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STATISTICAL INFERENCE IN A RANDOM COEFFICIENT PANEL MODEL

LAJOS HORVÁTH AND LORENZO TRAPANI

Abstract. This paper studies the asymptotics of the Weighted Least Squares (WLS) estimator of

the autoregressive root in a panel Random Coe¢ cient Autoregression (RCA). We show that, in an

RCA context, there is no �unit root problem�: the WLS estimator is always asymptotically normal,

irrespective of the average value of the autoregressive root, of whether the autoregressive coe¢ cient

is random or not, and of the presence and degree of cross dependence. Our simulations indicate that

the estimator has good properties, and that con�dence intervals have the correct coverage even for

sample sizes as small as (N;T ) = (10; 25). We illustrate our �ndings through two applications to

macroeconomic and �nancial variables.

Keywords: Random Coe¢ cient Autoregression, Panel Data, WLS estimator, common factors

JEL Codes: C13, C23.

1. Introduction

In this paper, we study the asymptotics for the Weighted Least Squares (WLS) estimator of the autore-

gressive coe¢ cient ' in the following Random Coe¢ cient Autoregressive (RCA) panel model:

(1.1) yi;t = ('+ bi;t) yi;t�1 + ui;t; with 1 � t � T and 1 � i � N:

In a time series setting, RCA models have been popular for a very long time, chie�y due to their

�exibility and analytical tractability - we refer to the monograph by Nicholls and Quinn (1983) for

an excellent introduction to the topic, mainly in the �eld of biostatistics, and to the contributions by

Swamy (1970), Feige and Swamy (1974), and Hsiao (1975).

Recently, also due to the increasing availability of large datasets, models with random coe¢ cient have

been applied in the context of panel data analysis (see Hsiao and Pesaran, 2004). Although slope het-

erogeneity may be desirable in a panel context, a speci�cation with �xed heterogeneous slopes may yield

a loss of e¢ ciency due to the penalty it imposes onto the degree of freedom. This is evident e.g. in the

context of forecasting, where several studies by Baltagi and his co-authors point out that, whilst models

with homogeneous slopes are often rejected by the data, they could however yield superior predictive

performances - see e.g. Baltagi and Gri¢ n (1997), Baltagi, Gri¢ n and Xiong (2000), Baltagi, Bresson

and Pirotte (2002) and Baltagi, Bresson, Gri¢ n and Pirotte (2002). This explains the importance of

Key words and phrases. Random Coe¢ cient Autoregression, Panel Data, Weighted Least Squares, Cross Dependence.
Research supported by NSF grant DMS 0905400 .
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2 LAJOS HORVÁTH AND LORENZO TRAPANI

models that, on the one hand, do not impose the restriction of slope homogeneity but, on the other hand,

do not overparameterise the model. Similar considerations also hold for the panel unit root literature

(see e.g. the survey by Breitung and Pesaran, 2008): whilst earlier contributions proposed tests for the

null that ' = 1 and bi;t = 0 for all i and t under the null, with j'j < 1 and bi;t = 0 under the alternative,

more recent contributions consider the same null hypothesis but entertain the possibility that, under the

alternative, ' di¤ers across units. However, in this case the model becomes overparameterised under

the alternative. A possible solution is to use the RCA panel model (1.1): this was originally proposed

by Ng (2008), in order to estimate the fraction of units that have a unit root, and it was subsequently

fully exploited, to construct a test for unit root, by Westerlund and Larsson (2012). Of course, the

dynamics of yi;t in (1.1) is controlled by '+ bi;t, and not by ' alone. Thus, when V ar (bi;t) > 0, having

for example ' = 1 does not mean having a unit root; rather, as illustrated in the seminal contribution

by Granger and Swanson (1997), it means having a �stochastic unit root� series, i.e. a series which

is non-stationary on average, having periods of explosive and stationary dynamics.1 Results on the

estimation of ' are already available in a time series context: Aue et al. (2006) and Berkes et al.

(2009) use the quasi-maximum likelihood (QML) method to estimate the regression coe¢ cient, showing

that the asymptotic distribution of the estimated ' is normal irrespective of the value of ', as long as

Eb2i;t > 0. Hill and Peng (2014) propose an Empirical Likelihood (EL) estimator which a¤ords standard

normal inference even when bi;t = 0 - that is, even when there is no coe¢ cient randomness. However,

in a large panel context, both approaches could be problematic, due to computational issues (the QML

estimator), or to the possible presence of dependence across units (the EL estimator).

Hence, in this contribution we complement the existing results in the literature by developing a full-

�edged asymptotic theory for the WLS estimator of ' in (1.1). The WLS estimator avoids the issues

described above, and it has been shown, in a time series context, to work well in comparison with the

maximum likelihood approach (Schick, 1996; Koul and Schick, 1996). We show that in general, thanks

to the self-normalised nature of the WLS estimator, there is no �unit root problem�in case of the RCA

model de�ned by (1.1). Further, we study an estimator of the asymptotic variance of the WLS estimator

which is consistent under any degree of cross sectional dependence; hence, it is possible to normalise

the estimated ' and recover standard normal inference, with no need for any prior inference on the

possible presence of a factor structure. We also show that, contrary to the time series case, the suitably

normalised WLS estimator converges to a normal distribution even when the autoregressive root is not

random, i.e. when bi;t = 0 for all 1 � i � N and 1 � t � T ; the only case in which asymptotic normality

does not hold is the case of a constant explosive root ' in presence of strong common factors. From a

1We are grateful to an anonymous Referee for pointing this interpretation out to us.
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technical point of view, the asymptotics derived in this paper requires that min fN;Tg ! 1. Earlier

studies in the context of dynamic panels (e.g. Arellano and Bond, 1991) focused on the case of �xed T

and N !1. In such context, having j'j > 1 is inconsequential. Thus, as far as the applicability of our

setup is concerned, the uni�ed estimation theory developed here is needed only when T !1.

Our �ndings have important implications in various areas where panel data are routinely employed.

In the context of a standard dynamic panel model, the RCA model avoids, as is well known, the

heterogeneity bias problem (Swamy, 1970); moreover, not having the unit root problem is advanta-

geous per se. Thus, our results are bound to prove useful, for example, in the context of panel studies

of hyperin�ation (Juselius and Mladenovic, 2002), or in the literature on bubbles (Banerjee et al., 2012).

The remainder of the paper is organised as follows. We lay out the model and the assumptions, and

discuss the estimation techniques in Section 2. The asymptotics is reported in Section 3. Particularly,

in Section 3.1 we show that the WLS estimator is consistent; in Section 3.2 we study the limiting

distribution. Extensions to the cases of more complex models are reported in Section 4. The properties

of the WLS estimator are illustrated through a Monte Carlo exercise (Section 5), and a set of empirical

applications (Section 6). Section 7 concludes. Technical Lemmas and the proofs of the results in Section

3 are in Appendix; all other proofs are in the Supplement (Horváth and Trapani, 2016).

NOTATION. We denote the ordinary limit as �!�; convergence in probability with �P!�; convergence in

distribution as �D!�; N(�; a) denotes a normally distributed random variable with mean � and variance

a; ��� denotes de�nitional equality; k�k denotes the Euclidean norm. Other notation is introduced

further ahead in the paper, when needed.

2. Estimation and main assumptions

In this section, we introduce the WLS estimator of ', and we spell out the main assumptions needed

for the asymptotics. Recall model (1.1), given by

yi;t = ('+ bi;t) yi;t�1 + ui;t:

As far as the error term ui;t is concerned, we consider a factor structure to capture the possible presence

of strong cross sectional dependence. Following Ng (2008) we write

(2.1) ui;t = ei;t + 
ivt; 1 � i � N; 1 � t � T;

i.e. ui;t is decomposed into two terms: ei;t depends only on unit i while the term vt is common for all

panels.
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The WLS estimator, '̂, is the solution to the minimisation problem (see Janeµcková and Pra�ková, 2003)

(2.2) min
s

NX
i=1

TX
t=2

(yi;t � syi;t�1)2
1 + y2i;t�1

=
NX
i=1

TX
t=2

(yi;t � '̂yi;t�1)2
1 + y2i;t�1

:

The weighing function in (2.2) is not designed to attain e¢ ciency. Indeed, this would require employing,

as weights, 1=
��
Eu2i;t

�
+
�
Eb2i;t

�
y2i;t�1

�
, or a feasible version thereof; however, as shown in Chan, Li and

Peng (2012), �rst order asymptotics holds when setting e.g. Eu2i;t = Eb
2
i;t = 1, so that it can be expected

that consistency will be ensured when using (2.2). De�ne, for convenience,

'̂ � '̂N;T =
AN;T
BN;T

;

with

(2.3) AN;T �
NX
i=1

TX
t=2

yi;tyi;t�1
1 + y2i;t�1

and BN;T �
NX
i=1

TX
t=2

y2i;t�1
1 + y2i;t�1

:

Consider the following assumption:

Assumption 1. It holds that: (i) (a) for every i = 1; :::; N , fbi;t;�1 < t < 1g is i.i.d. across t; (b)

for every i = 1; :::; N , fei;t;�1 < t < 1g is i.i.d. across t; (c) fvt;�1 < t < 1g is i.i.d. across t;

(ii) (a) for every i = 1; :::; N , E (bi;0) = E (ei;0) = 0, and also E (v0) = 0; (b) for every i = 1; :::; N ,

E
�
b2i;0
�
= �2i and E

�
e2i;0
�
= �2i , and E

�
v20
�
= 1; furthermore N�1 PN

i=1

�
�2i + �

2
i

�
= O (1); (iii) (a)

fei;tg+1t=�1, fbi;tg
+1
t=�1 and fvtg+1t=�1 are three mutually independent groups for i = 1; :::; N ; (b) yi;0

is independent of fei;t; bi;t; vtg for i = 1; :::; N ; (iv) the 
i�s are independent across i and such that (a)


i (N;T )
D! �
i for all i = 1; :::; N as N;T ! 1; (b) N�1 PN

i=1 j
ij = OP (1) as min (N;T ) ! 1; (c)


i is independent of fyi;0; ei;t; bi;t; vtg for i = 1; :::; N .

Assumption 1 contains a set of regularity conditions, as high level as possible. Parts (i) and (iii)

stipulate that all the variables are serially independent (part (i)), and cross-sectionally independent

(part (iii)). Cross sectional dependence among the yi;ts is allowed for through the presence of a factor

structure in the error - the term 
ivt in equation (2.1); note that we do not require estimation of either


i or vt, which are both treated as nuisance parameters, or of the number of common factors if vt is

multidimensional. The theory developed here can be extended to accommodate for serial dependence,

with minor modi�cations to the main arguments of the proofs.
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Part (ii) of Assumption 1 states that our theory requires the (minimal) assumption on the existence of

second moments. A su¢ cient condition for parts (ii) and (iii) to hold is that Ee2i;0 < c1, Eb2i;0 < c2

and E j
ij < c3 for all i = 1; :::; N , for some constants c1, c2 and c3. By part (b) of the assumption, the

initial values yi;0 can be constants or random variables, as long as they are independent of the future

error terms; no moment restrictions are needed on the initial conditions.

Finally, part (iv) takes into account the possibility that the correlation between units may decay; the

limit in part (a), �
i, can be a constant (even 0 or 1); however, part (b), intuitively, stipulates that we

can only have very few large loadings.

Equations (1.1) and (2.1) can be solved explicitly, resulting in

yi;t = yi;0

tY
s=1

('+ bi;s) +
tX

s=1

ui;s

t�1Y
z=s

('+ bi;z+1)(2.4)

= yi;0

tY
s=1

('+ bi;s) +
tX

s=1

ei;s

t�1Y
z=s

('+ bi;z+1) + 
i

tX
s=1

vs

t�1Y
z=s

('+ bi;z+1):

According to (2.4), the yi;ts can be decomposed into three parts. The �rst term shows the e¤ect of the

initial value yi;0; the second term is independent of all the other units, while the last one contains all

the dependence of the ith unit to the other units.

Consider equation (1.1). According to the value taken by bi;t, each of the yi;t can be: stationary

(which, heuristically, corresponds to the AR root ' + bi;t being �smaller than one�); explosive (which,

heuristically, corresponds to the case of ' + bi;t being �larger than one�); or on the boundary (which,

heuristically, corresponds to the AR root '+ bi;t being �equal to one�).

We now discuss the three regimes in detail.

Stationary units

Formally, we say that the ith unit is stationary if

(2.5) E log j'+ bi;0j < 0;

and we henceforth denote C(1) to be a set containing the indices of the stationary units, i.e. the set

of the i�s for which (2.5) holds. Note that if condition (2.5) holds, then yi;t converges to a stationary

solution as t!1. The stationary solution (henceforth denoted as �yi;t) is given by

(2.6) �yi;t =
tX

s=�1
ei;s

t�1Y
z=s

('+ bi;z+1) + �
i

tX
s=�1

vs

t�1Y
z=s

('+ bi;z+1):
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Aue et al. (2006) showed that the sums de�ning �yi;t are �nite with probability one, and that there

exists a �i 2 (0; 1] such that

(2.7) �i � Ej'+ bi;0j�i < 1:

In order to study the contribution of the stationary units to the asymptotics of '̂ consider the following

assumption:

Assumption 2. It holds that, as N !1: (i)

1

N

X
i2C(1)

�
Ejei;0j�i + Ej�
ijEjv0j�i

1� �i

�1=(1+�i) 1

�
1=(1+�i)
i

= O(1);

(ii) N�1P
i2C(1)

h
(1� �i)�1Ej
i � �
ij�iEjv0j�i

i1=(1+�i)
= o(1); (iii)

1

N

X
i2C(1)

E

(
j�
ij

�
Ejei;0j�i + j�
ijEjv0j�i

1� �i

�1=(1+�i) 1

�
1=(1+�i)
i

)
= O(1);

(iv) N�1P
i2C(1) [�i(1� �i)]

�1
= O(1).

Assumption 2 is rather technical, and it poses some regularity conditions on the stationary units.

A su¢ cient condition for parts (i) and (iii) is that Ejv0j < c1, Ejei;0j < c2 and E�
2i < c3 and

0 < c4 � �i � c5 < 1 for all i 2 C (1), for some constants c1,..., c5. However, by Assumption 2, some of

these moments could be tending to in�nity, but in that case the number of stationary units should be

small; similarly, if 
i is nonrandom, the assumption implies that �
i is �nite for all i 2 C (1). By a similar

logic, a su¢ cient condition for part (ii) is that 
i converges to �
i in L1-norm, viz. Ej
i � �
ij = o (1).

Finally, part (iv) stipulates that �i and (1� �i) cannot be too small for too many units.

Explosive units

We say that the ith unit is explosive if

(2.8) E log j'+ bi;0j > 0;

and we denote C(2) to be the set containing the indices of the explosive units, i.e. the set of the i�s for

which (2.8) holds. When (2.8) is satis�ed, Berkes et al. (2009) prove that jyi;tj ! 1 at an exponential

rate in probability as t!1 (see also Lemma 7.4).
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Henceforth, let

(2.9) ��2i � var(log j'+ bi;0j):

We need the following assumption when studying the asymptotics of explosive units.

Assumption 3. It holds that

1

N

X
i2C(2)

��3i + 1

(E log j'+ bi;0j)3
= O(1):

A set of su¢ cient conditions for Assumption 3 is that ��i < c1 and E log j'+ bi;0j > c2 for all i 2 C (2),

for some constants c1 and c2 > 0. This entails that the values of the ' + bi;0 are not too spread out

(this also follows from Assumption 4(ii) below); further, the part that requires E log j' + bi;0j > 0 is

a way of ruling out too many �local-to-explosive�cases. Further assumptions that are needed for the

case of explosive units will be spelt out when discussing the boundary case.

Boundary units

Finally, when it holds that

(2.10) E log j'+ bi;0j = 0;

we say that unit i is on the boundary between the stationary and the explosive behaviour. Indeed, if

�i = var(bi;0) = 0, under (2.10) the ith unit would boil down to being a standard AR process with a

unit root. We henceforth denote C(3) to be the set containing the indices of the units on the boundary,

i.e. for which (2.10) is satis�ed.

When (2.10) holds, Berkes et al. (2009) show that jyi;tj ! 1 in probability as t!1. However, in this

case the rate of convergence to 1 is slower than exponential (see Lemma 7.4).

Under (2.8) as well as (2.10), the yi;ts are therefore unbounded. In both cases, we consider the following

set of assumptions, again needed to study the impact of these units on the asymptotics of '̂.

Assumption 4. It holds that: (i) ui;0 has a bounded density if i 2 C(2) [ C(3); the upper bound

is henceforth denoted as Mi; (ii) there exists a �i 2 [v; v] with v > 0 and v > 2 such that Ej log j' +
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bi;0jj�i < 1 for all i 2 C(2) [ C(3); (iii) letting mi � Ej log j' + bi;0j � E log j' + bi;0jj�i , we have

N�1P
i2C(2)[C(3)Ej�
ijMi

�
1 + ���1i +mi

�
= O(1) (recall that ��i is de�ned in (2.9)).

3. Asymptotics

After spelling out the full set of assumptions needed for the consistency of '̂, in this section we report

the asymptotic properties of '̂. Section 3.1 contains results on the consistency of the estimator; the

limiting distribution is in Section 3.2.

3.1. Consistency. We start by showing that '̂N;T is a consistent estimator of '. Henceforth, #A

denotes the cardinality of a set A.

Theorem 3.1. Under Eb2i;t > 0, if Assumptions 1-4 hold and

(3.1) lim
N!1

1

N

8<: X
i2C(1)

E
�y2i;0

1 + �y2i;0
+#C(2) + #C(3)

9=; = a0 > 0;

as min(N;T ) ! 1, we have '̂N;T
P! '. The same result holds when bi;t = 0, under Assumptions 1-3,

4(i)-(ii) and (3.1).

Remarks

Theorem 3.1 states that '̂N;T is always consistent for ', irrespective of the value taken by '. Thus,

'̂N;T is consistent if all units are stationary, if some of them are nonstationary, and even if some or all

of them are explosive. Similarly, the results hold irrespective of whether Eb2i;t > 0 or whether bi;t = 0.

In this respect, '̂N;T does not have the typical �boundary problems�which are encountered in the unit

root literature (see for example Phillips, 1987). Finally, (3.1) requires that a0 is nonzero, which is a

non-degeneracy condition to rule out that the denominator of '̂N;T converges to zero. Equation (3.1)

always holds, unless there are �too many�units with �yi;0 = 0 and the number of units with j'j � 1 is

very small. Note that, when bi;t = 0, the condition is automatically satis�ed for j'j � 1, with a0 = 1.

3.2. Limiting distribution. In this section, we study the asymptotic distribution of the suitably

normed '̂N;T�'. The main results of this section are: the limiting distribution, the rates of convergence,

and the computation of the norming sequences. We show that these depend (when Eb2i;t > 0) on

(3.2) rN � E

24 X
i2C(1)


i
�yi;0

1 + �y2i;0

352 = X
i2C(1)

X
j2C(1)

E

(

i
j

�yi;0
1 + �y2i;0

�yj;0
1 + �y2j;0

)
:
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The quantity rN is determined by the amount of cross sectional dependence across the stationary

units only. When Eb2i;t > 0, cross sectional dependence has an impact on the asymptotics of '̂N;T

only through the stationary units. Note that if no factor structure is present in the error term ui;t,

i.e. if 
i = 0 for every i 2 C (1), then rN = 0. On the other hand, an upper bound for rN isP
i2C(1)

P
j2C(1)E

��
i
j�� = O �N2
�
, which represents strong cross sectional dependence.

In order to derive the asymptotic distribution of '̂N;T , we need the following assumption, which strength-

ens some of the moment conditions in Assumption 1.

Assumption 5. Let � > 0. It holds that: (i) Ejv0j2+� < 1 and N�1PN
i=1Ej
ij2+� = O(1); (ii)

N�1PN
i=1 Ejbi;0j2+� = O(1) and N�1PN

i=1 Ejei;0j2+� = O(1).

The main results of this section are the following two theorems. The �rst one deals with the case of

genuinely random autoregressive root (i.e. Eb2i;t > 0), whereas the second one considers the properties

of the estimator when bi;t = 0.

Theorem 3.2. Let Assumptions 1-4 with Eb2i;t > 0, and (3.1) hold.

(i) If Assumption 5(i) is satis�ed and limN!1
rN
N2 = a1 > 0, then, as min(N;T )!1, we have

(3.3)
p
T
�
'̂N;T � '

� D! N

�
0;
a1
a20

�
:

(ii) If Assumption 5(i) is satis�ed and limN!1
rN
N =1, then, as min(N;T )!1, we have

(3.4)

s
N2T

rN

�
'̂N;T � '

� D! N

�
0;
1

a20

�
:

(iii) If Assumptions 5(i)-(ii) are satis�ed and lim supN!1
rN
N <1, then, as min(N;T )!1, we have

(3.5)
p
NT

�
'̂N;T � '

� D! N

�
0;
a2
a20

�
;

where

lim
N!1

1

N

8<: X
i2C(1)

�2iE

 
�y2i;0

1 + �y2i;0

!2
+

X
i2C(2)[C(3)

�2i +
X
i2C(1)

�2iE

 
�yi;0

1 + �y2i;0

!2
+ rN

9=; = a2:

Remarks
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Theorem 3.2 reports the rates of convergence and the limiting distribution of '̂N;T under various degrees

of cross sectional dependence, depending on the value taken by rN . The estimator always has a normal

distribution, but the rate of convergence is a¤ected by cross sectional dependence.

Part (i) of the Theorem considers the case of strong cross sectional dependence. An example in which

part (i) holds is if 
i = 1 for all units i. In this case, we show that '̂N;T is
p
T -convergent. Note that

the limiting distribution is completely determined by the stationary units: units that are explosive or

on the boundary do not have an impact on (3.3).

Turning to part (iii) of the Theorem, this holds when nearly all the loadings of the stationary units go

to 0. This also includes the important case of 
i = 0 for 1 � i � N , i.e. cross sectional independence.

Indeed, if the �
is are nonrandom, with �
i = �
j = 0, then �yi;t and �yj;t are independent (and independent

of 
i) and therefore

rN
N
=
1

N

0@ X
i2C(1)


iE
�yi;0

1 + �y2i;0

1A2

;

if, further, the distribution of ei;0 is symmetric around 0, then E
�yi;t

1+�y2i;t
= 0, so that �
i = 0 su¢ ces for

part (iii) to hold, regardless the rate of convergence of 
i to 0. However, if the distribution of ei;0 is

asymmetric, 
i must converge to 0 at a faster rate than N
�1=2. This condition is known in the panel

literature as having �weak factors�- see Onatski (2012). A special case of part (iii) of the Theorem is

the case where limN!1 rN=N = 0. In such case, equation (3.5) specialises into
p
NT

�
'̂N;T � '

� D!

N
�
0; a3=a

2
0

�
, where

lim
N!1

1

N

8<: X
i2C(1)

�2iE

 
�y2i;0

1 + �y2i;0

!2
+

X
i2C(2)[C(3)

�2i +
X
i2C(1)

�2iE

 
�yi;0

1 + �y2i;0

!29=; = a3:

Finally, part (ii) of the Theorem is the case in between strong cross sectional dependence (part (i)),

and very weak cross sectional dependence (part (iii)). This case can be illustrated by considering, as

an example, the case where the loadings 
i are non-random with 
i = N
�� for some � 2

�
0; 12
�
.

We now consider the asymptotic properties of '̂N;T when bi;t = 0; we show that the rates of convergence

depend on

(3.6) r0N �
NX
i=1

NX
j=1

�
E
��
i
j��2�1=2 :

Consider the notation CN = max
�

1p
N
;

q
r0N
N2

�
.

Theorem 3.3. Under bi;t = 0, let Assumptions 1-3, 4(i) and (3.1) hold. As min(N;T )!1
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(i) Under the Assumptions of Theorem 3.2 with bi;t = 0 and

lim
N!1

1

N

8<:
NX
i=1

�2iE

 
�yi;0

1 + �y2i;0

!2
+ rN

9=; = a02 > 0;

the results of Theorem 3.2 hold for j'j < 1.

(ii) If ' = 1, '̂N;T � 1 = OP
�
T�2=3CN

�
; further, if Assumption 5 holds,

(3.7) NT

24 NX
i=1

�2i

 
TX
t=2

yi;t�1
1 + y2i;t�1

!2
+

 
NX
i=1


i

TX
t=2

yi;t�1
1 + y2i;t�1

!235�1=2 �'̂N;T � 1� D! N (0; 1) :

(iii) If j'j > 1, then '̂N;T � ' = OP
�
T�1CN

�
; further, if Assumption 5 holds and r0N=N ! 0

(3.8) NT

24 NX
i=1

�2i

 
TX
t=2

yi;t�1
1 + y2i;t�1

!235�1=2 �'̂N;T � '� D! N (0; 1) :

Remarks

Theorem 3.3 considers the case in which ' is constant over time and homogeneous across units: the

WLS estimator '̂N;T is always consistent.

Part (i) is, in essence, the same as in Theorem 3.2. Part (ii) considers the panel unit root case: in this

case the WLS estimator of ' has a rate of convergence that is faster than T�1=2. The rate provided

by the theorem is not the sharpest possible, and it is indeed only an upper bound. Equation (3.7)

stipulates that, under all circumstances, the WLS estimator of ' converges to a normal distribution, so

that even in this case there is no �unit root problem�. Technically, this is due to the fact that, although

jyi;tj ! 1 in probability, this is not at an exponential rate; thus, the variance of the term that leads

the asymptotics still diverges as T !1.

As far as part (iii) is concerned, the rate of convergence is T ; the impact of the cross sectional dimension

on the rate of convergence is the same as in the case of a genuinely random coe¢ cient model. However,

asymptotic normality holds when cross sectional dependence is weak (i.e. under r0N=N ! 0). Intuitively,

this is a consequence of being in a panel data context: the cross sectional averaging a¤ords a CLT to hold,

even in those cases in which, in a single time series case, it would be impossible to show convergence to

normality (see the comments in Hill and Peng, 2014). Conversely, when there is strong cross sectional

dependence, '̂N;T � ' does not, in general, converge to a normal. Heuristically, this is due to the

fact that the variance of the leading term stays bounded as T ! 1, which is a degenerate case - see

e.g. Davidson (1993). This is a limitation of WLS-based inference, although it may be argued that it

corresponds to a quite restrictive case: ' is larger than 1 (thereby having a genuinely explosive model),
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and it is the same across all units. This also entails that an estimation technique based on WLS which

removes the factor structure 
ivt will yield asymptotic normality under all possible cases.

Finally, it is instructive to compare the rates of convergence provided in the theorem with those that

one would have in a pure time series setup, when using a standard OLS estimator. In such a case,

the rate of convergence is the same as in Theorem 3.3 for the case of a stationary series, viz. j'j < 1.

When ' = 1, it is well known that the OLS estimator of ' is T -consistent; as mentioned above, the rate

provided in the theorem is not the sharpest one. The biggest discrepancy, however, is found in the case

of an explosive root, viz. j'j > 1: the T -consistency of the WLS estimator can be contrasted with the

OLS estimator (see Wang and Yu, 2015), which converges at a rate OP
�
'T
�
. Intuitively, this is due to

the use of the weight 1=
�
1 + y2i;t�1

�
, which is designed to hold down both numerator and denominator

of '̂N;T .

The main result in Theorems 3.2 and 3.3 is that, modulo the exception detailed in Theorem 3.3, the

suitably normalised estimation error '̂N;T �' converges to a normal. We now discuss the estimation of

the asymptotic variance of '̂N;T �'. Our main result is that there exists one estimator which is always

consistent, with no need to know the amount of cross sectional dependence, or whether Eb2i;t > 0 or

bi;t = 0. Thus, '̂N;T �' can always be normalised by such estimator, and the normalised quantity will

always converge to a standard normal.

The estimation of the asymptotic variance is based on the weighted residuals

(3.9) zi;t =
�
yi;t � '̂N;T yi;t�1

� yi;t�1
1 + y2i;t�1

:

De�ne UN;T �
PT

t=2

PN
i=1

PN
j=1 zi;tzj;t; we propose the following �universal�estimator of the asymp-

totic variance of '̂N;T � ':

(3.10) VN;T =
UN;T
B2N;T

:

Theorem 3.4. Let the Assumptions of Theorems 3.2 and 3.3 hold, and assume further that, for some

1 � c2 <1

(3.11)
X
i2C(1)

X
j2C(1)

E

�����
i
j �yi;0
1 + �y2i;0

�yj;0
1 + �y2j;0

����� � c2rN :
Then, as min(N;T )!1, we have V �1=2N;T

�
'̂N;T � '

� D! N(0; 1).
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Remarks

Theorem 3.4 illustrates once again that there is no boundary problem in case of a panel RCA, apart

from the case discussed in Theorem 3.3. Interestingly, the theorem stipulates that the same random

normalization can be used regardless the structure of the units: the random norming by UN;T is the same

regardless of how strong is the cross correlation between the units, and of the proportion of stationary

versus nonstationary (boundary or explosive) units. Thus, in contrast to autoregressive processes, if we

wish to test for H0 : ' > '0, the asymptotic normal limit can be used regardless the value of '0, even

if '0 � 1. As mentioned in Theorem 3.3, the only case in which standard normal inference is not valid

is when bi;t = 0 and ' > 1 in the presence of a pervasive factor structure.

4. Extensions: introducing deterministics and covariates

In this section, we show that our results are essentially unchanged when considering extensions of the

basic model such as the presence of individual e¤ects and covariates. Speci�cally, we consider the case

where one observes

(4.1) y�i;t = �i + yi;t;

with

(4.2) yi;t = ('+ bi;t)yi;t�1 + �
0
ixi;t + ui;t; 1 � i � N and 1 � t � T ;

in (4.2), ui;t is de�ned in (2.1). No assumptions are needed on the �is, since these are removed prior

to estimating '; thus, the individual e¤ects can be �xed, random, and correlated or not with the other

covariates. Similarly, we allow for some �exibility in the unit speci�c regressors xi;t - these can e.g.

be correlated with yi;t�1, and as far as serial dependence is concerned, we only assume that they are

stationary. Henceforth, the number of regressors xi;t is referred to as h.

Model (4.1)-(4.2) nests several popular speci�cations. The leading examples are: (a) the �classical�

�xed or random e¤ects dynamic panel regression, which corresponds to the case bi;t = 0 and 
i = 0;

(b) the panel model with time e¤ects (although an important restriction in our case is that correlation

between the time e¤ect and yi;t�1 is ruled out) which corresponds to having bi;t = 0 and 
i = 
; (c) in

the most general case, our model is similar to the ones considered in Bai (2009) and Pesaran (2006), with

the addition of considering the presence of the weakly endogenous regressor yi;t�1 (see also Song, 2013;

Chudik and Pesaran, 2015; Moon and Weidner, 2015), and of randomness in the slope of its coe¢ cient;

in our case, though, we need to rule out the correlation between xi;t and 
ivt.
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As in the previous sections, the focus of our analysis is the estimation of ' only. Firstly, in order to

remove individual e¤ects, let

(4.3) ~yi;t = y
�
i;t � y�i;0 = yi;t � yi;0;

so that the �is are treated as nuisance parameters.2 As far as covariates are concerned, the likelihood

maximisation problem can be formalised as

(4.4) min
';�1;:::;�N

S ('; �1; :::; �N ) ;

with

S ('; �1; :::; �N ) =
NX
i=1

TX
t=1

�
~yi;t � '~yi;t�1 � �0ixi;t

�2
1 + ~y2i;t�1

:

From (4.4), it follows that the infeasible estimator of �i is, for 1 � i � N

(4.5) ~�
INF

i =

"
TX
t=2

xi;tx
0
i;t

1 + ~y2i;t�1

#�1 " TX
t=2

xi;t (~yi;t � '~yi;t�1)
1 + ~y2i;t�1

#
:

Hence

(4.6) ~' � ~'N;T =
~AN;T
~BN;T

;

where

~AN;T = AN;T �
NX
i=1

"
TX
t=2

xi;t~yi;t�1
1 + ~y2i;t�1

#0 " TX
t=2

xi;tx
0
i;t

1 + ~y2i;t�1

#�1 " TX
t=2

xi;t~yi;t
1 + ~y2i;t�1

#
;(4.7)

~BN;T = BN;T �
NX
i=1

"
TX
t=2

xi;t~yi;t�1
1 + ~y2i;t�1

#0 " TX
t=2

xi;tx
0
i;t

1 + ~y2i;t�1

#�1 " TX
t=2

xi;t~yi;t�1
1 + ~y2i;t�1

#
:(4.8)

The de�nitions of ~AN;T and ~BN;T can be contrasted with those of AN;T and BN;T provided in (2.3).

Note that, based on this approach, it is possible to have a feasible estimator of the �is, de�ned as

(4.9) ~�i =

"
TX
t=2

xi;tx
0
i;t

1 + ~y2i;t�1

#�1 " TX
t=2

xi;t
�
~yi;t � ~'N;T ~yi;t�1

�
1 + ~y2i;t�1

#
:

2The scheme proposed in (4.3) is not the only way of dealing with unit speci�c e¤ects. A more natural approach would

be based on de�ning the vectors ~xi;t =
h
1; x0i;t

i0
and ~�i = [�i; �

0
i]
0, and estimate the slopes ~�i in

y�i;t = ('+ bi;t)yi;t�1 + ~�
0
i~xi;t + ui;t;

based on (4.4). In such a case, one would be able to estimate the average of the �is (see Section 4.1). On the other
hand, the individual e¤ects �i would have to satisfy the same assumptions as �i; for example, they would have to be
independent of yi;t�1.
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We discuss, as a by-product, estimation and inference on the �is, and on their average, in Section 4.1.

Consider now the following assumption on the covariates xi;t, which complements the existing assump-

tions.

Assumption 6. It holds that: (i) for i 2 C (1), xi;t = f
�
�i;t; �i;t�1:::

�
where (a) E jxi;0j4 < 1; (b)

f : Rh0�1 ! Rh is a measurable function; (c)
�
�i;t
	
, 1 � t � T is a sequence of i.i.d. (across t) random

variables with values in Rh0 ; (d) letting x(m)i;t = f
h
�i;t; :::; �i;t�m; �

(m)
i;t;t�m�1; :::

i
with �(m)i;t;j a sequence of

i.i.d. (across i and t) copies of �i;0, it holds that E



xi;t � x(m)i;t




 = O (rm), where rm = e�m; (ii) (a)

f�ig, fxi;tg and fei;t; 
ivt; bi;tg are three mutually independent groups for t = 1; :::; T and i = 1; :::; N ;

(b) yi;0 is independent of
�
ei;t; bi;t; 
ivt; �

0
ixi;t

	
for i = 1; :::; N ; (iii) (a)

1

N

X
i2C(1)

�
Ej�0ixi;0j�i + Ejei;0j�i + Ej�
ijEjv0j�i

1� �i

�1=2(1+�i) 1

�
1=2(1+�i)
i

= O(1);

(b) N�1P
i2C(1)

h
(1� �i)�1Ej
i � �
ij�iEjv0j�i

i1=2(1+�i)
= o(1); (c)

1

N

X
i2C(1)

E

(
j�
ij

�
Ej�0ixi;0j�i + Ejei;0j�i + j�
ijEjv0j�i

1� �i

�1=2(1+�i) 1

�
1=2(1+�i)
i

)
= O(1);

(d) E k�ik
�i < 1 for i 2 C (1); (iv) �0ixi;0 + ui;0 has a bounded density if i 2 C(2) [ C(3); (v) (a)

maxi;tE kxi;tk8+� <1 for every i = 1; :::; N and (b) E jei;0j4+� <1 for every i = 1; :::; N .

Part (i) of the assumption states that the xi;ts are Bernoulli shifts, and therefore they are stationary

processes that are, possibly, serially dependent; and that there exists an m-dependent approximation

x
(m)
i;t which, according to part (d), is close enough to xi;t. This way of modelling dependence has been

employed in several contexts (see e.g. Section 21 in Billingsley, 1968); as illustrated in Aue et al. (2009),

it has the advantages of being mathematically tractable and of nesting several popular models, such as

multivariate ARMA and a wide variety of GARCH models. Note that we only need to make an explicit

assumption on the time dependence of the xi;ts for the stationary units. By part (ii), the xi;ts are not

required to be cross-sectionally independent, even though they are required to be independent of the

error term ei;t and of the common factor structure vt. Parts (iii) and (iv) extend Assumptions 2 and 4

(respectively), so that technical results such as Lemmas 7.2-7.4 hold in presence of covariates also; note

that we do not need to assume that xi;t and yi;t�1 are independent.

De�ne now

Di;t � ~yi;t�1 � x0i;t

"
TX
t=2

xi;tx
0
i;t

1 + ~y2i;t�1

#�1 TX
t=2

xi;t ~yi;t�1
1 + ~y2i;t�1

;
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and consider the notation

~rN = E

24 X
i2C(1)


i
Di;0
1 + �y2i;0

352 :
The following results characterise the consistency and the limiting distribution of ~'N;T , and they are

the counterpart to Theorems 3.1 and 3.2 respectively.

Theorem 4.1. Under Eb2i;t > 0, let Assumptions 1-5 and 6(i)-(ii)-(iii)-(iv)-(v)(a) hold. If

lim
N!1

1

N

8<: X
i2C(1)

E
�yi;0Di;0
1 + �y2i;0

+#C(2) + #C(3)

9=; = ~a0 > 0;

as min(N;T ) ! 1 it holds that ~'N;T
P! ', with the same rates of convergence as in Theorem 3.2.

Further, it holds that

(4.10)

s
~a20
~a1

�
'̂N;T � '

� D! N (0; 1) ;

where

lim
N!1

1

N

8<: X
i2C(1)

�2iE

 
�yi;0Di;0
1 + �y2i;0

!2
+

X
i2C(2)[C(3)

�2i +
NX

i2C(1)

�2i

 
Di;0
1 + ~y2i;0

!2
+ ~rN

9=; = ~a1:

Let C 0N = max
�

1p
N
;

q
r0N
N2

�
.

Theorem 4.2. Under bi;t = 0, let Assumptions 1-6 hold. As min(N;T )!1

(i) If, further

lim
N!1

1

N

8<:
NX
i=1

�2iE

 
Di;0
1 + �y2i;0

!2
+ ~rN

9=; = ~a00 > 0;

the results of Theorem 4.1 hold for j'j < 1.

(ii) If j'j = 1, ~'N;T � 1 = OP
�
T�21=40C 0N

�
and

(4.11) NT

8<:
NX
i=1

�2i

TX
t=2

 
Di;t

1 + ~y2i;t�1

!2
+

TX
t=2

 
NX
i=1


i
Di;t

1 + ~y2i;t�1

!29=;
�1=2 �

'̂N;T � 1
� D! N (0; 1) :

(iii) If j'j > 1, under the conditions of Theorem 3.3 and Assumption 6, it holds that ~'N;T � ' =

OP
�
T�1C 0N

�
; further, if r0N=N ! 0 it holds that

(4.12) NT

8<:
NX
i=1

�2i

TX
t=2

 
Di;t

1 + ~y2i;t�1

!29=;
�1=2 �

~'N;T � '
� D! N (0; 1) :



PANEL DATA 17

Theorems 4.1 and 4.2 state, essentially, that results in the presence of covariates are the same as for the

baseline case of model (1.1): the only di¤erence is in the asymptotic variances, which change to re�ect

the presence of the covariates xi;t. Indeed, as one may expect, it can be shown that results would be

exactly the same as in Section 3 if xi;t and yi;t�1 were assumed to be independent.

Turning to the estimation of the asymptotic variance of ~'N;T , we use ~VN;T =
~UN;T
~B2
N;T

, where ~UN;T �PT
t=2

PN
i=1

PN
j=1 ~zi;t~zj;t and

(4.13) ~zi;t = (~yi;t � ~'N;T ~yi;t�1 � ~�
0
ixi;t)

Di;t
1 + ~y2i;t�1

:

Theorem 4.3. Under the conditions of Theorem 3.4, with (3.11) replaced by

X
i2C(1)

X
j2C(1)

E

�����
i
j Di;0
1 + �y2i;0

Dj;0
1 + �y2j;0

����� � c2rN ;
with 1 � c2 < 1, and under Assumption 6, as min (N;T ) ! 1 it holds that ~V �1=2N;T

�
~'N;T � '

� D!

N(0; 1).

4.1. Estimation and inference on �i. Based on (4.9), it is possible to study the estimation of the

mean of the individual speci�c slopes �i. To this end, we assume a random coe¢ cient model for the

�is, similar e.g. to the one assumed in Pesaran (2006; see in particular Assumption 4)

(4.14) �i =
�� + ��i:

Building on (4.14), a possible way of estimating �� is to use

(4.15) b�� = " NX
i=1

TX
t=2

xi;tx
0
i;t

1 + ~y2i;t�1

#�1 " NX
i=1

TX
t=2

xi;t
�
~yi;t � ~'N;T ~yi;t�1

�
1 + ~y2i;t�1

#
;

whose covariance matrix can be estimated by

V̂� =

"
NX
i=1

TX
t=2

xi;tx
0
i;t

1 + ~y2i;t�1

#�1
�
"
NX
i=1

 
TX
t=2

xi;tx
0
i;t

1 + ~y2i;t�1

!�
~�i � b����~�i � b���0

 
TX
t=2

xi;tx
0
i;t

1 + ~y2i;t�1

!
+

+
NX
i=1

NX
j=1

TX
t=2

�
~yi;t � ~'N;T ~yi;t�1 � ~�

0
ixi;t

�
Gi;t

1 + ~y2i;t�1

�
~yj;t � ~'N;T ~yj;t�1 � ~�

0
jxj;t

�
G0j;t

1 + ~y2j;t�1

35
�
"
NX
i=1

TX
t=2

xi;tx
0
i;t

1 + ~y2i;t�1

#�1
;
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having de�ned Gi;t � xi;t � Di;t
PN

i=1

PT
t=2

xi;t~yi;t�1
1+~y2i;t�1

.

Consider the following assumption, which complements Assumption 6.

Assumption 7. It holds that: (i) �� is nonrandom with


��

 < 1; (ii) ��i is i.i.d. across i with (a)

E
�
��i

�
= 0 and (b) E




��i


2+� <1 for some � > 0.

It holds that:

Theorem 4.4. Let Assumptions 1-7 hold. As min (N;T )!1

(a) if

(4.16) lim
N!1

1

N

X
i2C(1)

E
x2i;0

1 + ~y2i;0
= a� > 0;

it holds that b�� � �� = OP

�
1p
N

�
+OP

�p
rN
N2T

�
;

(b) if

(4.17) lim
N;T

1

r0N

TX
t=2

NX
i=1

NX
j=1

E







i
j Gi;t
1 + ~y2i;t�1

G0j;t
1 + ~y2j;t�1






 = +1;
it holds that b�� � �� = OP

�
1p
N

�
+ oP

�p
rN
N2

�
;

(c) if

(4.18) lim
N;T

1

r0N

TX
t=2

NX
i=1

NX
j=1

E







i
j Gi;t
1 + ~y2i;t�1

G0j;t
1 + ~y2j;t�1






 = c0 <1;
it holds that b�� � �� = OP

�
1p
N

�
+OP

�p
rN
N2

�
.

Further, if (4.16) or (4.17) hold, then V̂ �1=2�

�b�� � ��� D! N (0; Ih); the same holds under (4.18) if, in

addition, r
0
N

N ! 0.

Theorem 4.4 states that, in essence, b�� is always consistent, save for the case in which there are too
many explosive units, and there is strong cross dependence, which corresponds to part (iii). The rates of

convergence di¤er according as (4.16), (4.17) or (4.18) hold. As in the previous theorems, the asymptotic

normality of b�� holds for all cases considered; the only exception is when the number of boundary units
is small, the number of stationary units is very small, and, in addition, there is strong cross sectional

dependence. However, in principle an estimation technique that accounts for cross sectional dependence

would restore the asymptotic normality and consistency for b�� even in this case.
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5. Monte Carlo simulations

In this section, we present some evidence on the properties of the WLS estimator of ' from synthetic

data. In particular, we consider the bias and the Mean Squared Error (MSE) of '̂N;T , and we also

analyse the empirical coverage of 95% con�dence intervals, in order to evaluate the quality of the

estimator of the asymptotic variance.

We base all experiments on (1.1) and (2.1), viz.

yit = ('+ bit) yit�1 + uit;

uit = eit + 
ivt:

As far as ' is concerned, we consider the following grid of values: ' 2 f�1:5 ; �1; �0:5; 0; 0:5; 1; 1:5g.

In a �rst set of experiments, we consider the case of Eb2i;t > 0. The individual coe¢ cient random shocks

bi;t have been generated as i.i.d. across i and t with bi;t � �N (0; 1). We ran various experiments with

di¤erent values of �, also allowing for heteroskedasticity, but results do not change much; thus, we report

only the case corresponding to � = 1. Similarly, as far as the idiosyncratic component of the error term

ui;t is concerned, this is generated as i.i.d. across i and t, with ui;t � �N (0; 1); no changes in the results

were observed when considering a heteroskedastic design or several values of � , and we therefore only

report results for the case � = 1. As far as the common factors are concerned, we consider nonrandom,

homogeneous loadings, i.e. 
i = 
; introducing randomness and/or heterogeneity was found to have no

impact on the results. In order to consider the impact of cross sectional dependence on our estimator, we

consider three sets of experiments with 
 2 f0; 1; 10g. The case 
 = 0 is covered by equation (3.5), and

it should correspond to '̂ being
p
NT -convergent, which is the fastest attainable rate. The common

factor vt is generated as i.i.d. with vt � N (0; 1). Finally, in order to assess the impact of initial

conditions on the results, we considered various possible initialisations for yi;0; no changes were noticed

across experiments, and in this chapter we report results corresponding to the case of yi;0 generated as

i.i.d. across i with yi;0 � N (0; 1).

Finally, we use combinations of (N;T ) from f10; 20; 40; 80g � f25; 50; 100g.

Let '̂j denote the estimate of the true value of ' (say '0) for iteration j of the Monte Carlo experiment,

with j = 1; :::;MC. We report the following measures

bias =
1

MC

MCX
j=1

�
'̂j � '

�
;(5.1)
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MSE =
1

MC

MCX
j=1

�
'̂j � '

�2
:(5.2)

In addition to this, in order to assess the �nite sample validity of the estimator of the asymptotic

variance suggested by Theorem 2.1, we also consider the empirical rejection frequency (for a nominal

size of 5%) of a t-test for ' = '0. This is tantamount to verifying the empirical coverage of 95%

con�dence intervals for '0. In our simulations, we set MC = 2000; this entails that the empirical

rejection frequencies reported here have a 95% con�dence interval given by [0:04; 0:06].

[Insert Tables 1-3 somewhere here]

The tables shows that the estimator '̂, and the random norming suggested by Theorem 3.4, have

excellent properties even for very small samples.

Considering �rst bias and MSE as de�ned in (5.1) and (5.2), we note that, as expected, they decline

as either N or T increases. The trend is similar across the tables, thereby suggesting that the presence

and pervasiveness of common factors does not impact on the decline of either bias or MSE. Observing

the numbers in the table, the rate of decline of the MSE is the same as either N or T increases. This

changes when 
 = 10 (Table 3), and the impact ofN becomes less signi�cant in decreasing the MSE - this

however can be expected by virtue of the fact that the asymptotics is driven by T only. Indeed, although

not predicted by the theory, the WLS estimator seems to have the desirable property that its quality

improves as N increases even in the presence of cross sectional dependence. The MSE and the bias do

not seem to be a¤ected by the value of ' (one, minor, exception could be the case (N;T ) = (10; 25) in

Table 1), which con�rms that the estimator proposed in this paper, due to its self-normalised nature,

is not a¤ected by unit or explosive roots. As far as the bias is concerned, we note that, although in the

Tables there are only raw numbers, it seems to be rather small when compared with the value of '; this

is true even for the case (N;T ) = (10; 25).

Turning to the empirical rejection frequencies, as pointed out above these can be viewed as an assessment

on the quality of the estimated asymptotic variance of '̂, especially since the bias is quite small. In

general, the empirical rejection frequencies do not change across the Tables, showing that the estimator

of the asymptotic variance is, as can be expected, not a¤ected by the presence of common factors. The

empirical size of the t-tests is always close to the nominal one, with few exceptions in the case of small

T : typically, when T � 50, the problem disappears across all experiments.

Finally, we also ran a set of experiments for the case bi;t = 0. The setup of the Monte Carlo exercise

is the same as above (apart from setting bi;t = 0), although we report only the cases of 
i = 
 = 0
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and 
i = 
 = 10, to better illustrate the di¤erence in the results brought about by cross sectional

dependence. Also, we only report results for N � 20 and T � 50; this is essentially in order to save

space: results for N = 10 and T = 25 are usually good with the exception of the case j'j = 1:5, where

N = 10 does not seem to be su¢ cient to ensure that the CLT holds.

[Insert Table 4 somewhere here]

The results in Table 4 can be contrasted with Theorem 3.3, and, when j'j < 1, with the results in Tables

1 and 3. The MSE appears to be lower, but this is due to the �natural�e¤ect of having �2i = 0, so that

slope heterogeneity does not contribute to the asymptotic variance of the WLS estimator. Considering

�rst the MSEs for j'j � 1, when there is no cross sectional dependence (
 = 0), the results in Table 4

show a great improvement with respect to those in Table 1 for all cases where j'j � 1. When there is

cross sectional dependence (
 = 10), the MSE improves (compared to Table 3) when j'j > 1, and also

and when j'j = 1 and N � 40 - the results con�rm the faster convergence of the WLS estimator in

presence of a homogeneous root (unit or explosive), although it should be noted that increasing N alone

does not yield almost any improvements. The faster rates of convergence also emerge when comparing

numbers within Table 4: the MSE for the cases of j'j < 1 are one or two orders of magnitude larger

than in the case of j'j = 1 or j'j > 1 respectively. All results worsen as we move from 
 = 0 to


 = 10, as a consequence of cross sectional dependence. Turning to the empirical rejection frequencies,

these are always within the con�dence interval [0:04; 0:06] when j'j < 1, with few exceptions. Similarly,

con�dence intervals have almost always the correct coverage when j'j = 1; the same results can be

observed when j'j > 1 and 
 = 0. As predicted by Theorem 3.3, when j'j > 1 and there is strong cross

sectional dependence (
 = 10), the CLT fails and this is evident from the severely undersized empirical

rejection frequencies.

A �nal comment on the simulations. We ran a separate, unreported exercise where we assess the

robustness of results when altering the weighing scheme in (2.2) to 1=
�
a+ y2i;t�1

�
and adding the �xed

e¤ects �i � N (1; 1). We tried several values of a, namely a 2 f0:1; 0:5; 1; 2; 10g, showing that results

remain virtually unchanged across all choices of a.

6. Empirical application

In this section, we illustrate the results derived above by considering two applications of (1.1).

We �rstly estimate the average autoregressive root in an RCA model applied to several macroeconomic

and �nancial time series for several EU countries. Speci�cally, we consider the following series: log
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of the GDP; log of the M2 money aggregate; log of the main Equity Index; short term interest rate

(expressed in percentage); and the log of the Industrial Production. Data are quarterly, and in order to

show the impact of di¤erent sample sizes on the WLS estimator and its con�dence intervals, we consider

the following time spans:

-: log of the GDP (raw data are expressed in millions of $): from 1960Q1 until 2013Q1;

-: log of the M2 money aggregate: (raw data are expressed in local currency, except Germany,

expressed in billions of e): from 1999Q1 until 2013Q1;

-: log of the Equity index (raw data are based at 100 in 2005): from 1994Q1 to 2013Q1;

-: short term interest rate (data are expressed in percentage): from 1992Q4 to 2013Q1;

-: log of the Industrial Production index: from 1990Q1 until 2013Q1.

As far as the cross sectional sample size is concerned, we consider the following countries: Austria, Bel-

gium, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Nether-

lands, Norway, Poland, Portugal, Spain, Sweden and United Kingdom. Thus, in total we have N = 18;

some of these countries have incomplete datasets for some of the series considered, and in such case we

omit them from the panel. In Table 5 below, we specify the true cross sectional sample size for each

exercise.

In addition to the exercise described above, we also apply our estimator to verify whether there is a

bubble in the UK housing market. The idea that the exuberant dynamics in asset prices could be

well represented by an autoregressive process with a root larger than 1 has been exploited in various

contributions, e.g. Phillips et al. (2011). According to Banerjee et al. (2012), a bubble in model (1.1)

would be present when ' > 1; a similar analysis is also contained in Charemza and Deadman (1995).

In our application, we consider UK quarterly data from 1997Q1 to 2008Q1, so that T = 45 - there

is general consensus that, in that period, house prices had an exuberant growth which should signal

the presence of a bubble. Speci�cally, data are (logs of) the Nationwide house price index, and are

disaggregated at regional level; in total, we have N = 13 regions - North, Yorkshire and the Humber,

NorthWest, East Midlands, West Midlands, East Anglia, South East, Outer Metropolitan Area, London,

South West, Wales, Scotland and Northern Ireland.

For both exercises, we use the rebased versions of the series as de�ned in (4.3). We report: the estimated

'; its standard error; the 95% con�dence interval; and, �nally, the test statistic for the null H0 : ' � 1

and its p-value.

[Insert Table 5 somewhere here]
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Consider the �rst panel of the table. For all the series, with the exceptions of the short term interest

rate, it holds that ' � 1, based on the con�dence intervals computed using (3.10). Interestingly, the

short term interest rate seems to have �near unit root� behaviour, based on the estimated average

autoregressive root; indeed, this only represents an average behaviour, and some countries are bound

to be in the �boundary case� described above, or even, possibly, in the explosive one. Similarly, the

results seem to indicate that, as far as the demand for money M2, and the log of industrial production

are concerned, ' is signi�cantly larger than 1: this is based on the t-test for '; con�dence intervals

also reinforce this �nding. Again, we note that even for these series ' is very close to the boundary.

As a general comment, con�dence intervals are, in general, short, which con�rms the idea that the

panel-based approach is bound to improve inference, and the �ndings in the simulations in Section

5. The results indicate that the absence of the unit root problem in the WLS-based estimate of ' is

advantageous in this setting.

Turning to the second panel of the table, this contains the inference on the presence of a bubble in the

UK housing market. We �nd signi�cant evidence that ' > 1, thereby indicating that a bubble was

indeed present on the UK housing market. This is made evident by the rejection, at the 5% level, of

the null of no explosive behaviour H0 : ' � 1, and also by con�dence intervals. It can however be noted

that the average root is relatively close to 1; this is consistent with the literature on bubbles (Phillips

and Yu, 2009; Phillips et al., 2011), where the underlying autoregressive process is modelled with a

local-to-explosive unit.

7. Conclusions

In this paper, we have studied the WLS-based estimation of the average autoregressive root in a panel

RCA model. We have shown that the estimator is always consistent, irrespective of the true value

of the root ', of whether the autoregressive root is genuinely random or �xed, and on the possible

presence and extent of cross sectional dependence. Indeed, our paper proposes a �universal�estimator

of the asymptotic variance of the estimated '. When normalising the WLS estimator by the proposed

estimator of the asymptotic variance, standard normal inference is recovered, with the only exception

of panels with a common, explosive root and strong cross sectional dependence. The robustness of

the WLS estimator comes, however, at a price: rates of convergence are somehow sacri�ced, since the

weighing scheme employed serves the purpose of anchoring down summations involving yi;t in the cases

where j'j � 1, making them of comparable magnitude with the stationary case. This is quite evident in

the cases where there is no randomness in the autoregressive root (bi;t = 0), and in particular in the case

of an explosive root (j'j > 1), where the estimator is shown to be T -consistent as opposed to having
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the exponential rate which is typical of OLS. Nonetheless, simulations show that the estimator has very

good properties, even for small samples, and that con�dence intervals based on the estimated asymptotic

variance have the correct coverage almost under all circumstances. Although the focus of this paper is

mainly theoretical, we show how the estimator can be applied to several macro and �nancial time series;

in addition, Section 6 also discusses the application of our methodology to testing for bubbles.

Finally, we note that several interesting questions are still outstanding. As mentioned in Section 2, the

weighing scheme proposed in (2.2) is not aimed at achieving e¢ ciency, which would require employing

1=
��
E
2i + �

2
i

�
+ �2i y

2
i;t�1

�
as a weight function. However, since ' is estimated consistently using the

weights proposed in (2.2), the variance
�
E
2i + �

2
i

�
+ �2i y

2
i;t�1 could be also estimated equation by

equation, thereby casting the WLS estimator in a two-step, or even iterative, procedure, although

unreported Monte Carlo evidence based on using the weight 1=
�
a+ y2i;t�1

�
showed virtually no change

for di¤erent values of a > 0. Further, in this paper we do not try to eliminate the common component


ivt, unlike e.g. Pesaran (2006) and Bai (2009; see also Song, 2013). Indeed, this feature of the WLS

estimator is the reason why we require the assumption that the regressors xi;t are independent of 
ivt.

However, the main technical results in the paper (the coupling arguments used in Lemmas 7.2-7.3, and

the concentration inequalities in Lemma 7.4) do not require any assumptions on the (in)dependence

between xi;t and vt, and therefore they automatically hold even in this case. Adapting the WLS

estimator to the presence of interactive e¤ects is therefore possible, by modifying the estimation problem

(4.4) into

min
';�1;:::;�N ;
1;:::;
N

;v1;::::;vT
S
�
'; �1; :::; �N ; 
1; :::; 
N ; v1; ::::; vT

�
;

with

S
�
'; �1; :::; �N ; 
1; :::; 
N ; v1; ::::; vT

�
=

NX
i=1

TX
t=1

�
~yi;t � '~yi;t�1 � �0ixi;t � 
ivt

�2
1 + ~y2i;t�1

;

the estimation of ' and the �is (and of the factor-loading structure) can be carried out by iterative

concentration of the likelihood, as in Bai (2009) and Song (2013). This extension is currently under

investigation by the authors.
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Appendix: technical results and proofs

This appendix contains the proofs of the results in Section 3; prior to reporting the proofs, we lay out

some technical lemmas whose proofs can be found in the Supplement; all the proofs of results in Section

4 are in the Supplement.

We often employ the following notation:

(7.1) AN;T = 'BN;T +AN;T (1) +AN;T (2) +AN;T (3);

whereAN;T (1)�
PN

i=1

PT
t=2 bi;t

y2i;t�1
1+y2i;t�1

; AN;T (2)�
PN

i=1

PT
t=2 ei;t

yi;t�1
1+y2i;t�1

; andAN;T (3)�
PN

i=1

PT
t=2 
ivt

yi;t�1
1+y2i;t�1

.

Lemma 7.1. Under Assumption 1(i)-(ii)-(iii)-(iv)(b), we have EAN;T (1) = EAN;T (2) = EAN;T (3) =

0. Also

(i): EA2N;T (1) � T
PN

i=1 �
2
i ;

(ii): EA2N;T (2) � T
PN

i=1 �
2
i ;

(iii): EA2N;T (3) � T
�PN

i=1Ej
ij
�2
.

Lemma 7.2. Under Assumptions 1 and 2, for all i 2 C(1), it holds that

(7.2) Ejyi;t � �yi;tj�i � qi;t;

with

qi;t = Ejyi;0j�i�ti +
Ejei;0j�i + Ej�
ij�iEjv0j�i

1� �i
�ti + Ej
i � �
ij�i

Ejv0j�i
1� �i

:

Also, let g (�) and g0 (�) be a function and its �rst derivative, both bounded on the real line, and C is a

constant that only depends on g; it holds that

(7.3) Ejg(yi;t)� g(�yi;t)j � Cq1=(1+�i)i;t :

Lemma 7.3. Under Assumptions 1 and 2, for all � � 1, it holds that

1

NT

X
i2C(1)

TX
t=1

 
y2i;t

1 + y2i;t

!�
=
1

N

X
i2C(1)

E

 
�y2i;0

1 + �y2i;0

!�
+ oP (1):

Lemma 7.4. Let c0 denote an absolute constant. Under Assumption 1:

(i) if i 2 C(2), Eb2i;t > 0 and Assumptions 3 and 4 hold then for all x > 0 and t � [2( ��i+1)=E log j'+

bi;0j]3, it holds that

P fjyi;tj � xg � 2xMi

�
exp(�t3=(2(1+�i))) + t�2 + c022�imit

�(�i�2)=(2(1+�i))
�
:
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(ii) if i 2 C(2), bi;t = 0, and Assumptions 3 and 4(i) hold, it holds that, for some �0 � 4 such that

E jui;0j�
0
� m0

i

P fjyi;tj � xg �
r
2

�

Z x=� i
p
t

0

exp

�
�1
2
u2
�
du+

tc0
x�0
2�

0
m0
i:

(iii) if i 2 C(3) and Eb2i;t > 0, and Assumption 4 holds then for all x > 0 and t = 1; 2; :::, it holds that

P fjyi;tj � xg � 2xMi

�
exp(�t3=(2(1+�i))) +

�
1

��i
+ c02

2�imi

�
t�(�i�2)=(2(1+�i))

�
:

(iv) if i 2 C(3) and bi;t = 0 and Assumption 4(i) holds then for all x > 0 and t = 1; 2; :::, it holds that

P fjyi;tj � xg � 2x j'jMi

�
e�t lnj'j

�
:

Lemma 7.5. Under Assumptions 1, 3 and 4, for all � � 1 it holds that

1

NT

X
i2C(2)

TX
t=2

 
y2i;t

1 + y2i;t

!�
=
#C(2)

N
+ oP (1):

Lemma 7.6. Let Assumptions 1-3 hold; further, if either Eb2i;t > 0 and Assumption 4 holds, or bi;t = 0

and Assumption 4(i) holds, then, for all � � 1

1

NT

X
i2C(3)

TX
t=2

 
y2i;t

1 + y2i;t

!�
=
#C(3)

N
+ oP (1):

Lemma 7.7. Under Assumptions 1-4, it holds that BN;T

NT

P! a0, where a0 is de�ned in (3.1).

Theorem 7.1. Let St = fSt;T ;Ht;T g ; 1 � t � T be zero�mean, square integrable martingale array with

di¤erences xt;T ; 1 � t � T , and Ht;T � Ht+1;T ; 0 � t < T . Suppose that, as T !1,

(7.4)
TX
t=1

E
�
x2t;T jHt�1;T

� P! a > 0;

(7.5)
TX
t=1

E
�
jxt;T j2+�jHt�1;T

�
= oP (1);

with some � > 0. Then, as T !1, ST
D! N(0; a).

We are now ready to report the proofs of the main results in the paper.

Proof of Theorem 3.1. It follows from Lemma 7.1 and Assumptions 1(ii)(b) and 1(iv)(b) thatN�1T�1=2AN;T

= OP (1), as min(N;T ) ! 1. Since T ! 1 we conclude from Lemma 7.7 that AN;T

BN;T
= OP (T

�1=2) =
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oP (1), so Theorem 3.1 now follows from the de�nition '̂N;T . �

Proof of Theorem 3.2. We start with part (i) of the theorem. According to Lemmas 7.1 and 7.7 it is

enough to prove that N�1T�1=2AN;T (3)
D! N(0; a1). This will be based on Theorem 7.1. Let Ht, t � 1,

be the ��algebra generated by fyi;0; ei;s; bi;s; 
i; vs; 1 � i � N; s � tg. We write N�1T�1=2AN;T (3) =PT
t=2 xt, where xt =

1
NT 1=2

vt
PN

i=1 
i
yi;t�1
1+y2i;t�1

. Clearly, since Ev20 = 1 and yi;t�1 is Ht�1�measurable,

E(x2t jHt�1) =
1

N2T

 
NX
i=1


i
yi;t�1

1 + y2i;t�1

!2
=

1

N2T

NX
i=1

NX
j=1


i
j
yi;t�1

1 + y2i;t�1

yj;t�1
1 + y2j;t�1

:

In order to apply Theorem 7.1, we need to show

(7.6)
TX
t=2

E(x2t jHt�1)
P! a1:

Using Lemma 7.4 we get that

1

N2T

������
TX
t=2

NX
i=1

NX
j=1


i
j
yi;t�1

1 + y2i;t�1

yj;t�1
1 + y2j;t�1

�
TX
t=2

X
i2C(1)

X
j2C(1)


i
j
yi;t�1

1 + y2i;t�1

yj;t�1
1 + y2j;t�1

������ = oP (1);
i.e. the non�stationary units do not contribute to the limit, since jyi;tj ! 1 in probability as t ! 1

for all i 2 C(2) [ C(3). Next, repeating the arguments used in the proof of Lemma 7.3 we obtain that

1

N2T

TX
t=2

X
i2C(1)

X
j2C(1)

j
i
j j
����� yi;t�1
1 + y2i;t�1

yj;t�1
1 + y2j;t�1

� �yi;t�1
1 + �y2i;t�1

�yj;t�1
1 + �y2j;t�1

����� = oP (1);
i.e. we can replace yi;t with the stationary solution �yi;t in case of stationary units. Hence (7.6) is

established if we show that

(7.7)
1

N2T

TX
t=2

X
i2C(1)

X
j2C(1)


i
j
�yi;t�1

1 + �y2i;t�1

�yj;t�1
1 + �y2j;t�1

P! a1:

Recall that the subscript �
�denotes conditioning on f
ig
N
i=1. Elementary arguments give that

E


 
1

N2T

TX
t=2

X
i2C(1)

X
j2C(1)

�
i�
jzi;j;t�1

�2
=

1

N4T 2

TX
s;t=2

X
i2C(1)

: : :
X

`2C(1)

�
i�
j�
k�
`E
zi;j;t�1zk;`;s�1

� 2

N4T

X
i2C(1)

: : :
X

`2C(1)

1X
h=0

j�
i�
j�
k�
`jjE
zi;j;0zk;`;hj

with

zi;j;t�1 =
�yi;t�1

1 + �y2i;t�1

�yj;t�1
1 + �y2j;t�1

� E

�yi;t�1

1 + �y2i;t�1

�yj;t�1
1 + �y2j;t�1

:
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The stationary solutions �yi;t satisfy the equations

�yi;t = �yi;0

tY
s=1

('+ bi;s) +
tX

s=1

ei;s

t�1Y
z=s

('+ bi;z+1) + �
i

tX
s=1

vs

t�1Y
z=s

('+ bi;z+1):

Let ŷ1;0; : : : ; ŷN;0 be independent of fbi;s; ei;s; 
ivsg, 1 � i � N , s > 0 and ful�ll fŷ1;0; : : : ; ŷN;0g
D
=

f�y1;0; : : : ; �yN;0g. Next we de�ne

ŷi;t = ŷi;0

tY
s=1

('+ bi;s) +
tX

s=1

ei;s

t�1Y
z=s

('+ bi;z+1) + �
i

tX
s=1

vs

t�1Y
z=s

('+ bi;z+1):

It is clear from the de�nition that fŷ1;t; : : : ; ŷN;t; t > 0g
D
= f�y1;t; : : : ; �yN;t; t > 0g, and fŷ1;t; : : : ; ŷN;t; t >

0g is independent of f�y1;0; : : : ; �yN;0g, conditional on 
i, 1 � i � N . Let

ẑi;j;t�1 =
ŷi;t�1

1 + ŷ2i;t�1

ŷj;t�1
1 + ŷ2j;t�1

� E

�yi;t�1

1 + �y2i;t�1

�yj;t�1
1 + �y2j;t�1

:

On account of the independence (conditional on f
ig
N
i=1) of zi;j;0 and ẑk;`;h, and the facts that Ezi;j;0 = 0

and jzi;j;0j � 2, we get jE
zi;j;0zk;`;hj = jE
zi;j;0(zk;`;h � ẑk;`;h)j � 2E
 jzk;`;h � ẑk;`;hj. It follows from

the de�nition of ẑk;`;h that for all �1 and �2 we get

(7.8) E
 jzk;`;h � ẑk;`;hj � �1 + 2P
fj�yk;h � ŷk;hj > �1g+ �2 + 2P
fj�y`;h � ŷ`;hj > �2g:

By Hardy et al. (1959, p. 32) and (2.7) for all 1 � i � N we have

E
 j�yi;h � ŷi;hj�i = E


�����(�yi;0 � yi;0)
hY
s=1

('+ bi;s)

�����
�i

= E
 j�yi;0 � ŷi;0j�iE


�����
hY
s=1

('+ bi;s)

�����
�i

� 2E
 j�yi;0j�i
hY
s=1

E
 j'+ bi;sj�i � 2E
 j�yi;0j�i�hi :

Using again (2.6) we conclude

E
 j�yi;0j�i �
0X

s=�1
Ejei;0j�i�jsji + j�
ij�i

0X
i=�1

Ejv0j�i�jsji =
Ejei;0j�i + j�
ij�iEjv0j�i

1� �i
:

Applying now Markov�s inequality we have for all x > 0

P
fj�yi;h � ŷi;hj > xg = P
fj�yi;h � ŷi;hj�i > x�ig �
2

x�i
Ejei;0j�i + j�
ij�iEjv0j�i

1� �i
�hi :

So by (7.8) there is an absolute constant C such that

E
 jzk;`;h � ẑk;`;hj
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� C
(�
Ejek;0j�k + j �
kj�kEjv0j�k

1� �k
�hk

�1=(1+�k)
+

�
Eje`;0j�` + j �
`j�`Ejv0j�`

1� �`
�h`

�1=(1+�`))
:

Thus we conclude

E


 
1

N2T

TX
t=2

X
i2C(1)

X
j2C(1)

�
i�
jzi;j;t�1

�2
(7.9)

� C

N4T

0@ X
i2C(1)

j
ij

1A3 X
`2C(1)

j�
`j
�
Eje`;0j�` + j �
`j�`Ejv0j�`

1� �`

�1=(1+�`) 1

�
1=(1+�`)
`

= OP

�
1

T

�
:

Now (7.7) follows from Chebyshev�s inequality, and from the cross sectional independence of the 
is.

Clearly, by Assumption 5(i)

E(jxtj2+�jHt�1) =
Ejv0j2+�
T 1+�=2

 
1

N

NX
i=1


i
yi;t�1

1 + y2i;t�1

!2+�
� Ejv0j2+�

T 1+�=2

 
1

N

NX
i=1

j
ij
!2+�

;

which entails that
PT

t=2E(jxtj2+�jHt�1)
P! 0. This, and (7.6), yield the �rst part of Theorem 3.2.

We continue with the proof of part (ii). Under part (ii) and Lemmas 7.1 and 7.7, we conclude that

(3.4) is established if AN;T (3)

(rNT )1=2
D! N(0; 1). According to Theorem 7.1 we only need to prove that

(7.10)
TX
t=2

E(x2t jHt�1)
P! 1:

(7.11)
TX
t=2

E(jxtj2+�jHt�1)
P! 0;

where xt = 1
(rNT )1=2

vt
PN

i=1 
i
yi;t�1
1+y2i;t�1

. As in the proof of the �rst part of Theorem 3.2, we have

E(x2t jHt�1) =
1

rNT

 
NX
i=1


i
yi;t�1

1 + y2i;t�1

!2
=

1

rNT

NX
i=1

NX
j=1


i
j
yi;t�1

1 + y2i;t�1

yj;t�1
1 + y2j;t�1

:

It holds that

1

rNT

������
TX
t=2

NX
i=1

NX
j=1


i
j
yi;t�1

1 + y2i;t�1

yj;t�1
1 + y2j;t�1

�
TX
t=2

X
i2C(1)

X
j2C(1)


i
j
yi;t�1

1 + y2i;t�1

yj;t�1
1 + y2j;t�1

������
� 2

rNT

NX
j=1

j
j j
NX

i2C(2)[C(3)

TX
t=2

j
ij
jyi;t�1j
1 + y2i;t�1

:
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By Assumption 1(iv)(b),
PN

j=1 j
j j = OP (N). Using Lemma 7.4(i) with x = t(�i�2)=(4(�i+1)) we obtain

E
X
i2C(3)

TX
t=2

j
ijE

jyi;t�1j
1 + y2i;t�1

� 2
X
i2C(3)

TX
t=2

t(�i�2)=(4(�i+1))Ej
ij(1 +Mi)

(
exp(�t3=(2(1+�i)))

+

�
1

��i
+ c02

2�imi + 1

�
t�(�i�2)=(2(�i+1))

)

� CT 1�(��2)=(4(�+1))
X
i2C(3)

Ej
ij(1 +Mi)

�
1

��i
+mi + 1

�

with some constant C. Similarly, Lemma 7.4(i) with x = t(�i�2)=(4(�i+1)) yields

E
X
i2C(2)

TX
t=2

j
ijE

jyi;t�1j
1 + y2i;t�1

� CT 1�(��2)=(4(�+1))
X
i2C(2)

Ej
ij(1 +Mi)

�
1

��i
+mi + 1

�

+
X
i2C(2)

[2( ��i + 1)=E log j'+ bi;0j]3:

Next we replace yi;t with �yi;t; i 2 C(1). Note

1

rNT

TX
t=2

X
i2C(1)

X
j2C(1)

j
i
j j
����� yi;t�1
1 + y2i;t�1

yj;t�1
1 + y2j;t�1

� �yi;t�1
1 + �y2i;t�1

�yj;t�1
1 + �y2j;t�1

�����
� 1

rNT

X
j2C(1)

j
j j
X
i2C(1)

j
ij
TX
t=1

����� yi;t�1
1 + y2i;t�1

� �yi;t�1
1 + �y2i;t�1

����� ;
we have

X
i2C(1)

j
ij
TX
t=1

E


����� yi;t�1
1 + y2i;t�1

� �yi;t�1
1 + �y2i;t�1

�����
� C2

X
i2C(1)

j
ij
(
(Ejyi;0j�i)1=(1+�i)
(1� �i)1=(1+�i)

+
(Ejei;0j�i + j�
ij�iEjv0j�i)1=(1+�i)

(1� �i)1=(1+�i)

)
1

1� �1=(1+�i)i

+ C3T
X
i2C(1)

�
j
i � �
ij�i

Ejv0j�i
1� �i

�1=(1+�i)
:

Putting all together, it follows that (7.10) is proven if we show

(7.12)
1

rNT

TX
t=2

X
i2C(1)

X
j2C(1)


i
j
�yi;t�1

1 + �y2i;t�1

�yj;t�1
1 + �y2j;t�1

P! 1;

this follows by repeating the proof of (7.7), whence

�
N2

rN

�2
E


 
1

N2T

TX
t=2

X
i2C(1)

X
j2C(1)

�
i�
jzi;j;t�1

�2
= O

"
1

T

�
N2

rN

�2#
;
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so that (7.12) is implied by the same argument as above.

The proof of (7.11) is very simple since

E(jxtj2+�jHt�1) =
Ejv0j2+�
(rNT )1+�=2

 
NX
i=1


i
yi;t�1

1 + y2i;t�1

!2+�
�
�
N2
�1+�=2 Ejv0j2+�

(rNT )1+�=2

 
1

N

NX
i=1

j
ij
!2+�

;

hence

E

(
TX
t=2

E(jxtj2+�jHt�1)

)
= O

"
1

T �=2

�
N2

rN

�1+�=2#
:

Now Markov�s inequality gives (7.11).

In order to prove part (iii) of the theorem, we need to show that

(7.13)
1

(NT )1=2
fAN;T (1) +AN;T (2) +AN;T (3)g

D�! N(0; a2);

where a2 is de�ned in Theorem 3.2. First we write

1

(NT )1=2
fAN;T (1) +AN;T (2) +AN;T (3)g =

TX
t=2

xt;

where

xt =
1

(NT )1=2

(
NX
i=1

bi;t
y2i;t�1

1 + y2i;t�1
+

NX
i=1

ei;t
yi;t�1

1 + y2i;t�1
+ vt

NX
i=1


i
yi;t�1

1 + y2i;t�1

)
:

Using Assumptions 1(i)-(iii), we obtain that

E(x2t jHt�1) =
1

NT

NX
i=1

�2i

 
y2i;t�1

1 + y2i;t�1

!2
+

1

NT

NX
i=1

�2i

 
yi;t�1

1 + y2i;t�1

!2
+

1

NT

 
NX
i=1


i
yi;t�1

1 + y2i;t�1

!2
:

We prove

(7.14)
TX
t=2

E(x2t jHt�1)
P! a2

The proof of (7.14) starts with

(7.15)
1

NT

TX
t=2

X
i2C(1)

�2i

 
y2i;t�1

1 + y2i;t�1

!2
=
1

N

X
i2C(1)

�2iE

 
�y2i;0

1 + �y2i;0

!2
+ oP (1):

This can be established easily by repeating the proof of Lemma 7.3. The �rst step is to show that

1

NT

TX
t=2

X
i2C(1)

�2i

������
 

y2i;t�1
1 + y2i;t�1

!2
�
 

�y2i;t�1
1 + �y2i;t�1

!2������ = oP (1)
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which follows from Assumptions 1(ii)(b), 2(i) and 2(ii). The truncation argument used in Lemma 7.3

gives that

E

8<: 1

NT

TX
t=2

X
i2C(1)

�2i

24 �y2i;t�1
1 + �y2i;t�1

!2
� E

 
�y2i;t�1

1 + �y2i;t�1

!2359=;
2

= o(1);

so Markov�s inequality implies (7.15). The next step of the proof of (7.14) is to show that

(7.16)
1

NT

TX
t=2

X
i2C(2)[C(3)

�2i

 
y2i;t�1

1 + y2i;t�1

!2
=
1

N

X
i2C(2)

�2i + oP (1);

this can be proven along the lines of Lemmas 7.5 and 7.6.

Similarly to (7.15) one can verify that

(7.17)
1

NT

TX
t=2

X
i2C(1)

�2i

 
yi;t�1

1 + y2i;t�1

!2
=
1

N

X
i2C(1)

�2iE

 
�yi;0

1 + �y2i;0

!2
+ oP (1);

Since jyi;tj ! 1 in probability as t ! 1 for all i 2 C(2) [ C(3), following the proofs of Lemmas 7.5

and 7.6 we obtain

(7.18)
1

NT

TX
t=2

X
i2C(2)[C(3)

�2i

 
yi;t�1

1 + y2i;t�1

!2
= oP (1):

To complete the proof of (7.14) we need to show only that

1

NT

TX
t=2

 
NX
i=1


i
yi;t�1

1 + y2i;t�1

!2
=
rN
N
+ oP (1):

The arguments used in the proofs of parts (i) and (ii) of Theorem 3.2 can be repeated to show that

1

NT

TX
t=2

 
NX
i=1


i
yi;t�1

1 + y2i;t�1

!2
=

1

NT

TX
t=2

0@ X
i2C(1)


i
yi;t�1

1 + y2i;t�1

1A2

+ oP (1);

and

1

NT

TX
t=2

0@ X
i2C(1)


i
yi;t�1

1 + y2i;t�1

1A2

=
rN
N
+ oP (1):

This also completes the proof of (7.14).

In order to use Theorem 7.1, we now establish that

(7.19)
TX
t=2

E(jxtj2+�jHt�1) = oP (1):
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Rosenthal�s inequality (cf. Petrov p. 59) yields that

E(jxtj2+�jHt�1) �
C1

(NT )1+�=2

(0@ NX
i=1

�2i

"
y2i;t�1

1 + y2i;t�1

#21A1+�=2

+
NX
i=1

Ejbi;0j2+�
����� y2i;t�1
1 + y2i;t�1

�����
2+�

(7.20)

+

0@ NX
i=1

�2i

"
yi;t�1

1 + y2i;t�1

#21A1+�=2

+
NX
i=1

Ejei;0j2+�
����� yi;t�1
1 + y2i;t�1

�����
2+�

+ Ejv0j2+�
�����
NX
i=1


i
yi;t�1

1 + y2i;t�1

�����
2+�)

� C2
T 1+�=2

( 
1

N

NX
i=1

�2i

!1+�=2
+
1

N

NX
i=1

Ejbi;0j2+� +
 
1

N

NX
i=1

�2i

!1+�=2

+
1

N

NX
i=1

Ejei;0j2+� +
1

N

 
NX
i=1


i
yi;t�1

1 + y2i;t�1

!2 
1

N

NX
i=1

j
ij
!�)

:

Since rN=N = O(1) implies that 1
N

�PN
i=1 
i

yi;t�1
1+y2i;t�1

�2
= OP (1), (7.19) is an immediate consequence

of Theorem 7.1. �

Proof of Theorem 3.3. Part (i) of the Theorem is just a special case of Theorem 3.2. Consider parts

(ii) and (iii), and note that, by de�nition, in these cases a0 = 1. The rate of convergence of '̂N;T � '

is driven by

(7.21)
1

NT

NX
i=1

TX
t=2

ei;t
yi;t�1

1 + y2i;t�1
+

1

NT

NX
i=1

TX
t=2


ivt
yi;t�1

1 + y2i;t�1
= I + II:

Consider �rst part (ii). Note, as a preliminary result, that based on Lemma 7.4(ii) we have

E

 
yi;t�1

1 + y2i;t�1

!2
� 1

x2
+ P [jyi;t�1j � x] =

1

x2
+

r
2

�

Z x=� i
p
t

0

exp

�
�1
2
u2
�
du+

tc0

x�
0
i

2�
0
im0

i;

so that, setting x = t�,
PT

t=2E
�

yi;t�1
1+y2i;t�1

�2
= O

�
T 1�2�

�
+ O

�
T�+

1
2

�
+ O

�
T 2���

0
�
; on account of

Assumption 4(i), this can be shown to be bounded by O
�
T 2=3

�
; this is not the sharpest bound, but it

su¢ ces for our purposes. Consider now I in (7.21); this has mean zero and its variance is

1

N2T 2

NX
i=1

TX
t=2

E
�
e2i;t
�
E

 
yi;t�1

1 + y2i;t�1

!2
=

1

N2T 2

NX
i=1

�2i

TX
t=2

E

 
yi;t�1

1 + y2i;t�1

!2
= O

�
T 2=3

NT 2

�
;
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whence I = OP
�
N�1=2T�2=3

�
. Similarly, after repeated applications of the Cauchy-Schwartz inequality

to the variance of II (which also has mean zero) we have

1

N2T 2

NX
i=1

NX
j=1

E

�����
i
j
TX
t=2

 
yi;t�1

1 + y2i;t�1

! 
yj;t�1

1 + y2j;t�1

!�����(7.22)

� max
1�i�N

������
TX
t=2

E

 
yi;t�1

1 + y2i;t�1

!2������ 1

N2T 2

NX
i=1

NX
j=1

�
E
��
i
j��2�1=2 = O�T 2=3T 2

r0N
N2

�
;

by (3.6), which entails that II = OP
�
T�2=3

p
r0N=N

2
�
. Putting all together, the rate of convergence

follows. The limiting distribution can be found by setting

(7.23) xt = s
�1=2
N

NX
i=1

w
�1=2
i;T (ei;t + 
ivt)

yi;t�1
1 + y2i;t�1

;

where sN = max fN; r0Ng and

(7.24) wi;T =
TX
t=2

E

 
yi;t�1

1 + y2i;t�1

!2
;

thus, xt is an MDS with

E(x2t jHt�1) =
1

sN

NX
i=1

�2iw
�1
i;T

 
yi;t�1

1 + y2i;t�1

!2
+
1

sN

 
NX
i=1

w
�1=2
i;T 
i

yi;t�1
1 + y2i;t�1

!2
;

so that
PT

t=2E(x
2
t jHt�1) can be readily shown to be bounded. Also, by adapting (7.20)

E(jxtj2+�jHt�1) � C
�
Ns�1N

�1+�=2
mini w

1+�=2
i;T

(������ 1N
NX
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�2i

"
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#2������
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NX
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�����
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+ Ejv0j2+�
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NX
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i
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�����
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:

Consider
PT

t=2E(jxtj2+�jHt�1); by virtue of the above we have
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= O
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i
w
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;
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also it follows immediately that

(N=sN )
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NX
i=1
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similarly note
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i
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;

by (7.22),
PT

t=2E
��� 1N PN

i=1 
i
yi;t�1
1+y2i;t�1

���2 = O
�
r0N=N

2 (maxi wi;T )
�
; putting all together and using As-

sumptions 1(iv)(b) and 5, it holds that

(7.25)
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t=2

E(jxtj2+�jHt�1) = O

�
maxi wi;T
mini wi;T

min
i
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i;T

�
:

Consider the following intermediate result, which serves the purpose of determining the order or mag-

nitude of wi;T - note that � 2
�
0; 12
�

E

 
yi;t

1 + y2i;t

!2
=

Z +1

�1

�
x

1 + x2

�2
dP [yi;t � x] �

Z t1=2

t�

�
x

1 + x2

�2
dP [yi;t � x]

=

Z t1=2

t�

�
x

1 + x2

�2r
2

�t
e�

2
t x

2

dx+ Ei;t;

based on similar passages as in the proof of Lemma 7.4. Now

Z t1=2

t�

�
x

1 + x2

�2r
2

�t
e�2x

2=tdx � t

(1 + t)
2

Z t1=2

t�

r
2

�t
e�2x

2=tdx � C t

(1 + t)
2 ;

for some C > 0 when t � 2. Also, the approximation error Ei;t is bounded by (see Lemma 7.4(ii)) Ei;t

� 2�
0
m0
itc0

R t1=2
t�

�
x

1+x2

�2
dx��

0 � C t2�+1

(1+t2�)2

R t1=2
t�

dx��
0
; hence,

PT
t=2Ei;t <1, so that it follows thatPT

t=2 wi;T � C lnT for all i. Therefore, by (7.25),
PT

t=2E(jxtj2+�jHt�1) = oP (1), and Theorem 7.1

can be applied. Putting all together, part (ii) follows.

We now turn to part (iii). As a preliminary result, applying Lemma 7.4(iv) yields that
PT

t=2E
�

yi;t�1
1+y2i;t�1

�2
= O (1); therefore, the same passages as above therefore yield '̂N;T � ' = OP

�
1
T min

�
1p
N
;

q
r0N
N2

��
.

As far as the limiting distribution is concerned, when r0N=N = o (1) the asymptotics is driven by

N�1=2PN
i=1

PT
t=2 ei;t

yi;t�1
1+y2i;t�1

= N�1=2PN
i=1 Yi;T . Conditionally on fvtg

T
t=1, the sequence Yi;T has mean
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zero, it is independent across i and, for some � > 0,
PN

i=1E
���N�1=2Yi;T

�� fvtgTt=1���2+� �PN
i=1N

�1� 1
2 �E jei;0j2+�

� CN� 1
2 �, which can be shown using the same logic as in the proof of (7.19), and Lemma 7.4(iv). Thus,

a conditional version of Theorem 2 of Phillips and Moon (1999, p. 1070) can be applied, yielding

N�1=2PN
i=1

PT
t=2 ei;t

yi;t�1
1+y2i;t�1

D! N(0; a3) with limN;T!1N
�1PN

i=1 �
2
i

PT
t=2

�
yi;t�1
1+y2i;t�1

�2
= a3. Com-

bining this with the denominator yields (3.8). �

Proof of Theorem 3.4 We start by considering the case Eb2i;t > 0. Let

(7.26) cN;T =

8>>>><>>>>:
T 1=2; under the conditions of part (i)

(TN2=rN )
1=2; under the conditions of part (ii)

(NT )1=2; under the conditions of part (iii):

Theorem 3.2 yields cN;T ('̂N;T � ') = OP (1). Using (7.26) we get

zi;tzj;t =
�
('� '̂N;T )yi;t�1 + bi;tyi;t�1 + ei;t + 
ivt

� yi;t�1
1 + y2i;t�1

�

�
('� '̂N;T )yj;t�1 + bj;tyj;t�1 + ej;t + 
jvt

� yj;t�1
1 + y2j;t�1

and therefore

UN;T = ('� '̂N;T )2
TX
t=2

NX
i=1

NX
j=1

y2i;t�1
1 + y2i;t�1

y2j;t�1
1 + y2j;t�1

+ 2('� '̂N;T )
TX
t=2

NX
i=1

NX
j=1

bj;t
y2i;t�1

1 + y2i;t�1

y2j;t�1
1 + y2j;t�1

+2('� '̂N;T )
TX
t=2

NX
i=1

NX
j=1

ej;t
y2i;t�1

1 + y2i;t�1

yj;t�1
1 + y2j;t�1

+ 2('� '̂N;T )
TX
t=2

NX
i=1

NX
j=1


jvt
y2i;t�1

1 + y2i;t�1

yj;t�1
1 + y2j;t�1

+
TX
t=2

NX
i=1

NX
j=1

bi;tbj;t
y2i;t�1

1 + y2i;t�1

y2j;t�1
1 + y2j;t�1

+ 2
TX
t=2

NX
i=1

NX
j=1

bi;tej;t
y2i;t�1

1 + y2i;t�1

yj;t�1
1 + y2j;t�1

+2
TX
t=2

NX
i=1

NX
j=1

bi;t
jvt
y2i;t�1

1 + y2i;t�1

yj;t�1
1 + y2j;t�1

+
TX
t=2

NX
i=1

NX
j=1

ei;tej;t
yi;t�1

1 + y2i;t�1

yj;t�1
1 + y2j;t�1

+2
TX
t=2

NX
i=1

NX
j=1

ei;t
jvt
yi;t�1

1 + y2i;t�1

yj;t�1
1 + y2j;t�1

+
TX
t=2

NX
i=1

NX
j=1

v2t 
i
j
yi;t�1

1 + y2i;t�1

yj;t�1
1 + y2j;t�1

= DN;T (1) + : : :+DN;T (10):

By (7.26), we have that (NT )�2 c2N;T jDN;T (1)j = OP
�
T�1

�
, and

c2N;T
N2T 2

jDN;T (2)j = OP (1)
cN;T
N2T 2

������
TX
t=2

NX
i=1

NX
j=1

bj;t
y2i;t�1

1 + y2i;t�1

y2j;t�1
1 + y2j;t�1

������ :
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We have

E

0@ TX
t=2

NX
i=1

NX
j=1

bj;t
y2i;t�1

1 + y2i;t�1

y2j;t�1
1 + y2j;t�1

1A2

=
TX

t;s=2

NX
i;k=1

NX
j;`=1

Ebj;tb`;s
y2i;t�1

1 + y2i;t�1

y2j;t�1
1 + y2j;t�1

y2k;s�1
1 + y2k;s�1

y2`;s�1
1 + y2`;s�1

=
TX
t=2

NX
i;k=1

NX
j=1

�2jE
y2i;t�1

1 + y2i;t�1

y2j;t�1
1 + y2j;t�1

y2k;t�1
1 + y2k;t�1

y2j;t�1
1 + y2j;t�1

= O(N3T ):

Hence, by Chebyshev�s inequality, (NT )�2 c2N;T jDN;T (2)j = OP (1)N
3=2T 1=2 (NT )

�2
cN;T = oP (1).

Similarly, (NT )�2 c2N;T jDN;T (3)j = oP (1). Using again (7.26) we conclude

c2N;T
N2T 2

jDN;T (4)j = OP (1)
cN;T
N2T 2

������
TX
t=2

NX
i=1

NX
j=1


jvt
y2i;t�1

1 + y2i;t�1

yj;t�1
1 + y2j;t�1

������ ;
and by Assumptions 1(i)-(iii) we have

E

0@ TX
t=2

NX
i=1

NX
j=1


jvt
y2i;t�1

1 + y2i;t�1

yj;t�1
1 + y2j;t�1

1A2

=
TX

t;s=2

NX
i;k=1

NX
j;`=1

E

"

j
`vtvs

y2i;t�1
1 + y2i;t�1

y2k;s�1
1 + y2k;s�1

yj;t�1
1 + y2j;t�1

y`;s�1
1 + y2`;s�1

#

=
TX
t=2

NX
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NX
j;`=1

E

"

j
`

y2i;t�1
1 + y2i;t�1

y2k;t�1
1 + y2k;t�1

yj;t�1
1 + y2j;t�1

y`;t�1
1 + y2`;t�1

#

� N2
TX
t=2

NX
j;`=1

E

�����
j
` yj;t�1
1 + y2j;t�1

y`;t�1
1 + y2`;t�1

����� :
Following the arguments in the proof of Theorem 3.2(i) we get

TX
t=2

NX
j;`=1

E

�����
j
` yj;t�1
1 + y2j;t�1

y`;t�1
1 + y2`;t�1

����� =
TX
t=2

X
j2C(1)

X
`2C(1)

E

�����
j
` �yj;t�1
1 + �y2j;t�1

�y`;t�1
1 + �y2`;t�1

����� (1 + o(1))
which is O(TrN ) on account of (3.11). Hence we conclude (NT )

�2
c2N;T jDN;T (4)j = OP (1) (NT )

�2
c2N;T

NT 1=2r
1=2
N = oP (1). By independence and Assumption 1(ii)(b), we have that EDN;T (6) = 0 and

ED2
N;T (6) = 4

PT
t=2

PN
i=1

PN
j=1 �

2
i �
2
jE
�

y2i;t�1
1+y2i;t�1

yj;t�1
1+y2j;t�1

�2
= O(N2T ), and therefore by Chebyshev�s

inequality (NT )�2 c2N;T jDN;T (6)j = OP (1) (NT )
�2
c2N;T NT

1=2 = oP (1). Repeating the arguments

above we also get (NT )�2 c2N;T jDN;T (7)j = oP (1) and (NT )
�2
c2N;T jDN;T (9)j = oP (1). This means

that the leading terms are DN;T (5), DN;T (8) and DN;T (10). Repeating the arguments used in the proof
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of Theorem 3.2 we obtain that

DN;T (5) = T

24 X
i2C(1)

�2iE

 
y2i;0

1 + y2i;0

!2
+

X
i2C(2)[C(3)

�2i

35 (1 + oP (1))
DN;T (8) = T (1 + oP (1))

X
i2C(1)

�2iE

 
yi;0

1 + y2i;0

!2

DN;T (10) = T (1 + oP (1))
X
i2C(1)

X
j2C(1)

E

"

i
j

�yi;0
1 + �y2i;0

�yj;0
1 + �y2j;0

#
:

Thus we get

BN;T

U
1=2
N;T

1

cN;T

P!

8>>>>>><>>>>>>:

a0=
p
a1; under the conditions of part (i)

a0; under the conditions of part (ii)

a0=
p
a2; under the conditions of part (iii);

and therefore the result follows from Theorem 3.2.

Consider now the case bi;t = 0. The only terms that matter are DN;T (1), DN;T (3), DN;T (4); DN;T (8),

DN;T (9) andDN;T (10). De�ne ~cN;T so that ~cN;T
�
'̂N;T � '

�
=OP (1); further, let wT = max1�i�N wi;T ,

where wi;T is de�ned in (7.24).

From the above, it follows immediately that (NT )�2 ~c2N;T jDN;T (1)j = OP
�
T�1

�
. Also, consider

E

24 TX
t=2

 
NX
i=1

y2i;t�1
1 + y2i;t�1

!
NX
j=1

ej;t
yj;t�1

1 + y2j;t�1

352 = E
24 TX
t=2
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y2i;t�1
1 + y2i;t�1

!2 NX
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1 + y2k;t�1

35
� N2E

24 TX
t=2

NX
j=1

e2j;t

 
yj;t�1

1 + y2j;t�1

!235 = O �N3wT
�
;

so that (NT )�2 ~c2N;T jDN;T (3)j = oP (1). The same passages as in the proof of (7.22) yields

E

24 TX
t=2

 
NX
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y2i;t�1
1 + y2i;t�1

!
NX
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�����
35 = O �N2r0NwT

�
;

whence (NT )�2 ~c2N;T jDN;T (4)j = oP (1). The same conclusion (and very similar passages) can be drawn

forDN;T (9). Finally, as far asDN;T (8) is concerned, E
PT

t=2

�PN
i=1 ei;t

yi;t�1
1+y2i;t�1

�2
=
PN

i=1 �
2
iE
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t=2

�
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= O (NwT ), which implies that (NT )

�2
~c2N;T jDN;T (8)j = OP (1), thus being the dominating term when

min
np
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q

N2

r0N

o
=
p
N . Also, considering DN;T (10), the same passages as before yield DN;T (10) =

O (wT r
0
N ), so that DN;T (10) is OP (1) when min

np
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q

N2

r0N

o
=
q

N2

r0N
. �



PANEL DATA 39

References

[1] Arellano, M., Bond, S.: Some tests of speci�cation for panel data: Monte Carlo evidence and an application to

employment equations. Review of Economic Studies, 58(1991), 277�97.

[2] Aue, A., Hormann, S. Horváth, L., Reimherr, M.: Break detection in the covariance structure of multivariate time

series models. Annals of Statistics 37(2009), 4046�4087.

[3] Aue, A., Horváth, L., Steinebach, J.: Estimation in random coe¢ cient autoregressive models. Journal of Time Series

Analysis 27(2006), 61�76.

[4] Bai, J.: Panel data models with interactive �xed e¤ects. Econometrica, 77(2009), 1229�1279.

[5] Baltagi, B.H., Bresson, G., Gri¢ n, J.M., Pirotte, A.: Homogeneous, heterogeneous or shrinkage estimators? Some

empirical evidence from French regional gasoline consumption. Empirical Economics, 28(2003), 795�811.

[6] Baltagi, B.H., Bresson, G., Pirotte, A.: Comparison of forecast performance for homogeneous, heterogeneous and

shrinkage estimators. some empirical evidence from US electricity and natural-gas consumption. Economics Letters,

76(2002), 375�82.

[7] Baltagi, B.H., Gri¢ n, J.M.: Pooled estimators vs. their heterogeneous counterparts in the context of dynamic demand

for gasoline. Journal of Econometrics 77(1997), 303�27.

[8] Baltagi, B.H., Gri¢ n, J.M., Xiong, W.: To pool or not to pool: homogeneous versus heterogeneous estimators applied

to cigarette demand. The Review of Economics and Statistics 82(2000), 117�26.

[9] Banerjee, A., Chevilon, G., Kratz, M.: Detecting and predicting rational asset price bubbles. Mimeo, 2012.

[10] Berkes, I., Horváth, L., Ling, S.: Estimation in nonstationary random coe¢ cient autoregressive models. Journal of

Time Series Analysis 30(2009), 395�416.

[11] Breitung, J., Pesaran, M.H.: Unit roots and cointegration in panels. In L. Mátyás and P. Sevestre (Eds.), The

Econometrics of Panel Data (3rd ed.), Springer-Verlag, 2008.

[12] Chan, N.H., Li, D., Peng, L.: Toward a uni�ed interval estimation of autoregressions. Econometric Theory 28(2012),

705�717.

[13] Charemza, W.W., Deadman, D.F.: Speculative bubbles with stochastic explosive roots: the failure of unit root

testing. Journal of Empirical Finance 2(1995), 153�163.

[14] Chudik, A., Pesaran, M.H.: Common correlated e¤ects estimation of heterogeneous dynamic panel data models with

weakly exogenous regressors. Journal of Econometrics 188(2015), 393�420.

[15] Davidson, J.: The Central Limit Theorem for globally nonstationary near-epoch dependent functions of mixing

processes: the asymptotically degenerate case. Econometric Theory 9(1993), 402�412.

[16] Feige, E.L., Swamy, P.A.V.P.: A random coe¢ cient model of the demand of liquid assets. Journal of Money, Credit

and Banking 6(1974), 241�252.

[17] Granger, C.W.J., Swanson, N.R.: An introduction to stochastic unit root processes. Journal of Econometrics

80(1997), 35�62.

[18] Hill, J.B., Peng, L.: Uni�ed interval estimation for random coe¢ cient autoregressive models. Journal of Time Series

Analysis 35(2014), 282�297.

[19] Horváth, L., Hu�ková, M.: Change�point detection in panel data. Journal of Time Series Analysis 33(2012), 631�648.

[20] Horváth, L., Trapani, L. : Supplement to �Statistical inference in a random coe¢ cient panel model�. Mimeo, 2016.

[21] Hsiao, C.: Some estimation methods for a random coe¢ cient model. Econometrica 43(1975), 305�325.



40 LAJOS HORVÁTH AND LORENZO TRAPANI

[22] Hsiao, C., Pesaran, M.H.: Random Coe¢ cient Panel Data Models. Cambridge Working Papers in Economics 0434,

Faculty of Economics, University of Cambridge, 2004.

[23] Janeµcková, H., Prá�ková, Z.: CWLS and ML estimates in a heteroscedastic RCA(1) model. Statistics & Decisions,

22(2004), 245�259.

[24] Juselius, K., Mladenovic, Z.: High in�ation, hyperin�ation and explosive roots: the case of Yugoslavia. Discussion

Papers 02-23, University of Copenhagen. Department of Economics (2002).

[25] Koul, H. L., Schick, A.: Adaptive estimation in a random coe¢ cient autoregressive model. Annals of Statistics,

24(1996), 1025�1052.

[26] Moon, H.R, Weidner, M.: Linear regression for panel with unknown number of factors as interactive �xed e¤ects.

Econometrica, 83(2015), 1543�1579.

[27] Ng, S.: A simple test for nonstationarity in mixed panels. Journal of Business and Economic Statistics 26(2008),

113�126.

[28] Nicholls, D.F., Quinn, B.G.: Random Coe¢ cient Autoregressive Models: An Introduction. Springer�Verlag, New

York, 1983.

[29] Onatski, A.: Asymptotics of the Principal Components estimator of large factor models with weakly in�uential

factors. Journal of Econometrics 168(2012), 244�258.

[30] Pesaran, M.H.: Estimation and inference in large heterogeneous panels with a multifactor error structure. Economet-

rica 74(2006), 967�1012.

[31] Petrov, V.V.: Limit Theorems of Probability Theory, Clarendon Press, Oxford, U.K., 1995.

[32] Phillips, P.C.B.: Time series regression with a unit root. Econometrica, 55(1987), 277�301.

[33] Phillips, P.C.B., Moon, H. R.: Linear regression limit theory for nonstationary panel data. Econometrica 67(1999),

1057�1112.

[34] Phillips, P.C.B., Y. Wu, Yu, J.: Explosive behavior in the 1990s Nasdaq: when did exuberance escalate asset values?

International Economic Review 52(2011), 201�26.

[35] Schick, A.:
p
N -consistent estimation in a random coe¢ cient autoregressive model. Australian Journal of Statistics,

38(1996), 155�160.

[36] Song, M.: Asymptotic theory for dynamic heterogeneous panels with cross sectional dependence and its applications.

Mimeo, 2013.

[37] Swamy, P.A.V.B.: E¢ cient inference in a random coe¢ cient regression model. Econometrica 38(1970), 311�323.

[38] Wang, X., Yu, J.: Limit theory for an explosive autoregressive process. Economics Letters 126(2015), 176�180.

[39] Westerlund, J., Larsson, R.: Testing for a unit root in a random coe¢ cient panel data model. Journal of Econometrics

167(2012), 254�273.



PANEL DATA 41

n
1
0

2
0

4
0

8
0

T
2
5

5
0

1
0
0

2
5

5
0

1
0
0

2
5

5
0

1
0
0

2
5

5
0

1
0
0

�
1
:5

b
i
a
s

M
S
E

s
i
z
e

1
:4
6
9

1
7
:5
9

0
:0
6
3

�
2
:8
8
9

8
:3
9
1

0
:0
4
9

0
:8
4
8

4
:4
1
8

0
:0
6
0

0
:1
5
1

9
:4
9
7

0
:0
7
5

�
0
:9
1
3

4
:0
9
9

0
:0
5
6

1
:0
3
9

2
:1
2
4

0
:0
5
8

�
1
:5
8
7

4
:5
0
8

0
:0
6
4

�
0
:4
3
8

2
:1
3
5

0
:0
5
2

0
:0
0
0

1
:0
4
3

0
:0
4
8

1
:6
0
3

2
:2
9
1

0
:0
6
8

�
0
:4
3
9

1
:0
5
2

0
:0
5
8

�
0
:2
5
8

0
:5
3
4

0
:0
5
7

�
1

b
i
a
s

M
S
E

s
i
z
e

3
:0
0
6

1
9
:2
8

0
:0
6
4

�
1
:7
1
6

9
:0
3
0

0
:0
5
4

1
:5
3
2

4
:5
7
5

0
:0
6
0

1
:3
8
1

1
0
:0
9

0
:0
7
2

�
0
:8
2
4

4
:2
9
0

0
:0
5
1

1
:4
1
8

2
:2
2
6

0
:0
5
8

�
0
:9
8
1

4
:8
3
5

0
:0
6
9

�
0
:2
3
5

2
:2
4
7

0
:0
5
1

0
:1
8
7

1
:1
0
6

0
:0
5
3

2
:0
5
7

2
:4
8
2

0
:0
6
6

�
0
:1
2
8

1
:1
3
7

0
:0
5
2

�
0
:1
4
9

0
:5
6
1

0
:0
5
9

�
0
:5

b
i
a
s

M
S
E

s
i
z
e

4
:2
4
7

2
2
:8
5

0
:0
6
5

�
0
:4
3
2

1
0
:8
8

0
:0
6
3

0
:7
6
5

4
:9
7
7

0
:0
5
6

1
:2
4
9

1
1
:2
5

0
:0
6
4

�
0
:3
0
2

5
:1
1
0

0
:0
5
2

2
:0
6
9

2
:5
3
5

0
:0
5
5

0
:2
2
6

5
:6
6
3

0
:0
6
1

0
:8
0
4

2
:7
0
2

0
:0
5
8

0
:6
8
8

1
:3
0
7

0
:0
5
3

2
:1
2
4

2
:9
3
3

0
:0
6
8

�
0
:4
7
6

1
:3
5
8

0
:0
6
1

�
0
:2
9
2

0
:6
5
8

0
:0
6
1

'
0

b
i
a
s

M
S
E

s
i
z
e

1
:1
6
2

2
5
:8
5

0
:0
6
4

�
4
:1
7
8

1
2
:1
8

0
:0
5
8

1
:2
0
3

5
:4
3
6

0
:0
5
1

�
0
:2
8
1

1
3
:2
8

0
:0
6
7

�
0
:9
2
6

5
:8
3
0

0
:0
4
7

1
:0
6
6

2
:9
4
5

0
:0
4
8

�
0
:2
2
3

6
:3
8
6

0
:0
5
8

0
:1
2
7

3
:0
2
5

0
:0
5
7

0
:3
6
9

1
:5
0
8

0
:0
5
0

2
:0
3
2

3
:2
0
9

0
:0
6
5

0
:0
0
0

1
:6
0
7

0
:0
5
9

�
0
:5
8
0

0
:7
3
7

0
:0
4
7

0
:5

b
i
a
s

M
S
E

s
i
z
e

�
0
:6
8
7

2
2
:8
9

0
:0
6
9

�
4
:3
3
7

1
0
:4
0

0
:0
5
5

0
:5
5
8

4
:9
1
8

0
:0
5
2

�
2
:1
7
6

1
1
:5
9

0
:0
7
2

�
2
:0
7
0

5
:0
1
6

0
:0
5
4

0
:6
3
4

2
:6
1
7

0
:0
5
8

�
0
:2
4
2

5
:6
2
4

0
:0
6
0

�
1
:0
5
5

2
:5
9
1

0
:0
5
1

0
:2
3
6

1
:2
8
0

0
:0
5
3

2
:3
5
2

2
:8
6
7

0
:0
6
5

�
0
:7
6
6

1
:4
0
9

0
:0
6
2

�
0
:4
7
3

0
:6
5
4

0
:0
5
5

1

b
i
a
s

M
S
E

s
i
z
e

�
2
:8
4
2

1
9
:2
4

0
:0
7
0

�
4
:5
8

9
:1
5
3

0
:0
5
0

0
:6
6
2

4
:4
9
5

0
:0
5
4

�
1
:7
5
9

1
0
:0
6

0
:0
7
3

�
1
:8
5
6

4
:3
3
8

0
:0
5
4

0
:5
4
0

2
:1
9
6

0
:0
5
7

�
0
:2
7
5

4
:9
6
4

0
:0
6
5

�
0
:7
0
6

2
:2
7
4

0
:0
5
0

0
:1
7
7

1
:0
8
8

0
:0
5
0

2
:0
7
1

2
:4
4
4

0
:0
6
7

�
0
:1
8
4

1
:1
5
3

0
:0
6
1

�
0
:2
4
6

0
:5
5
5

0
:0
6
0

1
:5

b
i
a
s

M
S
E

s
i
z
e

�
1
:2
7
4

1
7
:8
1

0
:0
6
6

�
3
:6
1
8

8
:5
7
0

0
:0
5
2

0
:8
3
8

4
:3
8
1

0
:0
6
1

�
1
:4
6
7

9
:3
3
9

0
:0
7
6

�
1
:4
8
5

4
:0
9
3

0
:0
5
7

0
:6
7
8

2
:1
0
5

0
:0
5
4

�
0
:2
1
7

4
:4
5
1

0
:0
6
0

�
0
:6
4
9

2
:1
3
2

0
:0
5
3

0
:1
5
7

1
:0
3
8

0
:0
4
7

1
:8
2
0

2
:2
7
8

0
:0
7
3

�
0
:3
2
9

1
:0
6
8

0
:0
5
9

�
0
:3
2
2

0
:5
3
7

0
:0
5
8

T
a
b
le

1
.
S
im

u
la
ti
o
n
r
e
su
lt
s.

In
e
a
c
h
e
n
tr
y
o
f
th
e
ta
b
le
,
th
e
�
g
u
r
e
s
r
e
p
r
e
se
n
t,

r
e
sp
e
c
ti
v
e
ly
:
th
e
b
ia
s
o
f
'̂
m
u
lt
ip
li
e
d
b
y
1
0
3
,
c
a
lc
u
la
te
d
u
si
n
g
(5
.1
);

th
e
M
e
a
n
S
q
u
a
r
e
d
E
r
r
o
r
a
ss
o
c
ia
te
d
w
it
h
'̂

m
u
lt
ip
li
e
d
b
y
1
0
3
,
c
a
lc
u
la
te
d
u
si
n
g
(5
.2
);

a
n
d
th
e
e
m
p
ir
ic
a
l
r
e
je
c
ti
o
n
fr
e
q
u
e
n
c
y
fo
r
th
e
n
u
ll
th
a
t
'
is

e
q
u
a
l
to

it
s
tr
u
e
v
a
lu
e
.
N
o
te

th
a
t
th
e
n
u
m
b
e
r
o
f
r
e
p
li
c
a
ti
o
n
s
is

2
0
0
0
,
w
h
ic
h
e
n
ta
il
s
th
a
t
th
e

e
m
p
ir
ic
a
l
r
e
je
c
ti
o
n
fr
e
q
u
e
n
c
ie
s
h
a
v
e
a
9
5
%

c
o
n
�
d
e
n
c
e
in
te
r
v
a
l
o
f
[0
:0
4
;
0
:0
6
].

A
s
fa
r
a
s
th
e
d
e
si
g
n
o
f
th
e
si
m
u
la
ti
o
n
is

c
o
n
c
e
r
n
e
d
,
it

is
b
a
se
d
o
n
th
e
sp
e
c
i�
c
a
ti
o
n
s
d
e
sc
r
ib
e
d
in

S
e
c
ti
o
n
5
,
se
tt
in
g


=
0

-
i.
e
.
n
o
c
r
o
ss

se
c
ti
o
n
a
l
d
e
p
e
n
d
e
n
c
e
.



42 LAJOS HORVÁTH AND LORENZO TRAPANI

n
1
0

2
0

4
0

8
0

T
2
5

5
0

1
0
0

2
5

5
0

1
0
0

2
5

5
0

1
0
0

2
5

5
0

1
0
0

�
1
:5

b
i
a
s

M
S
E

s
i
z
e

0
:7
8
4

1
7
:2
2

0
:0
6
0

�
2
:4
1
6

8
:4
1
7

0
:0
5
0

1
:1
7
1

4
:3
7
6

0
:0
5
3

0
:2
9
1

9
:2
5
7

0
:0
7
3

�
1
:2
2
2

4
:0
7
7

0
:0
5
7

1
:1
5
5

2
:1
2
2

0
:0
5
6

�
0
:6
2
8

4
:3
8
3

0
:0
5
6

�
0
:3
6
4

2
:1
0
9

0
:0
4
8

0
:1
2
6

1
:0
5
7

0
:0
5
0

1
:7
1
3

2
:3
2
5

0
:0
6
0

�
0
:2
7
6

1
:0
6
8

0
:0
5
7

�
0
:2
9
5

0
:5
4
1

0
:0
6
0

�
1

b
i
a
s

M
S
E

s
i
z
e

2
:4
6
0

1
8
:2
3

0
:0
6
4

�
1
:3
8
7

8
:8
5
2

0
:0
5
4

0
:9
2
4

4
:4
7
3

0
:0
5
4

0
:1
2
6

1
0
:0
4

0
:0
7
1

�
1
:2
7
7

4
:1
5
6

0
:0
5
0

1
:3
0
5

2
:1
9
1

0
:0
5
5

�
0
:1
5
6

4
:7
5
9

0
:0
5
5

�
0
:4
7
3

2
:1
8
2

0
:0
5
0

0
:1
9
9

1
:0
8
9

0
:0
5
5

1
:6
0
8

2
:5
4
1

0
:0
6
0

�
0
:2
1
0

1
:1
6
3

0
:0
6
0

�
0
:3
0
0

0
:5
5
6

0
:0
5
8

�
0
:5

b
i
a
s

M
S
E

s
i
z
e

5
:0
1
9

2
0
:8
7

0
:0
6
8

�
0
:5
8
8

9
:9
8
0

0
:0
6
1

0
:7
6
5

4
:9
7
7

0
:0
5
6

0
:6
2
8

1
0
:9
9

0
:0
6
6

�
0
:8
6
3

4
:6
9
5

0
:0
5
6

1
:6
0
3

2
:4
2
6

0
:0
5
6

�
0
:5
2
0

5
:6
1
1

0
:0
5
9

0
:7
5
6

2
:6
5
8

0
:0
5
7

0
:5
3
9

1
:2
4
9

0
:0
5
0

1
:1
8
8

3
:1
9
8

0
:0
6
2

�
0
:3
9
3

1
:4
1
2

0
:0
5
3

0
:0
0
0

0
:6
6
3

0
:0
6
2

'
0

b
i
a
s

M
S
E

s
i
z
e

2
:7
5
8

2
3
:0
5

0
:0
6
3

�
4
:6
5
7

1
1
:1
7

0
:0
6
2

1
:2
0
3

5
:4
3
6

0
:0
5
1

0
:0
0
0

1
2
:2
2

0
:0
6
3

�
3
:6
2
2

5
:3
7
2

0
:0
5
0

1
:3
7
6

2
:8
1
9

0
:0
5
4

�
0
:2
0
6

6
:8
2
9

0
:0
6
3

0
:2
2
4

3
:1
7
9

0
:0
6
0

0
:5
6
6

1
:5
6
8

0
:0
5
6

0
:9
6
9

4
:1
3
5

0
:0
6
6

�
0
:5
5
7

1
:8
9
0

0
:0
5
5

0
:4
2
3

0
:9
0
2

0
:0
5
5

0
:5

b
i
a
s

M
S
E

s
i
z
e

0
:2
0
5

2
0
:9
2

0
:0
6
8

�
4
:0
8
6

9
:7
8
8

0
:0
5
8

0
:5
5
8

4
:9
1
8

0
:0
5
2

�
1
:8
4
0

1
1
:0
9

0
:0
6
2

�
3
:1
0
5

4
:7
9
8

0
:0
5
4

1
:9
0
2

2
:4
3
8

0
:0
5
4

�
0
:6
9
6

5
:7
1
7

0
:0
6
4

�
0
:3
3
5

2
:6
0
4

0
:0
5
5

0
:3
6
4

1
:2
5
4

0
:0
5
2

1
:5
0
1

3
:2
4
6

0
:0
6
4

�
0
:5
6
9

1
:4
5
9

0
:0
5
4

0
:0
0
0

0
:6
7
7

0
:0
6
0

1

b
i
a
s

M
S
E

s
i
z
e

�
2
:9
1
8

1
8
:2
9

0
:0
6
6

�
3
:1
6
3

8
:8
1
2

0
:0
5
7

0
:6
6
2

4
:4
9
5

0
:0
5
4

0
:7
5
5

9
:8
3
0

0
:0
6
8

�
1
:8
4
8

4
:2
6
4

0
:0
6
2

0
:4
1
2

2
:1
6
1

0
:0
5
3

�
0
:1
7
1

4
:8
2
8

0
:0
5
9

�
0
:2
9
3

2
:1
9
1

0
:0
5
4

0
:3
5
0

1
:0
7
1

0
:0
5
5

1
:0
8
0

2
:5
4
0

0
:0
6
1

0
:0
0
0

1
:1
4
4

0
:0
5
5

�
0
:3
6
1

0
:5
4
9

0
:0
5
7

1
:5

b
i
a
s

M
S
E

s
i
z
e

�
1
:5
7
6

1
7
:4
5

0
:0
6
5

�
3
:4
7
4

8
:4
4
9

0
:0
5
0

0
:8
3
8

4
:3
8
2

0
:0
6
1

0
:0
0
0

9
:4
7
4

0
:0
5
8

�
1
:8
0
1

4
:0
4
2

0
:0
6
3

0
:8
7
0

2
:1
0
9

0
:0
5
4

�
0
:2
0
2

4
:3
5
5

0
:0
5
4

�
0
:5
4
0

2
:0
9
2

0
:0
4
5

0
:0
0
0

1
:0
4
4

0
:0
5
1

1
:2
2
2

2
:2
9
1

0
:0
6
4

�
0
:2
6
1

1
:0
6
8

0
:0
5
7

�
0
:3
6
7

0
:5
3
5

0
:0
5
8

T
a
b
le

2
.
S
im

u
la
ti
o
n
r
e
su
lt
s.

T
h
e
�
g
u
r
e
s
in

th
e
T
a
b
le

h
a
v
e
th
e
sa
m
e
m
e
a
n
in
g
a
s
in

T
a
b
le

1
;
th
e
d
e
si
g
n
o
f
th
e
si
m
u
la
ti
o
n
is

th
e
sa
m
e
a
s
in

T
a
b
le

1
,
sa
v
e
fo
r


,
w
h
ic
h
h
e
r
e
is

se
t
to



=
1
.



PANEL DATA 43

n
1
0

2
0

4
0

8
0

T
2
5

5
0

1
0
0

2
5

5
0

1
0
0

2
5

5
0

1
0
0

2
5

5
0

1
0
0

�
1
:5

b
i
a
s

M
S
E

s
i
z
e

�
3
:7
2
3

2
6
:7
3

0
:0
5
1

�
2
:6
9
9

1
0
:7
7

0
:0
5
5

1
:0
9
4

5
:0
2
1

0
:0
6
1

2
:4
3
9

1
8
:6
4

0
:0
6
1

�
3
:2
3
3

5
:9
1
7

0
:0
5
3

0
:9
2
8

2
:5
6
6

0
:0
5
5

�
0
:1
9
3

1
1
:8
4

0
:0
4
7

�
0
:3
0
6

3
:6
1
7

0
:0
4
1

0
:3
1
6

1
:4
1
9

0
:0
5
0

0
:8
5
2

8
:3
5
5

0
:0
5
1

0
:4
4
8

2
:5
4
5

0
:0
5
0

�
0
:3
4
4

0
:8
9
5

0
:0
5
3

�
1

b
i
a
s

M
S
E

s
i
z
e

�
1
:7
4
4

3
0
:5
2

0
:0
5
6

�
2
:7
3
6

1
1
:9
9

0
:0
5
6

1
:1
9
9

5
:4
8
0

0
:0
6
2

1
:5
9
7

2
1
:1
9

0
:0
6
2

�
3
:8
7
4

6
:6
4
9

0
:0
4
8

0
:4
4
4

2
:7
9
9

0
:0
5
5

�
0
:7
9
3

1
3
:8
5

0
:0
5
3

�
0
:9
7
9

4
:1
7
2

0
:0
4
8

0
:6
4
2

1
:5
8
0

0
:0
4
7

0
:2
8
5

9
:9
5
3

0
:0
5
0

0
:0
1
6

2
:9
7
9

0
:0
5
3

0
:0
0
0

1
:0
1
9

0
:0
5
5

�
0
:5

b
i
a
s

M
S
E

s
i
z
e

2
:7
2
1

3
7
:5
8

0
:0
5
9

�
0
:5
2
9

1
5
:6
8

0
:0
6
9

2
:5
2
8

6
:7
1
6

0
:0
6
2

0
:5
5
2

2
5
:5
3

0
:0
5
2

�
2
:7
0
4

8
:4
8
6

0
:0
5
3

0
:2
5
7

3
:7
2
0

0
:0
5
9

�
0
:1
2
7

1
6
:8
8

0
:0
5
3

�
0
:3
9
3

4
:8
5
9

0
:0
4
7

0
:1
4
9

2
:1
9
4

0
:0
4
9

0
:0
0
0

1
3
:2
7

0
:0
4
6

0
:5
4
6

4
:2
5
1

0
:0
5
4

0
:6
3
3

1
:5
2
6

0
:0
6
3

'
0

b
i
a
s

M
S
E

s
i
z
e

1
:6
2
6

4
6
:5
6

0
:0
6
5

�
1
:4
9
0

1
8
:8
3

0
:0
5
5

2
:1
8
9

8
:6
5
9

0
:0
5
4

1
:0
4
7

3
1
:5
2

0
:0
5
7

�
3
:6
1
4

1
1
:2
4

0
:0
4
6

�
1
:1
6
6

5
:1
2
4

0
:0
5
2

�
0
:7
7
8

2
1
:5
0

0
:0
5
3

�
0
:2
8
8

7
:0
5
2

0
:0
5
0

0
:1
7
7

3
:5
5
6

0
:0
5
2

�
0
:4
5
7

1
8
:2
0

0
:0
5
6

0
:7
7
1

6
:7
4
4

0
:0
5
1

0
:5
2
0

2
:7
5
6

0
:0
5
0

0
:5

b
i
a
s

M
S
E

s
i
z
e

�
2
:3
9
4

3
8
:1
2

0
:0
5
4

�
0
:7
1
9

1
5
:0
4

0
:0
5
3

1
:3
0
0

6
:5
3
5

0
:0
5
4

2
:5
7
8

2
5
:6
7

0
:0
6
1

�
5
:1
8
6

8
:1
9
8

0
:0
4
4

0
:5
9
0

3
:5
3
6

0
:0
4
9

0
:3
0
1

1
6
:7
1

0
:0
5
1

0
:1
7
1

5
:5
3
0

0
:0
4
7

0
:5
2
7

2
:1
8
7

0
:0
5
4

�
1
:2
5
2

1
3
:1
1

0
:0
5
4

0
:5
5
6

4
:4
0
8

0
:0
5
1

0
:7
1
7

1
:5
0
8

0
:0
5
0

1

b
i
a
s

M
S
E

s
i
z
e

�
3
:1
7
3

3
2
:3
8

0
:0
6
3

�
2
:1
6
4

1
2
:4
7

0
:0
5
6

0
:4
9
3

5
:2
6
4

0
:0
5
8

3
:1
4
7

1
9
:9
1

0
:0
5
4

�
3
:9
6
2

6
:5
9
7

0
:0
5
0

0
:9
2
2

2
:7
2
9

0
:0
5
6

�
1
:3
7
0

1
3
:5
3

0
:0
4
5

�
0
:3
4
5

4
:1
8
0

0
:0
4
7

0
:4
1
8

1
:5
5
7

0
:0
4
6

�
0
:2
9
3

1
0
:0
1

0
:0
5
4

0
:2
2
2

3
:0
0
1

0
:0
5
2

0
:0
0
0

1
:0
1
6

0
:0
5
5

1
:5

b
i
a
s

M
S
E

s
i
z
e

�
1
:1
4
3

2
6
:8
3

0
:0
5
1

�
2
:1
4
6

1
1
:0
9

0
:0
5
8

0
:6
6
6

4
:9
9
9

0
:0
5
7

2
:2
2
7

1
8
:1
5

0
:0
5
8

�
3
:5
8
7

5
:8
5
1

0
:0
4
3

0
:7
5
2

2
:5
3
1

0
:0
5
3

�
1
:8
9
1

1
1
:5
2

0
:0
4
6

0
:7
3
9

3
:5
8
0

0
:0
4
5

0
:3
4
4

1
:4
4
2

0
:0
5
1

0
:8
2
4

8
:4
8
5

0
:0
5
1

0
:8
0
9

2
:5
0
5

0
:0
4
8

0
:0
0
0

0
:8
9
7

0
:0
5
5

T
a
b
le

3
.
S
im

u
la
ti
o
n
r
e
su
lt
s.

T
h
e
�
g
u
r
e
s
in

th
e
T
a
b
le

h
a
v
e
th
e
sa
m
e
m
e
a
n
in
g
a
s
in

T
a
b
le

1
;
th
e
d
e
si
g
n
o
f
th
e
si
m
u
la
ti
o
n
is

th
e
sa
m
e
a
s
in

T
a
b
le

1
,
sa
v
e
fo
r


,
w
h
ic
h
h
e
r
e
is

se
t
to



=
1
0
.



44 LAJOS HORVÁTH AND LORENZO TRAPANI

n
2
0

4
0

8
0

T
5
0

1
0
0

5
0

1
0
0

5
0

1
0
0



0

1
0

0
1
0

0
1
0

0
1
0

0
1
0

0
1
0

�
1
:5

b
i
a
s

M
S
E

s
i
z
e

0
:0
5
0

0
:8
2
8

0
:0
5
5

2
:1
3
8

0
:0
4
0

0
:0
2
0

0
:0
2
8

0
:4
9
1

0
:0
1
3

0
:5
2
1

0
:0
4
1

0
:0
2
1

0
:1
0
6

0
:1
2
2

0
:0
2
8

1
:9
3
8

0
:0
3
9

0
:0
1
6

0
:0
0
1

0
:4
4
2

0
:0
0
6

0
:4
3
1

0
:0
4
6

0
:0
1
1

0
:0
4
5

1
:1
9
0

0
:0
1
4

1
:6
6
5

0
:0
4
2

0
:0
2
9

0
:0
1
6

0
:0
7
5

0
:0
0
3

0
:3
8
8

0
:0
4
3

0
:0
1
6

�
1

b
i
a
s

M
S
E

s
i
z
e

0
:0
8
2

0
:7
7
4

0
:3
6
5

8
:4
2
7

0
:0
5
2

0
:0
5
5

0
:2
5
7

1
:3
7
1

0
:1
2
4

2
:6
1
9

0
:0
5
5

0
:0
6
0

0
:5
0
3

1
:6
3
0

0
:1
8
5

5
:8
2
3

0
:0
5
9

0
:0
6
2

0
:0
0
3

0
:2
0
3

0
:0
6
1

0
:0
8
5

0
:0
5
8

0
:0
5
1

0
:2
2
8

0
:4
2
5

0
:0
8
9

1
:9
7
9

0
:0
5
1

0
:0
5
7

0
:0
2
5

0
:0
1
1

0
:0
2
9

0
:6
9
4

0
:0
4
3

0
:0
6
0

�
0
:5

b
i
a
s

M
S
E

s
i
z
e

1
:0
1
0

0
:7
1
5

1
:6
3
4

5
3
:8
2
2

0
:0
5
8

0
:0
5
5

1
:0
5
4

�
3
:5
1
7

0
:7
8
1

2
5
:7
7
6

0
:0
4
8

0
:0
4
4

0
:2
4
5

�
4
:0
0
3

0
:8
2
7

5
4
:7
1
3

0
:0
5
8

0
:0
6
2

�
0
:3
4
0

1
:4
8
4

0
:3
8
9

2
6
:4
4
1

0
:0
4
7

0
:0
5
0

�
0
:0
2
0

�
0
:9
1
4

0
:4
1
3

4
7
:7
7
3

0
:0
5
4

0
:0
4
8

0
:1
0
6

4
:0
5
9

0
:1
9
9

2
5
:4
7
5

0
:0
5
4

0
:0
5
2

'
0

b
i
a
s

M
S
E

s
i
z
e

1
:3
8
2

3
:7
1
8

1
:8
9
7

6
6
:0
5
8

0
:0
5
4

0
:0
5
1

0
:6
1
5

�
6
:9
7
9

0
:9
4
5

3
4
:6
6
9

0
:0
5
0

0
:0
5
0

�
0
:4
6
8

1
:0
8
1

0
:9
6
3

6
6
:6
1
1

0
:0
5
1

0
:0
5
6

�
0
:5
1
6

3
:2
1
8

0
:4
8
1

3
2
:3
5
2

0
:0
4
9

0
:0
4
8

�
0
:2
2
7

�
1
:7
7
7

0
:5
1
1

6
5
:0
7
0

0
:0
6
0

0
:0
5
6

�
0
:0
5
6

0
:4
4
3

0
:2
4
9

3
2
:1
5
4

0
:0
6
1

0
:0
5
0

0
:5

b
i
a
s

M
S
E

s
i
z
e

0
:6
3
7

�
4
:3
2
4

1
:5
6
8

5
3
:9
7
3

0
:0
5
1

0
:0
5
4

0
:6
0
1

�
1
0
:0
2
5

0
:7
9
3

2
6
:7
8
6

0
:0
5
8

0
:0
5
1

0
:2
2
8

�
2
:6
7
8

0
:7
5
8

5
1
:2
6
2

0
:0
5
3

0
:0
4
7

0
:3
5
4

5
:3
5
5

0
:3
9
1

2
6
:0
5
6

0
:0
4
9

0
:0
5
2

0
:0
3
6

1
:4
6
0

0
:4
2
7

5
1
:6
7
6

0
:0
6
3

0
:0
6
4

�
0
:3
6
1

2
:2
1
3

0
:2
0
3

2
5
:7
1
0

0
:0
5
9

0
:0
5
7

1

b
i
a
s

M
S
E

s
i
z
e

�
0
:6
8
8

�
2
:8
6
7

0
:3
5
9

8
:3
1
1

0
:0
5
4

0
:0
5
4

�
0
:1
1
9

�
0
:3
5
1

0
:1
1
8

2
:5
9
5

0
:0
4
4

0
:0
6
1

�
0
:4
4
9

�
2
:5
6
7

0
:1
7
5

4
:5
5
6

0
:0
5
5

0
:0
5
4

�
0
:0
8
5

�
0
:3
5
1

0
:0
6
1

2
:0
3
6

0
:0
5
2

0
:0
5
8

�
0
:2
0
2

�
1
:7
0
4

0
:0
8
6

1
:9
5
9

0
:0
5
0

0
:0
5
7

�
0
:0
6
6

0
:2
8
8

0
:0
3
1

0
:7
1
9

0
:0
5
7

0
:0
5
8

1
:5

b
i
a
s

M
S
E

s
i
z
e

�
0
:1
7
8

�
2
:7
2
3

0
:0
5
6

2
:0
9
6

0
:0
3
9

0
:0
1
6

0
:0
4
6

0
:3
4
6

0
:0
1
3

0
:5
0
0

0
:0
4
2

0
:0
1
8

0
:0
3
7

0
:4
0
9

0
:0
2
7

1
:8
8
3

0
:0
4
6

0
:0
2
1

0
:0
6
5

0
:5
7
3

0
:0
6
5

0
:4
2
1

0
:0
4
6

0
:0
1
8

0
:0
7
4

0
:0
4
9

0
:0
1
3

1
:6
4
1

0
:0
3
9

0
:0
1
6

0
:0
4
2

0
:2
9
1

0
:0
0
3

0
:3
8
5

0
:0
4
4

0
:0
1
1

T
a
b
le

4
.
S
im

u
la
ti
o
n
r
e
su
lt
s
fo
r
th
e
c
a
se

b
i
;t

=
0
.
T
h
e
�
g
u
r
e
s
in

th
e
T
a
b
le

h
a
v
e
th
e
sa
m
e
m
e
a
n
in
g
a
s
in

T
a
b
le

1
,
a
n
d
a
r
e
o
b
ta
in
e
d
u
n
d
e
r
th
e
sa
m
e
d
e
si
g
n
.



PANEL DATA 45

GDP M2 Equity Index Short term rate IP UK House Price Index

(N; T ) (15; 212) (18; 55) (18; 75) (16; 80) (18; 90) (13; 45)

'̂ 0:9988 1:002 1:000 0:9605 1:0007 1:0136

q
\V ar ('̂� ') 0:00098 0:00016 0:00177 0:01841 0:00032 0:00081

95% con�dence interval [0:9968; 1:0007] [1:0016; 1:0023] [0:9965; 1:0034] [0:9244; 0:9965] [1:0000; 1:0013] [1:0090; 1:0121]

Test for H0 : ' � 1

t-stat �1:224 12:5 0 �2:145 2:187 13:086

p-value [0:889] [0:000] [0:500] [0:984] [0:014] [0:000]

Tab le 5 . Em p ir ic a l a p p l ic a t io n s . T h e �rs t p a n e l o f th e ta b le ( c o lum n s h ead in g s : G D P, M 2 , E q u ity In d ex , S h o r t Te rm ra te a n d IP )

c o n ta in s q u a r te r ly EU m ac ro e c o n om ic a n d �n an c ia l d a ta , a s d e sc r ib ed in th is s e c t io n . T h e la s t c o lum n conta in s th e N a t io nw id e h ou se

p r ic e in d ex . T h e la s t tw o row s co n ta in a t -t e s t fo r th e nu ll o f n o ex p lo s ive ro o t - th e te s t s ta t is t ic is d e�n ed a s ('̂ � 1) =
s

\V ar ('̂ � ').
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