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ABSTRACT 

 

The PEA technique is used to measure the distribution of space charge in an epoxy 

resin after polarisation for one week at an applied field of 7.14kV/mm over a range of 

temperatures. The decay of the space charge is followed for times up to 114 hours 

after removal of the voltage and analysed in terms of a number of alternative decay 

mechanisms. It is shown that the rate-determining stage of the decay mechanism is 

that of a thermally activated process that has been associated with charge de-trapping. 

At times greater than 10
2
s the de-trapping process behaves as though the space charge 

field does not exist and the retention time of the space charge depends only upon the 

depth of the deepest occupied traps and the temperature. 
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1. INTRODUCTION 

 

The generation of space charge in insulators under voltage alters the field distribution 

from that that would apply in its absence. Local fields can be produced that are more 

than double the average applied field (for example see [1, 2]). Consequently space 

charge evolution can represent a potential threat to the integrity of insulating materials 

under electric stress [1, 3]. A further problem in insulation design is posed by the 

retention of space charge in traps after the applied voltage has been removed (for 

example see [2]). This results in long-lived currents following short-circuit, and also 

in severe field modification during polarity reversal, in DC conditions. It may also 

lead to charge accumulation from one ½-cycle to the next in AC conditions [4]. The 

aim here is to investigate the mechanism whereby space charge decays in an epoxy 

resin in its glassy state, in order to elucidate the decay mechanism and determine the 

material factors that control its rate. An analysis of this type may potentially establish 

guidelines for the assessment of the quality of different insulation materials and allow 

changes in insulation quality caused by ageing to be quantified. 

 

The various possible origins for the space charge measured in insulating polymers 

mean that it is unlikely that a general description of its decay can be formulated. For 

example, space charge injected from an electrode may decay following voltage 

removal by a number of routes; i.e. de-trapping and extraction at the injecting 

electrode; transit of the sample and extraction at the counter-electrode: or injection of 

neutralising charge of the opposite polarity. Space charge generated by ionisation of 

entities with donor or acceptor states may decay by transit of the mobile carrier and 

recombination or by neutralisation via injected charge of opposite polarity. However, 

space charge generated by ionisation to form molecular ions is likely to decay by 

transit and recombination. Neutralisation by charge injection from the electrodes may 

either be impossible because the neutral species may be non-existent, or could lead to 

damaging electrolytic reactions.  

 

Examples of some of these processes may be found already in the literature. In [5] 

simultaneous measurement of space charge by the thermal pulse method and the 

external current showed that the decay of space charge in an anti-static doped high-

density polyethylene (HDPE) following short-circuit was governed by the injection of 

negative charge. This injection neutralised positive heterocharge (charge of opposite 

polarity to the electrode) that had formed next to the cathode. The positive 

heterocharge was associated with the anti-static agent, and most probably was 

produced in the form of ionised donor molecules. The injection current was 

demonstrated to have the Schottky form (e.g. [6]), 

                       

                                     Iinj = Ioexp(- /kT)exp{e(eEe/4 o r)
1/2

/kT}                       (1) 

 

Here Ee is the electrode field,  is the energy barrier for charge injection, and r is the 

relative permittivity of the dielectric material. In thick (1 to 2mm) films [7] of low-

density polyethylene (LDPE) the decay of the space charge was mainly due to charge 

transit and recombination although close to the electrode charge injection also played 

a role. This was particularly the case at T = 70 °C where, as with HDPE, the charges 

were mainly hetero-charge, and the injection current followed the Schottky law. In 

both these cases therefore Schottky injection plays a role in the decay of the space 
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charge even though the electrode material was very different, i.e. gold in the HDPE 

case, and carbon loaded polymer (C-black semicon) in the LDPE case. 

 

Thermally stimulated depolarisation currents (TSDC) [8] show that charge in 

insulators is trapped at a range of trap depths. It would therefore be expected that 

transit and recombination or neutralisation at the electrode would be governed by de-

trapping. The experiments reported in [7] could not distinguish between a transport 

mechanism controlled by field-assisted thermally activated hopping between neutral 

sites or a Poole-Frenkel process [6]. It was shown in [9] however, that the decay of 

space charge in an epoxy resin was controlled by the time dependent de-trapping of 

the injected charge from trap sites whose trap depths uniformly covered a range of 

energies. In this case a geometrically divergent field was investigated and therefore it 

could be expected that on de-trapping the main part of the injected charge would 

move rapidly to the neighbouring injecting electrode for extraction, rather than travel 

to the planar counter-electrode. The assumption that space charge decay was governed 

by the transport of charges to the electrodes for neutralisation has recently been used 

to derive an approximate expression allowing the time dependent mobility of such 

charges during the decay process to be extracted from the time dependent space 

charge magnitude [10, 11]. The results for cross-linked polyethylene (XLPE) imply 

an effective mobility governed by trap-to-trap hopping between ever deeper traps as 

the remaining space charge density decreases.  

 

This investigation concentrates upon space charge decay in thin films of an epoxy 

resin. Epoxy resins provide a substantial contrast to the polyethylene class of insulator 

in that instead of being semi-crystalline their morphology has the form of a 3D-

network. In addition their chemical composition is very different. Consequently they 

could be expected to possess a greater trap density than polyethylene and their traps 

are likely to range to deeper energies. Unlike the situation discussed in [9], a parallel-

plate electrode geometry has been used. In this way we reduce the likelihood of traps 

generated near the electrodes by the sample manufacturing procedure. The resin is 

primarily investigated when in its glassy state so that a comparison can be made with 

the rubbery polyethylenes investigated in [5, 7]. Some measurements have also been 

carried out above the glass transition temperature in order to separate the effect of 

morphology from that of chemistry. Rather than assume that space charge decay is 

determined by transit to a neutralising electrode a number of decay mechanisms will 

be evaluated for their ability to fit the observed change of space charge density. This 

approach is intended to provide a means of analysing data in order to both identify the 

decay mechanism and to extract pertinent parameter values. 

 

2. EXPERIMENTAL 

 

2.1 Material and Measuring System 

 

The epoxy resin used was prepared from the mixture of the Araldite base resin 

CY1301 and the hardener HY1300. The base resin is essentially composed by 

Diglycidyl Ether-Bisphenol A (DGEBA) and Iso-Octyl Glycidyl Ether (IOGE) 

whereas the hardener is a mixture of Triethylene Tetra Amine (TETA) and 

Polyoxypropylene as major components. The samples were produced in the form of 

thin films with a thickness varying between 250 and 300 µm. When placed under DC 

voltage space charge developed in the samples and this was measured using a pulsed 
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electro-acoustic (PEA) system [12]. In the measurements the lower electrode was 

aluminium while the upper electrode through which the high voltage was applied was 

a carbon black loaded conducting polymer, which in some cases was covered with a 

conducting layer of aluminium. The probe pulse used in the experiments had a pulse 

width of 5ns, a repetition frequency of 400Hz, and amplitude of 400V.  

 

The glass transition temperature of the epoxy was determined by Differential 

Scanning Calorimetry (DSC) technique to be about 40°C. All experiments reported 

here were carried out at controlled temperatures above and below the glass transition. 

 

2.2 Experimental protocol 

 

Two sets of experiment were carried out. In the first set a DC voltage of +2kV 

(electric field = 7.14 kV/mm) was applied to the samples via the top electrode for a 

time of one week at T = 25 C. The results reported here relate to the decay of the 

space charge over a period of 68h following the removal of the voltage. In the second 

set of experiments the same DC voltage of +2kV (E = 7.4kV/mm) was also applied 

for 1 week, but the decay was followed over a longer period of time and at different 

temperatures, namely 101 h at T = 20 C, and 114 h at T = 33 C. In addition some 

experiments were carried out at 50 C, i.e. above the glass transition, with a DC 

voltage of +2KV (electric field = 6.7kV/mm).  

 

3. SPACE CHARGE MEASUREMENTS 

 

3.1 Homocharge Peaks 

 

In measurements made under voltage the signal from the electrodes are too strong to 

reveal the bulk space charge with any accuracy. The main indication of its presence is 

a small displacement of the signal from the electrode into the sample that implies the 

presence of injected charge of the same polarity as the electrode, termed homocharge.  

The signal displaces because the homocharge induces a charge on the electrode of 

opposite polarity while it builds up trapped charge of the electrode polarity in the 

bulk. The existence of such homocharge is demonstrated conclusively by the signal 

obtained when the voltage has been removed. These signals show that a positive 

homocharge peak has developed in the epoxy resin over the time under electrical 

stress see figure 1. These results are qualitatively the same as those found previously 

at much higher applied fields (18kV/mm to 180kV/mm) [13]. It seems clear from the 

position of the peaks and the measurements made during voltage application that the 

injected charge did not move very far into the epoxy film before being trapped. 

Because of attenuation and dispersion of the acoustic wave during transit of the 

sample the estimated magnitude of the space charge near the upper electrode is less 

accurate than that closer to the piezo-electric detector located beneath the lower 

electrode. For this reason we will concentrate our analysis of the space charge decay 

upon the homocharge peak next to the lower electrode. 

 

3.2 Apparently long-lived Electrode Peaks 

 

A curious feature of this data is that 48 hours after the removal of the applied voltage 

the peak on the electrode becomes zero leaving only one peak in the charge density 

occupying the position of the homocharge peak close to the bottom electrode. 
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Furthermore, as shown in figure 1, this peak hardly seems to decay at all over the 

subsequent 20 hours (i.e. between 48 and 68 hours after the voltage has been 

removed). Although it was impossible to resolve a homocharge peak near the upper 

electrode the broad peak there also showed very little decay over the period of 48-68 

hours after voltage removal. A similar behaviour was found in all the other 

experiments that have been performed, although the time at which it occurred varied 

depending upon the temperature.  The expected behaviour when bulk space charge is 

present, as here, is that it will induce an image charge on the electrode that will yield a 

signal of opposite sign proportional in magnitude to the bulk space charge density. It 

is shown in figure 2a that this is the case for the period of time when two peaks can be 

observed in the PEA signal. The extrapolation to zero electrode charge corresponds to 

the observed peak magnitude at the position of the homocharge peak, which is 

retained beyond the time scale of the experiment.  

 

In [14] and [15] it was shown that the signals proportional to the probe perturbation 

(Vp) gave the same information about the electrical state of a sample in both the PEA 

and Laser Induced Pressure Pulse (LIPP) techniques (see equations (38) and (36) of 

[14] and equations (23) and (10) of [15]). This is expressed through a contribution to 

the signal proportional to the gradient in electric field due to bulk space charge and 

electrode charge (see equation (38) of [14]). It is this first order (linear) response to 

the probe perturbation that is usually used to interpret and predict the signals (see for 

example [16]). However, it was pointed out in [14] and [15] that a second order 

contribution that is proportional to the square of the probe perturbation (i.e. (Vp)
2
)  

also exists, but that where the probe perturbation is a pressure wave (as in LIPP) this 

second order contribution is negligible compared to that of the first order. On the 

other hand this is not always the case for the PEA measurement, as for example in a 

geometrically divergent field [17]. In the case of parallel plate geometry it was shown 

that the contribution of the second order term was restricted to a signal from the 

electrode interfaces (see equation (23) of [15]). These contributions will be a 

significant part of the total electrode signal when the field due to the probe pulse 

voltage is not negligible with respect to the total electrode field from the space charge 

and applied voltage. Such a situation is unlikely to arise during the period of voltage 

application, but will probably occur at some stage after the removal of the applied 

voltage when the space charge field becomes low. Unlike the first order signal the 

magnitude of the second order signals will be independent of the polarity of the probe 

pulse. They will also have opposite signs at each interface [15].  

 

The second order signals are effectively self-generated responses to the probe and can 

be measured before the application of a potential to the sample. Figure 2b, shows such 

a measurement made at T = 20 C. It was suggested in [14] that their influence be 

removed by subtracting signals made with a negative probe voltage from those made 

by a positive probe voltage. This is not easy to carry out with our system and since the 

contribution is small in comparison with the signals obtained on removal of the 

applied voltage such a procedure was not carried through. However, it can be seen 

that the amplitude of the second order contribution is close to that of the space charge 

measured when the electrode peak disappears, see figure 2a.  This leads to two 

alternative explanations for the single peak observed near the lower electrode at long 

times: either there is no space charge present and the peaks measured are solely due to 

the second order term, or that the second order term has cancelled the signal due to 
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the image charge on the electrodes leaving only the first order signal due to the space 

charge to be measured.  

 

In order to investigate the situation a series of experiments were performed after 114 

hours decay at 33 C. The results are shown in figure 3. Figure 3a demonstrates the 

procedure adopted to produce the traces shown in figure 3b. Initially (trace 1) only 

two peaks were observed one near each electrode. We then reversed the sample in the 

measuring system, and found that the peak at the upper electrode almost disappeared 

whereas two peaks of opposite polarity were found at the lower electrode (trace 2). 

This measurement reveals the presence of negative space charge in the sample on the 

side that was originally near the upper electrode. The first and second order 

contributions to the lower electrode signal are both positive and reinforce one another. 

The signal from the upper electrode in trace 2 indicates a near cancellation of the 

positive space charge now located there and the net of the first and second order 

electrode contributions, which will both be negative. The polarity of the probe pulse 

was now reversed keeping the sample in the same orientation.  This will alter the sign 

of the first order (linear) contribution and hence of the space charge signals, but will 

not affect the polarity of the second order contribution. The measurements (trace 3) 

now show just one positive polarity peak at the lower electrode and a negative 

polarity peak on the upper electrode. The behaviour at the lower electrode implies that 

the first and second order contributions from the electrode nearly cancel leaving only 

the space charge signal, which is now positive because of the change in polarity of the 

probe pulse. The appearance of a peak of opposite sign near the upper electrode in this 

configuration shows that there is space charge in the sample on this side also. Because 

of the reversal of the probe pulse the signal from this charge will now be negative and 

is reinforced by a net electrode signal, which is negative.  In order to reveal this more 

clearly the sample was returned to original orientation, while retaining the  keeping 

sign of the probe pulse the same as that in trace 3, i.e. still opposite to its original 

polarity in trace 1. The results, given in trace 4, show a double peak at the lower 

electrode and essentially no peak at the upper electrode, thereby verifying the 

existence of space charge near the bottom electrode in the original orientation. Again 

the space charge signal from the side near the top electrode was essentially cancelled 

by negative net signal from the electrode. Trace 5 shows the behaviour when the 

probe pulse polarity was returned to that of trace 1.  These experiments show that the 

presence of just two peaks in the signal a long time after the voltage has been 

removed does not mean an absence of space charge but rather that the second order 

contribution from the electrodes has a major effect upon the electrode signal. In our 

case space charge has been shown to be present on both sides of the sample even 

more than 100 h after the voltage has been removed. 

 

 

4. SPACE CHARGE DECAY 

 

The results discussed in section 3 shows the existence of homocharge peaks near to 

the electrodes. Ionic dissociation of any kind or injection and charge transit would 

give rise to heterocharge. These peaks must therefore be due to charge injection 

followed by trapping. In principle the PEA technique could detect „free charge‟ since 

the force terms in equation (1) do not distinguish between free and trapped charge. 

The finite duration of the probe pulse (  5ns) however, allows time for „free charge‟ 

to displace during its application. As a result the compressive (rarefaction) waves (see 
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[18]) that travel towards the detector are cancelled by compensating rarefaction 

(compressive) waves produced earlier in the pulse and moving in the opposite 

direction. We must therefore consider the homo space charge to be trapped. 

 

4.1 Charge De-Trapping 

 

A number of possible mechanisms for space charge decay may be active in our 

experiments. Charge may be de-trapped and move to a neighbouring electrode for 

extraction. Charge may be de-trapped and transit the sample for neutralisation by 

space charge of opposite polarity. Neutralising charges may be injected from the 

neighbouring electrode. There are three basic mechanisms involved in these 

processes, charge de-trapping, charge transport, and charge injection. Each of these 

mechanisms may have different timescales of operation.  

 

In [9] it was shown that space charge decay in an epoxy resin could be described very 

well by the assumption that the rate-determining step is an isothermal de-trapping 

process, which released charge for neutralisation at an adjoining wire electrode. In 

actuality the transport of the charge to the extracting electrode would involve multiple 

trapping and de-trapping processes, however it has been shown [19] that the single de-

trapping approximation gives very good estimations of the energy distribution of the 

trapping states lacking only details of the fine structure. These results indicate that for 

the thin films considered, multiple trapping and de-trapping is dominated by just a 

single de-trapping event from a trap whose energy lies at the top of the filled range, 

i.e. the deepest trap state available for trapping.  

 

In principle the analysis described in this sub-section applies equally to de-trapped 

charges that transit the sample for neutralisation by opposite polarity homo-charge as 

to charges that move to a neighbouring electrode to be neutralised. However, the 

sample is much thicker than those considered in [19] and in this case it can be 

expected that multiple trapping will result in many de-trapping events from states at 

the top of the filled energy range. This will result in a time scale for transit and decay 

whose activation energy will be the same as for the single trapping analysis, but for 

which the effective attempt frequency will be much lower, since the transit time (and 

mobility) will also be determined by the number of de-trapping events. 

 

 In our experiments the field between the two space charge peaks is small once the 

voltage is removed whereas that between a peak and its neighbouring electrode is 

large. Therefore most of the injected charge can be expected to move towards the 

neighbouring electrode for neutralisation rather than transit the sample, a short enough 

distance for the single de-trapping approach to give an adequate description.  In 

support of this contention there is no evidence for a broadening of the space charge 

peaks, such as would be expected if a substantial portion of the space charge were to 

move across the sample via a sequence of multiple trappings and de-trappings.  

 

If the traps are taken to have a constant density in trap depth and to be filled from a 

maximum trap depth max up to a trap depth of min, the time dependence obtained for 

space charge density is given by following equations, 

 

 (t) = (0)           t < [ exp(- min/kT)]
-1

                                                                      (2) 
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 (t)  [ (0)kT/( max- min)](a – ln(t))       [ exp(- min/kT)]
-1

 < t < [ exp(- max/kT)]
-1

               

                                                                                                                                     (3) 

(t) = 0       [ exp(- max/kT)]
-1

 < t                                                                               (4) 

 

In this set of equations  is the attempt to escape frequency, (t) is the time-dependent 

space charge density, and a is a factor (with units of ln{frequency}) that is 

independent of time. The derivation [9] is given in Appendix 1. This behaviour can be 

revealed by plotting (t) as a function of log(t), in which format a sigmoidal form is 

obtained, see figure 3 of [9]. Essentially it can be interpreted to mean that very little 

decay occurs until the time, t1, 

 

 t1 = [ exp(- min/kT)]
-1

                                                                                                 (5) 

 

at which the shallowest occupied traps ( min) start to be emptied. Then the logarithmic 

dependence sets in while the traps are emptied from the top down, [19]. This phase of 

the decay ends when the deepest traps ( max) start to be emptied at t2,  

 

t2 = [ exp(- max/kT)]
-1

                                                                                                 (6) 

 

If the energy distribution of the traps is not constant, but contains peaks [7] we can 

expect a form similar to equation (3) but with steps in the linear feature of the (t) vs 

log(t) plot.  

 

Plots of (t) as a function of log(t) constructed from data at T=20 C, T=25 C, and 

T=33 C are given in figure 4. A region of near constant (t) is found between 10
2
s 

and 10
3
s, followed by a linear dependence of (t) upon -log(t) as predicted by 

equations (2) and  (3). It is therefore a reasonable assumption that the single de-

trapping theory holds for t  10
2
s. min can be estimated by taking t1 as the time where 

the proportionality of (t) to ln(t) sets in and assuming that  = kT/h.. Taking the 

magnitude of (t) at the times 10
2
 s to 10

3
 s to be the value of (0) for the charge de-

trapped from the trap distribution described above, a value for max can be estimated 

from the gradient in the region where equation (3) holds. These estimates are used in 

the exact expressions (equation (25) in Appendix 1) to give the theoretical single de-

trapping space charge decay curves that best fit the data, shown as the lines in the 

plots of figure 4. The best fit values of min and max are given in Table 1. The 

estimated values of  max lie between 1.1 and 1.14eV and are sufficiently large that 

the release time of charge from the deepest traps is in excess of the longest time of the 

experiment (  100 h). This implies that some trapped charge is still present at the end 

of the experiment, as shown in figure 3. 

 

The theoretical curve fits the data at T=25 C over the whole measurement time range, 

but data obtained at T=20 C and T=33 C show an upwards deviation from the 

theoretical curve at short times (t < 10
2
s) where there are no measurements at 

T=25 C.  There are a number of possible explanations for this deviation. In the first 

place there may be a distribution of shallower traps that release their charge on a 

shorter timescale. In the absence of measurements at shorter times this cannot be ruled 

out as a possible explanation. If such a trap distribution exists the most that can be 

deduced about it from the limited data available is that the energy of its deepest traps 

must lie around 0.86 to 0.9eV. An alternative explanation is that at short times the 
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electric field strength due to the space charge and its image on the neighbouring 

electrode is large enough to accelerate the de-trapping process. With the removal of 

space charge the field will reduce and at some stage its influence upon the de-trapping 

process becomes negligible and the space charge decay is effectively determined by 

the trap depths, as in equation (3). This possibility is explored in sub-section 4.2. 

Finally there is the possibility that the space charge decay does not involve charge de-

trapping at all, but is determined by Schottky injection (as in [4,6]) neutralising the 

existing space charge. This possibility is evaluated in sub-section 4.3. 

 

4.2 Influence of Space Charge Field on De-Trapping 

 

Usually it is assumed (see [6] for example) that in the presence of an electric field the 

promotion of charge from a trap that is neutral when empty is assisted by a reduction 

of the energy barrier in the field direction, i.e., the de-trapping probability changes as 

shown below, 

 

Pde-trap(E=0)  exp(- /kT)      Pde-trap(E)  exp(-[ -deE]/kT)                             (7) 

 

Here d is the distance from the centre of the trap to the peak of the barrier. In the 

situation under discussion there is no applied field, however there is a field due to the 

space charge itself, which can therefore be expected to have an influence upon its own 

de-trapping rate. The transport of charge to an extracting electrode or a region where 

neutralisation can take place should thus depend upon the time dependent space 

charge density. The derivation of an expression for the effective charge mobility 

during space charge decay that was presented in [10, 11] attempted to take account of 

this effect in a way that would be generally applicable. However, the existence of a 

spatial distribution in space charge that may alter during the decay process makes it 

impossible to obtain a solution without the use of approximations, though their choice 

may be simplified when only the charge density and not the distribution alters [20]. In 

the measurements presented here the space charge resides in peaks near to the 

electrodes. The resulting electric field will be large between the space charge and the 

electrodes and small in the bulk between the two space charge peaks. Consequently 

most of the space charge will be de-trapped and move to the neighbouring electrode 

where it is extracted or neutralised, rather than transit the sample to recombine with 

charges of opposite polarity.  

 

The electric field that influences charge de-trapping and hence the space charge decay 

will be that between the space charge and its neighbouring electrode. The measured 

space charge resides in a single peak close to the electrode and its actual distribution 

will be narrower than implied by the measured signal because of limitations on the 

spatial resolution of the signal caused by the finite width of the probe pulse and the 

instrument response. We have therefore approximated it as a plane of charge near to 

the electrode, and hence the space charge field will be uniform in the region between 

the space charge and the electrode with a magnitude proportional to the charge 

density of the peak. With these assumptions it is possible to derive an expression for 

the time dependence during decay of the space charge density, (t), in the peak 

considered (see Appendix 2), 

 

1 – exp(-D (t)/kT) = NDe[E1( exp(- max/kT)t)  - E1( exp(- min/kT)t)]                  (8) 
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Here D is the product of the proportionality constant between electric field and (t), 

the charge on an electron, and d. It is therefore a material dependent constant. E1(..) is 

the exponential integral defined in Appendix 2. Nd  is the number of traps per cubic 

metre with trap depths between  and  + d , and is assumed to be a material 

dependent constant. When D (t)/kT  << 1 equation (8) has the same form as that 

given in the set of equations (2) to (4), i.e. when (t) is small enough the barrier 

reduction due to the space charge field becomes negligible compared to the trap 

depths and space charge decay is determined by the depths of the filled traps as in 

section 4.1. It is therefore expected that the effect of the space charge field will only 

be appreciable at short times where (t) can be expected to be large. However the 

application of equation (8) to the short time experimental data is not easy so we have 

derived a more approximate expression for use with our data. In this case we assume 

that at any given time charge is only released from the shallowest filled traps. Since, 

  

                   (t) =   Ne[ max - min(t)]                                                                        (9) 

 

where min(t) is the highest filled trap depth at time t, we can describe the decay of the 

space charge through the time dependence of min(t), see Appendix 2.  The resulting 

expression applicable to the short time region where equations (2) to (4) do not fit our 

data is given by, 

                               exp(-G (t))/G (t) = A + kt                                                         (10) 

with 

                                    G = [1 + NeD]/( NekT)                                                         (11) 

                                     A = exp(-G (0))/G (0)                                                         (12) 

                                     k = exp(- max/kT)                                                               (13)  

 

When kt > A, equation (10) reduces essentially to the form of equation (3), as is 

predicted from the exact equation (8). However the time for the onset of this 

behaviour is dependent not just upon min but also upon D and N.  

 

Equation (10) can be solved numerically for (t) at time t for given values of G, (0), 

and k. Figure 5 shows the best fit that can be achieved for the measurements at T = 

33 C.  A slightly improved fit is obtained at short times where the data deviated from 

the sigmoidal form of equations (2) to (4). Since equation (10) reduces to the form of 

equation (3) at long times the fit at t >10
3
s is as good as before. The fit to the data 

shown in figure 5 suggests that the space charge generated electric field may 

influences charge de-trapping but only at short times when the space charge density is 

largest and the electric field reduction of the barrier is significant compared to min. In 

this case there would be some significant de-trapping prior to the time at which (t) 

starts to be proportional to log (t). As the charge is progressively removed the field 

decreases and its effect becomes negligible compared to the de-trapping activation 

energy. Consequently the description given in equations (2) to (4) in which the 

electric field is neglected becomes a good approximation over much of the 

observation window. This can be seen from the value of 1.125eV estimated for max 

from the fitted value of k (2 10
-6

 s
-1

), which is close to the estimate given in Table 1 

made from equations (2) to (4). Only where the observed space charge has a high 

density would we expect the space charge field to have a substantial effect upon the 

observed decay. 
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4.3 Neutralisation by Schottky Injection 

 

It was shown in [5, 7] that on removal of the applied voltage space charge peaks near 

to an electrode were neutralised by Schottky injection from the electrode when the 

electrode field was sufficiently high, although this was not maintained at low fields 

[7]. It is difficult to determine whether or not such injection is taking place in the 

absence of measurements of the external current simultaneous with those of the space 

charge. However, here we take advantage of our assumption that the electrode field is 

proportional to the space charge to derive an expression for the time dependence of 

the decay of the space charge field through neutralisation of the space charge by 

Schottky injection from the electrode, see Appendix 3. This has the form, 

 

exp{-B‟[Ee(t)]
1/2

}[1 + B‟[Ee(t)]
1/2

] = [(B‟)
2
/2]F(t) = [(B‟)

2
/2]{F(0) + J‟t}               (14) 

 

where, 

                      F(0) = [2/(B‟)
2
]exp{-B‟[Ee(0)]

1/2
}[1 + B‟[Ee(0)]

1/2
]                            (15) 

                        B‟ = (e
3
/4 o r)

1/2
(1/kT)                                                                     (16)  

 

and J‟ is given by, 

                                                        

                           J‟ = (Jo)‟exp{-  /kT)                                                                       (17)  

 

Here (Jo)‟ is the pre-exponential current density of the Schottky injection current 

multiplied by a proportionality constant that relates the electrode field to the 

integrated charge per unit area in the space charge peak, see Appendix 3. 

 

These equations imply that a plot of the LHS of equation (14) (i.e. [(B‟)
2
/2]F(t) = 

exp{-B‟[Ee(t)]
1/2

}[1 + B‟[Ee(t)]
1/2

]) as a function of time t should yield a straight line 

if Schottky injection is the dominating process of the field (space charge) decay.  The 

electrode field, Ee(t) can be estimated from the measured space charge density, and B‟ 

evaluated using the known relative permittivity ( r =3.8) of the epoxy. The results for 

T=20 C are plotted in figure 6a, and for 33 C in figure 6b. These plots show a 

continuing curvature and very little indication of a linear behaviour for F(t) except 

perhaps at the longer decay times where the value of Ee becomes small. In this region 

we would expect the injection current, equation (1) to become effectively independent 

of Ee, and the time dependence of (t) to take the form, 

 

(t) = ‟ – HJ‟t                                                                                                       (18) 

 

with H and ‟ constants independent of time. Since Ee(t)  (t), equation (18) implies 

that Ee(t) should also be linearly decreasing with time at long times. This can be 

shown by taking the limit B‟[Ee(t)]
1/2

 < 1 in equation (14), which gives, 

 

exp{-B‟[Ee(t)]
1/2

}[1 + B‟[Ee(t)]
1/2

]   1 – (B‟)
2
 Ee(t) = [(B‟)

2
/2]{F(0) + J‟t}      (19)          

 

Thus the near linear regions at long times in figure 6 can be associated with a time 

dependence of (t) in the form of equation (18), and hence with a field independent 

current leading to charge neutralisation. The only region of time where the data shows 
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some agreement with the predictions of neutralisation by charge injection is therefore 

that for which the space charge field has become negligible, and injection is governed 

solely by thermal activation. An estimation of the activation energy involved can be 

obtained by determining the values of J‟ from the gradients of the linear regions of the 

two plots and using equation (17). In this way we find  = 0.97eV, which lies in the 

same range as min to max given in Table 1. It is clear that the thermally activated 

process that gives rise to the long time behaviour has essentially the same activation 

energy as that involved in the de-trapping model considered in sub-sections 4.1 and 

4.2. In view of the fits obtained for a distribution of trap energies (see figure 4) it is 

likely that curvature that can still be observed in figure 7 at long times is a 

consequence of restricting the analysis to the unique activation energy of the Schottky 

expression given in equation (1). There is thus no evidence for the existence of 

Schottky injection at short times where the space charge field could be expected to 

have an effect. Instead the data implies that space charge decay is governed by a field-

independent injection or extraction current requiring thermal activation of around 1 

eV. 

 

5. DISCUSSION 

 

A single general mechanism for the decay of space in dielectric materials cannot be 

expected to hold because there are many processes that may take place. As a rule of 

thumb, we would expect charge neutralisation by transit of the sample to result in an 

extension of the space charge further into the bulk region unless there is independent 

evidence for a high conductivity in the body of the material such as may be found in 

some heterogeneous materials. When there are isolated space charge peaks that 

essentially retain their shape during decay, neutralisation can be expected to occur via 

extraction or injection currents involving a neighbouring electrode. This is the case 

here. It is important to note that the time dependence of the space charge decay is 

governed by the slowest of the processes that take place. For example, trapped space 

charge must be de-trapped and then travel to the electrode for neutralisation or 

extraction. If extraction at the electrode is an ohmic process it will essentially be 

instantaneous, however if extraction is not ohmic it will have a time scale determined 

by the mechanism controlling the current across the electrode-dielectric interface. The 

time dependence of space charge decay will be determined by which of the three 

possible processes is the slowest, i.e. the rate determining step. 

 

In section 4 we have evaluated the space charge decay in terms of two alternative 

mechanisms: release of charge for extraction by a single de-trapping process (with 

and without space-charge field assistance), and neutralisation by Schottky injection. 

Both processes have been shown to occur in previous work [5, 7, 9]. The essence of 

the single de-trapping process is that during transit to the electrode the charge has to 

be de-trapped only once from a trap level at the top of the filled range. This therefore 

becomes the rate determining step as intermediate steps involving de-trapping from 

shallower traps take much less time. Only at times less than 10
2
s is there any evidence 

for the influence of the space charge field, with the data providing a reasonable fit to 

the field-assisted de-trapping model (see figure 5) but not to an explanation based on 

Schottky injection (see figure 6). Even in this time range the involvement of the space 

charge field is not conclusively demonstrated since the data could be equally well 

described by field-independent charge de-trapping from a shallower set of traps.  
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Our analysis has shown that over most of the measurement time window the decay of 

the space charge is governed by a field-independent thermally activated process. Two 

possibilities exist for the origin of this process: a) a thermal injection/extraction 

current at the electrode, and b) space charge de-trapping. Figures 6a & 6b show that 

the linear behaviour predicted from thermal injection with unique activation energy, 

equation (19), is only poorly reproduced. In view of the good fit in the same time 

range to charge de-trapping from traps that are distributed in trap depth (see figure 4), 

it seems likely that the thermal activated charge decay process must involve such a 

distribution whether or not it relates to extraction or neutralising injection. On the face 

of it extraction or injection are equally likely mechanisms given a distribution in 

activation energies. However, it should be noted that if injection is the operative 

mechanism the space charge observed must be unable to move over the time of the 

experiment, while awaiting neutralisation. This would imply either that the space 

charge resides in traps with a depth greater than 1.2 eV or that it was due to ionic 

centres forming part of the epoxy matrix.  

 

We have examined a situation in which the decay process involved currents between 

the space charge a neighbouring electrode, where the transit to the electrode can be 

assumed to be fast as in [9] once the charge is de-trapped. Since the de-trapping 

controls the decay current it is possible to interpret the space charge decay in terms of 

an effective mobility [11, 20]. It must be understood though, that in our case this 

mobility would be that of the space charge in the region where it is trapped. If the 

space charge has to move through regions of different space charge density or space 

charge polarity, as for example during a transit of the sample, it will trap into the 

deepest available traps. These will not be the deepest unfilled traps of the space 

charge region as in equations (2) to (4). In this case the mobility would probably not 

change very much over time.  

 

Our analysis also shows that a uniform distribution of trap energies between  0.94eV 

and 1.15eV describes the data very well. Such a top-hat distribution is most probably 

an idealisation of the actual physical situation but the precision of our data is unlikely 

to be able to detect minor variations relating to the difference between such a 

distribution and a Gaussian (normal) distribution. However, it should be noted that in 

[9] a larger amount of data from a different epoxy similarly reveals a top-hat 

distribution. There it was shown that max = 0.94eV at both T=25 C and T=35 C. 

However min was shown to reduce as the applied voltage increased and the amount 

of charge injected increased. For this reason it was suggested that max relates to the 

deepest trap available in the timescale of voltage application, and that the traps are 

filled up to a trap depth of min. The results presented here are consistent with that 

view with a value of max that remains essentially unchanged with temperature 

whereas min shows some minor variations that may be due to small differences in the 

space charge density. The limited data from t < 10
2
s also indicate that there may be 

shallower traps with depths less than 0.9eV. Given the time window of our 

experiments we would not be able to detect the decay of charge in traps of less than 

about 0.82eV at these temperatures and hence are not able to identify their existence 

for certain. TSC experiments [8] however, typically reveal more than one peak in the 

trap distribution, and hence it would not be unexpected for more than one trap 

distribution to be present in our material. The length of time over which we measured 

the decay shows however, that any charge trapped below 1.15 eV is too small to be 

detectable by our equipment even if it exists, and therefore it is reasonable to argue 
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that our maximum trap depth represents the deepest traps available to the injected 

charge during the experiment.  

 

The samples used in [9] require wires to be moulded inside them that act as the high 

voltage terminal during voltage application and it could be argued that the traps were 

introduced during their manufacture. The existence of a top-hat distribution of traps in 

the epoxy resin investigated here in parallel plate geometry show that this is not the 

case. However both epoxy resins investigated were in their glass state and this raises 

the question as to whether or not these traps relate to frozen-in states of the material or 

originate with the hetero-atoms that are part of the chemical composition of epoxy 

resins. If the former is the case we would expect to find a different picture above the 

glass transition temperature, whereas the results should have essentially the same 

form in the latter situation. This is particularly pertinent because the polyethylene 

materials, which are in a rubbery state, showed evidence for a different mechanism, 

that of neutralisation by Schottky injection [5, 7]. In one case [5] it seems that the 

space charge was associated with molecular ions and neutralisation by charge 

injection would be the only viable mechanism for space charge decay if it is assumed 

that during the voltage application time the donated carriers had transited to the 

counter electrode and a substantial portion extracted. In the other case the nature of 

the charges is not clear, but semiconductor electrodes were used and hence it is 

possible that they were also molecular ions originating either from the semiconductor 

or from molecular additives or residues within the polymer. Accordingly we 

performed a similar experiment (+2kV for 42h followed by voltage removal) on the 

resin at a temperature of 50 C where it above the glass transition. The results are 

shown in figure 7. In this case there is no detectable decay of the space charge peak 

over a period of 1s to 27s following the removal of the voltage. We can use equation 

(6) to estimate that the shallowest traps in which the observed space charge resides at 

this temperature lies deeper than 0.914eV. This estimate is consistent with the values 

given in Table 1, but the amalgamation of the space charge peak with the electrode 

peak at 200s (see section 3.2) makes it difficult to make any estimate of the trap depth 

energy range and distribution. It was noted however that this peak remained 

unchanged for several hours [21] so it is likely that the trap depth range is similar to 

that found below the glass transition, and hence that the traps are associated with the 

hetero-atoms of the chemical structure. 

 

The conversion of the signal to a single peak near the electrode tends to occur at 

progressive shorter times as the temperature increases, Table 2. This is consistent with 

explanation given in section 3.2. As the temperature increases the space charge decay 

occurs faster and hence the electrode field  reduces to a level at which the first order 

contribution to the signal drops below that of the second order contribution at an 

earlier time. 

 

6. CONCLUSIONS 

 

Given sufficient stressing time space charge can be injected into epoxy resins at fields 

as low as 7.14kV/mm. This is trapped near to the injecting electrode forming homo-

charge peaks. Some of this charge will remain in the sample beyond 100 hours after 

voltage removal. At such long decay times the space charge peak may become 

obscured by the probe-pulse generated signal at the electrode-dielectric interface. 
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There is no substantive evidence for an involvement of the space charge field in the 

decay process. 

 

The space charge decay is governed by de-trapping from charge traps whose depths 

range from about 0.94eV to 1.15eV with an essentially uniform distribution.  

 

The time over which space charge can be retained in the epoxy resin depends upon 

the depth of the deepest traps occupied and the temperature.  

 

The same decay process is operative both above and below the glass transition, 

though the de-trapping rate increases as the temperature increases. 
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Table 1. Values of the minimum ( min) and maximum ( max) trap depths estimated 

from equations 3 to 5, and used to produce the fitted curves in figure 5. 

 

Temperature (K) min (eV) max (eV) 

         306 0.97 1.13 

         298 0.98 1.14 

         293  0.94 1.1 
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Table 2. Time at which only a single peak is observed near the lower electrode. 

 

Temperature (K) Estimated Time of Amalgamation 

        293                 t > 22 hours 

        298        48 hours > t > 4 hours 

        306        18 hours > t > 3.5 hours                 

        323              200s > t > 27 s                 
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TABLE CAPTIONS 

 

Table 1. Values of the minimum ( min) and maximum ( max) trap depths estimated 

from equations 3 to 5, and used to produce the fitted curves in figure 5. 

 

Table 2. Time at which only a single peak is observed near the lower electrode. 

 

 

FIGURE CAPTIONS 

 

Figure 1. Space charge measured at various times after removal of the voltage (plus 

5min, cross 4h, black diamond 48h, white diamond 68h); T = 25 C. The anode and 

cathode labels refer to the polarity of the electrodes during the application of the 

voltage. The label „positive homomocharge‟ refers to the nature of the charge during 

voltage application. The charges seen on the electrodes in the figure are the 

combination of the image charges induced by the positive space charge peak and the 

signal produced by the probe pulse itself. The x-axis relates to the distance along an 

axis perpendicular to the electrodes, and the sample thickness is noted. 

 

Figure 2. (a) Magnitude of the electrode charge plotted as a function of the homo-

charge peak magnitude (T=20 C) during the period of decay when both peaks can be 

observed. The linear dependence is indicated by the dashed line. (b) PEA signal 

measured before the application of a voltage. This plot is obtained in the same way as 

those in Figure 3. 

 

Figure 3. Sample and probe polarity reversal tests after 114 h depolarisation at T = 33 

C. (a)  Example of procedure for de-noising the data (i) smoothing by finding a 19-

point running average, (ii) finding the best fit to the DC baseline drift, (iii) removing 

the baseline drift. (b) Set of traces, 1 :- +400V pulse sample in original orientation, 2:- 

+400V pulse sample reversed, 3:- -400V pulse sample reversed, 4:- -400V pulse 

sample in original orientation, 5:- +400V pulse sample in original orientation 

 

Figure 4. The space charge density (t) of the peak next to the lower electrode plotted 

as function of log(t) with the time in seconds.  

a) data from T = 25 C (Figure 1); fitted line uses equation (25) with min and max 

given in Table 1, and N = 1.24x10
39

 m
-3

 J
-1 

b) uncalibrated PEA signal from 33 C;  fitted line from equation (25) with min and 

max given in Table 1, and N = 8.1x10
37

 (arb. units) 

c) uncalibrated PEA signal (  (t)) from T = 20 C; fitted line from equation (25) with 

min and max given in Table 1, and N = 6.65x10
37

 (arb. units) 

 

 

Figure 5. A plot of log (S(t) at T= 33 C as a function of log(t) (time in seconds), 

where S(t) (  (t)) is the uncalibrated PEA signal. The diamonds are the data points 

and the line is the best fit to equation (10) with k= 2 10
-6

 s
-1

 (equivalent to max = 

1.125 eV) and G = 1.5 10
4
 arb. units.  
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Figure 6. Plot of exp{-B‟[Ee(t)]
1/2

}[1 + B‟[Ee(t)]
1/2

] as a function of time t (seconds), 

with  z = Ee(t)]
1/2

 :  a) data from T=20 C, b) data from T=33 C. A linear relationship 

would be expected if Schottky injection is responsible for the charge decay. 

 

Figure 7. Space charge measurements at T =50 C, E =6.7 kV/mm (applied voltage  = 

2kV).  Top: Space charge distribution under voltage and immediately after voltage 

removal. Bottom: Space charge decay, dashed line t=1s, triangle t=11s, dotted line 

t=27s, squares t=200s. 
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APPENDIX 1. 
 

The derivation of equation (3) starts with the assumption that the promotion of 

charges from a given trap depth is independent of promotion from other traps. The 

time dependence of the occupancy, N(t), of the traps at a trap depth  then becomes, 

 

N(t) = Nexp{- texp(- /kT)}                                                                                     (20)    

 

and, 

 

d{N(t)]/dt = - N(t) exp(- /kT)                                                                                 (21) 

 

where N d  is the number of traps per cubic metre with an energy between  and 

+d  at t = 0. The total rate of removal of charges from traps with depths between 

max and min is therefore given by, 

 

deteedttd kTkT }exp{/)}({
max

min

//N                                                  (22) 

 

The integral over  can be solved using the substitution Y= exp{- /kT}, which gives, 

 

}]exp{})[exp{/(/)}({ minmax tYtYtkTedttd N                                           (23) 

 

where, 

              

          Ymax = exp{- min/kT)    and   Ymin = exp{- max /kT)                                     (24)   

 

Integrating equation (23) between time t and infinity gives the residual charge density, 

 

(t) = eNkT[E1( tYmin) - E1( tYmax)]                                                                        (25)  

 

where E1(x) is the exponential integral [19] defined by, 

 

x

t

dt
t

e
xE )(1                                                                                                         (26)  

 

Standard expansions [22] for E1(x)  

 

E1(x) = -ln(x) – 0.57721                         x < 1                                                           (27) 

 

E1(x)  e
-x

/x                                            x > 1                                                           (28) 

 

yield the set of equations (2) to (4).                                                                                                                                         
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APPENDIX 2. 

 

The inclusion of the space charge field into an expression for space charge decay 

starts with the field-dependent de-trapping probability, 

 

Pde-trap(E)  exp(-[ -deE]/kT)                                                                                   (29) 

 

The electric field E is that acting between the space charge peak and the electrode 

produced by the space charge itself. It can therefore be assumed to be proportional to 

the space charge density, , and at a given time t, 

 

D (t) = deE(t)                                                                                                            (30) 

 

where D is a time and space charge independent constant containing the 

proportionality factor between  and E. The field dependent term in equation (29) is 

independent of the trap depth, , and hence equation (23) becomes, 

 

 }]exp{}}[exp{/)(exp{)/(/)}({ minmax tYtYkTtDtkTedttd N               (31) 

 

Equation (31) can be integrated between time t and infinity as before, to yield 

equation (8), 

 

1 – exp(-D (t)/kT) = NDe[E1( exp(- max/kT)t)  - E1( exp(- min/kT)t)]                  (8) 

 

The value of D is not known a-priori and since equation (8) is cumbersome to work 

with in the region where D (t)/kT > 1, we have carried through a simplified 

derivation. Instead of assuming that promotion from traps of all depths occurred 

simultaneously but independently, we assume that during the space charge decay the 

traps are emptied in sequence from the shallowest to the deepest. We can now write 

(t) as in equation (9), 

 

(t) =  Ne[ max - min(t)]                                                                                            (9) 

 

and, 

          

d{ (t)}/dt = - exp{- min(t)/kT}exp{D (t)/kT} (t)                                                  (32)   

 

Substituting for min(t) from equation (9) gives, 

 

d{ (t)}/dt = - kexp{ (t)/NekT}exp{D (t)/kT} (t)                                                   (33)    

 

with, 

 

k =  exp{- max/kT}                                                                                                  (34) 

 

Integration of equation (32) gives, 

 

E1(G (0))  -    E1(G (t))  = - kt                                                                                 (35)  
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where E1(x) is the exponential integral as before and G is as given in equation (11), 

 

G = [1 + NeD]/ NekT                                                                                                (11) 

 

Use of the large x expansion for E1(x), equation (28), allows us to obtain equation 

(10) for (t) that is valid in the short time region where (t) is largest, 

 

exp(-G (t))/G (t) = A + kt                                                                                        (10) 

 

with, 

 

  A = exp(-G (0))/G (0)                                                                                            (12) 

 

APPENDIX 3. 

   

The rate of injection of neutralising charge by means of a Schottky injection current, 

equation (1) depends upon the electric field at the electrode, and is given by, 

 

dQ‟/dt =  Joexp{-  /kT)exp{B‟[Ee(t)]
3/2

 }                                                                (36) 

 

where Q‟ is the injected charge per unit area, Jo is the Schottky current density pre-

exponential factor, see equation (1), and, 

 

                        B‟ = (e
3
/4 o r)

1/2
(1/kT)                                                                     (16)  

 

The injected charge per unit area, Q‟, will reduce the integrated space charge in the 

sample. Where the space charge peak is close to the electrode and does not change its 

shape appreciably during its decay following voltage removal, as here, we may 

assume that Ee(t) is proportional to the space charge density (t) of the peak and 

hence, 

 

d{Ee(t)}/dt   d{ (t)}/dt  -dQ‟/dt                                                                           (37) 

 

Using this relationship, equation (36) becomes, 

 

 d{Ee(t)}/dt  = (Jo)‟ exp{-  /kT)exp{B‟[Ee(t)]
1/2

 } = J‟ exp{B‟[Ee(t)]
1/2

 }                 (38)  

 

where  (Jo)‟ includes the proportionality constant between Q‟ and Ee.   The integral of 

equation (38) takes the form, 

 

tJdtJtEdtEB

tE

E

t

ee

e

e

'')}({})](['exp{

)(

)0( 0

2/1
                                                (39)  

 

Converting the variable to [Ee(t)]
1/2

 allows the Left Hand Integral to be solved via 

integration by parts giving, 

 

[2/(B‟)
2
]exp{-B‟[Ee(t)]

1/2
}[1 + B‟[Ee(t)]

1/2
] = F(0) + J‟t                                           (40)  
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which can be re-arranged to give equation (14) with, 

 

F(0) = [2/(B‟)
2
]exp{-B‟[Ee(0)]

1/2
}[1 + B‟[Ee(0)]

1/2
]                                                  (15) 
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Figure 1 
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Figure 2(a) 
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Figure 2(b) 
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Figure 3(a) 
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Figure 3(b) 
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Figure 4((a) 
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Figure 4(b) 
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Figure 4(c) 
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Figure 5.  
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Figure 6(a) 
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Figure 6(b) 
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Figure 7.  
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