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Abstract: A rigorous modal solution approach, based on the numerically efficient finite-
element method (FEM), has been used to design and characterize a photonic crystal fiber
(PCF) with a porous air core, which has the potential for use for low-loss guidance of
terahertz (THz) waves. Here, for the first time, it is reported that a large fraction of the power
that is also well confined in the waveguide can be guided in the low-loss air holes, thus to
reduce the overall modal loss. This novel PCF design can readily be fabricated by use of a
range of techniques including stack-and-draw, extrusion, and drilling.

Index Terms: Lasers and optoelectronics, optical design, PCF, THz.

1. Introduction
Terahertz radiation (or THz waves), generally identified as covering the 0.1- to 10-THz frequency
band, has attracted widespread attention in recent years. Numerous applications of such radiation
have been reported including medical diagnostics [1], [2], testing of pharmaceutical drugs [3], and
defect detection in electronic circuits [4], among others. Devices operating in the THz regime can be
used in hazardous or security sensitive areas for monitoring drugs [5], [6], gas [7], explosives [8],
[9], or weapons and also in the study and better understanding of the dynamics of complex natural
biological systems. This has led to a concerted effort in the development of better THz sources and
detectors and as a result, the last decade has seen significant technical advances in THz wave
generation [10] and detection [11], [12]. However, most of the THz systems that are available and
for which market introduction are sought are based on free-space transmission, due to the lack of
suitable low-loss flexible waveguides.

The development of low-loss THz waveguides has been challenging as almost all presently
available materials are highly absorbent in this frequency band. Previously, circular metallic guides,
like stainless solid wires [13] or hypodermic needles [14], have been considered, but these wave-
guide are highly lossy, these being in the order of 500 dB/m. Plasmonic modes are always very
lossy, and in case of a metal rod, the mode field also extends well into the outer open space, which
is less controllable. Although a THz wave cannot be guided inside a hollow dielectric tube (unless
the Bragg principle is used), however, if this tube is coated with a metal layer, a plasmonic mode
can form inside the hollow core, where the guiding environment can be better controlled or mani-
pulated. It has been shown that, by incorporating an additional thin dielectric layer [15], the mode
field can be drawn away from the lossy plasmonic interface and, as a consequence, the overall loss
value can be reduced [16]. However, often, these waveguides have rather large diameter and not
very flexible, and for a small diameter, the loss value also increases.
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On the other hand, most of the optical waveguides are dielectric waveguides, which arises due to
the availability of very low-loss materials at these important wavelengths. Previously, it had been
demonstrated that a simple polyethylene (PE) fishing line can guide THz waves [17]. Currently,
polymers are the materials of choice for making flexible THz dielectric waveguides, i.e., polymethyl
methacrylate (PMMA) [18], Teflon [19], high-density PE (HDPE) [17], [20], and Topas [21] are
widely used as they have the lowest reported losses in the THz frequency range and they are
relatively easy to process. Jin et al. [22] have carried out an extensive study on the loss values of
various polymer materials in the THz frequency range.

However, because the absorption losses in these dielectric materials are still very high, a variety
of guiding mechanism have been reported to reduce the overall modal losses. Dry air has one of
lowest material losses in the THz frequency range. When a dielectric rod is surrounded by air,
operating very close to its cutoff condition leads the mode field to extend into the low index air
cladding region, and such subwavelength waveguides have been reported [17]. The main disad-
vantage of this design is that mode extends considerably into the surrounding air cladding and the
power is propagated mostly outside the waveguide: this strongly interacts with the surrounding
environment, and the bending loss would also be expected to be excessively high.

It has also been reported that polystyrene foam [23], with its large air fraction ratio, can have
lower overall material loss, but with its refractive index close to 1.02, it needs not only air cladding
for total internal reflection (TIR) based guidance but also a larger dimension to confine most of the
THz waves in its core: this is difficult for many practical applications.

Following the principle of Bragg guidance in optical fiber, hollow core designs have also been
considered for guiding THz waves [24], [25]. Neilsen et al. [26] have also reported a microstructured
core and honeycomb band-gap THz fiber. However, it is well known that these are narrow-band
waveguides and strict periodicity needs to be maintained to satisfy the Bragg conditions.

Recently, it has been shown that, in silicon slot waveguides [27], [28], light can be guided in the
low index air region. Using this concept, Nagel et al. [29] have reported the use of subwavelength
air hole within a solid silica core to increase the power fraction within the air hole to reduce the loss.
Similarly, Kejalakshmy et al. [30] have reported on a Teflon photonic crystal fiber (PCF) with metal-
clad hollow defect-core supporting plasmon modes for possible THz sensing applications.

PCF is a class of optical fiber where many air holes run along the length of the waveguide [31]
and where light is guided by the modified TIR when the equivalent refractive index of the porous
cladding is less than that of the solid core. PCFs are being used as waveguides, which exploit their
unique characteristics of being endlessly single moded and which offer adjustable spot-size and
dispersion properties for various linear and nonlinear applications. As a fraction of the power can be
confined and guided in the air holes, recently, Han et al. [20] and Goto et al. [19] have fabricated
HDPE and Teflon PCF, respectively. However, in both cases, the core being a solid dielectric has
not made it possible to reduce the modal loss significantly.

Recently, Hassani et al. [32] and Ung et al. [33] have reported a porous-core design to take
advantage of the guiding offered through the low-loss air holes. In this case, they have used a
relatively larger d=� ratio (of 0.95) to have a larger power fraction in the air holes (where d is the air-
hole diameter and the pitch � is the center-to-center distance between two adjacent air holes).
However, as a large d=� is used in this case, the equivalent index of the core was very low, and the
authors had to consider air cladding for the TIR. As a consequence, they also had to consider a
large core diameter, which was 70 times the operating wavelength, equal to 21 mm for mode
confinement as the index contrast between the porous core and air cladding was very small. In their
work [32], they report the maximum confinement in the air holes of the core was around 58%, and in
that design, the total power in the air was around 80%, which indicates that remaining 20% power
was confined in the solid PE. They have also mentioned that total confinement in the PE could be
as low as 8%, and in that case, the expected loss value would be only 10 dB/m.

In this paper, a novel concept, using porous core and also porous cladding, is reported. In this
case, the d=� ratio of the cladding air holes must be larger than that in the core to create a
differential index contrast to confine the THz waves within the waveguide. In this case, all the power
will be fully confined inside the waveguide, and the system performance will not be affected by the
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surrounding medium. Here, optimization of the power fraction in the air holes is shown, with the
fabrication parameters, including their bending loss calculations.

2. Numerical Solution
In the modal solution approach based on the finite-element method (FEM), the intricate cross
section of a PCF and its microstructured core can be represented by using many triangles of
different shapes and sizes. This flexibility makes the FEM preferable as a technique to use
when compared with the finite-difference method, which not only uses inefficient regular-spaced
meshing but also cannot represent slanted or curved dielectric interfaces. The optical modes in
a high index contrast PCF with 2-D confinement are also hybrid in nature, with all six com-
ponents of the E and H fields being present. It is also known that the modal hybridness is
enhanced by the presence of slanted or curved dielectric interfaces. Hence, not only is a vectorial
formulation needed for the accurate determination of their modal solutions, but also, a proper
representation of the dielectric interfaces is important. In the present approach, an H-field-based
rigorous full-vectorial FEM has been used to analyze the operation of PCFs with air holes arranged
in a triangular lattice in the Teflon cladding. The H-field formulation developed previously [34] is
a valid approach for microwave and optical guided-wave devices, including the intermediate
THz frequency range. This H-field formulation with the augmented penalty function technique is
given as

!2 ¼

R
ðr � ~HÞ � �"̂�1ðr � ~HÞ d�

� �
þ

R
ð�="oÞðr � ~HÞ � ðr � ~HÞ d�

� �
R
~H � ��̂~H d�

(1)

where ~H is the full-vectorial complex magnetic field; "̂ and �̂ are the permittivity and permeability,
respectively, of the waveguide; "o is the permittivity of the free space; !2 is the eigenvalue (where !
is the angular frequency of the wave); and � is a dimensionless parameter used to impose the
divergence-free condition of the magnetic field in a least-square sense. In this formulation, both the
"̂ and �̂ parameters can be arbitrary complex tensors with possible off-diagonal coefficients,
suitable to characterize electro-optic, acousto-optic, and elasto-optic devices. When necessary, to
calculate the leakage and bending losses, perfectly matched layers (PMLs) [35] have been
incorporated around the computation window, but this also transforms the resulting formulation to a
complex eigenvalue equation.

Fig. 1. Representation of the porous-core PCF cross-section with Ncore ¼ 4, Nclad ¼ 4. �o ¼ outer pitch
and do ¼ outer radius. Inset shows �i ¼ inner pitch and di ¼ inner radius.
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3. Results
In this paper, a Teflon PCF is considered with the number of air-hole rings, Nclad ¼ 4 in the cladding
and also Ncore ¼ 4 in the core. To achieve the maximum porosity, at the center of the core, a similar
air hole is considered rather than a solid rod. In this case, if the outer pitch �o is equal to diameter of
the porous core (D), which is nine times ð2 � Ncore þ 1Þ the inner pitch �i , then it would be easier to
use the conventional stack-and-draw technique to fabricate such a porous-core PCF. The refractive
index of Teflon is taken to be 1.445. In this case, the bulk material loss for Teflon has been
considered to be 0.3 cm�1 or 130 dB/m [32], at 1 THz. This gives the imaginary part of the refractive
index as 0.000715 at the operating frequency of 1 THz ð� ¼ 0:3 mmÞ, which is used in this work.
The overall structure has a two-fold symmetry, so only a quarter of the PCF is simulated as shown
in Fig. 1. In total, 80 000 first-order triangular elements of different sizes are used to represent a
quarter of the structure. The porous core is also shown as an inset at the top right corner of this
figure.

It has been mentioned that the inner air-hole diameter/pitch ratio ðdi=�iÞ in the core needs to be
smaller than that of the cladding ðdo=�oÞ to have a higher equivalent index necessary to support the
TIR guidance. In this case, initially, ðdi=�iÞ is taken as 0.5, and ðdo=�oÞ ¼ 0:8. Variations of the
effective index and the mode-size areas with the outer pitch �o are shown in Fig. 2. It can be
observed that, as the pitch value is reduced, the effective index of the fundamental Hx

11 mode is also
reduced. The cutoff condition is reached when the effective index approaches the equivalent index,
often designated as Nfsm [36] of the cladding. Here, the effective index Ne is defined as Ne ¼ �=ko,
where � is the propagation constant of the mode and ko is the wavenumber. For this structure, the
90� rotational symmetry is nearly satisfied, so the modal properties of the quasi-TE ðHy

11Þ and quasi-
TM ðHx

11Þ modes would be almost identical.
Variations of the mode-size areas with the pitch are also shown in Fig. 2. There have been

different definitions used to quantify this mode-size area, and for a Gaussian-shaped field profile,
they give identical results [37]. The spot size, given as �, can be defined as the area where the
power density is higher than 1=e2 of the maximum power density. On the other hand, the effective
area Aeff can be defined as ðð

R
jE j2ÞdAÞ2=ð

R
jE j4dAÞÞ, where E is the electric-field profile. The area

second moment of the optical intensity ASMI ¼ 2
pðð

R
x2Iðx ; yÞ=ð

R
Iðx ; yÞÞÞ, where Iðx ; yÞ is the

second moment of intensity distribution profile.
It can be observed that, as the outer pitch do=�o is reduced, initially, the mode-size areas reduce

since the core size is also being reduced. All three mode area definitions give similar values when
�o ¼ 0:45 mm, as in this case, the field profile is close to a Gaussian shape. However, when the

Fig. 2. Variations of the mode field areas and effective index with the pitch, �o for do=�o ¼ 0:8 and
di=�i ¼ 0:5.
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pitch is reduced further, the mode-size areas start to increase as the mode approaches its cutoff
condition. In this case, a greater amount of the modal field will extend into the cladding areas. It
should be noted that, when �o is reduced, the inner pitch �i is also reduced to maintain their
constant ratio to be 9, necessary for this design with Ncore ¼ 4.

The variations of the power confinement in various regions with the outer pitch �o are shown in
Fig. 3. The power confinement factor � was determined for different regions of the porous-core
PCF, normalized to the total power. The confinement factor can be calculated by integrating the
Poynting vector over a given region �i as

�i ¼
Z

�i

fE� � Hgd� (2)

where E is the electric field, and H is the magnetic field of the mode. In this full-vectorial approach,
all the six components of the E and H fields are used for the calculation of the confinement factors.
Four regions have been clearly identified, air holes in core, Teflon in core, air holes in cladding, and
Teflon in cladding as �a

aircore, �t
solidcore, �a

airclad, and �t
solidclad, respectively.

It can be observed that as the pitch �o is reduced, the power in the Teflon-core region �t
solidcore,

shown by stars, initially increased and then subsequently reduced as the mode approaches its
cutoff, when most of the power extends into the cladding. Similar feature are shown for the power in
the air holes of the core region �a

aircore, represented by squares. On the other hand, the power in the
solid Teflon area of the clad �t

solidclad, shown by triangles, initially reduces with the pitch � and then
increases when the mode approaches its cutoff condition and the power extends further into the
cladding. However, the power in the cladding air holes �a

airclad, shown by circles, monotonically
increases as the pitch �o is reduced and increases more rapidly when the cutoff condition
approaches. It can be observed that the maximum confinement in the Teflon core �t

solidcore is about
52%, whereas the confinement in the air holes in core �a

aircore is only 17%, when the outer pitch
�o ¼ 0:35 mm. To understand the complex interaction between these parameters, next, the field
profiles for two pitch values are shown.

The variations of the Hx fields of the fundamental Hx
11 mode along the horizontal axis are shown

in Fig. 4 for two different pitch values. For a higher pitch value �o ¼ 0:7 mm, the field profile shown
in Fig. 4(a) demonstrate a reasonably well-confined mode inside the core with its decay length (1=e
of the maximum field) as 0.12 mm. The field variation inside the core clearly shows the presence of
the five air holes (shown by arrows), along the x -axis with their local field minima. In this case, near
the outer air-hole ring (of the inner core), the modal field shows its maximum value due to the
presence of a large solid Teflon areas just before the first air-hole ring in the cladding. In this case,

Fig. 3. Variation of the confinement factors with the outer pitch, �o , for do=�o ¼ 0:8 and di=�i ¼ 0:5.
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total confinement in the core was around 50%. On the other hand, for a smaller outer-pitch value
�o ¼ 0:35 mm, as shown in Fig. 4(b), field is more confined in the core ð�core ¼ 52%Þ but
associated with a slower decay (decay length 0.18 mm) in the cladding.

The variations of the power confinements in the core air holes with the outer pitch �o are shown in
Fig. 5. It can be observed that, as the outer pitch �o is reduced, the power confinement in the core
air holes �a

aircore increases and reaches a maximum value. A further reduction of the pitch value
brings this mode closer to cutoff, and the mode field extends in the outer cladding so �a

aircore
reduces. It is also shown that, as the di=�i increases from 0.4 to 0.6, the maximum confinement in
the core air holes �a

aircore also increases. This maximum value is identified as �max
air-core. It can be

observed here that, in all the three cases, the maximum power in the core was obtained when the
outer pitch �o was around 0.35 mm. However, there is a limit to the increment of the value of di=�i ,
as this needs to be lower than the outer do=�o value to have sufficient index contrast for the TIR
guidance. To increase the air-filling area and also to avoid the field localization at the core–cladding
interface, it was considered to increase both the di=�i and do=�o values to reduce the solid Teflon
area near the core–cladding boundary.

Further, besides varying the �o and the inner di=�i values, the outer do=�o values are also
adjusted to get the maximum confinement in the core air holes �max

air-core. The variations of the

Fig. 5. Variation of the confinement factor in the core air holes, �a
aircore, with the outer pitch �o for

do=�o ¼ 0:8 but with different di=�i values.

Fig. 4. Variations of the Hx field of the Hx
11 mode along the x -axis for (a) �o ¼ 0:7 mm and (b)

�o ¼ 0:35 mm, when do=�o ¼ 0:8, and di=�i ¼ 0:50.
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maximum power confinement in the core air holes with the inner di=�i are shown in Fig. 6. For given
values of do=�o and di=�i , the pitch �o is adjusted to achieve the maximum power confinement in
the core air holes �max

air-core. The variation of this value with di=�i is shown for a fixed do=�o. It was
noted that, for most of the cases, the outer pitch �o was around 0.35 mm to achieve the maximum
confinement in the core air holes. It can be observed that, as the value of di=�i is increased, the
maximum power confinement in the core air holes also increases. However, a further increase in
di=�i reduces the index contrast between the core and cladding, and �max

air-core reduces as more
power is extended in the cladding. It can also be noted that �max

air-core increases as the do=�o is
increased. The confinement in the cladding air holes is also shown by a solid-green line with
rectangles but only for do=�o ¼ 0:95 and �o ¼ 0:35 mm. It can be observed that total power in the
air holes (both in core and cladding) reaches 58%, when do=�o ¼ 0:95 and di=�i ¼ 0:85. By
increasing the ratio do=�o, the maximum confinement in the air holes �max also increases, but this
also needs a higher value of di=�i . It is noted here that reducing the difference between the outer/
inner d=� ratios increases the maximum power confinement in the core air holes. If it is possible to
increase di=�i to more than 0.85 (and do=�o more than 0.95), the power fraction in the air holes can
be increased further. In the design reported [32], di=�i has been considered as 0.95, and as a
consequence, it had been necessary to consider an air cladding (porous cladding with air holes is
not possible) to achieve the index contrast necessary for the TIR guidance and thus exposing the
mode to external environmental influences.

It was observed that, for all the d=� used in this paper, for both inner and outer air holes, as the �
is reduced, the mode areas reach a minimum value and then expands as the modal cutoff
approaches. However, for a given do=�o, when di=�i is reduced, although the features remain
similar, minimum mode area value is reduced and the mode cutoff condition arrives at a slightly
lower � value. In all the cases, when power in the air holes are maximized, the PCF has been single
moded.

Fig. 7 shows the Hx field variation along the x -axis for the fundamental Hx
11 mode when

�o ¼ 0:35 mm, do=�o ¼ 0:95, and di=�i ¼ 0:85, a combination which achieved the maximum
power confinement in the air holes. Here, the field profile is almost constant within the core with
small ripples due to the presence of the air holes inside the core. In this case, the index contrast
between core and cladding is smaller, and the field extends in the cladding region with the 1=e
decay length given by 0.23 mm but most of the power is well confined inside the waveguide. One
local field maximum is shown by an arrow identifying the location between the first and second air-
hole rings where the field value is about 0.004% of the maximum field. This also signifies that the
THz energy is well confined inside the cladding and does not extend outside the waveguide, unlike

Fig. 6. Variation of the maximum confinement factor in the air holes with the di=�i for some fixed do=�o
values.
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the waveguides with air cladding [32], when the field extends in the air cladding and the mode would
be influenced by both environmental factors and bending.

Modal loss and the bending loss of this porous-core PCF have also been studied. In this analysis,
a Conformal Transformation [38], [39] was carried out to obtain the equivalent index of a bent PCF,
and PML regions [35], [40] are introduced to absorb the leaking power. For a bent PCF, only onefold
symmetry is available, and symmetry along the vertical axis is destroyed. Fig. 8 shows the variation
of the loss values for a bent PCF with the bending radius R. In this case, for the porous-core PCF,
the parameters are taken to be �o ¼ 0:35 mm, do=�o ¼ 0:95, and di=�i ¼ 0:85. Initially, the mate-
rial loss is ignored, and the bending and leakage loss is shown by a dashed curve with solid
squares. When bending radius is large, the loss value is around 8 dB/m, which identifies the
leakage loss only. If necessary, this leakage loss can be further reduced by increasing the number
of rings in the cladding region (in the present simulation, Nclad ¼ 4 is considered) or by increasing
the d=� value of the outer rings. When the bending radius R is reduced, the loss value increases,
which now includes the bending loss. It can be noted that, for this particular design, the bending loss

Fig. 8. Variation of bending loss with bending radius, R at �o ¼ 0:35 mm and �i ¼ 0:039 mm.

Fig. 7. Variation of the Hx field along the x -axis for the Hx
11 mode when �o ¼ 0:35 mm, do=�o ¼ 0:95

and di=�i ¼ 0:85.
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is negligible when the bending radius R is above 2 cm. However, as the material loss is the
dominant loss-contributing factor, when this is added by considering the imaginary part of the
complex refractive index of Teflon, the total loss is shown by a solid line with solid circles. It can be
identified that the material loss dominates with its value around 53 dB/m. However, this value is
considerably less than that of a solid-core Teflon PCF, which could be as high as the bulk material
loss, this being 130 dB/m. It can be noted that the loss value peaks when R ¼ 1:4 cm and this is
due to the mode coupling between the PCF mode and a cladding mode, and appearance of such
more degeneration was reported earlier [40].

The Hx field profile of the bent PCF for the fundamental Hx
11 mode is shown in Fig. 9, when the

bending radius is 1.5 cm. Only half of the PCF structure is shown, as symmetry along the horizontal
axis was exploited during the simulation. It can be observed that the center of the mode field has
shifted towards the right (away from the bending center) and the influence of the air holes in the first
cladding ring is clearly visible.

4. Conclusion
A novel design incorporating both a porous core and also a porous clad has been presented here,
this being a better design than a PCF with porous cladding [19], [20] or a porous-core [32], [33] fiber
with air cladding. In this paper, a rigorous full-vectorial modal solution approach has been used to
optimize the index contrast and the dimensions to maximize the power confinement in the air holes.

It has been shown here that, by using a porous core along with the porous cladding of a
conventional PCF, the power confinement in the air holes can be significantly increased, which will
reduce the effect of material loss by 60% for the solid Teflon. The overall loss value can be further
reduced if the material loss can be reduced or the fabrication technology improved to allow a higher
d=� value than 0.95 (for the outer d=�), which is considered in this paper. It has been shown that
the leakage loss and the bending losses for such a PCF are very small for practical applications.

The manufacturing technology for PCF operating at optical frequencies has matured, and PCFs
with a submicron pitch are routinely being fabricated. Compared with that, PCF for THz frequencies
with a pitch 100 times larger would be relatively easy to fabricate, and such a PCF has also been
fabricated [19], [20]. In the design reported here, when a THz PCF with additionally porous core [33]
is considered, the 20- to 40-�m inner pitch dimensions are easily feasible, and the fabrication
process does not introduce any additional challenge. The design shown here, with a fixed �o=�i

ratio depending on number of air-hole rings Ncore in the core, would be compatible for more widely
used draw-and-stack approaches.

Fig. 9. Hx field profile of the bent PCF for the fundamental Hx
11 mode for bending radius, 1.5 cm.
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The availability of a low-loss flexible waveguide will allow both distributing THz waves and also a
waveguide to act as part of a functional device for processing the signals. The reliability and the
performance of a THz system can be improved by having a compact, flexible, robust, and integrable
waveguide for the remote delivery of high power.
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