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Abstract 

 

Elastic and inelastic displacement spectra (for periods up to 4.0 sec) are derived, using a 

representative sample of acceleration records from Greece, carefully selected based on 

magnitude, distance and peak ground acceleration criteria, and grouped into three ground type 

categories according to the Eurocode 8 (EC8) provisions. The modification factor for the 

elastic design spectrum adopted in EC8 for accounting for damping is verified herein and is 

found to be satisfactory in the short to medium period range and less so in the long period 

range. The equivalent viscous damping ratio concept is also evaluated and is found to lead to 

underestimation of inelastic displacement spectra. Finally, based on the previously derived 

elastic and inelastic spectra, equations suitable for design and/or assessment purposes, are 

proposed for the corresponding displacement modification factors.  

Keywords: displacement spectra, inelastic spectra, Eurocode 8, displacement modification 

factors, target displacement. 

 

 

1. Introduction 

 

During the last decade or so, a large emphasis has been placed on the proper evaluation of 

the displacement a structure will experience when subjected to an earthquake ground motion 

that is selected in the framework of design or assessment of the structure. This is mainly due 

to the fact that limit states (or performance objectives) for the structure can be conveniently 
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and meaningfully expressed in terms of displacements. There are two interrelated, still 

distinct, situations wherein estimation of displacements is a key issue.   

First, in inelastic static (pushover) analysis, currently considered as a valuable tool for 

seismic assessment of structures, a target displacement is necessary for quantifying the 

seismic demand on the structure analysed [1, 2, 3]. This is typically evaluated on the basis of 

the maximum displacement of a single-degree-of-freedom (SDOF) system subjected to the 

ground motion(s) selected for assessment. The estimate of target displacement should account 

for the inelastic response of the structure as well as for the difference between the 

displacement of the SDOF system and that of the ‘monitoring point’ selected for the actual, 

multi-degree-of-freedom (MDOF), structure. The effect of inelasticity on the displacement of 

the SDOF system can be estimated either through an ‘equivalent linearization’ procedure, as 

in ATC-40 [2], or through a displacement modification factor that depends on ductility, as in 

ASCE-FEMA 356 [3]. 

In another situation, the so called ‘direct displacement-based’ design [4], or assessment 

[5], methods require reliable displacement spectra for a broad range of damping ratios, since 

the expected inelastic response of the structure is conveniently accounted for through a 

properly damped elastic spectrum and a ductility-dependent equivalent period of the structure 

(equivalent linearization approach); such elastic spectra for high damping ratios are also 

important for seismic isolation studies. 

Previous works on elastic and inelastic displacement spectra so far concentrated on data 

sets from North America (e.g. [6], [7]), while (to the writers’ best knowledge) only one study 

was based on records mainly from Europe (Borzi et al. [8]). Although the dataset used in [8] 

is larger than the one used herein (it included records from all over Europe plus some from 

the Middle East), several of the records used herein were not included in [8]; notably, 24% of 

the records used in the present study are from earthquakes that occurred since 1999, a period 

not covered in the dataset of [8]. Furthermore, that previous study [8] has focussed on one 

particular version of displacement-based design method and derived the displacement 

modification factor in terms of the equivalent period of the inelastic system, rather than its 

initial one, which precludes comparisons with other similar studies such as [1], [6], [7]; in 

contrast, the present study addresses both the issue of elastic displacement spectra for several 

damping ratios and that of the displacement modification factor in terms of the initial period 

(common to both the elastic and the inelastic system) which is consistent with current trends 

worldwide and facilitates comparisons with previous studies. 
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In the study presented here, a carefully selected and properly processed sample of strong 

motion records from Greece (from 1978 to 2006) is used as a basis for the evaluation of both 

elastic and inelastic displacement spectra, using in-house developed software. Greece is the 

European Union country with the highest level of seismicity, while all kinds of 

seismotectonic environments are present in its territory, with fault mechanisms comprising 

normal, thrust and strike-slip types. Therefore, the results of the present study are of interest 

to all other European countries where consideration of seismic actions is pivotal in the design 

of new structures, as well as the assessment of existing structures. They are also useful for 

comparisons with the results of similar studies in America that involve larger datasets; some 

comparisons along these lines are included in sections 3 and 4 of this paper. 

From statistical analysis of the elastic and inelastic spectra, modification factors for 

displacement (Cμ) are evaluated, and corresponding empirical relationships, suitable for 

design or assessment purposes, are proposed. Futhermore, the reduction factor for the elastic 

design spectrum adopted in EC8 for accounting for damping is verified in the light of the 

results of the present study and is found to be satisfactory. 

 

2. Earthquake ground motions used  

 

A key factor in studies like the present one is the proper choice of a representative sample 

among the available strong motion records in the area under consideration, in this work 

Greece. The sample compiled consists mainly of recordings from the permanent 

accelerometer network of the Institute of Engineering Seismology and Earthquake 

Engineering (ITSAK), which covers the entire Greek territory. Based on both international 

practice and the personal experience of the research team, the following criteria were applied 

in the selection of the acceleration time histories: 

 Earthquake magnitude Mw ≥ 5.0 and epicentral distance R from 5 km to 100 km. 

 Value of peak ground acceleration Ag  0.10g and/or strong motion having caused non-

negligible damage in the neighbourhood of the recording site. 

 Availability of sufficient geotechnical data to classify existing ground conditions at the 

recording site according to the EC8 ground types [9]. 

Due to the relatively small number of records in the database, in some cases earthquakes of 

magnitude slightly less than 5.0 were selected, on condition that the amplitude of the 

horizontal motions was significant (Ag>0.10g). The sample also includes records THEA7802,  

KORA8101, and AMAA8805 that were recorded by the accelerometer network of the Institute 
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of Geodynamics, National Observatory of Athens (GINOA). The final record sample (75 

accelerograms) used in the present study is an extended version of that used in a previous 

paper by Karakostas et al. [10], and is presented in Table 1. 

It is worth noting that the sample includes some recently recorded ground motions. Of 

particular importance, as discussed in [10], is the January 8, 2006 strong earthquake (M=6.7) 

that occurred to the east of island of Kythira (South Aegean Sea); this was the first 

intermediate depth earthquake ever recorded in Greece (focal depth of 66 km), and it was 

found [10] to have a frequency content substantially different from that of previously 

recorded motions.  

The processing of strong-motion data is carried out with a view to optimizing the balance 

between acceptable signal-to-noise ratio and information required for a particular application, 

both of which depend on the period and frequency content of the recording. In this study, 

analog and digital strong-motion data are included and for this reason some more advanced 

aspects of data processing are taken into account, enriching the frequency content of the 

aforementioned data. Recent applications of the data-processing methodology for analog 

strong-motion data used can be found in Margaris [11], Skarlatoudis et al. [12] and 

Athanassiadou et al. [13]. In those applications, models of noise in the digitized records were 

required and signal-to-noise ratios were estimated. For the digital strong-motion 

accelerograms (from digital instruments, which present several advantages compared to 

analog ones), signal-to-noise ratios were evaluated and the frequency ramps of the applied 

digital filters were determined. Due to the need for more reliable displacement time-histories, 

removal of the low-frequencies by filtering is attempted in such a way that little information 

meaningful for engineering purposes is lost. Recent data from several strong-motion events 

have shown that in displacement response spectra, the transition from the ascending to the 

horizontal branch of the spectrum occurs at significantly longer periods. Thus for the strong-

motion data of this work and after the signal-to-noise ratio was estimated, a number of 

displacement time-histories were computed. Based on these, the final selection of the most 

appropriate low-frequency filtering was adopted [14], [15]. The high-pass filter cut-off 

frequency fc employed for each record (that determines the maximum usable period for the 

record) is given in Table 1. It can be seen that the new filtering methodology permits the 

creation of response spectra that are reliable for periods up to 4.0 sec (in previous efforts, e.g. 

[10], the respective period limit was 2.5 sec). However, as can be seen from Table 1, 13 of the 

records of the selected earthquake sample have a cut-off frequency fc > 0.25 Hz (T < 4.0 sec). 
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In Figure 1 the mean elastic (Fig. 1a) and inelastic (Fig. 1b) displacement spectra are 

presented, corresponding to the entire sample of 75 records or to the 62-record one (i.e. 

excluding the aforementioned 13 records). The spectra are plotted in a normalised form 

against T/Tg, where Tg is the predominant period of the ground motion, as will be further 

explained in the next chapter. As can be seen in Figure 1, the shape of the response spectra is 

practically the same in either case, although, as expected, the ordinates of the spectra of the 

reduced sample are higher in the long-period range. Since the focus of the present study is the 

shape of the response spectrum (not its amplitude), all results presented in the following are 

for the entire sample of 75 records (Table 1). 

Using the geotechnical data available for each station, a ground classification according to 

the ground categories prescribed in EC8 [9] was carried out. A detailed presentation of the 

classification procedure can be found in [13]; the procedure is summarised in the remainder of 

this paragraph. In EC8 five basic ground types (A, B, C, D, E) and two special categories (S1 

and S2) are defined, according to their stratigraphic profile and/or the value of the parameters 

VS,30 (average shear wave velocity in the upper 30 meters of the ground),  NSPT  (Standard 

Penetration Test blow-counts), and  Cu (undrained shear strength). The sites of the selected 

recordings dataset are classified (Table 1) according to the value of VS,30, wherever available; 

otherwise the values of NSPT, and alternatively of Cu (for cohesive soils), are used. In case 

none of the aforementioned parameters (VS,30, NSPT, Cu) was available for the site of a 

recording station, categorization was based on a qualitative description of the stratigraphic 

profile and information from the corresponding geological map (IGME maps, scale 1:50,000). 

The recording stations were classified into three ground types: A (rock, VS,30 >800m/s), B 

(very dense sand/gravel or very stiff clay, 360<VS,30800) and C (dense or medium dense 

sand/gravel or stiff clay, 180<VS,30360), as prescribed by EC8; no data was available for D 

or E sites, a situation common to that encountered in previous studies involving European 

records [10]. For the Preveza station (PRE10301) no geotechnical information was available; 

therefore, the two records have been used only for the computation of mean elastic and 

inelastic spectra irrespective of ground conditions (i.e. for the entire dataset). The remaining 

73 records were classified as follows: 12 records in ground category A (16.4%), 33 records in 

ground category B (45.2%), and 28 records in ground category C (38.4%).  

The spectra were evaluated, using the INELSP-2k program, for a period range from 0.01 to 

4.0 sec, using a smaller step (ΔΤ=0.025 sec) for shorter periods (T  0.5 sec), that gradually 

increases to ΔΤ=0.50 sec for Τ > 3.0 sec. 
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3. Elastic and inelastic spectra 

 
As noted in the introduction, in displacement-based design (DBD) [4] and assessment [5], 

reliable displacement spectra are required for a broad range of damping ratios (up to about 

30% or more); elastic spectra for high damping ratios are also important for seismic isolation 

studies. The need for such spectra in DBD arises from the fact that the inelastic displacement 

of the structure is represented by a properly damped elastic spectrum, wherein the amount of 

equivalent damping ratio (ζeq) is expressed as a function of the displacement ductility (μ) that 

the structure will experience when subjected to the considered level of earthquake. The idea 

of determining ζeq by equating the energy dissipated by hysteresis (area under force – 

displacement plot up to ductility μ) to the viscous damping energy (the area of the ellipse in 

the damping force vs. displacement plot) was put forward already in 1930 [16], while studies 

wherein ζeq was determined as a function of μ for several hysteresis models relevant to civil 

engineering structures appeared in the early 1980’s [17]; the advent of DBD in the 1990’s 

renewed the interest in the subject and relevant publications keep appearing to date (e.g. 

[18]). In a design situation, the foregoing spectrum is used to define (based on the selected 

design displacement) an equivalent period (also ductility-dependent) of the structure, which is 

then used to estimate the corresponding stiffness; in an assessment situation the equivalent 

period is used to estimate (again from the elastic spectrum for ζeq) the displacement that the 

(existing) structure will experience. In the following, the dataset of records from Greece is 

used to derive elastic displacement spectra for damping values within the period range 

relevant to DBD and seismic isolation applications. 

3.1. Shape of elastic spectra 

In Figure 2a the mean elastic displacement spectra for the entire sample are presented for 

various damping ratios (0.02 ≤ ζ ≤ 0.30, where ζ is the viscous damping ratio). Separate plots 

are also given for the average spectra of records from earthquakes with Ms>5.5 (“Type 1 

spectra” according to EC8 provisions – Fig. 2b) and that of records from earthquakes with 

Ms≤5.5 (“Type 2 spectra” – Fig. 2c).  In order to evaluate the spectral shape (that was the 

focus of this part of the study), rather than the absolute values of the spectral ordinates, all 

records were scaled according to the mean spectrum intensity (SI) of the entire sample. The 

spectral (or Housner) intensity is defined as the area under the pseudovelocity spectrum 

between 0.1 and 2.5 sec, and it has been found [e.g. 19] to be  a very suitable scaling factor, 
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especially for periods longer than about 0.5 sec. Similar results have been obtained in the 

present research, as will be shown in the following. 

As can be seen in Fig. 2, in the short period range the spectral displacements increase with 

period, with a tendency for stabilization after approximately a period of 0.8 sec for the entire 

sample, and beginning of a descending branch (for ζ≤10% only) after a period of 2.0 sec (Fig. 

2a). As expected, the influence of damping is more noticeable for lower values of ζ. The 

surface magnitude (Ms) seems to affect the maximum spectral displacements, which are 

significantly higher in the case of Type 1 spectra; it should be mentioned that numerical 

comparisons are meaningful here, as all accelerograms used in the calculation of the mean 

spectra of either Fig. 2b or Fig. 2c have been normalized to the same SI – the mean value of 

the entire sample. The effect of Ms on the shape of the derived spectra is even more 

significant. As can be seen in Fig. 2b, the spectral values in Type 1 spectra tend to increase 

for up to T ≈ 2.0 sec (the rate of increase is smaller after T ≈ 0.65 sec) and tend to decrease 

(for ζ≤10%) or to stabilize (for ζ>10%) after the T ≈ 2.0 sec threshold. On the other hand, 

Type 2 spectral values (Fig. 2c) tend to increase for up to T ≈ 0.75 sec, after which they either 

start to decrease (for ζ ≤ 10%) or to stabilize (for ζ > 10%). 

In Fig. 3 mean elastic displacement spectra are presented either for the entire sample (Fig. 

3a) or for each ground type (Figs. 3b, 3c and 3d, for EC8 ground types A, B and C, 

respectively). In each case the values were normalized to the mean SI either of the entire 

sample, or of the group of records pertaining to each ground type. The spectra are plotted 

against T/Tg, where Tg is the predominant period of the ground motion, which in this 

investigation is approximated by the period corresponding to the maximum peak of the 

respective elastic pseudovelocity spectrum for ζ=5% [20]; site-dependent displacement 

spectra for essentially the same dataset of records in the usual format (i.e. plotted against T) 

can be found in [10]. It is noted that, whereas in displacement spectra plotted in the standard 

form, i.e. against T, ground conditions appear to affect the shape of the spectra (albeit to a 

lesser extent than they affect acceleration and velocity spectra) [10], this effect is less 

pronounced (as expected, on the basis of past studies) if the spectra are plotted in the 

normalized form, i.e. plotted against T/Tg. 

The Tg value calculated for each record is shown in Table 1, while the mean Tg values for 

the entire sample and for ground type A, B and C (which were found to be 0.44 sec, 0.35 sec, 

0.41 sec and 0.51 sec respectively) are shown in Fig. 3. As anticipated, Tg increases for softer 
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ground types, while the mean value for the entire sample was found to be very close to that of 

ground type B. 

From Fig. 3 it is observed that the spectral displacements initially increase up to a period 

T=Tg, wherein a spectral peak appears, and then (for ζ<10%) they decrease up to a period of 

Τ≈1.5Tg, after which they tend to stabilize. For ζ≥10%, the spectral displacements tend to 

stabilize for Τ>2Tg. These trends generally hold for all spectral categories, irrespective of 

ground conditions, thus validating the argument that use of Τ/Tg in lieu of T is quite effective 

in eliminating the ground effect on the spectral shapes. This is seen even more clearly in Fig. 

4, where the mean spectral displacements for the entire sample are plotted together with those 

of EC8 ground categories A, B and C. For comparison purposes, all spectra have been scaled 

to the same spectrum intensity (that of the entire sample). As can be seen from Fig. 4, the 

various spectral shapes are almost similar, with differences more accentuated in the 1<Τ/Tg<3 

range, which are nevertheless minor from an engineering point of view.  

3.2. Evaluation of ΕC8 damping correction factor 

An attempt was made to investigate the accuracy of the relationship proposed in EC8 [9] 

for the computation of design spectra for damping ratios ζ≠5%. EC8 suggests scaling of the 

design spectrum by a factor η given by  

55.0
)5(

10





ζ
η  (1) 

In Figure 5, mean elastic displacement spectra are presented, derived from the entire 

record sample and for damping ratios ζ=2, 10, 20 and 30%, along with the corresponding 

spectra derived from the mean elastic spectrum for ζ=5% using the EC8 damping correction 

factor η. It is seen that the EC8 equation (1) slightly overestimates displacements in the short 

period range for ζ>5% (the overestimation increasing with ζ), whereas it underestimates 

displacements in the long period range (T>1sec); overall, the agreement is deemed as 

satisfactory for relatively low damping ratios (ζ≤10 %), and less so for higher ζ.  

3.3. Shape of inelastic spectra 

The next stage of the investigation consisted in the evaluation of inelastic displacement 

spectra, and the first issue addressed was the effect of scaling applied to the records. For the 

evaluation of the spectra, the modified Clough hysteresis model [22], a degrading stiffness 

model representative of the behaviour of well-designed reinforced concrete members [21], 
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was used, with a strain-hardening ratio of 5% and damping ratio ζ=5%. In Figure 6a the mean 

inelastic displacement spectra for the entire sample of records and for different ductility levels 

(μ=1.0 – elastic behaviour, μ=2.0 – low, μ=3.5 – intermediate, and μ=5.0 – high, ductility 

level) are normalized to a common spectrum intensity (mean SI of the sample), while in 

Figure 6b the spectra are normalized to a common peak ground acceleration value (PGA = 1.0 

m/sec2). As can be seen from the figures, the shape of the inelastic displacement spectra does 

not seem to be substantially affected by the normalization method (whereas the values of the 

spectral ordinates do, see also [10]). In Figures 6c and 6d the corresponding coefficients of 

variation (COV) for each scaling method are plotted as a function of the period. Scaling 

according to SI seems to be very appropriate (in the sense that it reduces scatter) for periods T 

longer than about 0.4 sec (with COV less than 40% in this period range that is particularly 

relevant in displacement-based design). The respective COV values in the case of PGA-

scaling are very satisfactory in the short period range (T less than about 0.3 sec); however the 

scatter increases significantly for longer periods, and while COV<1 for the whole period 

range examined (and tending to stabilize to a COV of about 80% for T≥0.9 sec), for T>0.3 

sec the COV value for PGA–scaling is consistently higher than the respective one for SI 

normalization. The results are in line with conclusions of previous investigations [19], 

pointing out that SI-based scaling yields more reliable results, with the exception of very 

short periods. Given that for short periods displacements are typically not an issue, only the 

SI-based procedure was used in the remainder of this work. 

While Figure 6a shows the mean inelastic displacement spectra (for various ductility 

levels, 1≤μ≤5.0) for the entire sample of records (i.e. irrespective of earthquake magnitude), 

Figure 7a depicts the corresponding spectra for records classified as Type 1 according to EC8 

(i.e. from earthquakes with Ms > 5.5) and Figure 7b the Type 2 spectra (earthquakes with Ms 

≤ 5.5). For comparison purposes, all spectra have been normalized to the mean SI of the entire 

sample.  As can be seen from Fig. 6a, the ordinates of the mean inelastic displacement spectra 

for the entire sample increase up to a period of about 0.7sec and tend to stabilize at longer 

periods, but with lower ordinates compared to the respective elastic spectra. The spectral 

values tend to be lower for higher ductility levels, however the trend is not systematic and, 

overall, the effect of ductility level on the shape of inelastic displacement spectra is not 

significant. Similar comments apply to the EC8 Type 1 spectra (Fig. 7a), with the spectral 

values stabilizing after T≈1.5sec. A different trend is observed for the EC8 Type 2 spectra 

(Fig. 7b), which show an ascending branch for periods up to about 0.7 sec, followed by a 



 

 10

descending one in the 0.7<T<1.5sec period range, after which the values tend to stabilize. The 

normalized ordinates of the inelastic displacement spectra for the higher surface magnitude 

(EC8 Type 1) records are significantly higher in the longer period (T>1.5 sec) range, than the 

respective ones for lower magnitude (EC8 Type 2) earthquakes, an observation also made in 

the case of elastic displacement spectra. 

The effect of ground conditions on the computed inelastic spectra is shown in Fig. 8, where 

the derived mean inelastic displacement spectra are shown either for the entire sample of 

records (Fig. 8a) or for EC8 ground type A (Fig. 8b), B (Fig. 8c) and C (Fig. 8d), as a 

function of the normalized period T/Tg. In each case, scaling was performed to the respective 

mean SI of the records involved. From Fig. 8 it can be seen that inelastic spectral 

displacements systematically increase up to T=Tg, irrespective of ground category. For higher 

T/Tg values – with the exception of soil C – displacements still increase but with a milder 

slope of the spectrum up to T≈2.5Tg, after which they tend to stabilize. In the case of soil C 

(Fig. 8d), stabilization initiates after the T=Tg threshold. The minimization of the ground type 

effect on the spectral shape when the spectrum is plotted as a function of the normalized 

period T/Tg is once more demonstrated in Fig. 9, where the mean spectral displacements for 

each ground type, as well as for the entire sample, are plotted for the case μ=2. For 

comparison purposes, all spectra have been scaled to the SI of the entire sample and a value 

of Tg=0.44 sec (i.e. that of the entire sample) was assumed. It is seen that the spectral shapes 

are reasonably similar, irrespective of ground conditions.  

As mentioned previously, DBD presupposes the use of reliable ‘equivalent’ elastic spectra 

for damping ratios ζ>5%, which are deemed to provide reasonable estimates of the 

corresponding inelastic displacements. In view of this, a comparison is made in Figure 10(a) 

between the mean inelastic displacement spectra for ground type B (for ζ=5% and 2≤μ≤5.0) 

with the respective mean elastic spectra for an equivalent damping ratio ζeq calculated as 

suggested by Kappos [17] on the basis of equal energy dissipation approach [16] and the 

modified Clough hysteresis model [22] 

μ

μp

π
ζ eq

)1)(1(1 
  (2) 

where p=0.05 is the strain-hardening ratio and μ the displacement ductility. Although the 

hysteresis model is the same degrading stiffness one used for deriving inelastic spectra 

(through the rigorous method), it can be seen from Fig. 10(a) that the use of equation (2) leads 

to underestimation of displacement values, particularly for higher ductility values. 
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 A similar comparison was also made using the more recent, period-dependent, 

relationship for the equivalent damping ratio proposed by Dwairi et al. [18] for ‘Large 

Takeda-type’ hysteretic behaviour (very similar to that of the model [22] used herein): 








 



 

1
LTeq C  (3) 

Where ζv is the damping ratio in the elastic range (5%), 

CLT  = 65 + 50 (1-Teff)  for Teff < 1sec          

CLT  = 65     for Teff ≥ 1sec 

and 

ppT

T

i

eff







1
 (4) 

with p and μ denoting the strain-hardening ratio and μ the displacement ductility. The results 

are presented in Fig. 10(b) and are similar to those obtained using expression (1) for the 

equivalent damping ratio (Fig. 10(a)), which is easier to apply since constant ζ is used along 

the entire period range. A much clearer picture of the discrepancies between the inelastic and 

equivalent elastic spectra (using equations (2) and (3)), is given in Table 2. The general trend 

is that the underestimation of inelastic spectral ordinates is substantial in the short period 

range (T<0.5s) and much more important in the case of high ductility (in the critical case of 

T=0.1s, the underestimation is up to 69% for μ=5.0, and up to 44% for μ=2.0); however, this 

period range is hardly relevant for DBD, so there are really no practical repercussions of the 

aforementioned underestimation. The real practical concern is that even in the long period 

range there is some underestimation, rather insignificant for μ=2.0 (about 10%), but 

significant for μ=5.0 (up to 27% for T=1.0, and up to 15% for T=3.0s). Hence, the 

overestimation of the equivalent damping - and consequently the underestimation of inelastic 

displacements - by the ζeq approach, is confirmed for both approaches studied here (based on 

ζeq  equations proposed in [17] and [18]), making it a point of concern regarding the proper 

application of DBD procedures.  
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4. Evaluation of displacement modification factors 

The displacement modification factor Cμ (coefficient C1 in FEMA356 [3]) is defined as the 

ratio of the ordinate of the inelastic displacement spectrum for a given period to the 

corresponding elastic value: 

)(

)(
)(

,

,

TS

TS
TC

eld

ind  (5) 

The displacement modification factors Cμ evaluated using the elastic and inelastic spectra 

derived in this study are shown in Figure 11 for the entire sample of records (Fig. 11a), for 

EC8 Type 1 (Fig. 11b) and Type 2 (Fig. 11c) earthquakes, for different ductility levels and 

ζ=5% damping. For comparison purposes, scaling to the mean SI of the entire sample was 

performed. As expected, the value of Cμ is significantly greater than 1 in the short period 

range (with higher values for increasing ductility μ), while for T≥Ti it tends to stabilize to a 

value of about unity. The value of Ti is found to be dependent on the ductility level, especially 

for lower ductility values. For example it is found that for the entire sample (Fig. 11a) Ti= 

0.22, 0.36 and 0.39 sec for μ=2.0, 3.5 and 5.0 respectively. The respective values for Type 1 

spectra (Fig. 11b) are found to be Ti= 0.23, 0.40 and 0.41 sec and for Type 2 spectra (Fig. 

11c) Ti= 0.17, 0.34 and 0.345 sec. In the very short period range, as discussed, values of Cμ 

are significantly greater than 1, and they agree to a satisfactory degree with the observation 

made by other researchers (e.g. Miranda [23]), that for Τ0  Cμμ. Moreover, it is noted that 

earthquake magnitude (Fig. 11b vs. 11c) does not seem to affect this general trend.  

In Figure 12, the computed Cμ values are shown as a function of the T/Tg ratio either for 

the entire sample of records (Fig. 12a) or for EC8 ground types A (Fig. 12b), B (Fig. 12c) and 

C (Fig. 12d).  For the derivation of these results, the corresponding records were scaled to the 

SI of the pertinent ground category.  From the spectra of Fig. 12 it appears that ground type 

does not affect the general trend of the displacement modification factor. For the entire 

sample, as well as for each ground type, the equal displacement approximation (equality of 

inelastic and elastic displacements) seems to be valid for periods longer than T ≈ 1.5Tg (with 

corresponding values Tg = 0.44, 0.35, 0.41 and 0.51 sec for the entire sample and each ground 

type, respectively). Hence, it is confirmed that plotting the displacement modification factor 

in terms of T/Tg tends to alleviate ground type effects. This can also be seen in Fig. 13, where 

the mean Cμ for the entire sample, as well as the three ground categories, are plotted for the 
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μ=2.0 case. A close similarity among the computed displacement modification factors, 

irrespective of ground category, can be observed.   

Evaluation of an analytical relationship for Cμ as a function of period T and ductility μ is 

useful for design and assessment purposes. From its definition (eq. 5), it is obvious that for 

elastically behaving systems, the value of Cμ should be : 

Cμ (Τ, μi = 1) =1 (6) 

Already from the first attempts for the evaluation of inelastic displacement spectra (e.g 

Veletsos & Newmark [24]), it was observed that in the long period range (Τ > 1÷2 sec), the 

spectral displacements of elastic and inelastic systems were practically the same, i.e. the 

following condition holds : 

Cμ (Τ , μi ) = 1 (7) 

In the medium and short period range, inelastic displacements depend largely on the period 

of the system, and especially in the very short period range, inelastic displacements are 

significantly larger than the corresponding elastic ones. 

It is also noted that the displacement modification factor can be expressed as  





qR

R
C

y

el

el

y

el

in 











  (8) 

where Δin and Δel are the peak displacements of an SDOF oscillator with inelastic and elastic 

response, respectively, Δy is the yield displacement, Ry and Rel are the corresponding inelastic 

(yield) and elastic strength and 
y

el
μ R

R
q   is the ductility-dependent component of the 

behaviour factor [21]. 

In an earlier work ([10]) on design spectra and strength modification factors based on an 

almost identical record dataset from Greece (the difference is explained later), the authors 

proposed the following equation for qμ : 

  sec5.2025.0,51
)(ln

1

2




 Tfor
TH

G
F

q 



  
(9) 

together with suitable values for the coefficients F, G and H either for the entire dataset, or for 

each different ground type subset, as shown in Table 3. 
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Based on the limit conditions mentioned above, taking into account relationships (6) and 

(7), and the fact that in this study spectra were derived up to T4sec, the following equation is 

proposed for the displacement modification factor Cμ : 

sec0.4025.0,51)(ln 2  TforTHGFC   (10a) 

sec0.4,511  TforC   (10b) 

A best-fit procedure has been applied to find the relevant values of coefficients F, G and H 

for the various Cμ cases that were derived from the earthquake dataset used in this study. It is 

recalled that the dataset used herein, differs from that used in [10] in that it includes the 

records of the intermediate-depth Kythira earthquake (Table 1, event 26, records 7275), 

while this particular earthquake was treated as a separate, special, case in [10]. It is the first 

intermediate-depth earthquake recorded in Greece, and its spectral characteristics are 

markedly different (much richer in the medium period range i.e. from about 0.4 to 1.3 sec) 

from those of the other, shallow-depth, earthquakes of the dataset (whose spectral peaks 

typically appear in the short period range, i.e. for periods less than about 0.3 sec). Therefore, 

the inclusion of the Kythira earthquake in the present dataset affects considerably the results 

for EC8 ground types A and B compared to those obtained in [10] for the same ground types. 

In Table 4, the corresponding values for coefficients F, G and H are presented for the 

entire earthquake dataset, as well as for each specific case of Type 1 and Type 2 response 

spectra (see Fig. 10a-c). 

A similar analysis was carried out for each EC8 ground type case and the results are 

presented in Table 5. In all cases, fitting was made using T (not T/Tg) as an independent 

parameter, in order to be compatible with equation (8). The authors believe that the proposed 

equations are more readily applicable in civil engineering practice, since they require 

knowledge of only the ground classification at a site, not of the corresponding Τg. If deemed 

necessary, a transformation of the obtained analytical results from a function of T to a 

function of T/Tg is straightforward. 

By comparing the obtained values for the coefficients F, G and H proposed for qμ in [10] 

for the entire dataset (first column of Table 3) and those obtained from the –not identical, as 

described above- earthquake dataset of the present study for Cμ (first column of Table 4) it 

can be seen that they are very similar. This conclusion is even more supported by the almost 

identical coefficient values for EC8 ground type C (which comprises the same earthquake 
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records in both the present dataset and that of [10], see last columns of Tables 3 and 5). This 

does not hold for the corresponding results for ground type A, since ground type A dataset 

comprises very few records and the inclusion (or otherwise) of the Kythira earthquake 

substantially affects the final results. However, the Kythira earthquake does not significantly 

influence the coefficients for the case of the more populated ground type B dataset (see 

Tables 3 and 5). Therefore, one can use the same set of numerical coefficients F, G and H of 

Tables 4 and 5 either in equation (9) for the estimation of qμ or in equation (10) for estimation 

of Cμ. 

Finally, in the last rows of Tables 4 and 5, the correlation coefficient r2 between the 

proposed equation and the actual data is given. Good agreement is observed in all cases 

between the observed data and those predicted from equation (10). 

In Fig. 14, a 3D and a 2D graph of the actual data and the proposed analytical relationship 

for Cμ (eq. (8)) are presented for the case of the entire record sample. From the graphs, it is 

clear that the proposed relationship (8a) satisfies to an acceptable degree limit condition (5). 

Also, use of the proposed relationship will be necessary in practice only for μ>1, but in any 

case, it is clear from the graphs that it fulfils also, to a certain degree, limit condition (4) for 

the elastic behaviour (μ=1) case in the 0.2<T<4 sec period range. Similar conclusions were 

also found to hold for all other Cμ results for various subsets of the entire sample examined 

herein (i.e. for EC8 Type 1 and 2 earthquakes or ground-type specific cases). 

 

5. Conclusions 

 

From the analyses performed within the framework of the present study, the following 

conclusions can be drawn: 

1. In the case of elastic displacement spectra, the surface magnitude (Ms) was found to 

affect the maximum spectral displacements and particularly the spectral shapes, as can 

be seen from the derived mean spectra for Type 1 and Type 2 earthquakes (according 

to EC8). 

2. Ground conditions appear to affect the shape of the elastic displacement spectra (albeit 

to a lesser extent than they affect acceleration and velocity spectra). However, this 

effect is much less pronounced if the spectra are plotted against the normalized period 

T/Tg. 

3. Use of the scaling factor η prescribed in EC8 for the calculation of elastic spectra for 

damping ratios ζ≠5% leads to results that agree overall quite well with the directly 
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computed spectra, especially for relatively low damping ratios (ζ≤10 %). However, the 

EC8 factor leads to underestimation of the spectral ordinates in the long period range 

(about 1 to 2 sec, depending on the amount of damping). 

4. The normalization method applied to the computed mean inelastic displacement 

spectra (scaling to either SI or PGA), does not seem to substantially affect the spectral 

shapes (whereas it does affect the values of the spectral ordinates). It is nevertheless 

found that scaling to SI seems to be very appropriate (in the sense that it reduces 

scatter) for periods longer than about 0.4 sec (a period range relevant to displacement-

based design).  

5. The overall effect of ductility level on the ordinates of inelastic spectral displacements 

is not significant. The normalized spectral inelastic displacement values for the higher 

magnitude (EC8 Type 1) records are significantly higher than the respective ones for 

lower magnitude (Type 2) earthquakes, an observation also made in the case of elastic 

displacement spectra. 

6. As in the case of elastic, also for inelastic displacement spectra the effect of ground 

conditions is less pronounced if the spectra are plotted against T/Tg. 

7. Use of an equivalent damping ratio ζeq for the computation of inelastic displacement 

spectra from ‘equivalent’ elastic ones leads to underestimation of the displacements 

due to an overestimation of the equivalent damping proportional to the ductility level. 

8. Displacement modification factors Cμ evaluated using the derived elastic and inelastic 

spectra are found to be very little affected by the ductility level. Also, the earthquake 

magnitude does not seem to have a noticeable effect on the computed Cμ curves. 

Plotting Cμ in terms of T/Tg seems to alleviate ground type effects on the shape of the 

curve (as was also the case for the elastic and inelastic displacement spectra). 

9. An analytical relationship was proposed for the computation of the displacement 

modification factor in terms of period, ductility level, and ground type. The proposed 

equation is theoretically compatible to one proposed for the force reduction 

(behaviour) factor in an earlier study by the writers. Hence, the same coefficients can 

be used in either equation for the computation of either the force or the displacement 

modification factors. 
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Table 1. Characteristics of records used in the present study 
 

 
Ev
ent 

Date 
Or. 

Time 
Lat Long Mw 

Epice
ntral 

distan
ce 

Record 
identifier 

MP

Instrum
ent 

Instal.* 

 

Soil  
categ  
ΕC8 

αg 
(cm/sec2) 

 

 
fc 

(Hz) 
  

 
Tg 

(sec) 

1 1 062078 200321 40.8 23.2 6.5 26 THEA7802 L B C 143.90 0.20 0.940
2      6.5 26 THEA7802 T   148.57 0.20 0.500
3 2 022481 205338 38.22 22.93 6.7 32 KORA8101 L B C 235.01 0.15 0.790

4      6.7 32 KORA8101 T   290.62 0.15 0.870

5 3 011783 124129 38.09 20.19 7.0 35 ARG18301 L B B 169.22 0.25 0.890

6      7.0 35 ARG18301 T   140.99 0.25 0.470

7 4 032383 235106 38.33 20.22 6.2 26 ARG18307 L B  173.49 0.25 0.160

8      6.2 26 ARG18307 T   223.40 0.25 0.200

9 5 032483 041732 38.18 20.32 5.4 22 ARG18308 L B  250.31 0.35 0.160

10      5.4 22 ARG18308 T   280.88 0.35 0.180

11 6 082683 125210 40.51 23.92 5.1 47 POL18302 L B A 92.49 0.50 0.160

12      5.1 47 POL18302 T   50.80 0.50 0.230

13 7 102584 094916 36.83 21.71 5.0 9 PEL18401 L FF A 168.34 0.20 0.290

14      5.0 9 PEL18401 T   176.78 0.20 0.320

15 8 091386 172434 37.03 22.2 6.0 12 KAL18601 L B B 229.92 0.10 0.650

16      6.0 12 KAL18601 T   263.69 0.10 0.670

17 9 091586 114130 37.04 22.13 5.3 3 KAL18608 L B  233.03 0.15 0.700

18      5.3 3 KAL18608 T   138.38 0.15 0.570

19      5.3 3 KAL28602 L B B 157.84 0.30 0.560

20      5.3 3 KAL28602 T   255.20 0.10 0.670

21 10 101688 123406 37.95 20.9 6.0 20 ZAK18804 L B C 134.57 0.20 0.530

22      6.0 20 ZAK18804 T   146.66 0.20 0.560

23      6.0 28 AMAA8805 L B C 84.11 0.20 0.520

24      6.0 28 AMAA8805 T   156.94 0.20 0.450

25 11 122190 065744 40.98 22.34 6.0 32 EDE19001 L B C 100.88 0.20 0.680

26      6.0 32 EDE19001 T   95.07 0.20 0.710

27 12 032693 114516 37.66 21.39 4.9 6 PYR19306 L B C 108.47 0.25 0.420
28      4.9 6 PYR19306 T   218.14 0.25 0.170
29 13 032693 115613 37.69 21.43 4.9 10 PYR19307 L B  99.20 0.35 0.210

30      4.9 10 PYR19307 T   118.03 0.35 0.320

31 14 032693 115815 37.49 21.49 5.4 14 PYR19308 L B  166.34 0.20 0.400

32      5.4 14 PYR19308 T   430.47 0.20 0.410

33 15 071493 123149 38.24 21.78 5.6 10 PAT19302 L B C 146.22 0.20 0.440

34      5.6 10 PAT19302 T   197.95 0.20 0.800

35      5.6 9 PAT29302 L FF C 166.19 0.25 0.390

36      5.6 9 PAT29302 T   404.42 0.25 0.340
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37 16 050495 003411 40.54 23.63 5.3 26 POL19506 L B A 142.65 0.45 0.150

38      5.3 26 POL19506 T   102.72 0.45 0.180

39 17 051395 084715 40.16 21.67 6.6 16 KOZ19501 L B A 209.87 0.25 0.250

40      6.6 16 KOZ19501 T   139.91 0.25 0.340

41 18 051595 041357 40.07 21.67 5.1 13 CHR19513 L FF B 159.48 0.15 0.160

42      5.1 13 CHR19513 T   131.93 0.15 0.210

43 19 051795 041426 40.07 21.61 5.3 11 CHR19532 L FF  117.43 0.10 0.540

44      5.3 11 CHR19532 T   130.36 0.10 0.240

45 20 051995 064850 40.03 21.62 5.1 12 KRR19501 L FF B 185.14 0.15 1.000

46      5.1 12 KRR19501 T   262.10 0.15 0.400

47 21 061195 185195 39.96 21.58 4.8 5 KRR19509 L FF  120.17 0.15 0.430

48      4.8 5 KRR19509 T   82.95 0.15 0.400

49      4.8 7 KEN19563 L FF C 125.07 0.10 0.560

50      4.8 7 KEN19563 T   99.81 0.10 0.500

51 22 080596 224642 40.06 20.66 5.7 8 KON29601 L B C 383.14 0.10 0.450

52      5.7 8 KON29601 T   381.91 0.10 0.400

53      5.7 8 KON19601 T B B 168.32 0.10 0.790

54 23 111897 130753 37.33 20.84 6.6 48 ZAK19703 L B C 114.28 0.15 0.430

55      6.6 48 ZAK19703 T   130.61 0.15 0.910

56 24 090799 115651 38.15 23.62 5.9 20 ATH29901 L B B 109.60 0.35 0.360

57      5.9 20 ATH29901 T   161.52 0.35 0.220

58      5.9 15 ATH39901 L B B 259.52 0.20 0.690

59      5.9 15 ATH39901 T   303.34 0.20 0.230

60      5.9 17 ATH49901 L B A 119.43 0.20 0.480

61      5.9 17 ATH49901 T   109.61 0.20 0.480

62      5.9 15 KERT9901 L B B 216.95 0.40 0.530

63      5.9 15 KERT9901 T   182.31 0.40 0.220

64      5.9 36 RFNA9901 L FF B 83.82 0.25 0.580

65      5.9 36 RFNA9901 T   103.62 0.25 0.460

66      5.9 14 SPLB9901 L B B 345.83 0.10 0.260

67      5.9 14 SPLB9901 T   319.86 0.10 0.290

68 25 081403 051454 38.76 20.60 6.2 12 LEF10301 L B C 334.48 0.10 0.690

69      6.2 12 LEF10301 T   409.94 0.10 0.540

70      6.2 24 PRE10301 L B N/A 153.20 0.10 0.410

71      6.2 24 PRE10301 T   141.04 0.10 0.580

72 26 010806 113454 36.21 23.41 6.9 40 KYT10601 L FF A 120.96 0.07 0.660

73      6.9 40 KYT10601 T   103.97 0.07 0.760

74      6.9 41 ANS10601 L FF B 144.25 0.10 0.560

75      6.9 41 ANS10601 T   66.74 0.10 0.435

 
 
* ‘Instrument  Instal.’:  The location where the accelerographic instrument is installed 

B: Basement of building with two or more storeys 
FF:  Free-Field (storage area or shelter or small 1-storey building). 
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Table 2. Comparisons of Sd values (in mm) from inelastic and elastic (for ζ=ζ(μ)) spectra 
 

μ T (sec) Sd,inel  
Sd,el  

(Kappos 
ζeq) 

Sd,el  

(Dwairi ζeq) 
[(3)-(4)]/(3) [(3)-(5)]/(3) 

(1) (2) (3) (4) (5) (6) (7) 

2.0 

0.1 1.761 1.116 0.987 -0.3663 -0.4395 

0.3 9.073 6.955 6.181 -0.2334 -0.3187 

0.5 14.834 11.379 10.573 -0.2329 -0.2872 

0.7 18.709 15.156 14.950 -0.1899 -0.2009 

1.0 18.007 16.315 16.223 -0.0940 -0.0991 

2.0 22.240 19.754 19.659 -0.1118 -0.1161 

3.0 21.125 19.162 19.096 -0.0929 -0.0960 

3.5 

0.1 2.366 0.996 0.898 -0.5790 -0.6205 

0.3 9.532 5.980 5.563 -0.3726 -0.4164 

0.5 14.499 9.661 9.765 -0.3337 -0.3265 

0.7 15.356 12.874 13.431 -0.1616 -0.1254 

1.0 17.471 14.102 14.630 -0.1928 -0.1626 

2.0 20.174 17.537 18.078 -0.1307 -0.1039 

3.0 20.094 17.583 17.965 -0.1250 -0.1060 

5.0 

0.1 2.845 0.959 0.871 -0.6629 -0.6938 

0.3 10.378 5.666 5.419 -0.4540 -0.4778 

0.5 14.684 9.127 9.671 -0.3784 -0.3414 

0.7 15.688 12.153 12.887 -0.2253 -0.1785 

1.0 18.347 13.425 14.116 -0.2683 -0.2306 

2.0 20.148 16.824 17.549 -0.1650 -0.1290 

3.0 20.046 17.105 17.592 -0.1467 -0.1224 
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Table 3. Coefficients previously proposed for qμ (eq. 9)   
 

 
Entire sample Soil type A (EC8) Soil type B (EC8) Soil type C (EC8) 

F -0.0349 -0.0668 -0.0373 -0.0297 

G 0.9183 0.9561 0.9153 0.9144 

H 0.0479 0.0426 0.0463 0.0499 

 
 
 

Table 4. Coefficients and correlation coefficients for proposed equations for Cμ (eq. 10) 

  

 
Entire sample Type 1 (EC8) Type 2 (EC8) 

F -0.0316 -0.0312 -0.0322 

G 0.9136 0.9011 0.9280 

H 0.0472 0.0502 0.0437 

r2  (Cμ) 0.8816 0.8484 0.8962 

 
 
 

Table 5. Coefficients and correlation coefficients  for proposed equations for Cμ (eq. 10) 

 

 
Soil type A (EC8) 

Ground type B 
(EC8) 

Ground type C 
(EC8) 

F -0.0277 -0.0359 -0.0271 

G 0.9198 0.9141 0.9104 

H 0.0418 0.0463 0.0487 

r2  (Cμ) 0.8544 0.8839 0.8642 
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FIGURE CAPTIONS  
 

 
Fig. 1. Mean spectra for the entire sample and the reduced one not including the 13 records 
with fc ≥ 0.25 Hz: (a) elastic spectra, (b) inelastic spectra. 
 
Fig. 2.  Mean elastic displacement spectra: (a) entire sample, (b) Ms > 5.5 , (c) Ms ≤ 5.5. 
 
Fig. 3. Mean elastic displacement spectra: (a) entire sample, (b) ground type A, (c) ground 
type B, (d) ground type C. 
 
Fig. 4. Mean elastic displacement spectra (for ζ = 5%) 
 
Fig. 5. Comparison between mean elastic displacement spectra and those derived from the 
EC8-prescribed values of the damping correction factor (entire sample). 
 
Fig. 6. Mean inelastic displacement spectra: (a) scaled to the mean spectrum intensity SI, 
(b) scaled to the same peak ground acceleration PGA (ag = 1.0 m/sec2), (c) COV for the same 
SI case, (d) COV for the same PGA case. 
 
Fig. 7. Mean inelastic displacement spectra: (a) Type 1 (Ms > 5.5) , (b) Type 2 (Ms ≤ 5.5). 
 
Fig. 8. Mean inelastic displacement spectra: (a) entire sample, (b) ground type A, (c) 
ground type B, (d) ground type C. 
 
Fig. 9. Mean inelastic displacement spectra (μ = 2.0) 
 
Fig. 10. Comparison between mean inelastic displacement spectra with ζ = 5% and elastic 
ones with ζ = ζ(μ) for ground type B. 
 
Fig. 11. Mean displacement modification factors: (a) entire sample, (b) Ms > 5.5 , (c) Ms ≤ 
5.5. 
 
Fig. 12. Mean displacement modification factors: (a) entire sample, (b) ground type A, (c) 
ground type B, (d) ground type C. 
 
Fig. 13. Mean displacement modification factors (μ = 2.0) 
 

Fig. 14. Proposed displacement modification factor Cμ as function of T and μ (eq.(8) - entire 
sample) : (a) 3-D and (b) 2-D representation. 
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