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Abstract. In a previous work by the authors and their co-workers an analytical methodology 
for the derivation of seismic fragility curves for bridges was proposed. Bridges were 
classified into three main categories according to their seismic energy dissipation mechanism: 
bridges with yielding piers of the column type, bridges with bearings and non-yielding piers 
of the wall type, and bridges with bearings and yielding piers of the column type. Then, 
damage states were defined using deck displacement at characteristic points of ‘typical’ 
bridge pushover curves, which are related to the seismic energy dissipation mechanism, 
consistently with the proposed classification scheme. Only one horizontal component of the 
seismic action was considered to act along the principal directions of the bridge. This 
methodology was subsequently extended by the authors to take into account the angle of 
incidence of the seismic action, considering only the single-component case. In the present 
work the methodology is further extended to the general case wherein the minor principal 
horizontal component of the earthquake is also taken into account (dual-component seismic 
action). Furthermore, damage states for bridges with bearings are redefined in a broader 
manner, to take into account biaxial shear effects, and all possible failure mechanisms of the 
bearings. The methodology is applied here to a skew bridge, subjected to either single- or 
dual-component seismic action. The main difference between straight and skew bridges is that 
the modal principal bridge directions are rotated with respect to the geometric principal 
bridge directions, for a specific angle of incidence. The proposed methodology is formulated 
in terms of modal principal directions. The CQC rule is used for the combination of the 
projections of the control point displacement and of the base shear in the single-component 
case, while in the dual-component case the SRSS rule is used and it is found adequate for all 
excitation angles. From the derived generalized fragility curves it is concluded that when the 
minor principal horizontal component of the earthquake is taken into account, bridge fragility 
is significantly increased, while it remains practically unaffected by the angle of incidence. 
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1 INTRODUCTION 
Various analytical methodologies proposed in the past for the vulnerability/fragility 

assessment of bridges in Europe [8], the US [6, 9, 10, 13], and Japan [4], address only one 
horizontal component of the seismic action (single-component seismic action) acting along 
the longitudinal or transverse direction of the bridge. Hence, an issue that has to be addressed 
is the assessment of bridge vulnerability/fragility in the general case where the seismic 
excitation acts at an arbitrary angle. The first attempt in this direction was made by Shinozuka 
et al. [12] who proposed an analytical methodology based on dynamic inelastic analysis for 
single-component seismic action. Damage states were defined only for bridges with inelastic 
piers, in terms of displacement ductility of pier critical sections. 

Recently the authors have developed a methodology for the derivation of fragility curves 
for arbitrary angle of incidence of the seismic action [7] extending their previously proposed 
methodology [8], which is based on static nonlinear (pushover) analysis. At first, static 
nonlinear analysis was extended to take into account the angle of incidence of the seismic 
action; it is noted that on this topic only two previous attempts have been made in [14] and 
[15], both of them focusing on the estimation of the critical angle of incidence of the seismic 
action, rather than on the derivation of pushover curves. Two methodologies were proposed 
for deriving pushover curves for arbitrary angle of incidence of the single-component seismic 
action. According to the first one, an effective mode shape is determined in the direction of 
the seismic action, while according to the second one the response along the principal bridge 
directions is combined in order to derive the response in the direction of the earthquake. The 
two methods were both applied to a symmetric overpass bridge and the results were evaluated 
against those from nonlinear response-history analysis (NLRHA). It was concluded that the 
first method is valid only in the period range where the equal displacement approximation is 
valid, while the second one is valid for all periods. Besides the extension of static nonlinear 
analysis, damage state definitions were also extended to take into account the effect of the 
angle of incidence of the seismic action. 

In the work presented herein, the methodology for the derivation of static pushover curves 
and fragility curves for arbitrary angle of incidence of the seismic action is extended to 
account for dual-component seismic action. Static nonlinear analysis for arbitrary angle of 
incidence is carried out using the second of the previously proposed methods [7], due to its 
broader range of application; the method is further extended to account for biaxial bending 
effects in critical pier sections and for biaxial shear effects in the bearings. Regarding damage 
state definitions, in particular for bearing-supported bridges, damage states are defined taking 
into account the biaxial deformation of the bearings. Furthermore, the last damage state is 
defined on the basis of the ultimate shear deformation, as it is derived considering all possible 
failure mechanisms of the bearings. Finally, the proposed methodology is applied to a skew 
bearing-supported bridge and conclusions are drawn regarding the effect of dual-component 
action and of angle of incidence. 

2 METHODOLOGY FOR THE DERIVATION OF FRAGILITY CURVES 

2.1 Modelling of the seismic action 

The earthquake ground motion is analyzed into three principal components EI, EII and EIII 
linearly independent (or statistically linearly uncorrelated) directed along a set of principal 
axes O-I-II-III. Components EI and EII are the horizontal ones, with the first one having the 
maximum intensity (EI = major horizontal component, EII = minor or secondary horizontal 
component). 
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The simpler approach is to consider only the major horizontal earthquake component 
(single-component seismic action) acting at an angle a with respect to the bridge longitudinal 
axis (Fig. 1). Thus, the axis system O-I-II-III is considered identical with system Oξηζ which 
is rotated by an angle a with respect to the bridge axes Oxyz. Thus, the major earthquake 
component EI acts along Oξ axis and for this reason it will be referred to as Eξ. 

The proposed methodology for deriving pushover curves for arbitrary angle of incidence of 
the seismic action described in the following paragraphs is based on the combination of 
longitudinal and transverse responses. Therefore, it is more convenient to analyse the major 
earthquake component into two components Εx=Εξ·cosa and Εy=Εη·sina (Fig. 1) acting along 
the longitudinal and transverse direction, respectively. Components Ex and Ey have identical 
time-histories (accelerograms), thus they are linearly dependent or statistically linearly fully 
correlated. 
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Figure 1: Single-component seismic action acting at an arbitrary angle of incidence. 
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Figure 2: Dual-component seismic action acting at an arbitrary angle of incidence. 
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In the general case the minor horizontal earthquake component, EII≡Eη, is also considered 
(dual-component seismic action) (Fig. 2) and it is normal to the major horizontal component 
EI, which acts at angle a with respect to the longitudinal bridge axis Χ (i.e. the minor 
component acts at an angle α with respect to the Y-axis). The components acting along the 
longitudinal and the transverse bridge directions are Ex = Eξ·cosα - Eη·sinα and Ey = Eξ·sinα + 
Eη·cosα. These components are a linear combination of Eξ and Eη, thus they are linearly 
dependent or statistically linearly correlated. For excitation angles 0°, 90°, 180° and 270° 
components Ex and Ey become identical with the principal horizontal components EI≡Eξ and 
EII≡Eη, thus they have quite different time-histories, i.e. they are linearly independent or 
statistically linearly uncorrelated. 

Only natural earthquake records can be analyzed into principal components. Hence, in the 
case where a code-type response spectrum, or spectrum-compatible artificial accelerograms 
are utilized, a proper value for their intensity ratio is required; based on the available literature 
[5] a value of 0.70 can be reasonably adopted. 

2.2 Derivation of pushover curves 
Having modelled the seismic action appropriately, i.e. analyzing it into the components 

acting along the longitudinal and transverse directions, the next step for the derivation of 
pushover curves for arbitrary angle of incidence of the seismic action is to take into account 
the interaction between biaxial bending moments and axial force (PMM interaction) at critical 
pier sections and/or the interaction between biaxial shear forces and axial force (PFF 
interaction) in the bearings. 

In the first step of the method, the bridge is analyzed for a low earthquake intensity level 
(e.g. 0.1g) for which the response along both principal bridge directions remains within the 
elastic range. Then, the displacements of the selected control point along the longitudinal and 
transverse bridge directions, uL,el and uT,el, are calculated using elastic response spectra, and 
from them the corresponding rotations (θx,el and θz,el) and moments (Mx,el and Μz,el) of the 
critical pier sections, as well as the corresponding shear deformations (γx,el and γz,el) and forces 
(Fx,el and Fz,el) in the bearings along their principal axes, are estimated. The moment ratio 
Mx,el/Μz,el (Fig. 3) and the bearing shear force ratio Fx,el/Fz,el remains constant also for higher 
earthquake intensity levels so long as the loading is monotonically increasing and the 
response along both principal bridge directions remains elastic. For a certain earthquake 
intensity level the pier critical section, or an individual bearing, yields under a moment M y

int 
(Fig. 3) or force F y

int, respectively (the subscript int indicates that the point lies on the 
interaction curve). This means that the critical section or the bearing yields under biaxial 
conditions earlier than in the case where the moment vector is normal, or the force vector is 
parallel, to one of the principal directions. Then, the (idealised as bilinear) Μ-θ or F-γ 
diagrams along the principal directions of critical pier sections or bearings are modified using 
the reduced values of yield moments or yield forces, respectively. 

Finally, the selection of an appropriate axis to project the displacement of the control point 
and the base shear force of the bridge along the longitudinal and the transverse direction is 
needed, so that the pushover curve can be plotted. An obvious choice is the axis Oξ of the 
major earthquake component EI≡Eξ. From the two approaches proposed in [7] the one based 
on the combination of responses along the bridge’s principal directions is used here, for the 
reasons explained earlier in the paper. The successive steps of the methodology proposed for 
deriving the pushover curve are the following: 
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Figure 3: Elliptically idealised moment interaction diagram of a critical R/C pier section. 

Step 1: For a given dual-component seismic action E (code-type spectra or natural records) 
whose major component acts at an angle a, the corresponding component response 
spectra Ex and Ey (Fig. 2) are calculated and are scaled to increasing levels of 
earthquake intensity (0.1g, 0.2g,…, Ag,u·g) until the bridge reaches its ultimate 
point (bridge failure) at the intensity level Ag,u. 

Step 2: For a low earthquake intensity level (e.g. 0.1g), for which bridge response along 
both its principal directions remains elastic, the moments Mx,el and Μz,el of critical 
pier sections and the shear forces Fx,el and Fz,el of bearings along their principal 
directions are calculated. The resulting moment ratios Mx,el/Μz,el and shear force 
ratios Fx,el/Fz,el are subsequently used in the corresponding interaction diagrams 
(Fig. 3) to reduce yield moments of critical pier sections and/or yield shear forces 
of bearings; the reduced values are introduced in the Μ-θ or F-γ diagrams for the 
principal directions of critical pier sections and of individual bearings. 

Step 3: A ‘standard’ pushover analysis is performed separately along the longitudinal (0°) 
and the transverse direction (90°), for lateral force patterns compatible with the 
corresponding prevailing mode. Then, the derived pushover curves are idealised as 
bilinear ones [11] and they are converted to spectral pushover curves (‘capacity 
curves’ [3]) of the inelastic equivalent SDOF corresponding to the prevailing 
mode of each principal bridge direction. 

Step 4: At each earthquake intensity level the displacement uL,max along the longitudinal 
direction and uT,max along the transverse direction are calculated using inelastic 
spectra. Then, the corresponding base shears VbL and VbT are extracted from the 
database of each individual pushover analysis and the projections of these two 
quantities on the axis of earthquake action (Fig. 2) are taken, i.e. 

 , ,max ,cos , cosL proj L bL proj bLu u α V V α= ⋅ = ⋅  (1) 

 , ,max ,sin , sinL proj T bT proj bTu u α V V α= ⋅ = ⋅  (2) 

 Then, the projections are combined using the SRSS rule, the CQC rule or the ABS 
rule, since these response quantities are not simultaneous, for the calculation of the 
displacement uξ and the base shear force Vbξ in the earthquake direction. In case of 
the SRSS rule, uξ and Vbξ are calculated using the following relationships: 

 2 2 2 2 2 2
, , ,max ,maxcos sinξ L proj T proj L Τu u u u α u α= + = ⋅ + ⋅  (3) 
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 2 2 2 2 2 2
, , cos sinbξ bL proj bT proj bL bΤV V V V α V α= + = ⋅ + ⋅  (4) 

Step 5: Step 4 is repeated for all earthquake intensity levels (0.1g, 0.2g,…, Agu·g) until the 
bridge reaches its ultimate point in either principal direction. The pushover curve 
referring to the earthquake direction is plotted using uξ–Vbξ points. 

2.3 Definition of damage states 
The first step for defining damage states is their qualitative (descriptive) definition. Here 

the corresponding definitions of HAZUS [3] are adopted which are based on bridge damage 
data from the Loma Prieta and Northridge earthquakes [1]. Thus, four damage states, in 
addition to the No-Damage state (DS0), are defined: Minor/Slight Damage (DS1), Moderate 
Damage (DS2), Major/Extensive (DS3) Damage, and Failure/Collapse (DS4). 

Then, damage state descriptive definitions are quantified in terms of bridge deck 
displacement δξ (global damage parameter) along the earthquake direction. Apart from bridge 
damage, i.e. damage developed due to plastic hinge formation in the piers and/or yielding of 
bearings, damage developed at the abutment-backfill system due to its activation after the 
longitudinal gap closure is also taken into account. Damage states due to bridge damage are 
defined using bridge deck displacement δξ at characteristic points of ‘typical’ bridge pushover 
curves for a given earthquake direction a, which are defined on the basis of the seismic energy 
dissipation mechanism consistently with the classification scheme proposed in [8]. Damage 
states due to damage developed at the abutment-backfill system are also defined using bridge 
deck displacement, and complement the corresponding damage state definitions referring to 
bridge damage. The final threshold value of displacement for each damage state is taken as 
the minimum of the two threshold values for damage to the bridge (piers, bearings) and 
damage to the abutment-backfill system. 

2.3.1 Bridges with yielding piers of the column type 

In bridges with inelastic piers of the column type the ‘typical’ pushover curve for seismic 
action acting at an angle a along the axis Οξ is shown in Fig. 4. The first branch of the 
pushover curve corresponds to all the seismic intensity levels for which the response in both 
bridge directions remains in the elastic range, and terminates at the first plastic hinge 
formation (Point A). The second branch of the pushover curve corresponds to the successive 
plastic hinge formation (development of plastic mechanism) and terminates at the intensity 
level for which the last plastic hinge forms (Point B). The third branch of the pushover curve 
terminates at the first failure of a pier (Point C). Subsequent to this point progressive failure 
of the bridge occurs, with successive pier failures, as shown in Fig. 4. 

Idealizing the pushover bridge curve as bilinear, the second branch corresponding to the 
plastic hinge formation stage (branch AB) is reduced to a single point (named conventional 
yield point) and the branch after Point C corresponding to the failure mechanism is reduced to 
another single point (named bridge ultimate point) using a strength drop criterion for the 
bilinearization and the assumption of equal areas between the initial and the idealised 
pushover curves [11]. The four damage states are then defined on the bilinearised bridge 
pushover curve as described in Table 1. The first damage state (DS1: Minor Damage) is 
defined at the elastic branch (at 70% of conventional yield displacement, since, as described 
previously, actual yielding occurs before the conventional yield point), while the last damage 
state (DS4: Failure/Collapse) is defined at the ultimate bridge point, defined as previously. 
The two intermediate damage states (DS2: Moderate Damage and DS3: Major/Extensive 
Damage) are defined differently for high ductility bridges (μu≥3.0) and for low-to-moderate 
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ductility bridges (μu<3.0). More specifically, in high ductility bridges intermediate damage 
states are defined at bridge displacements corresponding to ductility levels 1.5 and 3.0, while 
in low-to-moderate ductility bridges are defined at displacements equally spaced (1/3 and 2/3) 
along the post-yield branch. 

0 δ δ δ

A

B

C

F=First
L=Last

Formation of the
last plastic hinge

Successive plastic
hinge formation

Formation of the
first plastic hinge

V

V

V

ξ,maxξ,y,Lξ,y,F

ξ,y,F

ξ,y,L

ξ,max

K       = Kξ,el ξ,eff

Vξ

δξ  
Figure 4: ‘Typical’ pushover curve of bridges with yielding piers of the column type. 

Threshold values of δξ a/a Damage State μ≥3.0 μ<3.0 
DS1 Minor/Slight > 0.7·δξ,y > 0.7·δξ,y 
DS2 Moderate > 1.5·δξ,y > δξ,y + (1/3)·(δξ,u – δξ,y) 
DS3 Major/Extensive > 3.0·δξ,y > δξ,y + (2/3)·(δξ,u – δξ,y) 
DS4 Failure/Collapse > δξ,u > δξ,u 

Table 1: Damage state definitions for bridges with yielding piers of the column type. 

2.3.2 Bridges with bearings and non-yielding piers of the wall type 

In this type of bridge the shape of the ‘typical’ pushover curve is similar to that of the 
previous type, replacing yielding and failure of critical pier sections with yielding and failure 
of bearings (or groups of bearings in the common case where more than one bearings are 
placed at the top of a pier) (Fig. 5-solid line). Whenever seismic links (stoppers) are present at 
the top of the piers an apparent hardening-softening is noticed due to their successive 
activation and failure, respectively (Fig. 5-dotted line, see discussion in [8]). 

Damage states for this bridge type are defined as follows: Firstly, damage states for a 
single bearing are defined (Table 2) using shear deformation, γbi, as damage parameter. Then, 
the deformation of the equivalent single bearing, γeq, is calculated as the average of the 
deformations of all bridge bearings, i.e. 

 1
N

bii
eq

γ
γ

N
==

∑  (5) 
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where:  γbi = shear deformation of single bearing i 
  γeq  = shear deformation of the equivalent single bearing and 
 N = total number of bridge bearings 

 
hence damage state definitions for the single bearing (Table 2) can be used also for the entire 
bridge. Alternatively, the corresponding bridge displacement δξ (Table 2) can be used for 
damage state definitions. More specifically, the first damage state is defined using the yield 
shear deformation γ y

int, which lies on the interaction curve and is derived for low earthquake 
intensity level. The other three damage states are defined reducing the threshold values for the 
uniaxial shear deformation of bearings (1.5, 2.0 and γu) using the minimum of the ratios 
γy

x,int/γ y
x and γ y

z,int / γ y
z (Table 2). 
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δξ,maxδξ,y,L

Yielding of the first bearing
(group of bearings)

Successive yielding of bearings
(groups of bearings)

Yielding of the last bearing
(group of bearings)

Vξ,y,F

Vξ,y,L

0

V
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δξ,y,F

F=First
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Figure 5: ‘Typical’ pushover curve of bridges with bearings and non-yielding piers of the wall type. 

Threshold values of a/a Damage State γbi, γeq δξ 
DS1 Minor/ Slight > int

yγ  > δξ(γeq,DS1) 

DS2 Moderate > ,int ,int1.5 min / , /y y y y
x x z zγ γ γ γ⎡ ⎤⋅ ⎣ ⎦  > ( ), 2ξ eq DSδ γ  

DS3 Major/ Extensive > ,int ,int2.0 min / , /y y y y
x x z zγ γ γ γ⎡ ⎤⋅ ⎣ ⎦  > ( ), 3ξ eq DSδ γ  

DS4 Failure/ Collapse > ,int ,intmin / , /y y y y
u x x z zγ γ γ γ γ⎡ ⎤⋅ ⎣ ⎦  > ( ), 4ξ eq DSδ γ  

Table 2: Damage state definitions for bridges with bearings and non-yielding piers of the wall type 

2.3.3 Bridges with bearings and yielding piers of the column type 
In this bridge typology the seismic energy is dissipated due to the inelastic behaviour of 

both piers and bearings. Thus, the shape of a ‘typical’ bridge pushover curve (Fig. 6) is 
similar to the previous bridge types. Here, the second branch represents both the successive 
plastic hinge formation and yielding of bearings. In addition, the slope of the first branch is 
smaller than in the case of bridges with yielding piers of the column type due to the 
significantly lower stiffness of pier-bearings systems, thus ultimate displacement ductility in 
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bridges with yielding piers of the column type is usually small, but is also a rather 
inappropriate indicator of the bridge’s response. Damage states are defined using the 
corresponding definitions of bridges with yielding piers of the column type (Table 5, typically 
the μu<3.0 case applies). 

V

0

A

δ

B

Vξ,y,F

Vξ,y,L

Vξ,max
C

δξ,maxδξ,y,Lδξ,y,F

K     = Kξ,el ξ,eff
First plastic hinge formation or yielding of
the first bearing (group of bearings)

Successive plastic hinge formation or
yielding of bearings (groups of bearings)

Last plastic hinge formation or yielding
of the last bearing (group of bearings)

F=First
L=Last

ξ

ξ  
Figure 6: ‘Typical’ pushover curve of bridges with bearings and yielding piers of the column type. 

a/a Damage State Threshold values of δ 
DS1 Minor/Slight > 0.7·δξ,y 
DS2 Moderate > δξ,y + (1/3)·(δξ,u – δξ,y) 
DS3 Major/Extensive > δξ,y + (2/3)·(δξ,u – δξ,y) 
DS4 Failure/Collapse > δξ,u 

Table 3: Damage state definitions for bridges with bearings and yielding piers of the column type. 

2.3.4 Damage due to abutment-backfill system activation 
In case the abutment-backfill system is taken into account in the analysis model (‘full-

range analysis’) the typical bridge pushover curve in the longitudinal direction has the shape 
shown in Fig. 7 (a bilinear force-displacement, V-δ, diagram is assumed for the abutment-
backfill system). For deck displacements smaller than the longitudinal gap, δgap, the pushover 
curve is derived on the basis of bridge response. After the activation of the abutment-backfill 
system, its response is combined with bridge response and the pushover curve is derived 
adding the corresponding shear forces of bridge and abutment-backfill system for each value 
of bridge displacement. 

Damage states are defined differently in the case where the abutment-backfill system is 
modelled (full-range analysis) and in the case where the abutment-backfill system is not 
directly included in the model (approximate analysis). In the former case (full range analysis) 
the first damage state is defined on the basis of the displacement at the longitudinal gap 
closure, δgap, the last damage state is defined on the basis of the ultimate displacement of the 
abutment-backfill system, if it is smaller than the ultimate bridge displacement δmax, and the 
two intermediate damage states are defined at displacements equally spaced along the post-
yield branch of the ‘typical’ bridge pushover curve after the activation of the abutment-
backfill system. In the latter case (approximate analysis) the first damage state initiates at the 
gap closure, δgap. The two intermediate damage states are defined increasing the threshold 
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value of the first damage state by 10% and 20%, while the last damage state is defined as the 
maximum of a·δu (which is an estimate for the ultimate displacement of the abutment-backfill 
system, see [8]) and 1.1·δDS3. When bridge ultimate displacement is smaller than these two 
values, δu is used to define the threshold of the final damage state. 

V

0

A

B

Formation of the
last plastic hinge
Succesive plastie hinge
formation

Formation of the first
plastic hinge F=First

L=Last

Abutment-backfill system modelled
Abutment-backfill system not modelled

C

δ

Vy,F

Vy,L

Vu,ab

Vy,ab

K   = Kel eff

δ δy,Ly,F δgap δy,ab δu,ab  
Figure 7: ‘Typical’ pushover bridge curve (here bridge with yielding piers of the column type) taking into 

account the abutment-backfill system. 

Threshold values of a/a Damage State Full range analysis Approximate analysis 
DS1 Minor/Slight > δgap > δgap 
DS2 Moderate > δy,ab + (1/3)·(δu,ab – δy,ab) > 1.1·δgap 
DS3 Major/Extensive > δy,ab + (2/3)·(δu,ab – δy,ab) > 1.2·δgap 

DS4 Failure/Collapse > δu,ab > { }
3

3

, 1.1
max , 1.1

u u ΣΒ

u ΣΒ

δ when δ δ
a δ δ

< ⋅⎧
⎨ ⋅ ⋅⎩

 

Table 4: Damage state definitions for damage developing at the abutment-backfill system. 

The effect of the angle of incidence of the seismic action is taken into account by 
modifying bridge deck displacements estimated from static nonlinear analysis. More 
specifically, bridge displacement δξ in the earthquake direction a, is firstly projected on the 
longitudinal bridge direction (δξ·cosα –Fig. 8a) and then it is increased by the displacement 
caused by the rotation of the bridge deck (B·sinθ – Fig. 8b). Hence, the bridge displacement 
δξ,Br, used in order to take into account the damage caused by the activation of the abutment-
backfill system is 

 

 ξ ,Br ξδ δ cos a B sin a= ⋅ + ⋅  (6) 
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Figure 8: Calculation of bridge displacement for the activation of the abutment backfill system. 

2.4 Derivation of fragility curves 
The starting point for the derivation of fragility curves is the quantification of the 

exceedance of a given damage state, which is materialized using damage parameters, here 
bridge displacement δξ along the axis Oξ (Fig. 2) of the major horizontal component of the 
earthquake. Peak ground acceleration Ag is selected as the earthquake intensity parameter, but 
other quantities could also have been used (e.g. spectral displacement Sd). 

The available bridge capacity that corresponds to the threshold of damage state i (i=1,2,3,4) 
is quantified through the bridge displacement δξ used for the damage state definitions (Tables 
1 to 4). Correspondingly, bridge response for a given earthquake intensity level Ag is 
quantified through bridge displacement δξ,Br|Ag, as it is calculated from bridge analysis for 
earthquake intensity Ag. Thus, the exceedance of a damage state can be represented by the 
following relationship 

 , |ξ Br Ag DSiδ δ≥  (7) 

and the probability of exceedance is written 

 ( ), |ξ Br Ag DSi fP δ δ P≥ =  (8) 

In order to derive a fragility curve quantification of the total uncertainty is also needed. 
Here, since the probability density function is idealised as lognormal (as in most previous 
studies on bridge fragility), the total uncertainty is represented by the total lognormal standard 
deviation βtot, which is assumed equal to 0.6 in line with previous studies [3]. The probability 
of exceedance using the median values of damage parameter (bridge displacement in the 
earthquake direction δξ) can be written as: 

 , , |

,

1 ln ξ Br m Ag
f

tot DSi m

δ
P Φ

β δ

⎡ ⎤⎛ ⎞
= ⋅⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (9) 

The next step is the correlation of damage parameter (δξ) with earthquake intensity 
parameter (Ag), which is achieved through the median damage evolution curve (or primary 
fragility curve, Fig. 10), which is the plot of the median value of bridge deck displacement 
versus the corresponding earthquake intensity parameter (here Ag). Fig. 9 shows the 
estimation of bridge displacement for increasing earthquake intensity levels using inelastic 
demand spectra in the region where the equal energy approximation is valid (i.e. for T≤0.5-0.6 
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sec) and elastic demand spectra in the region where the equal displacement approximation is 
valid (i.e. for T>0.5-0.6 sec). From the median damage evolution curve, given the threshold 
value of bridge deck displacement for a specific damage state, the corresponding median 
value of Ag can be estimated (Fig. 10). For example, the median threshold value of Ag for 
damage state DS2 for bridges with bearings and elastic piers of the wall type is the direction 
of the piers is that corresponding to δDS2 = δ(γeq = 1.5). 

Hence, the damage state probability can be written in terms of peak ground acceleration Ag 
as follows: 

 ,

, ,

1 ln g m
f

tot g DSi m

A
P Φ

β A

⎡ ⎤⎛ ⎞
= ⋅⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (10) 
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Figure 9: Estimation of target displacement for increasing earthquake intensity levels 
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The plot of equation (10) is the fragility (probabilistic vulnerability) curve, of the specific 
damage state (Fig. 10). For the derivation of generalized fragility curves the proposed 
methodology is applied for various values of the angle of incidence of the seismic action 
between 0° and 180°. 

3 APPLICATION OF THE PROPOSED METHODOLOGY TO SKEW BRIDGES 
In a previous study by the authors [7] the proposed methodology was applied to a straight 

overpass bridge subjected to single-component seismic action. Here, the methodology is 
applied to a skew bridge subjected to either single- or dual-component seismic action. 

3.1 Description and modelling of the selected bridge  
The selected bridge is a 5-span bridge of 180m total length (5×36) that crosses Kosynthos 

River in North-Eastern Greece (Thrace), and is part of the Egnatia Motorway. The deck 
consists of a system with 6 simply-supported precast-prestressed beams connected through a 
continuous R/C slab (Fig. 11) and rests through common elastomeric bearings 400×500×181 
(elastomer thickness 77mm) on four piers of the wall type with rectangular solid cross section 
1.2×14.7m (Fig.12). Piers are inclined at an angle of 110° with respect to the bridge’s 
longitudinal axis, i.e. there is a skew of 20o (Fig. 13). 

 

0.75

1.40
0.10

0.11

1.83

0.15
0.20

0.25 0.25 0.25 2.02

2.76 2.76 2.76 2.76 2.76

2.02

0.28

2.30

15.20

 
Figure 11: Deck section of Kosynthos bridge 
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Figure 12: Wall-type pier section of Kosynthos bridge 
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Figure 13: Inclination of pier in Kosynthos bridge with respect to the geometric longitudinal axis (Plan View) 

The bridge deck rests on the abutments through common elastomeric bearings 
400×600×226(110). The deck movement along the longitudinal direction is permitted up to 
the closure of a 100mm gap, while in the transverse direction it is unrestrained. 

The Kosynthos bridge was modelled using the software package SAP2000 Nonlinear [2]  
(Fig.14a). Precast deck beams and piers are modelled with frame elements, while the 
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continuous deck slab is modelled with shell elements. Bridge bearings are modelled with Link 
elements with length equal to the total thickness of rubber in each bearing. The base of Link 
elements is connected through rigid-arms to the top of piers (Fig. 14b). The behaviour of 
bearings is considered as linear, which is a reasonable and common assumption for low-
damping bearings (here the equivalent viscous damping is only about 5%). 

 
 

 
 a. Finite element model b. Modelling of pier-to-deck connection  
  (through elastomeric bearings) 

Figure 14: Modelling of Kosynthos bridge. 

3.2 Application of the proposed methodology 
The proposed methodology is applied twice, considering the seismic action either as 

single- component or as dual-component, for three different greek earthquakes using the 
records described in Table 5. For each of the three pairs, principal horizontal components are 
derived. The corresponding response spectra are shown in Fig. 15 for the case of Thessaloniki 
earthquake; it is worth pointing out that due to its different frequency content the minor 
component has larger spectral displacement values than the major one. 

 
Place Station Date Time M R [km] Orientation Ag [g] 

N-S 0.139 Thessaloniki City Hotel 20/6/78 08:03:21 6.1 29 E-W 0.146 
N80E 0.240 Kalamata OTE 

Building 13/9/86 17:24:31 5.8 10 N10W 0.272 
LONG 0.326 Athens Sepolia 

(Garage) 7/9/99 11:56:50 5.8 21 TRANS 0.310 
Table 5: Selected greek earthquakes. 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

T [sec]

S p
a [

g]

Major Component Minor COmponent

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

T [sec]

S d
 [m

]

Major Component Minor Component  
 a. Spa-T  b. Sd-T 

Figure 15: Elastic response spectra of principal horizontal components of Thessaloniki earthquake. 
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For the derivation of pushover curves for arbitrary angle of incidence of the seismic action, 
the modal characteristics of the bridge have to be determined. The prevailing mode in the 
longitudinal direction is translational and the bridge deck moves as a rigid body at an angle of 
20° with respect to the longitudinal axis (Fig. 16). The transverse prevailing mode is also 
translational but the deck moves as a rigid body at an angle of 110° with respect to the 
longitudinal axis (Fig. 17) or at an angle of 20° with respect to the geometric transverse axis, 
i.e. normal to the longitudinal prevailing mode. The two prevailing modes define the modal 
principal axes of Kosynthos bridge (Fig. 18, system O-M1-M2), which are rotated at an angle 
of 20° with respect to the geometric principal axes (Fig. 18, system Oxy). The rotation of the 
modal principal axes with respect to the geometric principal axes is due to the bridge 
skewness. 

 

 
Figure 16: Prevailing longitudinal mode of Kosynthos bridge 

 
Figure 17: Prevailing transverse mode of Kosynthos bridge 
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Y
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20°

 
Figure 18: Geometric and modal principal axes of Kosynthos bridge 

Regarding the periods of the two prevailing modes it is noticed (Table 6) that they differ 
only by 6.4%, something that is usual for bearing-supported bridges [8]. In addition, modal 
participating mass ratios are 100% for both prevailing modes along the corresponding modal 
principal axes, while with respect to the geometric principal axes they are εx = εM1·cos220° = 
88.3% and εy = εM1·sin220° = 11.7% for the longitudinal prevailing mode and εx = εM2·sin220° 
= 11.7% and εy = εM2·sin2110° = 88.3% for the prevailing transverse mode. 

 
Prevailing mode T [sec] εx [%] εy [%] εM1 [%] εM2 [%] 
Longitudinal 1.376 88.3 11.7 100 0 
Transverse 1.288 11.7 88.3 0 100 

Table 6: Modal characteristics of the two prevailing modes of Kosynthos bridge 

For force distribution consistent with the longitudinal and the transverse prevailing mode 
the bridge deforms only along the direction of modal principal axis O-M1 and O-M2, 
respectively. Thus, in order to apply the proposed methodology the modal principal directions 
are used instead of the corresponding geometric ones. Biaxial effects in the bridge bearings 
are ignored to simplify the procedure, keeping the modal principal axes constant; it is also 
noted that no information on shear and axial force interaction in bearings is available in the 
literature. The derived pushover curves, using the deck mass centre as control point, along the 
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modal principal directions are linear because the behaviour of common elastomeric bearing is 
considered as linear. 

Then, the proposed methodology is applied for excitation angles from 0° to 110°, and the 
results are evaluated against those from linear dynamic analyses. In the single-component 
case the CQC rule is used for the combination of the projections of displacements of the 
control point and of base shears, because the earthquake components acting along the modal 
principal directions have identical accelerograms, hence identical response spectra, and the 
correlation of modal responses is significant (the modal correlation coefficient [16] is ρΜ = 
0.696). Conversely, for the dual-component case the SRSS rule is adopted, ignoring the 
correlation of the earthquake components acting along the modal principal directions and the 
correlation of modal responses. 

The key results from the application of the proposed methodology, i.e. displacement δξ of 
the control point (deck mass centre) along the earthquake direction and the shear deformation 
of the equivalent single bearing γeq along the geometric principal directions, against the 
corresponding ones from the dynamics analyses, are shown in Tables 7 and 8 for single- and 
dual-component seismic action, respectively. 

Focussing first on the results for the simpler case of the single-component seismic action, it 
is seen from Table 7 that the differences for δξ are small for all excitation angles and vary 
from 0.0% for a=110° to 7.3% for a=60°. With respect to γeq, differences are similar to those 
for δξ, varying from 0.0% for a=110° to 5.5% for a=60°. 

When the minor principal horizontal component of the earthquake is also taken into 
account, differences are larger than in the single-component case, still small enough to be 
acceptable, varying from 0.1% for a=110° to 15.5% for a=45° for the displacement of the 
control point, and from 0.2% for a=110° to 13.1% for a=30° for the deformation of the 
equivalent shear bearing. Furthermore, differences are maximized for excitation angles a=30°, 
45° and 60°, i.e. the region where correlation between the earthquake components acting 
along the modal principal bridge directions is maximized, something anticipated due to the 
use of the SRSS rule where the aforementioned correlation is ignored. 

 
δξ [m] γeq=max[γeq,x, γeq,y] α [°] Static Dynamic 

Difference
[%] Static Dynamic 

Difference
[%] 

0 0.01598 0.01648 3.0 0.1517 0.1568 3.3 
15 0.01645 0.01654 0.5 0.1494 0.1511 1.1 
20 (M1) 0.01649 0.01656 0.4 0.1464 0.1467 0.2 
30 0.01636 0.01656 1.2 0.1378 0.1354 1.7 
45 0.01579 0.01655 4.6 0.1177 0.1132 3.8 
60 0.01533 0.01654 7.3 0.1302 0.1378 5.5 
75 0.01551 0.01659 6.5 0.1491 0.1553 4.0 
90 0.01619 0.01667 2.9 0.1585 0.1623 2.4 
105 0.01672 0.01676 0.3 0.1577 0.1587 0.6 
110 (M2) 0.01677 0.01676 0.0 0.1549 0.1549 0.0 

Table 7: Comparison between static and dynamic analysis results – Single-component seismic action. 

The derived pushover curves for various excitation angles between 0° and 110° with a step 
of 15° (including the directions of modal principal directions) are also linear since the 
behaviour of common elastomeric bearings is considered as linear for both the single- and 
dual-component case. The most critical and least critical directions regarding bridge failure 
(bridge ultimate point) are for a=90° (Ag,u,min=2.80g) and a=45° (Ag,u,max=3.80g) for single-
component seismic action, and for a=30 (Ag,u,min=1.80g) and a=75° (Ag,u,max=2.02g), i.e. for 
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the excitation angles where the maximum and the minimum value of the shear deformation of 
the equivalent single bearing is reached, for the dual-component action (Tables 7 and 8). 

 
δξ [m] γeq=max[γeq,x, γeq,y] α [°] Static Dynamic 

Difference
[%] Static Dynamic 

Difference
[%] 

0 0.01696 0.01790 5.2 0.2297 0.2306 0.4 
15 0.01601 0.01692 5.4 0.2319 0.2225 4.1 
20 (M1) 0.01651 0.01655 0.3 0.2299 0.2168 5.7 
30 0.01858 0.01651 11.1 0.2483 0.2158 13.1 
45 0.02101 0.01775 15.5 0.2433 0.2342 3.7 
60 0.02129 0.01820 14.5 0.2285 0.2436 6.2 
75 0.01927 0.01780 7.7 0.2220 0.2445 9.2 
90 0.01698 0.01658 2.4 0.2318 0.2401 3.4 
105 0.01629 0.01646 1.0 0.2321 0.2356 1.5 
110 (M2) 0.01677 0.01678 0.1 0.2315 0.2318 0.2 

Table 8: Comparison between static and dynamic analysis results – Dual-component seismic action. 

Finally, generalized fragility curves for various excitation angles are derived (Figures 19 to 
26) for both the single- and the dual-component case. The corresponding median damage state 
threshold values of peak ground acceleration are shown in Table 9. It is observed that in the 
case of single-component seismic action, for all damage states, the critical bridge direction is 
a=90°, while the less critical direction is a=45°. When the minor principal earthquake 
component is also taken into account the critical direction is a=30° while the least critical one 
is a=75°. It is also observed that for both in single- and dual-component seismic action the 
most critical and the least critical directions are similar with those resulting from the pushover 
curves, because the ultimate bridge point and the damage state definitions are based on the 
shear deformation of the equivalent single bearing. 

 
Singe-Component Seismic Action Dual-Component Seismic Action α [°] DS1 DS2 DS3 DS4 DS1 DS2 DS3 DS4 

0 0.132 0.989 1.319 2.951 0.087 0.653 0.871 1.948 
15 0.134 1.004 1.338 2.995 0.086 0.647 0.862 1.930 
20 (M1) 0.137 1.025 1.366 3.058 0.087 0.653 0.870 1.947 
30 0.145 1.089 1.452 3.249 0.081 0.604 0.806 1.803 
45 0.170 1.274 1.699 3.803 0.082 0.616 0.822 1.840 
60 0.154 1.152 1.536 3.437 0.088 0.656 0.875 1.959 
75 0.134 1.006 1.342 3.003 0.090 0.676 0.901 2.016 
90 0.126 0.947 1.262 2.824 0.086 0.647 0.863 1.931 
105 0.127 0.951 1.268 2.839 0.086 0.646 0.862 1.929 
110 (M2) 0.129 0.968 1.291 2.889 0.086 0.648 0.864 1.934 

Table 9: Median values of damage state thresholds in terms of peak ground acceleration Ag for Kosynthos bridge, 
for all excitation angles 
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Figure 19: Generalized fragility curves of Kosynthos bridge for single-component seismic action, 
DS1: Minor/Slight Damage. 
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Figure 20: Generalized fragility curves of Kosynthos bridge for dual-component seismic action, 
DS1: Minor/Slight Damage. 
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Figure 21: Generalized fragility curves of Kosynthos bridge for single-component seismic action, 
DS2: Moderate Damage. 
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Figure 22: Generalized fragility curves of Kosynthos bridge for dual-component seismic action, 
DS2: Moderate Damage. 
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Figure 23: Generalized fragility curves of Kosynthos bridge for single-component seismic action, 
DS3: Major/Extensive Damage. 

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Ag [g]

P f
 [%

]

0 15 20 (M1) 30 45 60 75 90 110 (M2)
 

Figure 24: Generalized fragility curves of Kosynthos bridge for dual-component seismic action, 
DS3: Major/Extensive Damage. 
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Figure 25: Generalized fragility curves of Kosynthos bridge for single-component seismic action, 
DS4: Failure/Collapse. 
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Figure 26: Generalized fragility curves of Kosynthos bridge for dual-component seismic action, 
DS4: Failure/Collapse. 
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It is important to point out that when the minor principal component is considered in the 
analysis, median threshold values of Ag are reduced by 41.6%, indicated a significant increase 
in bridge fragility, for all excitation angles. Finally, the maximum and the minimum median 
threshold values of Ag differ by 25.7% in the single-component case, while in the dual-
component case the difference is reduced to 10.5%. This suggests that bridge fragility remains 
practically insensitive to the earthquake direction when the minor principal component of the 
earthquake is taken into account. 

 

4 CONCLUDING REMARKS 
A methodology for bridge fragility analysis under arbitrary angle of incidence of the 

earthquake, previously proposed by the authors [7], was extended here to take into account 
the minor principal horizontal component of the earthquake (dual-component seismic action). 
Furthermore, damage states for the case of bearing-supported bridges were redefined in a 
broader manner in order to take into account the interaction between biaxial shear and axial 
load, as well as all possible failure mechanisms, of the bearings. The proposed methodology 
was applied to an actual skew bridge for both single- and dual-component seismic action. 

In skew bridges modal principal directions are not identical to geometric principal bridge 
directions, as in straight bridges, but they are rotated at a specific angle. According to the 
proposed methodology standard pushover analyses are performed for force distributions 
consistent with each of the prevailing bridge modes (longitudinal-transverse). Thus, modal 
principal bridge directions are used for the application of the proposed methodology. In the 
single-component case the CQC rule is used for the combination of the projections of the 
control point displacement and of the base shear, due to the significant correlation of modal 
responses in bearing-supported bridges. Conversely, in the dual-component case the SRSS 
rule is used, ignoring the correlation between the modal responses and also the earthquake 
components acting along the modal principal bridge directions. The expected differences in 
the range of excitation angles wherein the correlation between the earthquake components 
acting along modal principal direction is maximized are reasonably small (15%), showing the 
validity of the use of the SRSS rule in the dual-component case, for all excitation angles. 

From the derived generalized fragility curves for arbitrary angle of incidence of seismic 
action it was seen that when the minor principal horizontal component is taken into account 
bridge fragility is significantly increased (more than 40% in the studied skew bridge), whereas 
it remains almost unaffected by the angle of incidence of the seismic action. 
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