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STATISTICAL INFERENCE IN A RANDOM COEFFICIENT PANEL MODEL
LAJOS HORVATH AND LORENZO TRAPANI

ABSTRACT. This paper studies the asymptotics of the Weighted Least Squares (WLS) estimator of
the autoregressive root in a panel Random Coefficient Autoregression (RCA). We show that, in an
RCA context, there is no “unit root problem”: the WLS estimator is always asymptotically normal,
irrespective of the average value of the autoregressive root, of whether the autoregressive coefficient
is random or not, and of the presence and degree of cross dependence. Our simulations indicate that
the estimator has good properties, and that confidence intervals have the correct coverage even for
sample sizes as small as (N,T) = (10,25). We illustrate our findings through two applications to
macroeconomic and financial variables.
Keywords: Random Coefficient Autoregression, Panel Data, WLS estimator, common factors

JEL Codes: C13, C23.

1. INTRODUCTION

In this paper, we study the asymptotics for the Weighted Least Squares (WLS) estimator of the autore-

gressive coefficient ¢ in the following Random Coefficient Autoregressive (RCA) panel model:
(1.1) Vit = (@ +bit)Yir—1 +uiys, with1 <t <Tand 1<i<N.

In a time series setting, RCA models have been popular for a very long time, chiefly due to their
flexibility and analytical tractability - we refer to the monograph by Nicholls and Quinn (1983) for
an excellent introduction to the topic, mainly in the field of biostatistics, and to the contributions by
Swamy (1970), Feige and Swamy (1974), and Hsiao (1975).

Recently, also due to the increasing availability of large datasets, models with random coefficient have
been applied in the context of panel data analysis (see Hsiao and Pesaran, 2004). Although slope het-
erogeneity may be desirable in a panel context, a specification with fixed heterogeneous slopes may yield
a loss of efficiency due to the penalty it imposes onto the degree of freedom. This is evident e.g. in the
context of forecasting, where several studies by Baltagi and his co-authors point out that, whilst models
with homogeneous slopes are often rejected by the data, they could however yield superior predictive
performances - see e.g. Baltagi and Griffin (1997), Baltagi, Griffin and Xiong (2000), Baltagi, Bresson

and Pirotte (2002) and Baltagi, Bresson, Griffin and Pirotte (2002). This explains the importance of
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2 LAJOS HORVATH AND LORENZO TRAPANI

models that, on the one hand, do not impose the restriction of slope homogeneity but, on the other hand,
do not overparameterise the model. Similar considerations also hold for the panel unit root literature
(see e.g. the survey by Breitung and Pesaran, 2008): whilst earlier contributions proposed tests for the
null that ¢ = 1 and b; ; = 0 for all 4 and ¢ under the null, with |¢| < 1 and b; ; = 0 under the alternative,
more recent contributions consider the same null hypothesis but entertain the possibility that, under the
alternative, ¢ differs across units. However, in this case the model becomes overparameterised under
the alternative. A possible solution is to use the RCA panel model (1.1): this was originally proposed
by Ng (2008), in order to estimate the fraction of units that have a unit root, and it was subsequently
fully exploited, to construct a test for unit root, by Westerlund and Larsson (2012). Of course, the
dynamics of y;; in (1.1) is controlled by ¢ +b; ;, and not by ¢ alone. Thus, when Var (b; ;) > 0, having
for example ¢ = 1 does not mean having a unit root; rather, as illustrated in the seminal contribution
by Granger and Swanson (1997), it means having a “stochastic unit root” series, i.e. a series which
is non-stationary on average, having periods of explosive and stationary dynamics.! Results on the
estimation of ¢ are already available in a time series context: Aue et al. (2006) and Berkes et al.
(2009) use the quasi-maximum likelihood (QML) method to estimate the regression coefficient, showing
that the asymptotic distribution of the estimated ¢ is normal irrespective of the value of ¢, as long as
Eb}, > 0. Hill and Peng (2014) propose an Empirical Likelihood (EL) estimator which affords standard
normal inference even when b; ; = 0 - that is, even when there is no coefficient randomness. However,
in a large panel context, both approaches could be problematic, due to computational issues (the QML
estimator), or to the possible presence of dependence across units (the EL estimator).

Hence, in this contribution we complement the existing results in the literature by developing a full-
fledged asymptotic theory for the WLS estimator of ¢ in (1.1). The WLS estimator avoids the issues
described above, and it has been shown, in a time series context, to work well in comparison with the
maximum likelihood approach (Schick, 1996; Koul and Schick, 1996). We show that in general, thanks
to the self-normalised nature of the WLS estimator, there is no “unit root problem” in case of the RCA
model defined by (1.1). Further, we study an estimator of the asymptotic variance of the WLS estimator
which is consistent under any degree of cross sectional dependence; hence, it is possible to normalise
the estimated ¢ and recover standard normal inference, with no need for any prior inference on the
possible presence of a factor structure. We also show that, contrary to the time series case, the suitably
normalised WLS estimator converges to a normal distribution even when the autoregressive root is not
random, i.e. when b;; =0foralll <i < N and 1 <t < T, the only case in which asymptotic normality

does not hold is the case of a constant explosive root ¢ in presence of strong common factors. From a

1Wwe are grateful to an anonymous Referee for pointing this interpretation out to us.



PANEL DATA 3

technical point of view, the asymptotics derived in this paper requires that min {N,T} — co. Earlier
studies in the context of dynamic panels (e.g. Arellano and Bond, 1991) focused on the case of fixed T
and N — oo. In such context, having |p| > 1 is inconsequential. Thus, as far as the applicability of our
setup is concerned, the unified estimation theory developed here is needed only when T' — oo.

Our findings have important implications in various areas where panel data are routinely employed.
In the context of a standard dynamic panel model, the RCA model avoids, as is well known, the
heterogeneity bias problem (Swamy, 1970); moreover, not having the unit root problem is advanta-
geous per se. Thus, our results are bound to prove useful, for example, in the context of panel studies

of hyperinflation (Juselius and Mladenovic, 2002), or in the literature on bubbles (Banerjee et al., 2012).

The remainder of the paper is organised as follows. We lay out the model and the assumptions, and
discuss the estimation techniques in Section 2. The asymptotics is reported in Section 3. Particularly,
in Section 3.1 we show that the WLS estimator is consistent; in Section 3.2 we study the limiting
distribution. Extensions to the cases of more complex models are reported in Section 4. The properties
of the WLS estimator are illustrated through a Monte Carlo exercise (Section 5), and a set of empirical
applications (Section 6). Section 7 concludes. Technical Lemmas and the proofs of the results in Section
3 are in Appendix; all other proofs are in the Supplement (Horvath and Trapani, 2016).

NOTATION. We denote the ordinary limit as “—”; convergence in probability with “ﬂ”; convergence in
distribution as “2”; N(p,a) denotes a normally distributed random variable with mean p and variance
a; “=” denotes definitional equality; ||| denotes the Euclidean norm. Other notation is introduced

further ahead in the paper, when needed.

2. ESTIMATION AND MAIN ASSUMPTIONS
In this section, we introduce the WLS estimator of ¢, and we spell out the main assumptions needed
for the asymptotics. Recall model (1.1), given by

Yie = (@ +bit) Yit—1 + Wiy

As far as the error term u; ; is concerned, we consider a factor structure to capture the possible presence

of strong cross sectional dependence. Following Ng (2008) we write

(2.1) Uit =€t +70, 1<i<N1<t<T,

)

i.e. u;4 is decomposed into two terms: e;; depends only on unit ¢ while the term v; is common for all

panels.
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The WLS estimator, ¢, is the solution to the minimisation problem (see Janeckovd and Praskova, 2003)

N T s
(2.2) mmz Z/m Yit— 1 _

N
i=1 t=2 1+ylt 1 =

T ~
ZM

1t=2 1+yi2xt*1

i
The weighing function in (2.2) is not designed to attain efficiency. Indeed, this would require employing,
as weights, 1/ [(Euft) + (Ebit) yit_l], or a feasible version thereof; however, as shown in Chan, Li and

Peng (2012), first order asymptotics holds when setting e.g. Eu?t Eb2t =1, so that it can be expected

that consistency will be ensured when using (2.2). Define, for convenience,

P=PNnT = M?
By
with
Y Yl o~y Vi
(2.3) Anr = ; 2 m and By = ; tz:; m

Consider the following assumption:

Assumption 1. It holds that: (i) (a) for every i = 1,..., N, {b; ¢, —00 < ¢t < 00} is i.i.d. across t; (b)
for every i = 1,...,N, {e;1,—00 < t < oo} is i.i.d. across t; (¢) {vy, —00 < t < oo} is i.i.d. across t;
(i) (a) for every ¢ = 1,...,N, E(b;o) = E(e;0) = 0, and also E (vg) = 0; (b) for every i = 1,..., N,
E(bfo) = 0? and E (e? o) = 77, and E (v3) = 1; furthermore N~ ZZ L (02 +72) = 0(1); (iii) (a)
{e, t}t—foo’ {b;, t}t—foo and {vt}t,_oo are three mutually independent groups for ¢ = 1,..., N; (b) vi0
is independent of {e; ¢, b; ¢, v¢} for i = 1,..., N; (iv) the ,’s are independent across ¢ and such that (a)
v; (N, T) A y; foralli =1,..,N as N,T — oo; (b) N1 Zfil |7;] = Op (1) as min (N, T) — oo; ()

~; is independent of {y; o, €+, b;¢,v:} for i =1,...,N.

Assumption 1 contains a set of regularity conditions, as high level as possible. Parts (i) and (%ii)
stipulate that all the variables are serially independent (part (7)), and cross-sectionally independent
(part (4ii)). Cross sectional dependence among the y; s is allowed for through the presence of a factor
structure in the error - the term ~,v; in equation (2.1); note that we do not require estimation of either
v, or vy, which are both treated as nuisance parameters, or of the number of common factors if v; is
multidimensional. The theory developed here can be extended to accommodate for serial dependence,

with minor modifications to the main arguments of the proofs.
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Part (i) of Assumption 1 states that our theory requires the (minimal) assumption on the existence of
second moments. A sufficient condition for parts (i) and (iii) to hold is that Eej, < ¢1, Eb7, < ca
and F |;| < ¢g for all i = 1,..., N, for some constants c;, co and ¢5. By part (b) of the assumption, the
initial values ;9 can be constants or random variables, as long as they are independent of the future
error terms; no moment restrictions are needed on the initial conditions.

Finally, part (iv) takes into account the possibility that the correlation between units may decay; the
limit in part (a), ;, can be a constant (even 0 or oo); however, part (b), intuitively, stipulates that we

can only have very few large loadings.

Equations (1.1) and (2.1) can be solved explicitly, resulting in

¢ t -1
(2.4) Yit = Yi,0 H(QO +bis) + Z Uj s H(tp +bizq1)
s=1 s=1 zZ=s§
t t t—1 ¢ -1
=yio [[(e+bis) + D eis [T +bizi) +7: D vs [[ (0 +bizp0).
s=1 s=1 z=s s=1 z=s

According to (2.4), the y; s can be decomposed into three parts. The first term shows the effect of the
initial value y; o; the second term is independent of all the other units, while the last one contains all
the dependence of the 0 unit to the other units.

Consider equation (1.1). According to the value taken by b, each of the y;, can be: stationary
(which, heuristically, corresponds to the AR root ¢ + b;; being “smaller than one”); explosive (which,
heuristically, corresponds to the case of ¢ + b; ; being “larger than one”); or on the boundary (which,
heuristically, corresponds to the AR root ¢ + b;; being “equal to one”).

We now discuss the three regimes in detail.

Stationary units

h

Formally, we say that the i unit is stationary if

(2.5) Elogly +b;0| <0,

and we henceforth denote C'(1) to be a set containing the indices of the stationary units, i.e. the set
of the ’s for which (2.5) holds. Note that if condition (2.5) holds, then y;; converges to a stationary

solution as t — oco. The stationary solution (henceforth denoted as ;) is given by

t t—1 t -1
(2.6) Yie = Z €i,s H(<P +biz41) + 7 Z Vs H(<,0 + bi,241)-

S§=—00 S§=—00
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Aue et al. (2006) showed that the sums defining g;; are finite with probability one, and that there

exists a k; € (0, 1] such that

(27) ; = E|<p + bi,O R 1.

In order to study the contribution of the stationary units to the asymptotics of ¢ consider the following

assumption:

Assumption 2. It holds that, as N — oco: (i)

1oy [Blewl & BB )01
N 1-— 51' 61/(1+’ii) B !
i€C(1) i

1/(1+5:)

(i) N7 Sicoq [(1=8)7" Bl — 7,1 Eluo| | = o(1); (iii)
1 [ Bleiol™ + 7l Blogl= 101
N > E{%|[ 13, SR = 0(1);

() N7 Cicoq il =8:)] 7 = O(1).

Assumption 2 is rather technical, and it poses some regularity conditions on the stationary units.
A sufficient condition for parts (i) and (iii) is that E|vg| < c1, Ele;o] < ca and E¥? < c3 and
0<cy<d;<cs<1forallieC(1),for some constants cy,..., cs. However, by Assumption 2, some of
these moments could be tending to infinity, but in that case the number of stationary units should be
small; similarly, if ~y, is nonrandom, the assumption implies that 7, is finite for all : € C' (1). By a similar
logic, a sufficient condition for part (i) is that +; converges to 7, in Li-norm, viz. El|vy, —7;| = o(1).

Finally, part (iv) stipulates that x; and (1 — §;) cannot be too small for too many units.
Ezplosive units

We say that the i unit s explosive if

(2.8) Elog | + bio| >0,

and we denote C(2) to be the set containing the indices of the explosive units, i.e. the set of the i’s for
which (2.8) holds. When (2.8) is satisfied, Berkes et al. (2009) prove that |y; ;| — oo at an exponential

rate in probability as t — oo (see also Lemma 7.4).
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Henceforth, let
(2.9) 57 = var(log |¢ + bio|)-

We need the following assumption when studying the asymptotics of explosive units.

Assumption 3. It holds that

1 o3+ 1 -
(Elog | + b;ol)®

o(1).

i€eC(2)

A set of sufficient conditions for Assumption 3 is that &; < ¢; and Elog|g + b; 9| > ¢o for all ¢ € C'(2),
for some constants c; and cp > 0. This entails that the values of the ¢ + b; o are not too spread out
(this also follows from Assumption 4(ii) below); further, the part that requires Elog | + b; 9| > 0 is
a way of ruling out too many “local-to-explosive” cases. Further assumptions that are needed for the

case of explosive units will be spelt out when discussing the boundary case.

Boundary units

Finally, when it holds that
(2.10) Elog ¢+ biol =0,

we say that unit ¢ is on the boundary between the stationary and the explosive behaviour. Indeed, if
o; = var(b;0) = 0, under (2.10) the it unit would boil down to being a standard AR process with a
unit root. We henceforth denote C'(3) to be the set containing the indices of the units on the boundary,
i.e. for which (2.10) is satisfied.

When (2.10) holds, Berkes et al. (2009) show that |y; ;| — oo in probability as ¢ — oo. However, in this

case the rate of convergence to oo is slower than exponential (see Lemma 7.4).

Under (2.8) as well as (2.10), the y; ;s are therefore unbounded. In both cases, we consider the following

set of assumptions, again needed to study the impact of these units on the asymptotics of ¢.

Assumption 4. It holds that: (i) u;o has a bounded density if i € C(2) U C(3); the upper bound

is henceforth denoted as M;; (i) there exists a v; € [v,7] with v > 0 and v > 2 such that E|log |y +
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bi,ol
N1 Yiccuce) BVl M; (14 ;' +m;) = O(1) (recall that &; is defined in (2.9)).

Vi < oo for all i € C(2) U C(3); (iii) letting m; = Ellog|p + b;o| — Elog | + b; o

Vi we have

3. ASYMPTOTICS

After spelling out the full set of assumptions needed for the consistency of @, in this section we report
the asymptotic properties of p. Section 3.1 contains results on the consistency of the estimator; the

limiting distribution is in Section 3.2.

3.1. Consistency. We start by showing that ¢, 1 is a consistent estimator of ¢. Henceforth, #A

denotes the cardinality of a set A.

Theorem 3.1. Under Eb?’t > 0, if Assumptions 1-4 hold and

1 i
(3.1) lm 4 " B ij’?Q L HOQ) + #CB) S = ap >0,
ieC(1) 4,0

as min(N,T) — oo, we have @y 1 L . The same result holds when b;; = 0, under Assumptions 1-3,

4(i)-(ii) and (3.1).

Remarks

Theorem 3.1 states that @y 1 is always consistent for ¢, irrespective of the value taken by ¢. Thus,
@n,r is consistent if all units are stationary, if some of them are nonstationary, and even if some or all
of them are explosive. Similarly, the results hold irrespective of whether Eb7, > 0 or whether b;; = 0.
In this respect, ¢ 1 does not have the typical “boundary problems” which are encountered in the unit
root literature (see for example Phillips, 1987). Finally, (3.1) requires that ag is nonzero, which is a
non-degeneracy condition to rule out that the denominator of @y  converges to zero. Equation (3.1)
always holds, unless there are “too many” units with g; o = 0 and the number of units with |p| > 1 is

very small. Note that, when b; ; = 0, the condition is automatically satisfied for |¢| > 1, with ag = 1.

3.2. Limiting distribution. In this section, we study the asymptotic distribution of the suitably
normed @y 7 —¢. The main results of this section are: the limiting distribution, the rates of convergence,

and the computation of the norming sequences. We show that these depend (when Ebit > 0) on

2
_ Yi,0 Yi,0 Y35,0

3.2 =F E . = E E E A .

( ) N Vi 1 + ?31-2,0 {’YZFYJ 1 I 11]2-2)0 1 I g]%O }

1€C(1) 1€C(1) jeC(1)
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The quantity rpy is determined by the amount of cross sectional dependence across the stationary
units only. When Ebit > 0, cross sectional dependence has an impact on the asymptotics of @y
only through the stationary units. Note that if no factor structure is present in the error term wu; 4,
ie if v, = 0 for every i € C (1), then ry = 0. On the other hand, an upper bound for ry is
ZieC(l) ZjeC(l) E hﬂj| =0 (NZ), which represents strong cross sectional dependence.

In order to derive the asymptotic distribution of ¢ 1, we need the following assumption, which strength-

ens some of the moment conditions in Assumption 1.

Assumption 5. Let € > 0. It holds that: (i) Eluo|>*¢ < oo and N=' 2N | Elv,|2te = O(1); (ii)
NS Elbio|* € = O(1) and N=' S0, Eles ol = O(1).

The main results of this section are the following two theorems. The first one deals with the case of
genuinely random autoregressive root (i.e. Eb?,t > 0), whereas the second one considers the properties

of the estimator when b; ; = 0.

Theorem 3.2. Let Assumptions 1-4 with Eb}, >0, and (3.1) hold.

(i) If Assumption 5(i) is satisfied and imy_c %5 = a1 > 0, then, as min(N,T) — oo, we have

N D aq
1) If Assumption 5(i) is satisfied and limy_, o, 2 = 0o, then, as min(N,T) — oo, we have
N

N2T
N

(3.4)

N 1
(en1—9) 2N <0, ag) .
0

(iii) If Assumptions 5(i)-(ii) are satisfied and limsupy ., 3 < oo, then, as min(N,T) — oo, we have

(3.5) VNT (pyr—¢) DN (0, Z§> ,

0

2 2
1 Uio ¥io
lim — ’E & 2 ’E & = as.
NN Z i <1+y2 +iecz gi + Z)Tt 1+52, TN a2

(2)UC(3) i€C(1

Remarks
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Theorem 3.2 reports the rates of convergence and the limiting distribution of ¢y 7 under various degrees
of cross sectional dependence, depending on the value taken by . The estimator always has a normal
distribution, but the rate of convergence is affected by cross sectional dependence.

Part (i) of the Theorem considers the case of strong cross sectional dependence. An example in which
part (i) holds is if 7; = 1 for all units 4. In this case, we show that ¢ p is V/T-convergent. Note that
the limiting distribution is completely determined by the stationary units: units that are explosive or
on the boundary do not have an impact on (3.3).

Turning to part (4ii) of the Theorem, this holds when nearly all the loadings of the stationary units go
to 0. This also includes the important case of v, = 0 for 1 <4 < N, i.e. cross sectional independence.
Indeed, if the 7;s are nonrandom, with 4, = 4, = 0, then g; ; and 7; ; are independent (and independent

of ;) and therefore
2

TN 1 Ui 0
= N E 71E —o )
NN \eny T

Yi,t
1473,

if, further, the distribution of e; ¢ is symmetric around 0, then E = 0, so that 4, = 0 suffices for
part (i) to hold, regardless the rate of convergence of ; to 0. However, if the distribution of e; o is
asymmetric, v, must converge to 0 at a faster rate than N —1/2_ This condition is known in the panel
literature as having “weak factors” - see Onatski (2012). A special case of part (ii) of the Theorem is
the case where limy .o, 7y /N = 0. In such case, equation (3.5) specialises into vV NT (Pnr — @) A

N ((), ag/a%), where

2 2
o1 3o ¥i,0
lim —<¢ > o}E > > Y TIE : = as.
Am oy <1+y20 + o} + T 1"'@1'2,0 as

i€C(1) i€C(2)UC(3) i€C(1)

Finally, part (i) of the Theorem is the case in between strong cross sectional dependence (part (i)),
and very weak cross sectional dependence (part (4i)). This case can be illustrated by considering, as

an example, the case where the loadings 7; are non-random with v, = N =% for some § € (0, %)

We now consider the asymptotic properties of ¢ 7 when b; + = 0; we show that the rates of convergence

depend on

(3.6)

>3- (ehasl?)"

Hl
i Mz

Consider the notation Cy = max {\%, TNII‘;}

Theorem 3.3. Under b, ; = 0, let Assumptions 1-3, 4(i) and (3.1) hold. As min(N,T) — oo



PANEL DATA 11

(i) Under the Assumptions of Theorem 3.2 with b;; =0 and

N 2
| Ui,0
lim — TE | —= = a:
Ngnoo N ZTl (14_:1?22,0) +7TN ay > 0,

i=1
the results of Theorem 3.2 hold for |p| < 1.
(i) If o =1, pyr—1=Op (T‘2/3C’N); further, if Assumption 5 holds,

o7 —1/2
Yit—1 Yit—1

3.7 NT Ul

(3.7) Zr( . ) (Z% 1+ym)

(iii) If |¢| > 1, then o o — ¢ = Op (T7*Cn); further, if Assumption 5 holds and ry /N — 0

N T 2 —1/2
(3.8) NT |72 L Gy —@) 2 N(0,1).
1 +yzt 1

i=1 t=2

Remarks

Theorem 3.3 considers the case in which ¢ is constant over time and homogeneous across units: the
WLS estimator ¢y 7 is always consistent.
Part (i) is, in essence, the same as in Theorem 3.2. Part (i) considers the panel unit root case: in this

case the WLS estimator of ¢ has a rate of convergence that is faster than 7-1/2

. The rate provided
by the theorem is not the sharpest possible, and it is indeed only an upper bound. Equation (3.7)
stipulates that, under all circumstances, the WLS estimator of ¢ converges to a normal distribution, so
that even in this case there is no “unit root problem”. Technically, this is due to the fact that, although
|yi¢| — oo in probability, this is not at an exponential rate; thus, the variance of the term that leads
the asymptotics still diverges as T — oo.

As far as part (i) is concerned, the rate of convergence is T; the impact of the cross sectional dimension
on the rate of convergence is the same as in the case of a genuinely random coefficient model. However,
asymptotic normality holds when cross sectional dependence is weak (i.e. under ry, /N — 0). Intuitively,
this is a consequence of being in a panel data context: the cross sectional averaging affords a CLT to hold,
even in those cases in which, in a single time series case, it would be impossible to show convergence to
normality (see the comments in Hill and Peng, 2014). Conversely, when there is strong cross sectional
dependence, @y ¢ — ¢ does not, in general, converge to a normal. Heuristically, this is due to the
fact that the variance of the leading term stays bounded as T — oo, which is a degenerate case - see

e.g. Davidson (1993). This is a limitation of WLS-based inference, although it may be argued that it

corresponds to a quite restrictive case: ¢ is larger than 1 (thereby having a genuinely explosive model),
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and it is the same across all units. This also entails that an estimation technique based on WLS which
removes the factor structure v,v; will yield asymptotic normality under all possible cases.

Finally, it is instructive to compare the rates of convergence provided in the theorem with those that
one would have in a pure time series setup, when using a standard OLS estimator. In such a case,
the rate of convergence is the same as in Theorem 3.3 for the case of a stationary series, viz. |¢| < 1.
When ¢ = 1, it is well known that the OLS estimator of ¢ is T-consistent; as mentioned above, the rate
provided in the theorem is not the sharpest one. The biggest discrepancy, however, is found in the case
of an explosive root, viz. |¢| > 1: the T-consistency of the WLS estimator can be contrasted with the
OLS estimator (see Wang and Yu, 2015), which converges at a rate Op (<pT). Intuitively, this is due to

the use of the weight 1/ (1437, ), which is designed to hold down both numerator and denominator

of ¢N,T'

The main result in Theorems 3.2 and 3.3 is that, modulo the exception detailed in Theorem 3.3, the
suitably normalised estimation error ¢  — ¢ converges to a normal. We now discuss the estimation of
the asymptotic variance of ¢ 7 — ¢. Our main result is that there exists one estimator which is always
consistent, with no need to know the amount of cross sectional dependence, or whether Eb?,26 > 0 or
bi+ = 0. Thus, ¢,y 7 — ¢ can always be normalised by such estimator, and the normalised quantity will
always converge to a standard normal.

The estimation of the asymptotic variance is based on the weighted residuals

Yit—1

3.9 Zit = Wit = Pnr¥ie-1) 75
(3.9) it (y,t PN, TYit 1)1"'%'2,%1

Define Uyt = ZtT:Q Zf\il Zjvzl 2;,+%4,+; we propose the following “universal” estimator of the asymp-
totic variance of ¢ p — ¢:

_ Unr
= T
By r

(3.10) VN,

Theorem 3.4. Let the Assumptions of Theorems 3.2 and 3.3 hold, and assume further that, for some

1< <

(3.11) Y M E

ieC(1) jec(1)

Yi,0 Yj,0
1+52, 1472,

ViV < corn.

Then, as min(N,T) — oo, we have V]\Z;/Q (enT—9) A N(0,1).
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Remarks

Theorem 3.4 illustrates once again that there is no boundary problem in case of a panel RCA, apart
from the case discussed in Theorem 3.3. Interestingly, the theorem stipulates that the same random
normalization can be used regardless the structure of the units: the random norming by Uy 7 is the same
regardless of how strong is the cross correlation between the units, and of the proportion of stationary
versus nonstationary (boundary or explosive) units. Thus, in contrast to autoregressive processes, if we
wish to test for Hy : ¢ > ¢, the asymptotic normal limit can be used regardless the value of ¢, even
if ¢y > 1. As mentioned in Theorem 3.3, the only case in which standard normal inference is not valid

is when b;; = 0 and ¢ > 1 in the presence of a pervasive factor structure.

4. EXTENSIONS: INTRODUCING DETERMINISTICS AND COVARIATES

In this section, we show that our results are essentially unchanged when considering extensions of the
basic model such as the presence of individual effects and covariates. Specifically, we consider the case

where one observes

(4.1) Yie = @i+ Yit,
with
(4.2) Vit = (0 +bit)yit—1+Bixip+uig, 1<i<N and 1<t<T;

in (4.2), u;; is defined in (2.1). No assumptions are needed on the «;s, since these are removed prior
to estimating (; thus, the individual effects can be fixed, random, and correlated or not with the other
covariates. Similarly, we allow for some flexibility in the unit specific regressors z;; - these can e.g.
be correlated with y; .1, and as far as serial dependence is concerned, we only assume that they are
stationary. Henceforth, the number of regressors z; ; is referred to as h.

Model (4.1)-(4.2) nests several popular specifications. The leading examples are: (a) the “classical”
fixed or random effects dynamic panel regression, which corresponds to the case b;; = 0 and y; = 0;
(b) the panel model with time effects (although an important restriction in our case is that correlation
between the time effect and y; ;1 is ruled out) which corresponds to having b;, = 0 and v, = 7; (¢) in
the most general case, our model is similar to the ones considered in Bai (2009) and Pesaran (2006), with
the addition of considering the presence of the weakly endogenous regressor y; :—1 (see also Song, 2013;
Chudik and Pesaran, 2015; Moon and Weidner, 2015), and of randomness in the slope of its coefficient;

in our case, though, we need to rule out the correlation between z; ; and y;v;.
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As in the previous sections, the focus of our analysis is the estimation of ¢ only. Firstly, in order to

remove individual effects, let
(4.3) Uit = Yir — Yio = Yi,t — Yi,0s

so that the ;s are treated as nuisance parameters.? As far as covariates are concerned, the likelihood

maximisation problem can be formalised as

(44) min S(@’lgla"'aﬁN)v
907517'“7BN

with
o (it — PUit—1 — B;mi,t)Q
>

S (@, 81y -y = —
(90 ﬁl BN) 1_~_y22’t71

i=1 t=1

From (4.4), it follows that the infeasible estimator of 3, is, for 1 <i < N

T , T ) i
~INF Ti 4T 4 R T
(45) Bi = — J L )
2 ; L+ yiz’tfl ; L+ yiQ,tfl
Hence
~ N,T
(4.6) 5= g = AT
By,
where
Al "Tro o “lror i
A Skl ke i,tYit
(4.7) Anr = Anr - AL —_— _ntant |
; 1::22 1+y1'27t71 t:ZQ 1+y2-2’t71 15:22 1+yi27t71 ;
S T ! “lrr .
5 bt Iil Bt i,tYit—1
(4.8) Byr = Byr-— ZitYit—1 Tt itliat
; tz:; L+ 05 ; L+ 57 tz:; 1+ §2, 4

The definitions of AN)T and BMT can be contrasted with those of Ay 1 and By, provided in (2.3).

Note that, based on this approach, it is possible to have a feasible estimator of the §;s, defined as

-1
T / T ~ ~ ~
. Tt L5 ¢ Tit (yi,t - @N,Tyi,tﬂ)
;= E L E

1+97, L+97,

0

(4.9)

t=2 t=2

2The scheme proposed in (4.3) is not the only way of dealing with unit specific effects. A more natural approach would

/ ~ ~
be based on defining the vectors ;s = [1,96; t] and B; = [ai,ﬁﬂl, and estimate the slopes f; in

-
yie = (P +bit)yie—1 + Bi%ie + i,

based on (4.4). In such a case, one would be able to estimate the average of the a;s (see Section 4.1). On the other

hand, the individual effects o; would have to satisfy the same assumptions as 3;; for example, they would have to be

independent of y; ¢—1.
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We discuss, as a by-product, estimation and inference on the §;s, and on their average, in Section 4.1.
Consider now the following assumption on the covariates z; ;, which complements the existing assump-

tions.

Assumption 6. It holds that: (i) for i € C (1), @iy = f[£;,,&, 1.--] where (a) E|xi70\4 < o0; (b)
f:RM*°° _ R is a measurable function; (c) {€;1}, 1 <t < Tisasequence of i.i.d. (across t) random
variables with values in R"'; (d) letting l'z(‘,:b) =f &t Citm fg;’;i_m_l, ] with 557?)7 a sequence of

i.i.d. (across i and t) copies of &, (, it holds that E

Tit — xET:)H = O (ry,), where r,,, = e™™; (ii) (a)
{B8;}, {zi+} and {ei,v;v¢,bi ¢} are three mutually independent groups for t = 1,...,T and i = 1,..., N;

(b) i,0 is independent of {e; s, b; ¢, y;ve, Biwis} for i = 1,..., N (iii) (a)

i ; = 1 1/2(1+k,
1 Ei[mm”m“+EmMM+mem“q/(+) |
)

1-96; (51/2(1+Ni) = 0(1);
1€C(1 i
. 1 . L 11/204k:)
(b) N7' Siceqy [(1= 67" Bl — 34l Eluol™ = o(1); (©)
) ) _ 1 1/2(14k4)
1 _ [ElBimiol™ + Elesol™ + 17| Elvol™ 1" 1 _
N Z E{h/z' |: 1_67, 61/2(1+m) - 0(1)7
1€C(1) i

(d) E3]

max; ; B [|z; ||

" < oo for i € C(1); (i) Bixio + uio has a bounded density if i € C(2) U C(3); (v) (a)

8¢ < oo for every i = 1,..., N and (b) Ee;o|*" < oo for every i = 1,..., N.

Part (i) of the assumption states that the z; ;s are Bernoulli shifts, and therefore they are stationary
processes that are, possibly, serially dependent; and that there exists an m-dependent approximation
xz(T) which, according to part (d), is close enough to x; . This way of modelling dependence has been
employed in several contexts (see e.g. Section 21 in Billingsley, 1968); as illustrated in Aue et al. (2009),
it has the advantages of being mathematically tractable and of nesting several popular models, such as
multivariate ARMA and a wide variety of GARCH models. Note that we only need to make an explicit
assumption on the time dependence of the ;s for the stationary units. By part (%), the z; s are not
required to be cross-sectionally independent, even though they are required to be independent of the
error term e; ¢ and of the common factor structure v;. Parts (ii7) and (iv) extend Assumptions 2 and 4
(respectively), so that technical results such as Lemmas 7.2-7.4 hold in presence of covariates also; note

that we do not need to assume that z;; and y; ;—1 are independent.

Define now
T

’ -1
Diy =7 2 Lit Lyt Tit Yijt—1
it = Yit—1 — Tjy E — E —
L+9;i L+

t=2 t=2
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and consider the notation )

- D;o
TN =F Z Yi ’_2
ieC(1) L+ 500

The following results characterise the consistency and the limiting distribution of @ p, and they are

the counterpart to Theorems 3.1 and 3.2 respectively.

Theorem 4.1. Under Eb7, > 0, let Assumptions 1-5 and 6(i)-(ii)-(iii)-(iv)-(v) (a) hold. If

1 %i,0D;i.0 .
Jim ’ezc;l) BT 7 + #C(2) + #C(3) p =g > 0,
; :

as min(N,T) — oo it holds that @y 1 Eit , with the same rates of convergence as in Theorem 3.2.

Further, it holds that

(4.10) % (@N,T - 90) L N(0,1),

where
lim i 02E<yi’ol2i’0>2+ Z o2+ i 7'2< Di’~0 >2+fN =aj.
N=oo N iec(1) Z L+52 ieC(2)UC(3) Z iec(1) "\1+8

Let Cj’vzmax{\/lﬁ, IT\;\Q}

Theorem 4.2. Under b, ; =0, let Assumptions 1-6 hold. As min(N,T) — oo

(i) If, further

) T 9 Do ’ ~ -
Jim ;TE <1 +ﬂio> + 7y p =ap >0,
the results of Theorem 4.1 hold for || < 1.

(i) If ol =1, pyp— 1 = Op (T72V/40CY) and

(pnr—1) 2N (0,1).

N T D. 2 17 /N D. 2
(4.11)  NT ZT2Z(H;> +Z<Z%1+§;>

t=2 \i=1 i,t—1

(iii) If || > 1, under the conditions of Theorem 8.3 and Assumption 6, it holds that {7 — ¢ =
Op (T71CY); further, if vl /N — 0 it holds that

(4.12) NT ZTZ? > <D;> (nr —¢) 2 N(0,1).
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Theorems 4.1 and 4.2 state, essentially, that results in the presence of covariates are the same as for the
baseline case of model (1.1): the only difference is in the asymptotic variances, which change to reflect
the presence of the covariates z;;. Indeed, as one may expect, it can be shown that results would be

exactly the same as in Section 3 if z; ; and y; +—1 were assumed to be independent.

. . . . . - - U 5
Turning to the estimation of the asymptotic variance of @y 1, we use Vyr = B’J; L where Uy =

N, T
T N «N - -
Doto Dint Zj:l ZitZj,e and

~/ Dy

(4.13) Zit = (Jit — PN 1Uist—1 — ﬂimi,t)li-
+ zt 1

Theorem 4.3. Under the conditions of Theorem 3.4, with (3.11) replaced by

ZZ

i€C(1) jeC(1

lO D
L+ 920 1+7

J,O

ViVj < e,

with 1 < ¢y < 00, and under Assumption 6, as min (N,T) — oo it holds that ‘7]\7;«/2 (en1—9) 2

N(0,1).

4.1. Estimation and inference on ;. Based on (4.9), it is possible to study the estimation of the
mean of the individual specific slopes 3,. To this end, we assume a random coefficient model for the

B;s, similar e.g. to the one assumed in Pesaran (2006; see in particular Assumption 4)

(4.14) B; =B+ B;.

“1r N 7T . . -
Ti 4T 4 Tit (yi,t - @N,Tyi,t—l)
w1 -y | [yl pued,

i=1 t=2 i,t—1
whose covariance matrix can be estimated by
T 4T, - N (X T 4T, oo (& T4,
ZZ e 1 xlz@:lﬂ”)(ﬁ 5) (3.-5) (let 1)+

i=1 t=2 =1 \t=2

~ ~ ~ ~/ ~ ~ ~ e
NN T (yi,t — PN TYit—1— Bixi,t) Git (yj,t — ONTYjt—1 — ﬁjﬂ?j,t) Gy
cyyy e o

=)
t=2 it— L+y5,
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having defined G = z;y — Di, ZZ 1 Zt 5 25 TitPitmy

1+y t 1

Consider the following assumption, which complements Assumption 6.

Assumption 7. It holds that: (i) 8 is nonrandom with ||| < oo; (i) B, is i.i.d. across i with (a)
E (5) =0 and (b)

< oo for some € > 0.

It holds that:

Theorem 4.4. Let Assumptions 1-7 hold. As min (N,T) — oo

(a) if
(4.16) lim L Y B T Lo
. im 0 ay >0,
N N ieC(1) 1+y1,0
it holds that B — B = Op (ﬁ) 1 Op (/)
(b) if
T N N ’
1 Git G,
N’TTEV;;; jl""yt 197,
it holds that B — B = Op <%ﬁ) +op (+/T%);
(c) if
T N N ’
1 Giy G
4.1 lim — E ) > _
( 8) &%T&ZZZ ’Yﬂjl-ﬁ-git_ll—l—y]t ) c < o0

it holds that B — B = Op () + Or (/5%)-
Further, if (4.16) or (4.17) hold, then V 1/2 (6 ﬁ) = N (0,1,); the same holds under (4.18) if, in

addition, % — 0.

~

Theorem 4.4 states that, in essence, (3 is always consistent, save for the case in which there are too
many explosive units, and there is strong cross dependence, which corresponds to part (). The rates of
convergence differ according as (4.16), (4.17) or (4.18) hold. As in the previous theorems, the asymptotic
normality of E holds for all cases considered; the only exception is when the number of boundary units
is small, the number of stationary units is very small, and, in addition, there is strong cross sectional
dependence. However, in principle an estimation technique that accounts for cross sectional dependence

would restore the asymptotic normality and consistency for 3 even in this case.
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5. MONTE CARLO SIMULATIONS

In this section, we present some evidence on the properties of the WLS estimator of ¢ from synthetic
data. In particular, we consider the bias and the Mean Squared Error (MSE) of ¢y 7, and we also
analyse the empirical coverage of 95% confidence intervals, in order to evaluate the quality of the
estimator of the asymptotic variance.

We base all experiments on (1.1) and (2.1), viz.

Yit (¢ + bit) Yir—1 + Wiz,

Uit = €t + YVt

As far as ¢ is concerned, we consider the following grid of values: ¢ € {—1.5, —1, —0.5, 0, 0.5, 1, 1.5}.

In a first set of experiments, we consider the case of Eb7, > 0. The individual coefficient random shocks
b;+ have been generated as i.i.d. across ¢ and t with b;; ~ oN (0,1). We ran various experiments with
different values of o, also allowing for heteroskedasticity, but results do not change much; thus, we report
only the case corresponding to o = 1. Similarly, as far as the idiosyncratic component of the error term
u; ¢ is concerned, this is generated as 4.i.d. across ¢ and ¢, with u; ; ~ 7N (0, 1); no changes in the results
were observed when considering a heteroskedastic design or several values of 7, and we therefore only
report results for the case 7 = 1. As far as the common factors are concerned, we consider nonrandom,
homogeneous loadings, i.e. vy, = 7; introducing randomness and/or heterogeneity was found to have no
impact on the results. In order to consider the impact of cross sectional dependence on our estimator, we
consider three sets of experiments with v € {0,1,10}. The case v = 0 is covered by equation (3.5), and
it should correspond to ¢ being v/ NT-convergent, which is the fastest attainable rate. The common
factor v; is generated as i.i.d. with v; ~ N (0,1). Finally, in order to assess the impact of initial
conditions on the results, we considered various possible initialisations for y; o; no changes were noticed
across experiments, and in this chapter we report results corresponding to the case of y; o generated as
i.i.d. across i with y; 0 ~ N (0, 1).

Finally, we use combinations of (N,T) from {10, 20, 40,80} x {25,50,100}.

Let ¢; denote the estimate of the true value of ¢ (say @) for iteration j of the Monte Carlo experiment,

with j =1,..., MC. We report the following measures

(5.1) bias = o (@; =),
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1 uq 2

5.2 MSE = —— E D — .

( ) MC = (QOJ (,0)

In addition to this, in order to assess the finite sample validity of the estimator of the asymptotic
variance suggested by Theorem 2.1, we also consider the empirical rejection frequency (for a nominal
size of 5%) of a t-test for ¢ = ¢,. This is tantamount to verifying the empirical coverage of 95%
confidence intervals for ¢,. In our simulations, we set MC = 2000; this entails that the empirical

rejection frequencies reported here have a 95% confidence interval given by [0.04, 0.06].
[Insert Tables 1-3 somewhere here]

The tables shows that the estimator ¢, and the random norming suggested by Theorem 3.4, have
excellent properties even for very small samples.

Considering first bias and MSE as defined in (5.1) and (5.2), we note that, as expected, they decline
as either N or T increases. The trend is similar across the tables, thereby suggesting that the presence
and pervasiveness of common factors does not impact on the decline of either bias or MSE. Observing
the numbers in the table, the rate of decline of the MSE is the same as either N or T increases. This
changes when v = 10 (Table 3), and the impact of N becomes less significant in decreasing the MSE - this
however can be expected by virtue of the fact that the asymptotics is driven by T" only. Indeed, although
not predicted by the theory, the WLS estimator seems to have the desirable property that its quality
improves as N increases even in the presence of cross sectional dependence. The MSE and the bias do
not seem to be affected by the value of ¢ (one, minor, exception could be the case (N, T) = (10, 25) in
Table 1), which confirms that the estimator proposed in this paper, due to its self-normalised nature,
is not affected by unit or explosive roots. As far as the bias is concerned, we note that, although in the
Tables there are only raw numbers, it seems to be rather small when compared with the value of y; this
is true even for the case (N,T') = (10, 25).

Turning to the empirical rejection frequencies, as pointed out above these can be viewed as an assessment
on the quality of the estimated asymptotic variance of ¢, especially since the bias is quite small. In
general, the empirical rejection frequencies do not change across the Tables, showing that the estimator
of the asymptotic variance is, as can be expected, not affected by the presence of common factors. The
empirical size of the t-tests is always close to the nominal one, with few exceptions in the case of small
T: typically, when T' > 50, the problem disappears across all experiments.

Finally, we also ran a set of experiments for the case b;; = 0. The setup of the Monte Carlo exercise

is the same as above (apart from setting b;; = 0), although we report only the cases of v, = v =0
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and v; = v = 10, to better illustrate the difference in the results brought about by cross sectional
dependence. Also, we only report results for N > 20 and T" > 50; this is essentially in order to save
space: results for N = 10 and T' = 25 are usually good with the exception of the case |p| = 1.5, where

N = 10 does not seem to be sufficient to ensure that the CLT holds.

[Insert Table 4 somewhere here]

The results in Table 4 can be contrasted with Theorem 3.3, and, when |¢| < 1, with the results in Tables
1 and 3. The MSE appears to be lower, but this is due to the “natural” effect of having 0? = 0, so that
slope heterogeneity does not contribute to the asymptotic variance of the WLS estimator. Considering
first the MSEs for |p| > 1, when there is no cross sectional dependence (y = 0), the results in Table 4
show a great improvement with respect to those in Table 1 for all cases where || > 1. When there is
cross sectional dependence (v = 10), the MSE improves (compared to Table 3) when |¢| > 1, and also
and when || = 1 and N > 40 - the results confirm the faster convergence of the WLS estimator in
presence of a homogeneous root (unit or explosive), although it should be noted that increasing N alone
does not yield almost any improvements. The faster rates of convergence also emerge when comparing
numbers within Table 4: the MSE for the cases of |p| < 1 are one or two orders of magnitude larger
than in the case of |¢| = 1 or |p| > 1 respectively. All results worsen as we move from v = 0 to
v = 10, as a consequence of cross sectional dependence. Turning to the empirical rejection frequencies,
these are always within the confidence interval [0.04,0.06] when || < 1, with few exceptions. Similarly,
confidence intervals have almost always the correct coverage when |p| = 1; the same results can be
observed when |¢| > 1 and v = 0. As predicted by Theorem 3.3, when |p| > 1 and there is strong cross
sectional dependence (v = 10), the CLT fails and this is evident from the severely undersized empirical
rejection frequencies.

A final comment on the simulations. We ran a separate, unreported exercise where we assess the
robustness of results when altering the weighing scheme in (2.2) to 1/ (a + yztfl) and adding the fixed
effects a; ~ N (1,1). We tried several values of a, namely a € {0.1,0.5,1,2, 10}, showing that results

remain virtually unchanged across all choices of a.

6. EMPIRICAL APPLICATION

In this section, we illustrate the results derived above by considering two applications of (1.1).
We firstly estimate the average autoregressive root in an RCA model applied to several macroeconomic

and financial time series for several EU countries. Specifically, we consider the following series: log
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of the GDP; log of the M2 money aggregate; log of the main Equity Index; short term interest rate
(expressed in percentage); and the log of the Industrial Production. Data are quarterly, and in order to
show the impact of different sample sizes on the WLS estimator and its confidence intervals, we consider

the following time spans:

-: log of the GDP (raw data are expressed in millions of $): from 1960Q1 until 2013Q1;

-: log of the M2 money aggregate: (raw data are expressed in local currency, except Germany,
expressed in billions of €): from 1999Q1 until 2013Q1;

-: log of the Equity index (raw data are based at 100 in 2005): from 1994Q1 to 2013Q1;

-: short term interest rate (data are expressed in percentage): from 1992Q4 to 2013Q1;

-: log of the Industrial Production index: from 1990Q1 until 2013Q1.

As far as the cross sectional sample size is concerned, we consider the following countries: Austria, Bel-
gium, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Nether-
lands, Norway, Poland, Portugal, Spain, Sweden and United Kingdom. Thus, in total we have N = 18;
some of these countries have incomplete datasets for some of the series considered, and in such case we
omit them from the panel. In Table 5 below, we specify the true cross sectional sample size for each

exercise.

In addition to the exercise described above, we also apply our estimator to verify whether there is a
bubble in the UK housing market. The idea that the exuberant dynamics in asset prices could be
well represented by an autoregressive process with a root larger than 1 has been exploited in various
contributions, e.g. Phillips et al. (2011). According to Banerjee et al. (2012), a bubble in model (1.1)
would be present when ¢ > 1; a similar analysis is also contained in Charemza and Deadman (1995).
In our application, we consider UK quarterly data from 1997Q1 to 2008Q1, so that T = 45 - there
is general consensus that, in that period, house prices had an exuberant growth which should signal
the presence of a bubble. Specifically, data are (logs of) the Nationwide house price index, and are
disaggregated at regional level; in total, we have N = 13 regions - North, Yorkshire and the Humber,
North West, East Midlands, West Midlands, East Anglia, South East, Outer Metropolitan Area, London,
South West, Wales, Scotland and Northern Ireland.

For both exercises, we use the rebased versions of the series as defined in (4.3). We report: the estimated
; its standard error; the 95% confidence interval; and, finally, the test statistic for the null Hy : ¢ <1

and its p-value.

[Insert Table 5 somewhere here]
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Consider the first panel of the table. For all the series, with the exceptions of the short term interest
rate, it holds that ¢ > 1, based on the confidence intervals computed using (3.10). Interestingly, the
short term interest rate seems to have “near unit root” behaviour, based on the estimated average
autoregressive root; indeed, this only represents an average behaviour, and some countries are bound
to be in the “boundary case” described above, or even, possibly, in the explosive one. Similarly, the
results seem to indicate that, as far as the demand for money M2, and the log of industrial production
are concerned, ¢ is significantly larger than 1: this is based on the t-test for ¢; confidence intervals
also reinforce this finding. Again, we note that even for these series ¢ is very close to the boundary.
As a general comment, confidence intervals are, in general, short, which confirms the idea that the
panel-based approach is bound to improve inference, and the findings in the simulations in Section
5. The results indicate that the absence of the unit root problem in the WLS-based estimate of ¢ is
advantageous in this setting.

Turning to the second panel of the table, this contains the inference on the presence of a bubble in the
UK housing market. We find significant evidence that ¢ > 1, thereby indicating that a bubble was
indeed present on the UK housing market. This is made evident by the rejection, at the 5% level, of
the null of no explosive behaviour Hy : ¢ < 1, and also by confidence intervals. It can however be noted
that the average root is relatively close to 1; this is consistent with the literature on bubbles (Phillips
and Yu, 2009; Phillips et al., 2011), where the underlying autoregressive process is modelled with a

local-to-explosive unit.

7. CONCLUSIONS

In this paper, we have studied the WLS-based estimation of the average autoregressive root in a panel
RCA model. We have shown that the estimator is always consistent, irrespective of the true value
of the root ¢, of whether the autoregressive root is genuinely random or fixed, and on the possible
presence and extent of cross sectional dependence. Indeed, our paper proposes a “universal” estimator
of the asymptotic variance of the estimated . When normalising the WLS estimator by the proposed
estimator of the asymptotic variance, standard normal inference is recovered, with the only exception
of panels with a common, explosive root and strong cross sectional dependence. The robustness of
the WLS estimator comes, however, at a price: rates of convergence are somehow sacrificed, since the
weighing scheme employed serves the purpose of anchoring down summations involving ¥; ; in the cases
where |¢| > 1, making them of comparable magnitude with the stationary case. This is quite evident in
the cases where there is no randomness in the autoregressive root (b; ; = 0), and in particular in the case

of an explosive root (J¢| > 1), where the estimator is shown to be T-consistent as opposed to having
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the exponential rate which is typical of OLS. Nonetheless, simulations show that the estimator has very
good properties, even for small samples, and that confidence intervals based on the estimated asymptotic
variance have the correct coverage almost under all circumstances. Although the focus of this paper is
mainly theoretical, we show how the estimator can be applied to several macro and financial time series;
in addition, Section 6 also discusses the application of our methodology to testing for bubbles.

Finally, we note that several interesting questions are still outstanding. As mentioned in Section 2, the
weighing scheme proposed in (2.2) is not aimed at achieving efficiency, which would require employing
1/ [(E'yf + Tf) + U?yf’tfl] as a weight function. However, since ¢ is estimated consistently using the
weights proposed in (2.2), the variance (Evi+77) + 07y7,_, could be also estimated equation by
equation, thereby casting the WLS estimator in a two-step, or even iterative, procedure, although
unreported Monte Carlo evidence based on using the weight 1/ (a + yfﬁtfl) showed virtually no change
for different values of a > 0. Further, in this paper we do not try to eliminate the common component
~,vt, unlike e.g. Pesaran (2006) and Bai (2009; see also Song, 2013). Indeed, this feature of the WLS
estimator is the reason why we require the assumption that the regressors z;; are independent of ,v;.
However, the main technical results in the paper (the coupling arguments used in Lemmas 7.2-7.3, and
the concentration inequalities in Lemma 7.4) do not require any assumptions on the (in)dependence
between x;; and v, and therefore they automatically hold even in this case. Adapting the WLS
estimator to the presence of interactive effects is therefore possible, by modifying the estimation problem
(4.4) into

min S(()07617"'aﬂN7717"'7’7N7’01a""7UT)7

‘P,517~';/3N;"/1,~~7’YN7U1>~~-~7UT

with
d (Jit — €hi—1 — Bixie — ’Yﬂ]t)Q
S(vaﬁlv"'vﬁN7713""’YN’Ul"""vT) :ZZ ;

~2
i=1 t=1 1+ Yig—

the estimation of ¢ and the 5;s (and of the factor-loading structure) can be carried out by iterative
concentration of the likelihood, as in Bai (2009) and Song (2013). This extension is currently under

investigation by the authors.
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Appendix: technical results and proofs
This appendix contains the proofs of the results in Section 3; prior to reporting the proofs, we lay out
some technical lemmas whose proofs can be found in the Supplement; all the proofs of results in Section

4 are in the Supplement.

We often employ the following notation:

(7.1) Anr =¢Bnr+ An7T(1) + Anr(2) + AN (3),

WheI‘eAN7T(1)EEZ IZt ) ”1+y -1 ANT( )—ZZ 1Zt 2611:111; 1 and An (3 ):ZZ 12:&—2%1),:1%; L
Lemma 7.1. Under Assumption 1(i)-(ii)-(iii)-(iv)(b), we have EAN (1) = EAn7(2) = EAN7T(3) =
0. Also

(i) EA% (1) <TYN, o2
(i1): EA% 7 (2) <T YL 73

2
(iii): EA% 1(3) gT(ZLEIw\) :

Lemma 7.2. Under Assumptions 1 and 2, for all i € C(1), it holds that

(7.2) Elyi+ — 0it|™ < qig,
with
o Ele;o|™ + E17;|"™ Elvg|"™ _ 1w Elool
it = Elyiol™0; + lesol il Elvo 8; + Elv; — 7l |70|
1-9; 1-9;

Also, let g (+) and g’ () be a function and its first derivative, both bounded on the real line, and C is a

constant that only depends on g; it holds that

(7.3) Elg(yit) — 9(@ie)| < qu/(lﬂl)

Lemma 7.3. Under Assumptions 1 and 2, for all B > 1, it holds that

B
w2 Z( y) v F (13203@) +op(1).

zEC (1) t=1 Yi, i€C(1)

Lemma 7.4. Let ¢y denote an absolute constant. Under Assumption 1:
(i) if i € C(2), Eb;, > 0 and Assumptions 3 and 4 hold then for all x > 0 and t > [2(d; +1)/Elog |¢ +
biol]3, it holds that

P{lyis| <z} < QzMi{exp(tg’/@(H”i))) + 172 4 2% imt~(i= 2/ 20+1) }
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1) if i € C(2), b;; = 0, and Assumptions 3 and 4(i) hold, it holds that, for some V' > 4 such that
(i) if . b, p : )

x/Tz
Pl <oy <yf2 [T o (g0 aus 12

(iii) if 1 € C(3) and Ebit > 0, and Assumption 4 holds then for all x > 0 and t = 1,2, ..., it holds that

E |Ui70|l/ § m

1
PA{Jysel < 2} < 2xMi{exp<—t3/ @) 4 [ n cOQZWmi] t—<w—2>/<2<1+w>>}.

%

() if i € C(3) and b;y = 0 and Assumption 4(i) holds then for all x >0 and t = 1,2, ..., it holds that

P{lyi¢| <2} < 2x|gp|Mi{e—tln|¢>}.

Lemma 7.5. Under Assumptions 1, 8 and 4, for all 5 > 1 it holds that

B
¥ 5,5 () 552 o

160(2) t=2

Lemma 7.6. Let Assumptions 1-8 hold; further, if either Ebﬁt > 0 and Assumption 4 holds, orb;; =0
and Assumption 4(i) holds, then, for all B > 1

B
¥ 5,5 () 552 e

Le0(3) t=2

Lemma 7.7. Under Assumptions 1-4, it holds that BJ\],V’TT Lt ag, where ag is defined in (3.1).

Theorem 7.1. Let Sy = {Sir,Hir},1 <t <T be zero-mean, square integrable martingale array with

differences vy, 1 <t < T, and Her € Heqr,7,0 <t <T'. Suppose that, as T — oo,

T

(7.4) Z E (2} p|Hi—1,7) EZ a>o,
t=1
T

(7.5) ZE (|-’Et,T|2+€|Ht—1,T) = 0p(1>7
t=1

with some € > 0. Then, as T — oo, St A N(0,a).

We are now ready to report the proofs of the main results in the paper.

Proof of Theorem 3.1. Tt follows from Lemma 7.1 and Assumptions 1 (4 )(b) and 1(iv)(b) that N~1T~1/2 Ay 1

= Op(1), as min(N,T) — oco. Since T' — oo we conclude from Lemma 7.7 that AN T = Op(T~?) =
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op(1), so Theorem 3.1 now follows from the definition @ . O

Proof of Theorem 3.2. We start with part (i) of the theorem. According to Lemmas 7.1 and 7.7 it is
enough to prove that N*IT’l/QANyT(?)) A N(0,a1). This will be based on Theorem 7.1. Let Hy, t > 1,

be the o-algebra generated by {yi 0, €i.s,0i s 7 Vs, 1 <3< N, s <t}. We write N’lel/zAN,T(B) =

T S . .
> t—o Ty, where z; = T1/2 vy Z 17 liyt L. Clearly, since Fv3 = 1 and y; ;1 is H;_1;—measurable,

N 2
1 Yit—1 Yit—1 Yjt—1
B 1) = 5 | S i .
ilte) NeT (z‘_1%1+yi2,t1> N2TZZ%%1+ZUM R

15=1

In order to apply Theorem 7.1, we need to show

T
(76) ZE(‘(EﬂHtfl) £> al
t=2

Using Lemma 7.4 we get that

T N N
1 Yit—1 Yjt—1 Yit—1 Yjt—1
N |22 20 2. Z > D — op(1),
N°T t=2 i=1 j=1 1+yt 11+yj7t 1 t=2ieC(1) jeC(1) 1+ylt 11+yj,t 1

i.e. the non-stationary units do not contribute to the limit, since |y; | — oo in probability as t — oo

for all i € C(2) U C(3). Next, repeating the arguments used in the proof of Lemma 7.3 we obtain that

Yit—1 Yjt—1 Yit—1 Yjt—1
2 Z Z Z 1771 2 2 — — =op(1),
N T t=24cC(1) j€C(1) 1+ Yit—1 I+ Yit—1 1+ Yit—1 I+ Yit—1

i.e. we can replace y; ¢ with the stationary solution g;, in case of stationary units. Hence (7.6) is

established if we show that

(77) N?T Z Z Z Vi 7 1 yi’igl gj,f;l £> ai.

t=2 icC(1) jeO(1 T Y 1+yj,t—1

Recall that the subscript “,” denotes conditioning on {’yl}f\il Elementary arguments give that

T 2
E”(]\éTZ Z Z :Yﬁjzivjvt—l) = N4 2 Z Z Z ViV VeV eErZi gt —12k,0,5—1

t=2ieC(1) jeC(1) s,t=24€C(1) (£eC(1

S Z Z Z|’Yﬁﬂk’7e\|E 2i,3,02k,0,h

'LGC (1) €eCc(1)h=0

with

B Uit Yjt—1 Ui t—1 Yjt—1
ijit—1 = - - - - 2
" Vg2 145, 145, 1+77
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The stationary solutions ¥; ; satisfy the equations

t t t—1 t
Yit = Yi,0 H(QD +bis) + Z €i,s H(QO +bizq1) + Z
s=1 z=8 s=1

s=1

<,0 +bizq1).

u::]I

Let ¢1,0,---,9n,0 be independent of {b; s,e; 5,705}, 1 < i < N, s > 0 and fulfill {g1,0,...,9n0} L
{#1,0,---.Yn,0} Next we define

t t t—1 " _
Giw =G0 [[o+bis) + Y eis [[ (0 +bizir) +7, Z H @+ bizq1)
s=1 z=s§ z=s8

s=1

It is clear from the definition that {g1¢,...,9n4,t > 0} 2 {G1t,-- - Une,t >0}, and {Gi¢, ..., N, t >

0} is independent of {1 0,...,9n,0}, conditional on v;, 1 <4 < N. Let

s = Ui t—1 Ujt—1 Yit—1 Yjt—1
i1 = T o~ - 2
" V42, 1492, 1492, 1492,

On account of the independence (conditional on {72}5\;1) of z; ;0 and 2 ¢ 5, and the facts that Ez; j0 =0
and |Zi)j70| < 2, we get |Eﬂ,zi7j)0z;€,g)h\ = \Eyziyj,o(zkl,h — 2k7€7h)| < 2Ey|2k7€7h — ék,é7h|~ It follows from

the definition of 2; ¢ 5 that for all €; and e; we get

(7.8) Ey|zk0n = Zkenl < €1+ 2P {{Ukn — Ok,nl > €1} + €2 + 2P {|Je,n — Jonl > €2}

By Hardy et al. (1959, p. 32) and (2.7) for all 1 < i < N we have

h i h fo
Ey|gin = 9inl™ = Ey | (10 = yi0 H P +bis)| = Bylgio — Giol" By [[[ (0 + i)
s=1 s=1
h
<28, |gi ol [] Bl + bis|™ < 2B, i 0] 6
s=1

Using again (2.6) we conclude

Ele;ol™ + 7" Elvo|"
1-9; ’

0
"ﬂs‘ + 7l Z E|Uo|m5l;s‘ =

s=—00 i=—00

E|giol™ <

Applying now Markov’s inequality we have for all z > 0

Ri

2 Eleiol™ + %
i ]-_67,

iE|’U0

5P

Py{lgin = Ginl >z} = P {1Gin — Ginl™ > ™} <
So by (7.8) there is an absolute constant C' such that

E\|zkeh — Zk.0.1]
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< o [Elewol™ + 17l Blool* ] [ Eleqol™ + 7" Elog|* 5]
- 1— 0y k 1-4y ¢ '

Thus we conclude

T 2
e (s T Y )
t c(1

i€C(1) j€
’ 1(1te)
¢ | Elecol™ + 1yel™ Elvo|™ SRS S 1
< NAT Z il Z 17l { 1-0, S Op 7/
1€C(1) LeC(1) 14

Now (7.7) follows from Chebyshev’s inequality, and from the cross sectional independence of the ~;s.

Clearly, by Assumption 5(%)
2+€ N 2+e€
E‘|’U0|2+E 1 Al Yit—1 E‘Uo|2+€ 1
2+€ e e B . ‘177 —or . .
E(‘xt| |Ht71) - T1+e/2 N FZI’YZ 1+ y7;2)t_1 < Tlte/2 N ; "YZ| )
which entails that Zthz E(|z?T¢Hy—1) £o. This, and (7.6), yield the first part of Theorem 3.2.

We continue with the proof of part (7). Under part (ii) and Lemmas 7.1 and 7.7, we conclude that

(3.4) is established if Avz@) D N(0,1). According to Theorem 7.1 we only need to prove that

(TNT)1/2
T
(7.10) ST B3 M) D1
t=2
T
(7.11) > B(lze* 1) 5 0,
t=2

where z; = e T)1/2 vt El 1% li’y' L. As in the proof of the first part of Theorem 3.2, we have

2
L rNT \ & Y T 1 Jl—i—y RNy

It holds that

N

T N
1 Yit—1 Yjt—1 Yit—1 Yjt—1
222 LYY Y
N T t=2 i=1 j=1 1+y 1 Ly t=2icC(1) j€C(1) 1+yzt 11+y]t 1

N
‘yzt 1|
>l > ZmHyw

1€C(2)UC(3) t=2



30 LAJOS HORVATH AND LORENZO TRAPANI

By Assumption 1 (iv)(b), Z;\Ll [7;1 = Op (N). Using Lemma 7.4 (i) with z = t(ri=2)/(4i+1)) we obtain

T

Yit—1| Vi v »

FY S Byt g2 3 S enr l“”Ew|<1+Mi>{e><p<—t3”2“+ )
i€C(3) t=2 lf 1 i€C(3) t=2

i [1 T eo2®imy + 1] t(’”2)/(2(”i+1))}
i
1

< O~ =2/ (4(w+1)) _ N .

< > Elyl(1+ M) 5 +m; +1
i€C(3)
with some constant C. Similarly, Lemma 7.4 (i) with o = ¢t(*i=2)/(4(#+1) yields
|Yi,t—1] 1—(v—2)/ (4(+1)) 1
E Z Z\% T+ 42 _1<CT - - Z Elvy;|(1+ M;) ;i"‘mi‘f‘l
i€C(2) t=2 Yit i€C(2)

+ Z (6; +1)/Elog|p + biol]>.
1€C(2)

Next we replace y; + with g;+,% € C(1). Note

TZ Z Z [7iv51

t=24ieC(1) jeC(1

Yit—1 Yit—1  Tig-1 Yjt—1
1+ yi2)t71 1+ y?,tfl 1+ giQ,t—l 1+ ggz',tfl

Yit—1 Yit—1 | .
L+y?,, 1+8, |

_TNT >yl Z MZ

jec()  iec(

we have

T —
Yit—1 Yi,t—1
> il B
ieC(1) t=1 e
<e Y h l{ (Blyeol )10+ (Blesol™ + 1, Eluy “i>1/<1+m>} .
- i 1/(1+k:) — §5)1/(4k:) (1trs)
i€c(1) (1-4:) (1—4:) 16!
e E‘v0|m 1/(1+k4)
+C3TVZ <|"/i_'7z‘| 1-35, .
1€C(1)

Putting all together, it follows that (7.10) is proven if we show

T

Yit—1 Yjt—1 P
(7.12) D NN — = L

i€C(1) jeC(1) Fla 1

this follows by repeating the proof of (7.7), whence

N2 2 1 T 2
() Ev<NzTZ > w) =0

-
N t=2ieC(1) jeC(1)
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so that (7.12) is implied by the same argument as above.

The proof of (7.11) is very simple since

N 2+e€ 2+€
Evo|?Te Yi,t—1 1+e/2 Elug[*T
2+€ _ ) 2
E(|xt| ‘Ht—l) - (TNT)1+€/2 Z’Yzl +y2 < (N ) (T T 1+e€/2 Z| 7’| ’
=1

it—1
hence
1 N2 1+€/2
T/ (m) ‘

T
E{ZE(I%IHSHH)} =0

t=2

Now Markov’s inequality gives (7.11).

In order to prove part (iii) of the theorem, we need to show that

1

(7.13) iy

s {AN () + Anr(2) + Avr(3)) = N(0,a2),

where as is defined in Theorem 3.2. First we write

T
W {An1(1) + An7r(2) + Anr(3)} = th,

where
1 a y? al Yit—1 Yy
_ b 2,t—1 ; i,t— ) 7,t—1 )
Tt 7(NT)1/2 {; 71+ +i§::6,t71+ 5 +’Ut;'711+y2

Using Assumptions 1(%)-(44), we obtain that

1 N y2 2 1 N Y ? 1 al Y. i
o Yo N L L Nm o w1 (S v
(.’Et‘Ht 1) NTZO-Z <1+y22’t1> +NT ZTl <1+y7,2,t1> +NT (Zq/ll"‘yit 1) .

i=1

We prove
T

(7.14) > E(27[Hi-1) LA
t=2

The proof of (7.14) starts with

(7.15) S . Ly ()
‘ NT 1+y%,,) N T\ T2 o

t=24icC(1) ieC(1) T Yio

This can be established easily by repeating the proof of Lemma 7.3. The first step is to show that

) ( g ) ( g |

2 i,t—1 i,t—1
SY () (e ) —on)
NT —~ o) L+y5e L+ 95
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which follows from Assumptions 1(i7)(b), 2(i) and 2(ii). The truncation argument used in Lemma 7.3
gives that

L 2 L 27 2
X Y | () e () | e,
1+9;i 1+97

t 24€C(1)

so Markov’s inequality implies (7.15). The next step of the proof of (7.14) is to show that
Yii1
(7.16) —Z > a? (HQ> ~ Y ol +op(l
t=24€C(2)UC(3 Yit—1 1ec (2)

this can be proven along the lines of Lemmas 7.5 and 7.6.

Similarly to (7.15) one can verify that

T 2
(7.17) NLZ ST ( i;j ) = Z < i;) +op(1),

t=24eC(1) ec( %,0

Since |y; ¢] — oo in probability as ¢ — oo for all i € C(2) U C(3), following the proofs of Lemmas 7.5
and 7.6 we obtain
1 < ’
Yit—1
(7.18) = 72 <2> = op(1).
NT t=2ieC(2)UC(3) L4y
To complete the proof of (7.14) we need to show only that

1 l N Y ? r
it—1 TN
.mZxEWHﬁH>—N+M>

The arguments used in the proofs of parts (i) and (i) of Theorem 3.2 can be repeated to show that

2

1 ) N Yi t—1 ’ 1 d Yit—1
N X ) TR | X iy | e

t=2 \i=1 3,t—1 t=2 icC(1) I+ yi,tfl
and
- 2
1 Yit—1 TN
T | 2 vt | = tor(D).
NT = icoy LTV N

This also completes the proof of (7.14).

In order to use Theorem 7.1, we now establish that

T
(7.19) > BT Hi—1) = op(1).
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Rosenthal’s inequality (cf. Petrov p. 59) yields that

c N y2 2 14€/2 N y2 2te
720 E .’Et|2+5 Ht—l S 71 0-12 7Z7t_1 + E bi,O 2e 7l’t_1
(200 Blled™ M) < ey | | 27 | T4, 2 Plbuol™* |3
N 2 14€/2 2te
Yit—1 24-€ yi,t—l
+ 7| Ele; ol 4L
; 1+ y%,t—l Z 1+ yz,t—l
N 2+¢€
Yit—1
+ Bl ) v
; 1+ yzg,tfl
1+e€/2 N N 1+€/2
Cs 1 2 1 2te 1 2
ST1+6/2{<NZ‘71'> +NZE|bi’O| + NZH
=1 i=1 =1
1 & 1 (L, & ‘
+ = Eleiol* + Vi =Dl ¢
v Vg ) (v
2
Since 75 /N = O(1) implies that 4 (Zz VYT ) = Op(1), (7.19) is an immediate consequence
i,t—1
of Theorem 7.1. O

Proof of Theorem 3.3. Part (i) of the Theorem is just a special case of Theorem 3.2. Consider parts
(i) and (i), and note that, by definition, in these cases ap = 1. The rate of convergence of ¢ — ¢

is driven by

N T T
1 Yit—1 1 Yit—1
7.21 — P 1 S O S N 0§
(7.21) NT 22 2 Ty +NTZZwt1+y% "

Consider first part (ii). Note, as a preliminary result, that based on Lemma 7.4(7i) we have

17/7'7
Yit—1 tCo
E| ——5— Yig—1] < x] = 74_ / eXp<—u>
(1 + y> Pllyscil v

2 ’
so that, setting = = ¢, Z;QE (1_‘%@‘1 ) =0(I"2) + 0 (T"“*%) + 0 (TQ"’“’ ); on account of
-1

Assumption 4(7), this can be shown to be bounded by O (72/3); this is not the sharpest bound, but it

suffices for our purposes. Consider now I in (7.21); this has mean zero and its variance is

, XN y 2 X T Y 2 72/3
it—1 tt—1
N2T222E(65¢)E<1+y7.2_ ) N2T2ZT$X_:E<1+yz_> :O(NT2)7
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whence I = Op (N —1/2p=2/ 3). Similarly, after repeated applications of the Cauchy-Schwartz inequality

to the variance of II (which also has mean zero) we have

T
Yit—1 Yj,t—1
22 b
(7.22) N2T2 ZZ %%Z <1+yf’t1> <1+y32‘,t1>‘

=1 j=1
T 2 N N 2/3
Yit—1 1 ( 2)1/2_ /" riy
max ;E<1+y?t_1) vz 22 (Ehinl’) =0 w5 )

i=1 j=1

IN

by (3.6), which entails that I = Op (T‘2/3w/r§V/N2). Putting all together, the rate of convergence

follows. The limiting distribution can be found by setting

(7.23) UZZw /2 ez,t+’)’z‘vt)%t71a
1+ zt 1

where sy = max {N, 7} and

2
(7.24) wir = XT:E (1‘“;1) ;
thus, z; is an MDS with
al -1 Yit—1 ’ 1 (& ~1/2 Yit—1 i
(It |Hi—1) Z; (1 n y?’t_l) + 5 (; w; Vi 17+ yiz,t—l) )
so that 23;2 E(x?|H;_1) can be readily shown to be bounded. Also, by adapting (7.20)

o 1+e/2

N
Yit—1 1 24e
— N Ele _Jint=l
T2, 1] +N1+5/2; €30 7

2+¢€ }

Consider 2;2 E(|z¢|*T¢|H;_1); by virtue of the above we have

(N871)1+€/2 2+e

2+4€
Bz [He—1) < C ming w2 { N Z

1 & Y
it—1
N Zvil"‘%‘%t—l

i=1

+E|UO|2+6

2 1+€/2
(N/SN)1+E/2 a

N
2 E *Z :
. 1+e€/2 Ti
min; w; /" 155 N &~

14¢/2 N T 2t
(N/sn) €/ iZTQ"_GZE Yit—1
B mlan1+€/2 N i1 ' —a 1"'th—1
N T 2
(N/sn )1+E/2 1 2+ Yit—1 (maXi Wi, T —€/2 )
< — >y 1777y EFl—5—| =0 ———minw
mmlwlﬂ/2 N; ’ ; Lty min; w00 )]
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also it follows immediately that

2+4€
(N/sn >1+€/2 1 2 Yit—1 —(14¢/2) ( MaAX; Wi T —¢/2
Ele; o*T¢ F|— =0 [Ns ————— minw ;
min; w 1+6/2 Nite/2 Z ol Z T+y7, N min; w; i o7
similarly note
14e/2 T N 2t
(N/sn) e/ E|vo|2+ez iZW’ Yit—1
T, wil}em =N L yitﬂ
T N
(N/sn) 2 1 Yi1
< Bloo™ > |15 D vt — Zlv
- . 2 7 )
min; wil,;e/ t=2 N i=1 1+ y
2
1+€/2 N T N
< (N/sn) +6/ |2+e Z Z 1 ny Y1 |
- miniwil,;e/z N= t=2 N i=1 Zler%t 1

2
by (7.22), Zt 2 E ’ N D1 ’yuffyt tll =0 [7"’1\,/]\72 (max; wi,T)]; putting all together and using As-

sumptions 1(iv)(b) and 5, it holds that

T
(7.25) S B(|wf*[He 1) = O (mwa min w;;/2> .
t=2

Consider the following intermediate result, which serves the purpose of determining the order or mag-

nitude of w; 1 - note that x € (0, %)

1/2

Y 2 +oo T 2 t . 9
<1+yﬁt> [m <1+$2) [%,t_m]_/w <1+x2) i < ]
$1/2 9
z 2 2 2
/;m (1+x2> \/;e T+ it

based on similar passages as in the proof of Lemma 7.4. Now

$1/2 2 D) t1/2
/ L 76—2w2/td$ > —29; /tdl' > C
e 1+ a2 mt T (1+ \/ 1+ )

for some C' > 0 when ¢ > 2. Also, the approximation error F; ; is bounded by (see Lemma 7.4(i1)) E; ,

2k+1 $1/2

’ 1/2 ’
< 2V mitey f:,i (H-%) de=v < Ot dz~™""; hence, EtT:Q E;+ < o0, so that it follows that

(14¢2r)2 Jtr
EZ;Q w;p > CInT for all i. Therefore, by (7.25), 2322 E(|z¢|**“|H;—1) = op (1), and Theorem 7.1

can be applied. Putting all together, part (i) follows.

Th 2
We now turn to part (ii7). As a preliminary result, applying Lemma 7.4 (%v) yields that EtT:2 E (lﬁt{l )
it—1

= O (1); therefore, the same passages as above therefore yield ¢ 1 — ¢ = Op [1 min { \/IN 1/ ;;VQH

As far as the limiting distribution is concerned, when r%\ /N = o(1) the asymptotics is driven by

N-1/2 Zfil ZtT o €it Hyfyt L — N—1/2 Zfil Y; 7. Conditionally on {vt}thl, the sequence Y; 7 has mean
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e . . N 1/2 T 2 N 1-1 2+4-€
zero, it is independent across 7 and, for somee > 0, . | F ‘ NV Yi)T‘ {vt}tzl‘ <YL NIz E e of
< C’N‘ée7 which can be shown using the same logic as in the proof of (7.19), and Lemma 7.4 (iv). Thus,

a conditional version of Theorem 2 of Phillips and Moon (1999, p. 1070) can be applied, yielding

2
—1/2 Yit—1 : . —1 N 2 7T Yi,t—1 _
PYL T tTryZ, > N(0,a3) with Imy 7o N78 32500 75 0o (Hy?f,fl) = a3 Com-

-1

bining this with the denomlnator yields (3.8). (]

Proof of Theorem 3.4 We start by considering the case Eb%t > 0. Let

T2, under the conditions of part (7)
(7.26) ent =19 (TN?/ry)Y/?, under the conditions of part (ii)
(NT)'/2, under the conditions of part (7).

Theorem 3.2 yields ey, (¢nr — ) = Op(1). Using (7.26) we get

N Y 1
ZitZ,t = [(80 - SDN,T)yi,t—l +bitYig—1 + € + %Ut] %
+ 1 t—1
N Yjt—1
(¢ = On)Yse—1 4 bjieYje—1 + € + 7,01 lji
+ ]t 1
and therefore
T N N Y2 y2 T N N Y2 y2
Unr = (o —on T)2 ik Sl +2(¢ — on1) bt L D
: ;;; T+y? 1492, ’ ;;; P4yl Ly,
T N N y y T N N y y
-1 7,t—1 i,t—1 7,t—1
+2(p ‘PNT)ZZZ%J ”2 +2(§0—§0NT)ZZZV] ¢ 3
t=2 i=1 j=1 Ty Ty t=2 i=1 j=1 Ty 14y
T N N yz yz T N N yz y
i,t—1 J,t—1 i,t—1 jt—1
DD biabj 2> D> > bisejy 3 5
t=2 i=1 j=1 Ltyiea L+ u50 t=2 i=1 j=1 L+yie s L4 y5
T N N y2 v T N N ” v
#2333 e T 5SSy e it
t=2 =1 j=1 1+ Yir— 1+ Yie—1 14 j=1 1 + y =1 I+ ?/J t—1
T N N ” v T N N ” »
+2 €i YUt 7,t—1 7,t—1 + V2, 1,t—1 7,t—1
;;; o 1+yi2¢*11+yi21t*1 t=2i:1j§1 Zjl+y” 11+yﬁt 1

By (7.26), we have that (NT) > C?\;)T |Dn.r(1)| = Op (1), and

9 T N 2 2
A CNT Yit—1 Yit—1

D = 0p(1)——: b, :
N2T2| NT( )l P( )N2T2 ZZZ Jt1+ylt 11—|—th 1




PANEL DATA 37

‘We have

T N
yt 1 yt 1
E Zzzba,t1+ly” 11—}—]th 1

T N
o yz2t 1 yjz,t—l ylzf,s—l yt%s—l
=D D > Ebbes ; e

- - Ty, 1+ yf, 14y, 1+ui

T N N 2 2 2 2

. 2 Yit—1 ygt 1 Yk,t—1 yjt 1 3

=D 2D OB T T 1~ OWT).
j yzt 1 yjt 1 ykt 1 y]t 1

Hence, by Chebyshev’s inequality, (NT) 2 N IDn7(2)] = Op(1)N32TY/2 (NT)™? enp = op(1).

Similarly, (NT) > ¢y |Dnr(3)] = op(1). Using again (7.26) we conclude

N

2 T N 2
CN CNT Yit—1 Yjt—1

= |Dnr(4)] = Op(1 YV T : ;
NeTR )N tz;z;J R TV P

and by Assumptions 1(%)- (i) we have

yiQt—l yl%,s—l Yit—1 Ye,s—1
L+y? -1 1T 92,5—1 1+ yjz',t—l I+ yl%,s—l

-
N

.
=

- ym 1 ykt 1 Yjt—1 Ye,t—1
¢
Tby? Ly, L+yd, o Lhyf,

Vi Yjt—1 Yo,t—1
Zl‘*’ﬁ‘/]t V1+r,

Following the arguments in the proof of Theorem 3.2(i) we get

t=2 j =1

Yjt—1 Yot—1

Vi yjt 1 Ye,t—1
élJFyt 11+yu 1

Y5 —
‘1+ Yiiq 1+ yg,t—l

ZZZ

t=2 jeC(1) LeC(1

(1+0(1))

which is O(Try) on account of (3.11). Hence we conclude (NT) > N |Dnr(4)] = 0p(1) (NT)™? A
NT1/27"1/2 = op(1). By independence and Assumption 1(7)(b), we have that EDy r(6) = 0 and
2 2
ED? ;(6) = 45, SN, Z] \0iT3E (1_@;* T ) = O(N?T), and therefore by Chebyshev’s

) it—1 Gt—1

inequality (NT) > cN7T |Dn 7(6)] = Op(1) (NT)™? C%\/,T NT'/2 = op(1). Repeating the arguments

above we also get (NT) > C%\LT |Dn,7(7)] = op(1) and (NT)™? C?V,T |Dn,7(9)] = op(1). This means

that the leading terms are Dy 7 (5), Dy 7(8) and Dy 7(10). Repeating the arguments used in the proof
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of Theorem 3.2 we obtain that

2
2
Yi
Dyr(5) = T Z o2E <1+02> + > o (1+0p(1)
iec(1 Yio i€C(2)uC(3)
2
_ 2 Yi,0
Dnr(8) = T(1+0p(1))'z TZ.E<1+y20>
ieC (1) L

vy le y],
142, 1+ 03,

DN,T(lo) = 1—|—0p Z Z

1€C(1) jeC(1)

Thus we get
ap/\/ai, under the conditions of part (7)

aop, under the conditions of part (i)

ag/+/az, under the conditions of part (%),
and therefore the result follows from Theorem 3.2.
Consider now the case b;; = 0. The only terms that matter are Dy (1), Dn7(3), Dnr(4), Dy (8),
Dy, 7(9) and Dy, (10). Define ¢y 7 so that én 1 (@1 — @) = Op (1); further, let wp = maxy<;<n w7,
where w; r is defined in (7.24).

From the above, it follows immediately that (NT) > & |Dnr(1)] = Op (T1). Also, consider

T (N2 N ” 2 T (N2 2 N ” y
E i,t—1 e j,t—1 - F i,t—1 e 7, t—1 k,t—1
Z<Zl+y2 Zj’t1+y2 Z Zl+ylt 1 Z jtkt1+yg2',t—11+y1%,t—1

j=1 J,it—1 t=2 \i=1 j,k=1

so that (NT) > ¢ IDN1(3)| = op (1). The same passages as in the proof of (7.22) yields

Yjt—1 Yk, t—1

= O (N?*ywr
1+yt11+ykt1 (Nerhvur),

2
T N yl
S D D e PR

t=2 \i=1 jk=1

whence (NT) > ¢ x.7 |[Dn,r(4)] = op (1). The same conclusion (and very similar passages) can be drawn
2 2
for Dy 7(9). Finally, as far as Dy 7(8) is concerned, E Y"1, (va L€ t#) =N 2EY, (1%;_1 )
Yit—1

= O (Nwr), which implies that (NT) > ¢x.r |Dn,7(8)] = Op (1), thus being the dominating term when

min {\/N7 ]T\#Q} = V/N. Also, considering Dy r(10), the same passages as before yield Dy r(10) =
N

N2 } _ N2 0

Ty [

N

O (wrrly), so that Dy 1(10) is Op (1) when min{\/N7
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PANEL DATA
GDP M2 Equity Index Short term rate IP UK House Price Index
(N, T) (15, 212) (18,55) (18,75) (16, 80) (18,90) (13, 45)
] 0.9988 1.002 1.000 0.9605 1.0007 1.0136
Va'r'/(-cp\f ©) 0.00098 0.00016 0.00177 0.01841 0.00032 0.00081

95% confidence interval

Test for Hgp: ¢ <1

t-stat

p-value

[0.9968, 1.0007]

—1.224

[0.889]

[1.0016,1.0023]  [0.9965, 1.0034] [0.9244, 0.9965]

12.5 0 —2.145

[0.000] [0.500] [0.984]

[1.0000, 1.0013]

2.187

[0.014]

[1.0090, 1.0121]

13.086

[0.000]

Table 5. Empirical applications. The first panel of the table (columns headings: GDP, M2, Equity Index, Short Term rate and IP)

contains quarterly EU macroeconomic and financial data, as described in this section. The last column contains the Nationwide house

price index. The last two rows contain a t-test for the null of no explosive root - the test statistic is defined as (¢ — 1) /|Var (¢ — ¢).
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