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Dielectric breakdown of epoxies is preceded by a light emission from the solid state 

material, so-called electroluminescence. Very little is known however on the luminescence 

properties of epoxy. The aim of this paper is to derive information that can be used as a basis to 

understand the nature of the excited states and their involvement in electrical degradation 

processes. 
 

Introduction 

In spite of their use in components for power generation, transmission and distribution, 

the degradation mechanisms of epoxies under field are not well-known. They have been 

primarily studied under divergent field situation where the generation and development of 

electrical treeing was evidenced after the formation of a void in the material [1, 2]. Little is 

known of the physical processes that lead to void formation. However, light emission has been 

reported to occur before void formation under long term stress [3], or before breakdown under 

short term stress [4]. This field-stimulated emission, called electroluminescence (EL), has been 

reported in other insulating polymers. Contrary to what is observed in semi-conducting organic 

materials [5] the emission spectrum of the EL is not identical to the photoluminescence 

spectrum, underlining that specific excited states are promoted during field application [6]. 

Analyses performed on polyolefins and polyesters have shown that the EL lies in a wavelength 

range typical of radiative relaxation occurring from the lowest excited triplet states available in 

the solid. Being triplet, these states have a long life time (ms to s) and are therefore chemically 

reactive. They can open a pathway for chemical reactions that could be linked to electrical 

ageing and dielectric breakdown. 

The present work is carried out on epoxy resin samples prepared from an Araldite base 

(CY1301) mixed with an hardener containing amine groups (HY1300). Two sources of 

excitation were used in addition to the electric field to help the interpretation. In 

photoluminescence (PL) experiment, the light is stimulated by the absorption of photon whereas 

in recombination-induced luminescence (RIL), the light is due to the radiative recombination of 

charges of opposite sign that have been brought to the sample surface. On the basis of the 

information gathered by using these two techniques, it is thought that the origin and significance 

of the EL can be approached. 

Experimental 

Whatever is the excitation source, luminescence detection was realized by using a 

photomultiplier working in photon counting mode and a monochromator coupled to a liquid 

nitrogen cooled CCD camera.  

The source of photon is a Xenon lamp of 150 W that produces a continuous spectrum in 

the range 200-1000 nm. The lamp is coupled to a double-pass irradiation monochromator (Jobin-

Yvon type H10UV with a spectral range of 250-750 nm) used to select the excitation wavelength 

with a bandwidth of 2 nm. An image of the irradiation slit is focussed onto the sample surface 

through a quartz lens. A mechanical shutter is used to cut off the irradiation beam which allows 

us to record several consecutive spectra during the phosphorescence decay of the material. 

The technique that we used to analyze recombination induced luminescence has already 

been described elsewhere [7]. Charges of both polarities are deposited on films upon contact 

with a silent discharge produced in helium at atmospheric pressure between two parallel 

electrodes. The decay of light emitted by the sample after discharge switch off is analyzed in 

both the integral and wavelength-resolved forms. At short time, luminescence excited through 



processes other than radiative recombination was recorded. The analysis of the decay kinetics of 

integral light allowed us to unambiguously determine the time range where recombination was 

the dominant excitation mechanism. The related emission spectrum was identified accordingly. 

The preparation steps of the sample for electroluminescence experiments have been 

described elsewhere [8]. Films were gold coated by cold sputtering and a ring of silicon rubber 

was deposited to prevent stray light detection due to uncontrolled field at the periphery of the 

metallized area. The sample is positioned between two cylindrical polished electrodes. The 

bottom electrode is connected to the earth. The top electrode is a ring which allows the light 

collection. Measurements were performed at room temperature under a pressure of 10
-6 

torr using 

an AC voltage excitation. 

 

Results and discussion 

The typical photoluminescence spectrum recorded at liquid nitrogen temperature 

(LNT) during the excitation is shown in fig. 1. The emission peak at ~410 nm is the fluorescence 

emission that is also detected at room temperature (RT) whereas the broad emission peaked at 

higher wavelength is interpreted as a phosphorescence component. The difference between 

spectra obtained at LNT and RT gives a rough estimation of the phosphorescence spectrum 

shape. This has been done as shown in Figure 1, and leads to a phosphorescence emission 

peaked at about 500 nm. Further confirmation of the phosphorescent nature of the emission is 

obtained by a kinetic analysis of the spectral shape carried out after switch-off of the excitation 

beam. As shown in fig. 2, the emission spectrum can be resolved in time during the natural decay 

of the phosphorescence (i.e. different spectra were recorded in a row just after excitation beam 

switch-off) whereas there is no trace of the fluorescence in agreement with its fast decay (order 

of 10
-8

 s).  
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Fig. 1 RT (dashed) and LNT (solid) 

photoluminescence emission spectra for the 

cured resin (exc=350nm). The difference 

(dotted line) represents phosphorescence. 
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Fig. 2 Phosphorescence decay of cured resin. 

Spectra recorded every 0.5 s, excitation 

wavelength at 320 nm. 
 

 

Three components have been detected at 450, 510 and 550 nm. The decay lifetimes 

estimated for these three components are 0.45, 1.2 and 1.4s, respectively. It is clearly seen that at 

least two and possibly three different chromophores are contributing to the phosphorescence 

emission owing to the different kinetics seen in the spectral shape. This is further confirmed by 

the strong variation in phosphorescence spectrum versus excting wavelength, fig.3.  

The assignment of the photoluminescence components to given chemicals is not 

straightforward. A first question is to know if the fluorescent specie could also be at the origin of 



one component of the phosphorescence. This can be checked by analyzing the excitation spectra 

recorded at 450 nm and 510 nm. Although there is a difficulty in separating these two 

components because of overlap of their phosphorescence spectra, the excitation of the 450 nm 

peak is effective in the range of excitation of the fluorescence whereas the 510 nm peak is 

excited at about 400 nm. It seems therefore that the fluorescence at 410 nm and the 

phosphorescence at 450 nm could have the same origin, whereas the 510 nm could be due to a 

phosphorescent specie that does not give a fluorescence emission. The phosphorescence of 

Bisphenol A epoxy resin has been reported in [9] with an emission at 460 nm and two excitation 

peaks at 275 nm and 350 nm. It is clear that this component of the phosphorescence corresponds 

to the 450/460 nm component detected in our study. It has been attributed to the formation of a 

triplet excimer of unspecified nature [9]. The results obtained here allow to associate 

fluorescence (410 nm) and phosphorescence (450/460 nm) to the singlet and triplet excimer of a 

chromophore that is part of the polymer chain and that was already present in the liquid resin 

before its polymerization. 

 

A typical recombination-induced luminescence spectrum is shown in fig. 3. It is clear 

that it is organized around the same components as the photo-induced phosphorescence emission 

of the resin, although their relative contribution is slightly different. Two peaks are clearly 

detected at about 470 and 540 nm. A shoulder is also seen at about 500 nm. This leads to the 

conclusion that the chromophores responsible for the phosphorescence emission play also the 

role of recombination centres. 
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Fig. 3 Emission spectrum due to charge 

recombination (RIL) compared to photo-induced 

phosphorescence excited at different wavelengths. 

300 400 500 600 700
0

20

40

60

5
7
8
 n

m

5
1
8
 n

m

4
3
7
 n

m

(2)

(1)

E
le

ct
ro

lu
m

in
es

ce
n

ce
 (

a.
u

.)

Wavelength (nm)  
Fig. 4 Electroluminescence spectra, 298 K, ac 

voltage excitation source at (1): 20 kV/mm; 

(2):35 kV/mm. 
 

 

Two different electroluminescence spectra were recorded at different levels of field, 

21 kV/mm and 35.7 kV/mm, using an integration time of 10 min. They are shown in fig. 4. The 

spectra recorded at 21 kV/mm gives one peak at 578 nm whereas the spectra recorded at 

35.7 kV/mm shows the same peak and two additional shoulders at 518 and 437 nm (see figure 

4). When comparing the spectrum due to charge recombination, common structures appear at 

435 nm and 518 nm. These components could therefore be due to the recombination of charges 

that is likely a process occurring also in electroluminescence. Charge-recombination is expected 

to occur in electroluminescence if the excitation involves impact-ionisation by hot carriers or bi-

polar injection. In both cases, thermalized carriers are generated, after the ionisation event or the 

injection, respectively. As a consequence, there is a region where carriers of opposite signs are 

being trapped. These carriers are likely to recombine, giving rise to the component of the 

luminescence that has been isolated in charge recombination-induced luminescence experiments. 



However, the peak at 595 nm has never been observed using other kinds of luminescence 

excitation. It is clearly located in the wavelength domain of phosphorescence and might be 

another phosphorescent component likely associated with the degradation of the material. 

Electroluminescence would therefore involve relaxation of excited states through irreversible 

pathway, which would link the emission and the deterioration of the resin. Further investigations 

are needed to give definitive evidence of this finding. 

 

Conclusion 

The luminescence properties of bisphenol A type epoxy resin have been investigated to 

land a support to the interpretation of the electroluminescence which is thought to be linked with 

electrical ageing and breakdown mechanism. Photo- and recombination-induced luminescence 

have been used to derive the emission characteristics of chromophores and recombination 

centres. Although the picture is far from being complete, we have shown that the recombination 

centres in the cured resin are part ot the chain of the base resin itself. The emission spectrum 

recorded during charge recombination is in the phosphorescence region as currently observed in 

insulating polymers. The emission spectrum of electroluminescence is also located in the 

phosphorescence region, but its form cannot be accounted for only by the recombination 

spectrum. The other component of the EL emission could be related with molecular degradation 

of the resin. Although further investigation is needed to understand more completely the 

luminescence properties of the resin in relation with the ageing process, this work lands a 

support to the comprehension of EL in this material. 
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