is that the state changed between the penultimate and final judgments. 696 
 Next, it is easy to see that, 697 
 698 

    (                                              |       )
     (               |       )  

 699 
which follows because we are assuming the transition probabilities from    to    are small, 700 
so that if the state is    now, it is very unlikely to have been    at any time in the past. The 701 
survival probability then reduces to, 702 
  703 
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We can also write, 704 
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So we may finally write,  705 
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 706 
Additional details on the experimental methods. 707 
Block Evidence Relative 

Strength,    
S.D. 

1 Dixon was successful in his career and had recently been 
promoted. 0.92 0.49 

 Dixon had arranged a number of social engagements for 
the week after his death. 0.83 0.48 

 Dixon had no history of depression or related conditions. 0.94 0.48 
2 Dixon was engaged to be married. 0.89 0.49 
 One of Smith’s previous housemates reported that Smith 

made him feel threatened. 1.15 0.50 
 Friends and colleagues reported that Dixon did not seem 

obviously stressed or depressed in the days leading up to 
his death. 0.90 0.48 

3 Neighbours reported overhearing Dixon and Smith 
engaged in heated conversations on the evening before 
Dixon’s death. 1.25 0.43 

 Dixon appeared to have a large quantity of savings. 0.70 0.46 
 Smith had a previous conviction for assault. 1.22 0.44 
4 Smith’s fingerprints were found on the bottle of liquor, 

although it was impossible to tell whether these were 
recent. 1.01 0.53 

 The addition of the sleeping pills to the liquor was 
unlikely to have altered its taste. 0.92 0.51 

 The local pharmacist testified that Smith had bought the 
sleeping pills in his pharmacy recently after complaining 
of insomnia. 1.29 0.48 

 708 
Table S1. The 12 pieces of evidence suggesting that Smith is guilty, with average relative 709 
strengths and standard deviations. This data was based on participants’ judgments about 710 
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the strength of evidence, as collected at the end of Experiments 1, 2. The average relative 711 
strength of evidence in blocks 1,2,3 and 4 is 0.90, 0.98, 1.06 and 1.07 respectively. 712 
 713 
Details of the Bayesian Analyses 714 
The computations of BIC and Bayes Factors were carried out following Jarosz and Wiley 715 
(22). In particular, the BIC was estimated from the R2 via, 716 

        (    )       ( ) 
Where k is the number of free parameters and n is the sample size. The Bayes factors were 717 
then computed in the usual way, 718 

      
        

 

where                  is the difference in BIC values for the Quantum and Bayesian 719 

models.  720 
 721 
Additional references for Supplementary Materials 722 
(26) Yearsley, JM and Busemeyer, JR (in press). Quantum cognition and decision theories: A 723 
tutorial. Journal of Mathematical Psychology. 724 


