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Workshop on Integrable Theories, Solitons and Duality

PROCEEDINGS

Conductance from Non-perturbative Methods II

Olalla A. Castro-Alvaredo∗ and Andreas Fring

Institut für Theoretische Physik, Freie Universität Berlin,

Arnimallee 14, D-14195 Berlin, Germany

E-mail: Olalla@physik.fu-berlin.de, Fring@physik.fu-berlin.de

Abstract: This talk provides a natural continuation of the talk presented by Andreas

Fring in this conference. Part I was focused on explaining how the DC conductance for

a free Fermion theory in the presence of different kinds of defects can be computed by

evaluating the Kubo formula. In this talk I will focus on an alternative method for the

computation of the same quantity, that is the evaluation of Landauer formula. Once

again, the integrability of the theories under consideration will be exploited, since a ther-

modynamic Bethe ansatz analysis provides all the input needed in that case, apart from

the corresponding reflection and transmition amplitudes of the defect. The basic conclu-

sion of our analysis will be the perfect agreement between the two different theoretical

descriptions mentioned.

The results I will talk about are contained on a series of papers [1, 2, 3, 4, 5, 6], with

emphasis on the first two, resulting mainly from a collaboration with Andreas Fring, who

presented the first part of the work.

1. Thermodynamic Bethe ansatz for impurity systems

As mentioned in the previous talk, for the evaluation of the Landauer formula [7] one needs

to know the density distribution functions involved. I will now present a general method

which allows to compute such quantities non-perturbatively, i.e. the thermodynamic Bethe

ansatz (TBA) approach, which we generalized in [1] to incorporate the non-trivial effects

arising due to the presence of impurities. Besides the aim we have in mind, in general the

TBA is a powerful tool for the computation of thermodynamic quantities in 1+1 dimen-

sional integrable systems. Originally formulated by Yang and Yang [8] in the context of the

non-relativistic Bose gas, it was thereafter generalized by Zamolodchikov [9] to relativis-

tic quantum field theories which interact by means of factorizable scattering matrices. A

TBA-analysis serves to check the consistency of a certain S-matrix proposal, since it allows

∗Speaker.
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for extracting some distinct structural quantities such as the Virasoro central charge of

the underlying conformal field theory. The original bulk formulation has been accommo-

dated to a situation which includes a purely transmitting defect in [10], whereas for purely

reflecting impurities (that is, boundaries) the TBA equations were newly derived in [11].

In this section we want to propose
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Figure 1: The Bethe wave function for a defect system.

a new formulation which, for the

first time, will hold for a situation

when non-vanishing reflection and

transmission occur simultaneously.

Let us consider first of all the stan-

dard starting point in the formu-

lation of the Bethe ansatz equa-

tions: We consider a 1+1 dimen-

sional system with compactified space

dimension L and N particles dis-

tributed as shown in figure 1. As

standard in this context, we rep-

resent those particles by means of

the Zamolod- chikov-Faddeev (ZF)

operators [12] Zi(θ). In addition,

in order to incorporate the pres-

ence of boundaries [13, 14, 15] or defects [16, 5] in the system, the ZF-algebra has to be

extended with new generators Zα. We indicate particle types by Latin and degrees of free-

dom of the impurity by Greek letters. The “braiding” (exchange) relations of annihilation

operators Zi(θ) of a particle of type i moving with rapidity θ and defect operators Zα in

the state α can be written as

Zi(θ1)Zj(θ2) = Skl
ij (θ1 − θ2)Zk(θ2)Zl(θ1), (1.1)

Zi(θ1)Z
†
j (θ2) = Skl

ij (θ1 − θ2)Z
†
k(θ2)Zl(θ1) + 2πδ(θ1 − θ2)δij , (1.2)

Zi(θ)Zα = Rjβ
iα (θ)Zj(−θ)Zβ + T jβ

iα (θ)ZβZj(θ) , (1.3)

ZαZi(θ) = R̃jβ
iα (−θ)ZβZj(−θ) + T̃ jβ

iα (−θ)Zj(θ)Zβ. (1.4)

The bulk scattering matrix is indicated by S, and the left/right reflection and transmission

amplitudes through the defect are denoted by R/R̃ and T/T̃ , respectively as seen in part

I. We employed Einstein’s sum convention, that is we assume sums over doubly occurring

indices. We suppress the explicit mentioning of the dependence of Zα on the position

in space and assume for the time being that it is included in α. For the treatment of a

single defect this is not relevant, but it will become once more important when we consider

multiple defects. The same relations hold when we replace the annihilation operators by

the creation operators Z†
i (θ) with R/R̃, T/T̃ and S replaced by their complex conjugates.

The algebra (1.3)-(1.4) constitutes the starting point for the derivation of the relations

(2.1; part I) and (2.2; part I) which result just from applying it twice. As usual, we obtain

the Bethe ansatz equations by dragging a particle i along the world line. We introduce for

– 2 –
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convenience the following shorthand notation for the product of various particle operators

Zi(θ) and a defect operator Zα

Zµ1...µN

k,α := Zµ1
(θµ1

) . . . Zµk
(θµk

)ZαZµk+1
(θµk+1) . . . ZµN

(θµN
). (1.5)

Then we compute the braiding of a particle operator of type i and the previous product

Zµ1...µN

k,α by using the algebra (1.1)-(1.4) and assuming the S-matrix of the bulk theory to

be diagonal

Zi(θi)Z
µ1...µN

k,α = Zµ1...µN

k,α Zi(θi)F̃iα − Zµ1...µN

k,α Zi(−θi)G̃iα , (1.6)

Zµ1...µN

k,α Zi(θi) = Zi(θi)Z
µ1...µN

k,α Fiα − Zi(−θi)Z
µ1...µN

k,α Giα . (1.7)

We abbreviated here

F̃α
i =

1

T̃α
i (−θi)

N
∏

l=1

Siµl
(θiµl

) , G̃α
i =

R̃α
i (−θi)

T̃α
i (−θi)

k
∏

l=1

Siµl
(θiµl

)

N
∏

l=k+1

Siµl
(−θ̂iµl

) , (1.8)

Fα
i =

1

Tα
i (θi)

N
∏

l=1

Sµli(θµli) , Gα
i =

Rα
i (θi)

Tα
i (θi)

k
∏

l=1

Sµli(θ̂µli)
N
∏

l=k+1

Sµli(θµli) . (1.9)

Being on a circle of length L, we can make the usual assumption on the Bethe wavefunction

(see e.g. [9]) which is captured in the requirement

Zi(θ)Z
µ1...µN

k,α = Zµ1...µN

k,α Zi(θ) exp(−iLmi sinh θ) . (1.10)

Using this monodromy property together with the braiding relations (1.6), (1.7) and the

unitarity relations for R and T (see section 2 of part I), we obtain the following Bethe

ansatz equations

N
∏

l=1

Sli(θ̂li)

Sli(θli)

(

N
∏

l=1

Sli(θli) −
eiLmi sinh θi

T̃α
i (−θi)

)

=
Tα

i (−θi)

T̃α
i (−θi)

(

e−iLmi sinh θi

Tα
i (θi)

−
N
∏

l=1

Sil(θil)

)

. (1.11)

We restrict it here to the diagonal case, i.e. Skl
ij (θ) = Sij(θ)δliδkj , R

jβ
iα (θ) = Rα

i (θ)δαβδij ,

T jβ
iα (θ) = Tα

i (θ)δαβδij and similarly for the tilde amplitudes. We can therefore use the

result mentioned in part I, namely that for R and T to be simultaneously non-vanishing

the only possible bulk scattering matrices are S = ±1, such that the relation (1.11) may

be re-written as

1 = eiLmi sinh θD±
iα(θ)

∏N

l=1
Sil (1.12)

where

D±
iα(θ) =

T̃α
i (θ) + Tα

i (θ)
∏N

l=1 S
2
il

2
± 1

2





(

T̃α
i (θ) + Tα

i (θ)

N
∏

l=1

S2
il

)2

− 4Tα
i (θ)

∏N
l=1 S

2
il

Tα
i (−θ)





1

2

.

(1.13)

For consistency reasons it is instructive to consider the limit when the reflection amplitude

tends to zero. In that case we can employ the unitarity relations for the reflection and

– 3 –
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transmission amplitudes (see section 2 of part I) and may take the square root in (1.13),

such that we obtain from (1.12) the two equations

R, R̃→ 0 : 1 = eiLmi sinh θT̃α
i (θ)

N
∏

l=1

Sil , 1 = e−iLmi sinh θTα
i (θ)

N
∏

l=1

Sli . (1.14)

This means we recover the Bethe ansatz equations for a purely transmitting defect, which

were originally proposed by Martins in [10]. The two signs in (1.13) capture the breaking

of parity invariance in the limiting case, i.e. the two equations in (1.14) correspond to

taking the particle either clockwise or anti-clockwise around the world line as formulated

for the parity breaking case for the first time in [17] and explicitly indicated in figure 1. We

do not expect to recover from here the equations for a purely reflecting boundary which

were suggested in [11], since the equations (1.6) and (1.7) do not make sense in the limit

T, T̃ → 0. For
∏N

l=1 S
2
il = 1, i.e. the free Boson and Fermion, we can exploit the fact

that (1.12) with (1.13) look formally precisely like the Bethe ansatz equations for a purely

transmitting defect. If we want to exploit this analogy we should of course be concerned

about the question whetherD±
jα(θ) is a meromorphic function. Assuming parity invariance,

we may take the square root

D±
jα(θ) = Tα

j (θ) ±Rα
j (θ) for R = R̃, T = T̃ . (1.15)

The matrix D±
jα(θ) has now the usual properties, namely it is unitarity in the sense that

D±
jα(θ)D±

jα(−θ) = 1. It follows further from (1.15) and from the crossing relations for R

and T that the hermiticity relation D±
jα(θ) = D±

jα(−θ)∗ and the crossing relations D±
̄α(θ) =

D∓
jα(iπ − θ) and D±

̄α(θ) = D±
jα(iπ − θ) hold for the free Fermion and Bosons, respectively.

Let us now carry out the thermodynamic limit in the usual way, namely by increasing

the particle number N and the system size L in such a way that their mutual ratio N/L

remains finite. The amount of defects will be kept constant in this limit, such that there

is no contribution to the TBA-equations from the defect in that situation. The same

behaviour was pointed out in [10] for the purely transmitting case. Intuitively the latter

result was to be expected, since making both the amount of particles and the size of the

system infinite while keeping the amount of defects fixed will lead to a situation in which

the effect of the presence of a finite number of defects is negligeable. Hence, this means

that essentially we can employ the usual bulk TBA analysis when the considerations are

carried out in the thermodynamic limit.

Let us therefore recall the main equations of the TBA analysis. For more details on

the derivation see [9] and in particular for the introduction of the chemical potential see

[18]. The main input into the entire analysis is the dynamical interaction, which enters

via the logarithmic derivative of the scattering matrix ϕij(θ) = −id lnSij(θ)/dθ and the

assumption on the statistical interaction, which we take to be Fermionic. As usual [9, 18],

we take the logarithmic derivative of the Bethe ansatz equation (1.12) and relate the density

of states ρi(θ, r) for particles of type i as a function of the inverse temperature r = 1/T to

the density of occupied states ρr
i (θ, r)

ρi(θ, r) =
mi

2π
cosh θ +

∑

j
[ϕij ∗ ρr

i ](θ) . (1.16)

– 4 –
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By (f ∗ g) (θ) := 1/(2π)
∫

dθ′f(θ − θ′)g(θ′) we denote as usual the convolution of two

functions. The mutual ratio of the densities serves as the definition of the so-called pseudo-

energies εi(θ, r)

ρr
i (θ, r)

ρi(θ, r)
=

e−εi(θ,r)

1 + e−εi(θ,r)
, (1.17)

which have to be positive and real. Notice that, from the introduction in part I, the

quantities ρr
i (θ, r) at the constrictions of the wire are the basic input we need for the

evaluation of Landauer formula, apart from the reflection and transmission amplitudes.

At thermodynamic equilibrium one obtains then the TBA-equations, which read in these

variables and in the presence of a chemical potential µi

rmi cosh θ = εi(θ, r, µi) + rµi +
∑

j
[ϕij ∗ ln(1 + e−εj )](θ) , (1.18)

where r = m/T , ml → ml/m, µi → µi/m, with m being the mass of the lightest particle in

the model. It is important to note that µi is restricted to be smaller than 1. This follows

immediately from (1.18) by recalling that εi ≥ 0 and that for r large εi(θ, r, µi) tends to

infinity. As pointed out already in [9] (here just with the small modification of a chemical

potential), the comparison between (1.18) and (1.16) leads to the useful relation

ρi(θ, r, µi) =
1

2π

(

dεi(θ, r, µi)

dr
+ µi

)

. (1.19)

The main task is therefore first to solve (1.18) for the pseudo-energies from which then all

densities can be reconstructed.

1.1 Thermodynamic quantities per unit length

Treating the equations (1.12) and (1.13) in the mentioned analogy with the purely trans-

mitting case we can also construct various thermodynamic quantities. It should be stressed

that these quantities are computed per unit length. Similarly as the expression found in

[10] for a purely transmitting defect the free energy is

F (r) = − 1

πr

∑

l,α

m̂l

∫ ∞

0
dθ [cosh θ +m−1ϕlα(θ)] ln[1 + exp(−rm cosh θ)] . (1.20)

It is made up of two parts, one coming from the bulk and one including the data of the

defect in form of ϕlα(θ) = −id lnDlα(θ)/dθ. From equation (1.20) we also see that when

taking the mass scale to be large in comparison to the dominating scale in the defect, the

latter contribution to the scaling function becomes negligible with regard to the bulk and

vice versa. However, in this talk we shall concentrate on the thermodynamic limit.

2. Conductance through an impurity

The most intuitive way to compute the conductance is via Landauer-Büttinger transport

theory [7]. Let us consider a set up as depicted in figure 2, that is we place a defect in the

middle of a rigid bulk wire, where the two halves might be at different temperatures. The

– 5 –
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direct current I through such a quantum wire can be computed simply by determining the

difference between the static charge distributions at the right and left constriction of the

wire, i.e. I = Qr −Ql. This is based on the assumption [19, 20], that Q(t) ∼ (Qr −Ql)t ∼
(ρr − ρl)t, where the ρs are the corresponding density distribution functions. Placing an

Figure 2: A conductance measurement. Part (a) represents the initial condition with no current

flowing, i.e., I=0 and part (b), I 6= 0. The defect is placed in the middle of the wire and the left

and right half are assumed to be at temperatures T1 and T2, respectively.

impurity in the middle of the wire, we have to quantify the overall balance of particles

of type i and anti-particles ı̄ carrying opposite charges qi = −qı̄ at the end of the wire

at different potentials. This information is of course encoded in the density distribution

function ρr
i (θ, T, µi). In the described set up half of the particles of one type are already at

the same potential at one of the ends of the wire and the probability for them to reach the

other is determined by the transmission and reflection amplitudes through the impurity.

We assume that there is no effect coming from the constrictions of the wire, i.e. they are

purely transmitting surfaces with T = T̃ = 1. One could, however, also consider a situation

in which those constrictions act as boundaries, namely purely reflecting surfaces. The

situation could be described with the same transport theory picture, see e.g. [19, 21, 22],

but then the conductance can only be non-vanishing if the reflection amplitudes in the

constrictions are non-diagonal in the particle degrees of freedom, such as for instance

for sine-Gordon [23], that is in general affine Toda field theories with purely imaginary

coupling constant or, in the massless limit, folded purely reflecting (transmitting) diagonal

bulk theories.

According to the Landauer transport theory the direct current (DC) along the wire is

given by

I~α =
∑

i

I~α
i (r, µl

i, µ
r
i ) =

∑

i

qi
2

∞
∫

−∞

dθ
[

ρr
i (θ, r, µ

r
i )|T ~α

i (θ) |2 − ρr
i (θ, r, µ

l
i)|T̃ ~α

i (θ) |2
]

, (2.1)

– 6 –
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= IB −
∑

i

qi
2

∞
∫

−∞

dθ
[

ρr
i (θ, r, µ

r
i )|R~α

i (θ) |2 − ρr
i (θ, r, µ

l
i)|R̃~α

i (θ) |2
]

, (2.2)

where we assume here T1 = T2. The relation (2.2) is obtained from (2.1) simply by making

use of the fact that |R|2 + |T |2 = 1 (see section 2 in part I). Equation (2.2) has the virtue

that it extracts explicitly the bulk contribution to the current which we refer to as IB .

There are some obvious limits, namely a transparent and an impenetrable defect

lim
|T ~α|→1

I~α = IB and lim
|T ~α|→0

I~α = 0 , (2.3)

respectively. A short comment is needed on the validity of (2.1). Apparently it suggests

that when the parity between left and right scattering is broken, there is the possibility of

a net current even when an external source is absent. In this picture we have of course

not taken into account that charged particles moving through the defect will alter the

potential, such that we did in fact not describe a perpetuum mobile. Thus the limitation

of our analysis is that µl
i − µr

i has to be much larger than the change in the potential

induced by the moving particles.

Finally we want to compute the conductance from the DC current, which by definition

is obtained from

G~α(r) =
∑

i
G~α

i (r) =
∑

i
lim

(µl
i−µr

i )→0
I~α
i (r, µl

i, µ
r
i ) /(µ

l
i − µr

i ) (2.4)

and is of course a property of the material itself and a function of the temperature. In

general the expressions in (2.1) tend to zero for vanishing chemical potential difference such

that the limit in (2.4) is non-trivial.

Thus from the knowledge of the transmission matrix and the density distribution

function we can compute the conductance.

2.1 The high temperature regime

Since the physical quantities require a solution of the TBA-equations, which up to now, due

to their non-linear nature, can only be solved numerically, we have to resort in general to

a numerical analysis to obtain the conductance for some concrete theories. However, there

exist various approximations for different special situations, such as the high temperature

regime. For large rapidities and small r, it is known [9] (here we only need the small

modification of the introduction of a chemical potential µi) that the density of states can

be approximated by

ρi(θ, r, µi) ∼
mi

4π
e|θ| ∼ 1

2πr
ǫ(θ)

dεi(θ, r, µi)

dθ
, (2.5)

where ǫ(θ) = Θ(θ) − Θ(−θ) is the step function, i.e. ǫ(θ) = 1 for θ > 0 and ǫ(θ) = −1

for θ < 0. In equation (1.17), we assume that in the large rapidity regime ρr
i (θ, r, µi) is

dominated by (2.5) and in the small rapidity regime by the Fermi distribution function.

Therefore

ρr
i (θ, r, µi) ∼

1

2πr
ǫ(θ)

d

dθ
ln [1 + exp(−εi(θ, r, µi))] . (2.6)

– 7 –
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Using this expression in equation (2.1), we approximate the direct current in the ultraviolet

by

lim
r→0

I~α
i (r, µi) ∼

qi
4πr

∞
∫

−∞

dθ ln

[

1 + exp(−εi(θ, r, µl
i))

1 + exp(−εi(θ, r, µr
i ))

]

d
[

ǫ(θ) |T ~α
i (θ)|2

]

dθ
, (2.7)

after a partial integration. For simplicity we also assumed here parity invariance, that is

|Tα
i (θ)| = |T̃α

i (θ)|. The derivation of the analogue to (2.7) for the situation when parity

is broken is of course similar. Taking now the potentials at the end of the wire to be

µr
i = −µl

i = V/2, the conductance reads in this approximation

lim
r→0

G~α
i (r) ∼ qi

2πr

∞
∫

−∞

dθ
1

1 + exp[εi(θ, r, 0)]

dεi(θ, r, V/2)

dV

∣

∣

∣

∣

V =0

d
[

ǫ(θ) |T ~α
i (θ)|2

]

dθ
. (2.8)

In order to evaluate these expressions further, we need to know explicitly the precise form

of the transmission matrix, i.e. the concrete form of the defect. An interesting situation

occurs when the defect is transparent or rapidity independent, that is |T ~α
i (θ)| → |T ~α

i |, in

which case we can pursue the analysis further. Noting that dǫ(θ)/dθ = 2δ(θ), we obtain

lim
r→0

G~α
i (r) ∼ qi

πr

|T ~α
i |2

1 + exp εi(0, r, 0)

dεi(0, r, V/2)

dV

∣

∣

∣

∣

V =0

. (2.9)

The derivative dεi(0, r, V/2)/dV can be obtained by solving recursively

dεi(0, r, V/2)

dV
= −r

2
−
∑

j

Nij
1

1 + exp εj(0, r, V/2)]

dεj(0, r, V/2)

dV
, (2.10)

which results form a computation similar to a standard one in this context [9] leading to

the so-called constant TBA-equations. Here only the asymptotic phases of the scattering

matrix enter via Nij = limθ→∞[ln[Sij(−θ)/Sij(θ)]]/2πi. The values of εi(0, r, 0) needed

in (2.9) can be obtained for small r in the usual way from the standard constant TBA-

equations.

2.2 Free Fermion with defects

Let us exemplify the general formulae once more with the free Fermion. First of all we note

that in this case in the TBA-equations (1.18) the kernel ϕij is vanishing and the equation

is simply solved by

εi(θ, r, µi) = rmi cosh θ − rµi . (2.11)

Therefore, we have explicit functions for the densities with (1.19) and (1.17)

ρi (θ, r, µi) =
1

2π
mi cosh θ and ρr

i (θ, r, µi) =
mi cosh θ/2π

1 + exp(rmi cosh θ − rµi)
. (2.12)

According to (2.1) the direct current reads

I~α(r, V ) =
qi
2

∞
∫

−∞

dθ
[

ρr
ı̄ (θ, r, V/2) |T ~α

ı̄ (θ) |2 − ρr
i (θ, r,−V/2) |T ~α

i (θ) |2

−ρr
ı̄ (θ, r,−V/2) |T̃ ~α

ı̄ (θ) |2 + ρr
i (θ, r, V/2) |T̃ ~α

i (θ) |2
]

. (2.13)
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Using atomic units me = e = h = mi = qi = 1, we obtain explicitly with (2.12)

I~α(r, V ) =
1

π

∞
∫

0

dθ
cosh θ sinh(rV/2) |T ~α (θ) |2
cosh(r cosh θ) + cosh(rV/2)

, (2.14)

for |Tα
ı̄ (θ) | = |T ~α

i (θ) | = |T̃ ~α
ı̄ (θ) | = |T̃α

i (θ) | = |T ~α (θ) | . Then by (2.4) the conductance

results to

G~α(r) = rm
e2

h

∞
∫

0

dθ
cosh θ

∣

∣T ~α (θ)
∣

∣

2

1 + cosh(rm cosh θ)
(2.15)

in this case. We have re-introduced dimensional quantities instead of atomic units to be

able to match with some standard results from the literature. The most characteristic

features can actually be captured when we carry out the massless limit as indicated in

section 2.3.2, which can be done even analytically. Substituting t = eθ, we obtain

lim
m→0

G~α(r) ∼ e2

h

∞
∫

0

dt
|T ~α

L/R(t y/r)|2

1 + cosh(t)
=
e2

h

{

|T ~α
L/R(t y/r)|2 for y ≫ r

|T ~α
L/R(y/r = 0)|2 for y ≪ r

. (2.16)

We have identified here two distinct regions. When y ≪ r we can replace the left/right

transmission amplitudes by their values at y/r = 0. When y ≫ r the transmission ampli-

tudes enter the expression as a strongly oscillatory function in which y/r plays the role of

the frequency. It is then a good approximation to replace this function by its mean value

as indicated by the overbar. It is straightforward to extend the expression (2.16) to the

case when the assumption on Tα in (2.14) is relaxed and to the case with different values

of y. To proceed further we need to specify the defect.

2.2.1 Transparent defects, |T ~α| = 1

Let us first consider the easiest example, which supports the general working of the method.

When the defect is transparent, i.e., |T ~α| = 1, we can compute the expression for the

conductance (2.15) directly in the large temperature limit and obtain the well known

behaviour [24]

lim
r→0,|T ~α|→1

G~α(r) ∼ e2

h
(1 − rm

2
) . (2.17)

Alternatively, we obtain the expression (2.17) also from equation (2.9) and (2.11). In the

massless limit of (2.16) we obtain e2/h which coincides with the result in [19]. However, we

should stress that we consider here purely massive cases and the massless limit only serves

as a benchmark. Note that a transparent defect in this context does not necessarily mean

the absence of the defect, since the transmission amplitude could be a non-trivial phase.

2.2.2 The energy operator defect Dα(ψ̄, ψ) = gψ̄ψ

For this defect the computation of the conductance according to (2.15) is more involved.

The results of our numerical analysis of the expression (2.15) are depicted in figure 3.

We observe several distinct features. First of all it is naturally to be expected that when

we increase the number of defects the resistance will grow. This is confirmed, as for fixed

– 9 –
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Figure 3: Conductance G(r) for the complex free Fermion with the energy operator defects as a

function of the inverse temperature r, for fixed effective coupling constant B and (a) for varying

amounts of defects ℓ = 0, 1, 2, 4. (b) for ℓ = 2 for varying distances y.

temperature and increasing number of defects, the conductance decreases. Second we see

several well extended plateaux. They can be reproduced with the analytical expressions

obtained in the massless limit (2.16). To be able to compare with (2.15) we re-introduce

atomic units for convenience, i.e. e2/h→ 1/2π. For a single defect there is only one plateau

and from (2.16) and the explicit expression for Tα(θ) given in part I

Gα(r) ∼ cos2B

2π
. (2.18)

For B = 0.5 the value 0.1226 is well reproduced in figure 3(a). The lower lying plateaux

correspond to the region when y ≪ r. In that case we obtain from (2.16) together with the

expressions for the reflection and transmission amplitudes of the double and four defect

systems derived in part I

Gα1α2(r) ∼ 1

2π

(

cos2B

1 + sin2B

)2

for y ≪ r, (2.19)

Gα1α2α3α4(r) ∼ 1

2π

(

cos4B

cos4B − 2(1 + sin2B)2

)2

for y ≪ r. (2.20)

For B = 0.5 the values 0.0624 and 0.0095 are well reproduced in figure 3(a) for ℓ = 2 and

ℓ = 4, respectively. The plateaux extending to the ultraviolet regime result from (2.16) and

by taking mean values of the expressions for the reflection and transmission amplitudes of

the double and four defect systems given in part I

Gα1α2(r) ∼ 2

π

1 + sin4B

(cos2(2B) − 3)2
, for y ≫ r , (2.21)

Gα1α2α3α4(r) ∼ 1

4π
+

cos8B

4π[cos4B − 2(1 + sin2B)2]2
, for y ≫ r. (2.22)

Also in this case the values for B = 0.5, i.e., 0.110784 and 0.084311 for ℓ = 2 and ℓ = 4,

respectively, match very well with the numerical analysis. Finally we have to explain the
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reason for the increase from one to the next plateaux and why the curves are shifted

precisely in the way as indicated in figure 3(b) when we change the distance between the

defects. This phenomenon is attributed to resonances, namely the existence of very sharp

picks in the probability of transmission for two or more defects (see figure 1 in part I).

If we now compare the expressions (2.18)-(2.22) with equations (3.34; part I)-(3.42;

part I), we find complete agreement. This observation constitutes the central result of this

work. We showed for a concrete integrable theory that the conductance computed by means

of the newly formulated Kubo [1, 25] formula incorporating the presence of defects, and by

means of Landauer [7] formula are in perfect agreement. More concrete examples of this

agreement are provided in [1].

2.2.3 The SU(3)2 homogeneous sine-Gordon model, unstable particles

The SU(3)2 homogeneous sine-Gordon (HSG) model is the simplest of its kind and contains

only two self-conjugate solitons, which we denote by “+”, “−”, and one unstable particle,

which we call c̃. The corresponding scattering matrix was found [27] to be

S±± = −1, S±∓(θ) = ± tanh
1

2

(

θ ± σ − iπ

2

)

, (2.23)

which means the resonance pole associated to the formation c̃ is situated at θR = ∓σ−iπ/2,
σ being a free parameter. Stable bound states may not be formed. Since only for S = ±1

simultaneous reflection and transmission can occur [5], the SU(3)2-HSG model only admits

the presence of purely reflecting or transmitting defects. For the purely reflecting case,

the expression (2.1) vanishes so that the only non-trivial situation we can consider is a

transparent defect, i.e. |T | = 1. The results for the conductance after solving numerically

the TBA equations (1.16) and (1.18) are depicted in figure 4. When solving (1.16) and

(1.18) we have taken µR = −µL = 0.25. However, according to the definition (2.4) we should

really consider the limit (µR − µL) → 0. The reason why we instead take µR −µL = 0.5 is

that for this model we can of course not solve the TBA-equations analytically, as for the

free Fermion. On the contrary, the numerics become fairly involved and they do not allow

for considering the extreme limit (µR − µL) → 0. However, we convinced ourselves that

the results depicted in figure 4 reproduce indeed the correct behaviour of the conductance,

since computing G(r) in the deep ultraviolet limit for different values of µR − µL leads

always to the same plateau structure. We observe a relatively sharp increase in G for an

energy scale 2 log r/2 ∼ −σ which corresponds to the onset of the unstable particle. In

other words, only when a certain energy scale necessary for the excitation of the unstable

particle is reached, the latter is formed and participates in the conducting process. All this

information is encoded in the density ρr
i (θ, r, µi). Computing now εi(θ, 0, 0) in a standard

TBA fashion we predict the plateaux from (2.9) analytically at 1/2π and 2(1 +
√

5)/(5 +√
5)π. The last plateau corresponds to the deep ultraviolet limit, whereas the plateau at

1/2π coincides with the value (2.17) for a free Fermion theory when taking e/h = 1/2π. The

reason is that the second plateau in figure 5 develops in the region when σ ≫ −2 log r/2,

that is σ very large. In that limit we have limσ→∞ S±∓(θ) = 1, such that the model

becomes a free Fermion theory.

– 11 –
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2.2.4 Resonances versus unstable

Figure 4: Conductance for the SU(3)2-HSG-model.

particles

In the light of the results of subsec-

tions 2.2.2 and 2.2.3 we can draw the

conclusion that resonances in a dou-

ble defect system and the presence of

unstable particles may be described

similarly [4]. Comparing figures 3(b)

and 4, it is clear that the plateau struc-

tures encountered do not differ much

from each other. In particular, it seems

that the parameter y in the double de-

fect system and the resonance param-

eter σ in the SU(3)2-HSG model play

similar roles. Let us investigate more

precisely these similarities, which from an intuitive point of view appear rather natural.

In the context of theories possessing unstable particle in their spectra, a very clear

picture which explains the relatively sharp onset of the conductance with increasing tem-

perature can be provided. The temperature at which this onset occurs, say TC can be

related directly to the energy scale at which the unstable particle is formed, since then it

starts to participate in the conducting process. The Breit-Wigner formula [26] provides in

this case the expressions for the mass Mc̃ and the decay width Γc̃ of the unstable particle

c̃. Supposing that the particle c̃ is formed in the scattering process between particles of

types i and j of masses mi,mj , this is reflected by a pole in Sij(θ) at θR = σ− iσ̄. Setting

σ̄ = π/2, as corresponds to the model at hand, the Breit-Wigner formula for large values

of the resonance parameter σ gives

Mc̃ ≈
1√
2

√
mimj exp |σ|/2 and Γc̃ ≈

√

2mimj exp |σ|/2 . (2.24)

Since a renormalization group flow is provided by mapping M → rM , one observes that

the quantity Mc̃(r, σ) = rM = reσ/2 should remain invariant under the renormalization

group flow. That means that if r1 is the onset energy for the unstable particle c̃ for σ = σ1

and r2 is the onset energy for σ = σ2, the conductance must satisfy the following scaling

law

G(r1, σ1) = G(r2, σ2) for r1e
σ1/2 = r2e

σ2/2. (2.25)

This means we can control the position of the onset in the conductance by Mc̃(r, σ).

Analyzing now the scaling behaviour of the conductance for the double defect system

studied in subsection 2.2.2 we find

G(r1, y1) = G(r2, y2) for
r1
y1

=
r2
y2
, (2.26)

Then the comparison with (2.25) suggests that we can formally relate the distance between

the two defects to the resonance parameter as σ = 2 ln(const/y). However, despite the fact
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that the net result with regard to the conductance is the same, the origin of the onset is

different. Whereas for the HSG-model it resulted from a change in the density distribution

function ρr
i (θ, r, µi) it is now triggered by the structure of |Tα (θ)| . Since for the free

Fermion the function ρr
i keeps its overall shape and just translates as the temperature is

changed, the onset of the conductance occurs when the maxima of |Tα (θ)| are reached.

By analyzing the concrete expression of Tα (θ) for the energy operator defect (see part I)

it is easy to verify that for a double defect

Tα1α2(θ = ln

[

(2n+ 1)π

y

]

) ≈ 1 for n ∈ Z. (2.27)

Drawing an analogy to the scattering matrix of the HSG-model the values of θ for which

Tα1α2(θ) is maximal play the same role as the value θR = σ − iπ/2 corresponding to

the resonance pole of the S-matrix. In that sense we can make the identification σn =

ln [(2n+ 1)π/y] . There are however some differences between both systems, since in the

case of the SU(3)2-HSG model the onset of the conductance is due to a single unstable

particle, whereas for the double defect system the same effect can be attributed to several

maxima of the transmission probability. The other important difference is that y is now a

measurable quantity, so that the “mass” of the resonances can be experimentally accessible.

2.2.5 Multiple plateaux

Up to now, we have observed that we always obtain essentially two plateaux in the con-

ductance, no matter how many (≥ 2) and what type of defects we implement. The natural

question arising at this point is whether

Figure 5: Conductance G(r2) for the complex free

Fermion with the energy operator defects as a function

of the inverse temperature r2, for fixed effective cou-

pling constant B = 0.5 and varying temperature ratios

in the two halves of the wire.

it is possible to have a set up which

leads to a more involved plateaux struc-

ture. It is clear that if we had many

defects in a row separated far enough

from each other such that the relax-

ation time of the passing particles is

so large that they could be treated

as single rather than multiple defects,

then any desired type of multiple plateau

structure could be obtained. In this

case the conductance is simply the sum

of the expressions one has for each de-

fect independently. Recalling the ori-

gin of the different plateaux, there is

another slightly less obvious option.

The density distribution function ρr

is a peaked function of the rapidity

and if the resonances in Tα (θ) would be separated far enough, such that they are resolved

by ρr, we would also get a multiple plateaux pattern. However, tuning the distance between

the defects or the coupling constant will merely translate the position of the resonances in

– 13 –
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the rapidity variable or change their amplitudes, respectively (see section 2, part I). There-

fore the last option left is to change the ρrs, which is possible by varying the temperature.

Choosing now a configuration as in figure 2 with different temperatures T1 and T2, one

can “create” a second plateau at half the height of the original one. The reason for this is

simply that the cooled half of the wire will cease to contribute to the conductance as can be

directly deduced from (2.15). We depict the results of our computations in figure 5. From

this it also obvious that if we only cool the fraction x of the wire, the lowest plateau will

be positioned at the height x times the height of the upper plateau. Thus, by combining

these different configurations, i.e., different temperatures or defects, we could produce any

desired plateau structure.

3. Conclusions and open problems

In this section I will present the main conclusions of my talk and also of part I, since the

main aim of this work was actually to compare the two theoretical descriptions presented

in the two parts. In our work we have exploited the special features of 1+1 dimensional

integrable quantum field theories in order to compute the DC conductance in an impurity

system. For this purpose several non-perturbative techniques have been used. As the

main tools we employed the thermodynamic Bethe ansatz in a Landauer transport theory

computation and the form factor expansion in the Kubo formula.

The comparison between the Kubo formula (1.1; part I) and the Landauer formula (2.1)

yields in particular an identical plateau structure for the DC conductance in the ultraviolet

limit.

We have explained to what extend integrability can be exploited in order to determine

the reflection and transmission amplitudes through a defect. Unfortunately, for the most

interesting situation in this context, namely when R/R̃ and T/T̃ are simultaneously non-

vanishing, the Yang-Baxter bootstrap equations narrow down the possible bulk theories

to those which possess rapidity independent scattering matrices [16, 5]. By means of a

relativistic potential scattering theory we computed for several types of defects the R/R̃s

and T/T̃ s, thus enlarging the set of examples available at present. We confirm that for real

potentials parity is preserved, but otherwise essentially all possible combinations of parity

breaking can occur. From the knowledge of the single defect amplitudes the multiple defect

amplitudes, which exhibit the most interesting physical behaviours, can be computed in a

standard fashion [28, 29].

We have newly proposed a Kubo formula [25] which accommodates the situation when

defects are present (1.1; part I). We evaluated the current-current correlation functions

occurring in there by means of a non-perturbative method based on integrability, namely

the bootstrap form factor approach [30, 31]. We provide closed formulae which solve

explicitly the defect recursive equations involving any arbitrary number of particles. We

predict the plateaux in the conductance as a function of the temperature analytically.

We newly formulated the TBA equations for a defect with simultaneously non-vanishing

reflection and transmission amplitudes. We indicate how these equations can be used to

compute various thermodynamic quantities, which are, however, most interesting only
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when considered per unit length. By means of the TBA we compute the density distribu-

tion functions and use them to evaluate the Landauer conductance formula (2.1) for various

defects in a complex free Fermionic theory. Also in this case, we predict analytically the

most prominent features in the conductance as a function of the temperature, i.e. the

plateaux.

There exist various investigations, e.g., [32, 19, 21, 33] for conformal (massless) theories

with defects, which exploit the original folding idea of Wong and Affleck [32]. The idea

is that a conformal field theory with a purely transmitting or reflecting defect can be

mapped into a boundary theory, i.e. a theory living in half space, which has the advantage

that the full restriction of modular invariance can be exploited in the construction of

boundary states as pioneered by Cardy [34]. Apparently the folding procedure could lead

to non-trivial solutions for the reflection and transmission amplitudes starting with a purely

reflecting or transmitting theory. However, one should stress that the folding is carried out

on the basis of the field content of the conformal field theory, whereas our analysis is based

on a particle description, namely we take the ZF-algebra as our starting point. Therefore,

the transmission and reflection amplitudes obtained by means of the folding technique can

not be compared with the objects we study here, even in the conformal limit.

In this context, there are several interesting open issues. Most challenging is to treat in

full generality the massive and temperature dependent case of (1.1; part I). Unfortunately,

the formulation of non-perturbative methods does not yet cover that situation [6] and it

remains to be clarified how the form factor bootstrap program for the computation of two-

point functions can be extended to that case. It would be further interesting to compute

thermodynamic quantities per unit length by means of the TBA and to develop methods

for the systematic classification of integrable defects.

Proceeding further in our investigation of the applications of integrable models to the

description of realistic physical systems, we have established that coupling an impurity in

a quantum wire to an external monochromatic electromagnetic field leads to high harmonic

generation [2]. Harmonic generation i.e., the emission of multiples of the incoming fre-

quency when a system is coupled to a monochromatic field, has been widely studied in

the context of atomic physics. However, up to now there were no results for solid state

materials. The concrete system we have studied is a quantum wire described by means

of the Dirac equation doped with a defect which couples minimally to an external field of

frequency ω. Considering separately the situations corresponding to a single and a double

defect system we observed that, for the particular type of defect treated, only even multi-

ples of the incoming frequency are emitted for the single defect, whereas all even and odd

multiples are generated for the double defect system. These features are observed both in

the Fourier expansion of the transmission probability through the defect and in the emis-

sion spectrum of the dipole momentum. It would be extremely interesting to confirm our

findings experimentally.

Acknowledgments

We would like to thank the organizers of this workshop for the opportunity to present these

– 15 –



P
r
H
E
P
 
u
n
e
s
p
2
0
0
2

Workshop on Integrable Theories, Solitons and Duality Olalla A. Castro-Alvaredo

talks, for financial support and for making the celebration of the 50th anniversary of the
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