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We use the 2007 asset-backed commercial paper (ABCP) crisis as a laboratory to study the
determinants of debt runs. Our model features dilution risk: maturing short-term lenders
demand higher yields in compensation for being diluted by future lenders, making runs
more likely. The model explains the observed tenfold increase in yield spreads leading to
runs and the positive relation between yield spreads and future runs. Results from
structural estimation show that runs are very sensitive to leverage, asset values, and asset
liquidity, but less sensitive to the degree of maturity mismatch, the strength of guarantees,
and asset volatility.
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1. Introduction

Debt runs played a central role in the financial crisis of
2007–2008. Investors ran on asset-backed commercial
paper (ABCP) starting in August 2007, on repo starting in
September 2007, and on money market mutual funds in
September 2008. Investors also ran on some large banks
such as Northern Rock (September 2007) and Bear Stearns
(March 2008).1

These events have reignited the debate about what
causes runs and how we can prevent them. We contribute
to this debate by measuring the sensitivity of runs to
several contributing factors, including maturity mismatch,
leverage, asset volatility and liquidity, and the strength of
guarantees. The results help answer four questions that are
vital to policy makers, regulators, bankers, and investors:
How fragile are financial intermediaries? How can we
design financial intermediaries ex ante to control the risk
of future runs? What are the warning signs that a run is
imminent? Finally, which interventions best prevent runs
ex post once conditions have started deteriorating?

We address these questions by estimating a structural
model of debt runs using data from the 2007 ABCP crisis.
ABCP issuers, commonly referred to as conduits, are off-
balance sheet investment vehicles that banks structure to
invest in pools of medium- and long-term assets such as
trade receivables and mortgage-backed securities (MBS).2

A conduit finances these investments by issuing short-
term ABCP to dispersed creditors and rolling it over until
the conduit chooses to stop investing. The bank sponsor-
ing the conduit provides some form of guarantee in the
event that the conduit can no longer roll over its debt.

The amount of ABCP outstanding in the U.S. contracted
by $370 billion (roughly one-third) between August and
December of 2007. Several authors have interpreted this
event as a run on debt.3 In a debt run, creditors refuse to
roll over their debt if they fear that other creditors will not
roll over, in some cases even if the borrower is solvent.
In the case of ABCP, roughly 40% of conduits had stopped
rolling over maturing debt by the end of 2007.

ABCP provides a useful laboratory to study financial
fragility for four reasons. First, since ABCP conduits per-
form maturity transformation, they are representative of
many other financial intermediaries. Second, the simple
balance sheet and operating structure of ABCP conduits
lend themselves to modeling. Third, we have detailed data
on the yield, maturity, size, and issuer's identity for all U.S.
ABCP transactions in 2007. Because yields adjust at each

maturity date, their time series measures the conduit's
health continuously and can potentially be an important
lead indicator of runs. Finally, as Krishnamurthy, Nagel,
and Orlov (2014) argue, the ABCP crisis was important in
itself:

The contraction in both repo and ABCP are consistent
with the views of many commentators that a contrac-
tion in the short-term debt of shadow banks played an
important role in the collapse of the shadow banking
sector. However, it is important to note that the ABCP
plays a more important role than repo in this regard.

In fact, runs on ABCP could have had a broad effect on
financial intermediation through two channels. First, runs
impaired ABCP conduits' ability to fund assets such as
trade receivables or student loan receivables. Second, the
runs on ABCP conduits forced their sponsoring banks to
take troubled assets like mortgage securities back onto
their own books, which impaired lending to nonfinancial
firms and ultimately harmed economic activity (Irani,
2011).

Our model of ABCP conduits is based on He and Xiong
(2012a). A conduit finances a long-term asset using short-
term, dispersed debt with overlapping maturities. Cred-
itors track the asset's value and optimally run as soon as
the conduit's leverage crosses above an endogenous
threshold. A creditor's decision to run depends on chan-
ging expectations that other creditors will run. We extend
He and Xiong's (2012a) model so that debt yields are not
fixed but instead vary endogenously over time, so as to
make lenders indifferent between rolling over or not. This
extension is necessary: we show empirically that yields on
ABCP forecast runs, and yields increase exponentially
leading up to runs. To have any chance of fitting these
data, the model must make predictions about the time
series of yields.

The model's parameters include the debt's maturity;
the perceived strength of the sponsor's guarantee; and the
asset's volatility, maturity, and liquidation discount in
default. We observe some of these parameters directly in
the data, and we estimate others using the simulated
method of moments (SMM).

We find three main results. First, we show that runs are
very sensitive to leverage and asset liquidity, but are less
sensitive to the degree of maturity mismatch, asset vola-
tility, and perceived guarantee strength. We measure these
sensitivities by comparing simulated run probabilities
between our estimated model and a counterfactual model
with altered parameter values. We measure these sensi-
tivities in both the early and late stages of a simulated
crisis. In the late stages, increasing the asset's liquidation
recovery rate by 1% (from 92.0% to 92.9%), while holding
all else equal, lowers the probability of a run within three
months from 70% to 39%. Decreasing the conduit's lever-
age by 1% (from 91.4% to 90.4%) has an almost identical
impact. In contrast, reducing the run probability by the
same amount would require either reducing asset volati-
lity by 40%, increasing average debt maturity by 190%,
reducing average asset maturity by 98%, or increasing the
guarantee's expected life span by 413%.

1 Brunnermeier (2009) and Krishnamurthy (2009) summarize the
events of 2007–2008. We discuss the literature on ABCP below. Gorton
and Metrick (2012) and Krishnamurthy, Nagel, and Orlov (2014) empiri-
cally investigate the run on repo. Martin, Skeie, and Von Thadden (2012)
provide a model of repo runs. Kacperczyk and Schnabl (2013) examine
the run on money market funds.

2 One prevalent view is that ABCP conduits were essentially a way for
sponsoring banks to take on systemic risk beyond regulations, without
transferring the risk to ABCP investors. See Acharya and Richardson
(2009), Acharya and Schnabl (2010), Acharya, Schnabl, and Suarez (2013),
Brunnermeier (2009), and Shin (2009).

3 See, for instance, Covitz, Liang, and Suarez (2013), Acharya, Schnabl,
and Suarez (2013), and Gorton and Metrick (2012).
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These results shed light on how regulators and bankers
can manage the risk of runs, both when forming new
conduits and during a crisis. For example, crisis management
policies with modest effects on asset liquidity (e.g., purchas-
ing distressed assets) or conduit leverage (e.g., injecting
equity) can have substantial effects on the likelihood of runs.
High ABCP yields, which result from deteriorating funda-
mentals, are a warning sign that a run is imminent. The
model provides a quantitative mapping between these
warning signs and the likelihood of runs. Of course, we do
not address the feasibility or the cost of policy interventions,
nor do we analyze how changing one fundamental (e.g.,
liquidity) could affect another (e.g., debt maturity).

The second main result is that the model can fit several
features of the 2007 ABCP crisis. The model explains 73% of
the sharp decline in total ABCP outstanding in the second
half of 2007. For conduits offering weak guarantees to
investors (‘Structured investment vehicle’ (SIV) and
‘Extendible notes’), the model comes quite close to fitting
the magnitude and timing of the dramatic run-up in yields
before runs, the overall level of ABCP yield volatility and its
relation to yield levels, and the relatively high likelihood
that conduits recover from a run. In both simulated and
actual data, the current yield level helps forecast whether
a run will occur. The model's main shortcoming is that, for
conduits offering strong guarantees (‘Full credit’ or ‘Full
liquidity’), it overpredicts runs when yields are high.

Our third result is theoretical. We show that introdu-
cing time-varying yields into the model typically makes
runs more likely, relative to He and Xiong's (2012a) model
with constant, exogenous yields. Using He and Xiong's
(2012a) calibrated parameter values, we find that runs are
1.3–51 times more likely in our model than theirs. The
reason, as He and Xiong (2012a) conjecture, is that the
conduit must offer high yields to induce rollover when
conditions deteriorate. These high yields dilute all out-
standing debt that matures later. Creditors preemptively
demand higher yields in compensation for the risk of
future dilution. These higher yields in turn make leverage
build up faster, which makes runs more likely. This new
risk, which we call ‘dilution risk,' can be an important
driver of yields and runs.

Several papers measure the determinants of runs using a
reduced-form approach. Covitz, Liang, and Suarez (2013)
show that runs on ABCP conduits are negatively related to
the strength of their guarantees. Calomiris and Mason (1997,
2003) show that bank runs during the Great Depression are
correlated with measures of bank solvency and shocks to the
aggregate, regional, and local economies. Using data on an
Indian bank, Iyer and Puri (2012) show that runs are
positively related to weaker deposit insurance, a shorter or
shallower relationship with the bank, and runs by one's
peers. Chen, Goldstein, and Jiang (2010) provide evidence of
strategic complementarities in mutual funds.

We depart from the existing empirical literature by
taking a structural estimation approach. The structural
approach complements the reduced-form approach by
overcoming certain data limitations and by imposing diffe-
rent identifying assumptions. The reduced-form approach
requires data on the determinants of runs, many of which
are difficult to obtain in the ABCP setting. For example,

data on conduit leverage and asset holdings are not
publicly available.4 We overcome this limitation by struc-
turally estimating several run determinants. The reduced-
form approach also requires a data set with sufficient
variation in the determinants of runs. Finding variation is
potentially a challenge in the ABCP setting because con-
duits resemble each other on many dimensions. The
structural approach requires no heterogeneity in these
determinants, as we use counterfactual analysis to mea-
sure the sensitivity of runs to their various determinants.
Both approaches impose strong identifying assumptions.
The reduced-form approach assumes we have exogenous
variation in the determinants of runs, which is difficult to
find. The structural approach assumes that the model is
true. Therefore, our exercise is not meant to identify
coordination failures over any alternative mechanism for
the sharp decline in ABCP. However, the structural
approach allows us to show that a model of coordination
failures can quantitatively and jointly fit several features of
the data. This paper therefore takes a step toward provid-
ing a quantitative model of financial fragility, which is
crucial for guiding the management and regulation of
financial intermediaries.

The paper is structured as follows. Section 2 describes
the model's assumptions and solution. Section 3 discusses
its predictions regarding dilution risk and the likelihood of
runs. Section 4 describes the data, identification, and SMM
estimation. Section 5 assesses model fit and describes our
parameter estimates. Section 6 uses the estimated model
to explore the determinants of runs, Section 7 discusses
policy implications, and Section 8 concludes.

2. The model

We extend the model of He and Xiong (2012a) by
allowing yields on short-term debt to adjust over time in
response to changes in fundamentals. All assumptions
below are shared with He and Xiong (2012a) unless
otherwise noted. Appendix A describes the solution.

The model includes several features of ABCP conduits.
The conduit finances a long-term asset using short-term,
dispersed debt with overlapping maturities. The conduit
must roll over this debt several times before the conduit
ends, so the conduit faces rollover risk. The conduit's
sponsor provides imperfect credit support if the conduit
cannot roll over its paper.

2.1. Assumptions

2.1.1. Asset
At time zero, an ABCP conduit purchases a long-horizon

asset. This asset represents the portfolio of assets a conduit
typically buys. For the overall ABCP industry in 2007, the
largest assets classes were trade receivables (14%), credit
cards (12%), auto loans (11%), ‘securities’ (11%), commercial

4 Even if asset holdings were known, measuring asset liquidity is
difficult, especially for ABCP asset classes like trade receivables. Price data
on trade receivables and other important asset classes are not available.
Further, while we have data on credit guarantees' types, we cannot
measure their perceived strength.
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loans (10%), and mortgage-related assets (9%).5 The con-
duit reinvests any interim cash flows from the asset. For
example, the conduit could buy new trade receivables
using the payouts from maturing receivables. The conduit
therefore makes no net interim payouts to investors.6 The
asset produces a single net payout when the conduit
matures, meaning the conduit winds down operations.
The conduit matures randomly and independently at a
time τϕ that arrives according to a Poisson process with
intensity ϕ, so the conduit's expected time until maturity is
always 1=ϕ. At maturity, the asset produces a payout yτϕ ,
where y follows a geometric Brownian motion with drift μ
and volatility s:

dyt
yt

¼ μ dtþs dZt : ð1Þ

Agents observe yt at all times. All agents in the economy
are risk neutral and have discount rate ρ, so the asset's
value at time t is

F yt
! "

% Et e&ðτϕ & tÞρyτϕ
h i

¼
ϕ

ρþϕ&μ
yt : ð2Þ

2.1.2. Debt financing
The conduit finances the asset by initially borrowing $1

from a continuum of short-term creditors. Consistent with
industry practice, the conduit also issues equity to its sponsor.
The conduit's debt is zero-coupon and has endogenous face
value Rt per dollar loaned at date t. In contrast, debt contracts
in He and Xiong (2012a) have face value normalized to one
and offer exogenous interest rate r. Each debt contract in our
model matures randomly and independently with probability
δ dt in the interval ½t; tþdt(, implying that a debt contract's
average remaining maturity always equals 1/δ. This modeling
device, which follows Calvo (1983), Blanchard (1985), and
Leland (1998), reflects that ABCP conduits deliberately spread
their debt maturities over time to reduce funding liquidity
risk. These assumptions capture an important feature of the
ABCP market, which is that before a given lender's debt
matures, other lenders' debt will mature and potentially fail
to roll over. Our assumptions imply that the conduit rolls over
a fraction δ dt of its debt every instant, and the total face value
of debt, Dt, fluctuates over time according to

dDt ¼ δDtðRt&1Þ dt: ð3Þ

2.1.3. Runs, liquidation, and the sponsor's guarantee
As payment for a maturing loan, lenders accept a new

loan with a potentially different face value. If lenders
choose not to roll over, we say that they run. We assume
lenders roll over if they are indifferent between rolling

over and running. If lenders run and the conduit cannot
raise funds to pay off maturing lenders, then the conduit
defaults. In default, the conduit sells the asset at a fraction
α of its fair market price, which yields LðytÞ % αFðytÞ.

Parameter α measures the asset's liquidity in the run
state.7 Equivalently, α is the asset's recovery rate in default.
Consistent with industry practice, the conduit distributes
bankruptcy proceeds LðytÞ to outstanding creditors pro
rata, i.e., in proportion to their face value.

An ABCP conduit's sponsor provides a guarantee, which
is typically a line of credit the conduit can use if it is unable
to issue new paper. Section 4.1 describes the four types of
guarantee in use in 2007. We follow He and Xiong (2012a)
by modeling guarantees as an imperfect credit line from
the sponsor. If the conduit experiences a run, it pays off
maturing paper by borrowing from the sponsor at the
prevailing rollover yield and maturity. The credit line
therefore allows the conduit to potentially survive a run
long enough for the conduit to recover and begin issuing
paper again. We assume the credit line fails independently,
causing default, each instant with probability θδ dt. Once a
run starts, the credit line is expected to last for 1=ðθδÞ
years, so conduits with higher values of θ have weaker
guarantees.

2.2. ABCP pricing

We typically work with yield spreads, denoted rt (in
units of fraction per year), which we can compute from
face values Rt (in units of dollars) using8

rt ¼ ðRt&1Þ ) ðϕþδÞ&ρ: ð4Þ

Unlike in He and Xiong (2012a), debt is priced in a
competitive market so that creditors exactly break even.
This pricing assumption makes the debt we study here
identical to the one in Leland and Toft (1996), Leland
(1998), and the short-term class in He and Xiong (2012b).
Specifically, the conduit sets its rollover yield spread rt so
that if creditors loan the conduit $1 at time t, they receive
a debt contract worth $1. Intuitively, if times are bad, the
conduit must issue paper at a high yield spread rt to make
creditors break even. If times are good, the new paper is
almost risk free, and the new rollover yield will be close to
the risk-free rate.

We assume the conduit cannot or will not issue debt
with a yield spread above an exogenous cap, r . This is an
important assumption, which, as we show later, implies
that creditors run exactly when the spread hits its cap.
There are a several rationales for assuming yield spreads
cannot go to infinity as conditions worsen.

5 Data are from ‘The ABC's of ABCP,’ an unpublished document from
Societe Generale. Reported portfolio weights are measured on August 31,
2007. The ambiguous ‘securities’ category could include mortgage-related
securities.

6 In He and Xiong (2012a), the asset pays a fixed dividend, which the
conduit uses to pay a coupon on the bond. Our model assumes zero-
coupon debt, since commercial paper is a discount security that pays face
value at maturity with no interim coupons.

7 Note that we do not assume that asset liquidity is constant. Instead,
we assume that the creditors' expected asset liquidation value in the run
state, i.e., if the whole asset is sold to pay off running creditors, is
constant.

8 The yield spread rt is the interest rate (in excess of the risk-free rate,
ρ) that delivers the same value as a zero-coupon bond with face value Rt,
under the assumption that both bonds are paid back in full at
τ¼minðτδ; τϕÞ. Eq. (4) follows from the condition

Et
Z τ

t
e&ρðs& tÞðρþrt Þ dsþe&ρðτ& tÞ

# $
¼ Etfe&ρðτ& tÞRtg:
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One rationale relates to institutional constraints. The
main investors in ABCP are money market funds, which
are required to invest mainly in assets with very high
ratings (e.g., A-1 by Standard and Poor's (S&P) or P-1 by
Moody's).9 As an ABCP conduit's health declines and its
rollover yields rise, eventually the conduit will lose its A-1/
P-1 rating and its creditors will be unable to roll over its
paper. Effectively, the conduit will be unable to roll over
paper once yield spreads reach a certain level, i.e., a cap.

Credit rationing, as in Stiglitz and Weiss (1981), pro-
vides another rationale for capping yields. Once yield
spreads exceed some level, only the conduits with very
risky assets will be willing to roll over their paper. Because
of this adverse selection problem, creditors will refuse to
accept yield spreads above this cap.

In these first two rationales, it is creditors who walk
away from the conduit in a run. There is another rationale
in which the sponsor walks away. If conditions worsen
enough, rollover yields become so high that the ABCP
conduit's equity is very low. The sponsor then has little
incentive to keep operating the conduit. As in Leland
(1998), where the default boundary is chosen to maximize
the value of equity at default, the sponsors can choose the
run threshold indirectly via the yield cap.10

A final rationale is that without a cap on yields, we find
no runs. We cannot prove this result generally since we
lack closed-form solutions, but for empirically relevant
parameter values we show that the predicted probability
of a run goes to zero as r gets large (Fig. 8). Intuitively, a
higher yield cap incentivizes rollover during worse condi-
tions. As the yield approaches infinity, the conduit effec-
tively dilutes the earlier lenders' claims to zero, thereby
transferring the entire asset to the infinitesimal maturing
lender. Of course, this lender also expects to lose this claim
to the next period's maturing lender, but she also expects
to get the chance to roll over again with the same positive
probability as all other lenders. Without a yield cap, the
model approaches a Ponzi game in which creditors alter-
nate full claims on the asset indefinitely.11

Since we do not know which of these rationales for a
yield cap binds in the data, we treat r as a parameter to
estimate. This estimate measures the minimum of the
rationales' various caps. Future research could establish
which cap binds empirically. The answer would help
explain whether runs were the result of conduits regarding
short-term funding as too expensive or of creditors con-
sidering ABCP too risky.

2.3. Discussion

Our model is one of fundamental-driven panics (e.g.,
Goldstein, 2014). The only variable that changes exogen-
ously over time is the asset's fundamental value. The
model therefore assumes that runs are triggered by a drop
in fundamental asset value rather than by, for example, an
increase in asset volatility. Asset volatility and other model
parameters do affect the likelihood of runs, as we discuss
later, but the model assumes these parameters remain
constant over time. The model still includes an element of
‘panic,’ in the sense that lenders run because they fear
other lenders will do the same.

The assumption that runs are triggered by a drop in asset
value is strongly supported by Fig. 1, which plots price indexes
in 2007 for ABCP conduits' main asset classes (solid and
dashed lines), and also plots the fraction of ABCP conduits
experiencing a run as defined in Section 4.1 (dashed-dot line).
The figure shows that the ABX index of mortgage-related
securities dropped by roughly 20 percentage points in the
months before runs intensified.12 Mortgage-related assets
made up 9% of the ABCP industry portfolio in 2007.

We cannot rule out that some of the model's para-
meters changed suddenly in mid-2007. However, as we
shall see below, the model fits the data remarkably well
without these additional assumptions. Moreover, our
parameter estimates are forward-looking: we recover the
parameter values consistent with yields and run intensi-
ties well into the crisis.

Consistent with industry practice, the model assumes that
the sponsor extends a line of credit to the conduit during a
run. Therefore, the ABCP that matures during a run is replaced
by credit-line debt. Since credit-line debt is held by the
sponsor, it is not subject to coordination problems. Total debt
Dt in our model is the sum of market-held ABCP and sponsor-
held credit-line debt. During a run, the amount of market-
held ABCP decreases while sponsor-held debt increases.
On net, total debt Dt increases during a run, because sponsor
debt replaces market debt issued in the past at lower yields.
It is unclear whether credit-line debt is senior or junior to
ABCP in practice. For tractability, we assume the two types of
debt have equal seniority and maturity.13

Note that runs in themodel are not caused by idiosyncratic
liquidity shocks to creditors. If one individual creditor fails to
roll over due to a liquidity shock, another creditor will take up
the contract at the break-even yield, preventing a run. In

9 At the time of the 2007 crisis, Rule 2a-7 under the Investment
Company Act limited the portfolio share that registered money market
mutual funds can invest in eligible securities not rated A-1/P-1 to 5% of
the fund portfolio (these securities are typically rated at least A-2/P-2).

10 Similar models to ours that incorporate an endogenous default
policy in the spirit of Leland (1998) are Hugonnier, Malamud, and
Morellec (2012), Décamps and Villeneuve (2007), and He and Milbradt
(2012). These models, however, do not include the possibility of a binding
credit supply constraint, e.g., a credit ratings requirement.

11 A related issue is present in Hege and Mella-Barral (2005), in
which creditors dilute each other repeatedly after being offered an
alternating sequence of debt renegotiation options. The number of
options is finite, so that the last debt renegotiation option is well defined
(and given) and the problem can be solved by backward induction.

12 The ABX index of mortgage securities is an average across tranches
(from BBB- to AAA) of the ABX.HE indexes for mortgage-backed securities
(MBS) originated in the first half of 2006.

13 Making credit-line debt junior to ABCP or giving it a longer
maturity than ABCP would make the credit-line debt behave somewhat
like an equity stake in the conduit. Incorporating these features into the
model would introduce an extra state variable to separately track the
amount of ABCP and credit-line debt. Holding constant r , extending the
maturity of credit-line debt makes total debt increase more slowly during
a run, which increases the probability that a conduit recovers from runs,
hence reducing investors' willingness to run. That said, sponsors could
require a higher r if their maturity is longer, which could counteract the
previous effect. Making credit-line debt junior to ABCP increases ABCP
investors' recovery rate in default, which would likely reduce their
willingness to run. The reverse likely obtains if credit-line debt is senior
to ABCP.
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Section 4.1 we explain how our empirical definition of runs
distinguishes lack of rollover for a conduit from a creditor's
idiosyncratic withdrawal. Moreover, the data support our
assumption that runs on ABCP in 2007 did not result from
systemic liquidity shocks to creditors: runs on ABCP preceded
runs on money market funds, ABCP conduits' main investors.

Finally, we assume a conduit never liquidates just a part of
its asset to pay running creditors. It is doubtful that conduits
would use partial liquidations. The Internet Appendix shows
that partial asset sales, far from improving a conduit's health,
actually guarantee that the run will continue.14 The reason is
that a partial asset sale automatically increases the conduit's
leverage. Also, since ABCP assets like trade receivables are very
illiquid, it seems plausible that conduits would wait as long as
possible before liquidating them.

2.4. Model solution and examples

Appendices A and B contain details on the model's
solution, including a full description of the value function,
state variable dynamics, and numerical methods. This
subsection describes in nontechnical terms the key fea-
tures of the solution.

An infinitesimally small lender knows she will face one
of three outcomes, depending on which of the following

events occurs first. The first possible outcome is that the
asset matures first, delivering a total payout of minðDt ; ytÞ
to lenders as a group. In the second, the loan matures first,
allowing the lender to choose between rolling over and
running. The third, least desirable outcome is that other
lenders run on the conduit, the guarantee fails, and the
conduit defaults before the loan matures, which delivers
minðDt ; αFðytÞÞ to the lenders as a group. Therefore, when
choosing whether to roll over, each lender must rationally
anticipate other lenders' rollover choices.

As in He and Xiong (2012a), we solve for the monotone
equilibrium in which lenders roll over their debt as long as
the state variable does not drop below a threshold. We
show that our model's only state variable is inverse
leverage (xt), which equals the ratio of the asset's funda-
mental value (yt) to the conduit's total debt (Dt). Applying
Ito's Lemma and Eq. (3), it is straightforward to show that
inverse leverage follows:

dxt
xt

¼ μ dtþs dZtþδ dt&δRt dt: ð5Þ

In other words, the fraction change in inverse leverage equals
the fraction change in the asset's value (μ dtþs dZt) plus the
fraction of debt maturing (δ dt) minus the fractional amount
of new debt issued (δRt dt). In equilibrium, each maturing
creditor compares the conduit's current inverse leverage xt to
an endogenous, constant threshold, xn, and the creditor runs
as soon as xtoxn.
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Fig. 1. This figure shows the weekly series of prices for several asset categories in the portfolio of ABCP conduits in 2007 (dashed and solid lines), as well as
the proportion of ABCP programs experiencing runs in a given week (dashed-dot line). We normalize prices to $1 on January 1, 2007. The ABX index of
mortgage securities is an average across tranches (from BBB- to AAA) of the ABX.HE indexes for MBS originated in the first half of 2006. Data for the
remaining asset categories are from Barclays indexes. ‘US Securitized’ is an aggregate of U.S. asset-backed securities, commercial mortgage-backed
securities, and other mortgage-backed securities; this index proxies for the ambiguous ‘Securities’ category, which makes up 11% of conduit assets in 2007.
Portfolio weights in the legend are from ‘The ABC's of ABCP,’ an unpublished document from Societe Generale. Data for the proportion of runs are from the
DTCC database on all issues by ABCP programs, where a run is defined as in Covitz, Liang, and Suarez (2013): an ABCP program experiences a run in a given
week if either (1) more than 10% of the program's outstanding paper is scheduled to mature, yet the program does not issue new paper; or (2) the program
was in a run the previous week and it does not issue new paper in the current week.

14 The Internet Appendix is available on the authors' Web sites.
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One important implication is that rollover yields depend
on leverage ðDt=ytÞ but not on yt or Dt individually, which is
intuitive. More importantly, in equilibrium, creditors will
stop rolling over exactly when yield spreads reach the cap, r ,
since they cannot be compensated for additional default risk.
As a consequence, the run threshold xn will be the assets-to-
debt ratio where yields first hit their cap. Since sponsors
extend the credit line at a below-market spread r during a
run, the sponsors take a loss while supporting the conduit.
Like He and Xiong (2012a), we find that creditors start
running before a conduit becomes insolvent. The reason is
that each creditor's rollover decision imposes an externality
on the other creditors.

Fig. 2 illustrates how leverage and yields adjust over time.
The top panel plots the time series of inverse leverage (xt) for
two simulated conduits with the same initial fundamentals
but different outcomes. The flat dotted line represents xn, the
predicted run threshold. The dashed line depicts a conduit
whose asset's value remains high enough so that the conduit
never experiences a run, and all lenders are paid in full. The
solid line represents a conduit that experiences two runs
when its inverse leverage falls below xn. During the first run,
the guarantee survives long enough for the conduit to repay
all running lenders and begin issuing paper again. The
guarantee fails in the second run, causing the conduit to
default and liquidate assets, imposing losses on some lenders.

The bottom panel of Fig. 2 shows the corresponding
rollover yields for those same simulated conduits. Since
the conduit represented by the dashed line remains
healthy, its yield remains at or near the risk-free rate,
ρ¼ 5%. The yields of the conduit represented by the solid
line spike up and become more volatile as a run becomes

imminent, eventually reaching their cap when the run
begins. As soon as this conduit recovers from its first run,
yields drop below the cap.

3. Flexible pricing, dilution risk, and the likelihood
of runs

Allowing yields to adjust over time significantly changes
the likelihood of runs, relative to the He and Xiong (2012a)
model with constant yields. We compare simulated run
probabilities in our model to those in He and Xiong (2012a,
henceforth HX). To make the models comparable, we use the
same parameter values where possible, we make the asset's
initial market value the same in both models,15 and we
assume conduits in both models initially borrow $1. HX's
lenders receive a face value of $1 with a fixed, exogenous
yield, so in return for their initial $1 investment, lenders
receive debt worth more than $1. Yields in our model are set
so that lenders exactly break even, so in return for their
initial $1 investment, lenders receive debt worth $1.
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Fig. 2. This figure shows the simulated paths of two conduits with the same initial leverage and parameter values. The top panel shows simulated values of
xt, inverse leverage. The dotted line denotes the run threshold. The bottom panel shows simulated paths of annual yields at rollover for the same two
conduits. The risk-free rate is 5% and the cap on the rollover yield is 20%.

15 The asset pays interim cash flows at rate r in He and Xiong (2012a),
but our model has no interim cash flows. Setting the asset's value equal in
the two models requires choosing initial fundamental y0 by solving

FHX yHXo
! "

¼ F y0
! "

)
r

ρþϕ
þyHX0

ϕ
ρþϕ&μ

¼ y0
ϕ

ρþϕ&μ
;

where y0 (y0
HX
) is the asset's initial fundamental value in our (HX's)

model. In the first analysis we set yHX0 ¼ 2:1. In the second analysis we set
yHX0 ¼ 0:82.
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We compare the two models in Table 1. We show results
using HX's calibrated parameter values (left-hand columns)
and our estimated parameter values (right-hand columns).
We repeat the analysis using several values of r (our model's
cap on yield spreads) and HX's exogenous yield.16

Panel A shows that runs are 1.31–51 times more likely
in our model than in HX's when we use HX's calibrated
parameter values. Runs are especially more likely in our
model if HX's exogenous yield is higher, because HX's
investors are less willing to run on debt that offers a higher
interest rate. Runs are not always more likely in our model,
however. With estimated parameter values, we see that
when HX's fixed yield is sufficiently low, our model
produces 35% fewer runs than HX's model.

Intuitively, flexible yields influence runs through three
channels. The first two channels make runs less likely in our
model compared to HX. First, conduits in our model can
initially borrow at low interest rates, allowing them to start
with lower leverage (Panel C in Table 1). Second, being able to
raise yields in bad times helps convince lenders to roll over.

This relative advantage is especially large when HX's fixed
yield is very low, which explains why our model produces
fewer runs than HX only when HX's fixed yield is very low
(e.g., ten basis points (b.p.) above the risk-free rate in Table 1).

The third channel makes runs more likely in our model
and typically outweighs the previous two channels. Flexible
yields introduce a new risk, which we call ‘dilution risk,’ on
top of rollover risk and insolvency risk. If conditions deterio-
rate for a conduit, it will have to offer higher yields to induce
rollover. These higher yields increase the conduit's debt by
more, which dilutes earlier lenders' stakes. This effect depends
strongly on the assumption that bankruptcy proceeds are
distributed pro rata, consistent with ABCP industry practice.
A lender deciding whether to roll over in our model antici-
pates the possibility of being diluted in the future if conditions
worsen. The lender therefore preemptively demands a higher
yield to compensate her for dilution risk. Since dilution risk
increases yields for any given level of leverage, yields hit their
cap at lower leverage, implying a higher run threshold for
inverse leverage, xn. Panel B in Table 1 shows that the run
threshold is indeed higher in our model compared to HX,
which tends to make runs more likely.

4. Estimation

This section describes the data, SMM estimator, and
intuition behind the estimation method.

Table 1
The effect of flexible yields on runs.

This table compares the predictions from our model to the predictions of He and Xiong (2012a), denoted HX. Yields change over time in our model,
whereas yields are constant in HX. The columns on the left use HX's calibrated values: ρ¼ 1:5%, ϕ¼0.077, α¼ 55%, s¼ 20%, μ¼ 1:5%, y0¼1.4, δ¼ 10, and
θ¼ 5. The columns on the right use estimated parameter values for the weak-guarantee subsample in Table 4. Panel A shows the fraction of simulated
conduits that experience a run in our model within one year, divided by the corresponding fraction from HX. Panel B shows the run threshold in our model
(xn) divided by the run threshold in HX. Panel C shows the conduit's initial inverse leverage in our model (x0) divided by the conduit's initial inverse
leverage in HX; these results are identical out to two digits for the three values of r . The parameter r is our model's cap on yield spreads, and ρ is the risk-
free rate, so rþρ is the capped rollover yield.

Panel A: Ratio of the one-year run probability in our model to that in HX

Using HX parameters Using estimated parameters

HX's fixed yield: 5% 7% 9% ρþ0:1% ρþ0:3% ρþ0:5%

rþρ¼ 15% 1.31 3.73 50.64 0.65 1.48 3.61
rþρ¼ 20% 1.29 3.64 49.08
rþρ¼ 25% 1.28 3.56 47.65

Panel B: Ratio of the run threshold in our model to that in HX

Using HX parameters Using estimated parameters

HX's fixed yield: 5% 7% 9% ρþ0:1% ρþ0:3% ρþ0:5%

rþρ¼ 15% 1.43 1.77 2.29 1.22 1.24 1.26
rþρ¼ 20% 1.42 1.75 2.28
rþρ¼ 25% 1.41 1.74 2.26

Panel C: Ratio of initial inverse leverage in our model to that in HX

Using HX parameters Using estimated parameters

HX's fixed yield: 5% 7% 9% ρþ0:1% ρþ0:3% ρþ0:5%

1.38 1.54 1.70 1.25 1.26 1.27

16 In the first analysis, HX's fixed yield is centered at its calibrated
value, 7%. We choose values of r much higher than HX's fixed yield,
because higher values of r make runs less likely in our model, all else
equal. We find that despite these high r values, runs are still more likely
in our model than in HX. In the right-hand columns, r is at its estimated
value, and we choose values of HX's fixed yield that are within the range
of observed yields.
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4.1. Data

The dataset used in this paper includes all issuance
transactions in the U.S. ABCP market from the Depository
Trust and Clearing Corporation (DTCC). The data contain
the outstanding amount of paper for a conduit each week
and the distribution of maturities and yields each day a
conduit issues ABCP.

We obtain data on each conduit's guarantee type from
Moody's Investors Service. ABCP conduits are structured
with one of four possible types of guarantees (Acharya,
Schnabl, and Suarez, 2013). In conduits structured with a
full credit guarantee, the sponsor provides a line that can
be drawn regardless of asset defaults. In conduits with a
full liquidity guarantee, the sponsor provides a line that
can be drawn as long as the assets are not in default. In SIV
guarantees, only a portion of conduit liabilities are covered
by the line. In conduits created to issue extendible notes,
issuers have the option of extending the maturity of the
paper at a prespecified penalty rate, exposing investors to
asset defaults during the extension period. From the point
of view of investors, full credit and full liquidity guarantees
offer relatively stronger protection.

Covitz, Liang, and Suarez (2013) show that conduits with
stronger guarantees experienced significantly fewer runs in
2007. For this reason, we estimate the model in two sub-
samples based on guarantee strength.17 The ‘strong-guarantee’
subsample contains the 191 conduits with either a full credit
or full liquidity guarantee; 45% of these conduits experienced
a run in 2007. The ‘weak-guarantee’ subsample contains the
90 conduits with either an SIV guarantee or extendible paper;
83% of these conduits experienced a run in 2007. As in many
structural estimation papers (e.g., Hennessy and Whited,
2007; Strebulaev and Whited, 2012), we assume parameter
values are constant within each subsample. Our parameter
estimates therefore characterize an average conduit within
each subsample.

We use the method of Covitz, Liang, and Suarez (2013)
to identify runs in the data. More specifically, we say that
conduit i is in a run in week t if either (1) more than 10% of
the conduit's outstanding paper is scheduled to mature,
yet the conduit does not issue new paper; or (2) the
conduit was in a run in week t&1 and the conduit does not
issue new paper in week t. We say that a conduit recovers
from a run in week t if it issues paper that week but was in
a run the previous week. By using the total amount a
conduit rolls over, this definition avoids misclassifying as
runs situations in which one creditor replaces another due
to the first creditor's idiosyncratic liquidity needs.

We measure each conduit's rollover spread as the
dollar-weighted average annualized yield for paper issued
on Thursday of week t, minus the prevailing federal funds
rate.18 If the conduit did not issue paper on Thursday, we
move one day ahead until finding an issuance transaction
in week t.

The total amount of ABCP outstanding peaked at $1.2
trillion in late July 2007. At that time, 339 ABCP conduits
operated. Yield spreads averaged five b.p. in the first half of
the year. In August 2007, the amount of debt outstanding
plunged by $190 billion and average spreads increased to
74 b.p.19 Roughly 25% of ABCP conduits experienced a run
in August, according to our measure. Rollover yields
remained high and volatile in the second half of 2007.
By the end of the year, the total amount of ABCP out-
standing was 30% below its peak.

Our analysis uses all transactions from 2007. We face
the trade-off that a larger sample would provide more
precise estimates, but it would be harder to argue that
model parameters are constant over a longer period. Year
2007 is an ideal sample because it contains many runs and
also several months of pre-run data. Adding observations
from 2006 would not improve precision, because yield
spreads were near zero and there were no runs. Adding
observations from 2008 would potentially contaminate
results with effects from the Lehman Brothers failure and
subsequent government interventions.

4.2. Estimator

First we explain how we measure parameters ρ, δ, ϕ,
and μ directly from the data. Next we describe the SMM
estimation of the four remaining parameters.

Investors' discount rate ρ is also the risk-free interest
rate. We set ρ to 4.9%, the annualized yield of one-month
T-bills at the beginning of 2007.

The average debt maturity in our model is 1/δ. We set
1/δ to 0.101 years (37 days), the average maturity of ABCP
as of March 2007. We use the same value of 1/δ in both
subsamples because there is no significant difference in
maturities between them in early 2007, and, as we show
later, such small differences in maturity have a very small
effect on run probabilities. The assumption that δ is
constant over time could be somewhat problematic given
that most conduits experienced a rat-race whereby they
offered shorter maturities to prevent creditors from run-
ning (Brunnermeier and Oehmke, 2013). While average
rollover maturities do decrease in the six months preced-
ing runs in our data, we find that they only drop from 38
days to 27 days. By contrast, changes in ABCP rollover
yields were more dramatic, which is why we focus on
time-varying yields in this paper. Extending the model to
include endogenous maturity is an interesting avenue for
future work.

The expected conduit life span, which corresponds to
the asset's duration, is 1=ϕ. Adding the assumption that
new ABCP conduits are created at a constant rate, the
model predicts that the average age of conduits alive at
any snapshot in time equals 1=ϕ. The average age of ABCP

17 Ideally, we would estimate the model in even finer-grained
subsamples, but the small number of conduits prevents us from doing so.

18 We choose Thursday because amounts outstanding are measured
at the end of Wednesday each week.

19 Important events in early August 2007 include American Home
Mortgage's declaration of bankruptcy (August 6), the halting of redemp-
tions at three investment funds affiliated to BNP Paribas (August 9),
emergency liquidity provision by the European Central Bank (ECB)
(August 9) and the Federal Reserve (August 10), and the downgrade of
Countrywide Financial and its drawing on bank credit lines (August 16).
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conduits operating in July 2007 is 5.8 years, so we set ϕ
to 1/5.8.

The parameter μ, which represents the asset's growth
rate, is not identified from our data. The parameter μ is not
the asset's expected return, which equals ρ (investors'
discount rate). Therefore, μwould not be identified directly
from average returns on ABCP assets, even if we had those
data. The asset's return at τϕ, the instant it matures, is
positive (negative) if μ is less than (greater than) ρ.20 These
event returns could help us identify μ, but unfortunately,
those data are not available either. For our main results we
set μ¼ ρ, which assumes it is neither good nor bad news
for investors when the asset matures. For robustness, in
the Internet Appendix we show that parameter estimates
do not change significantly if we set μ to ρþ1% per year.

We do not estimate conduits' initial leverage, 1=x0.
Leverage at the beginning of our sample is not well
identified, since yield spreads in the first half of 2007
were near zero. When yield spreads are near zero, the
model's mapping from conduit leverage to yields is almost
flat. Intuitively, since spreads were near zero at the
beginning of 2007, we know leverage was low at that
time, but we do not know how low.

Fortunately, we do not need to know 1=x0 to estimate
the model, because the moments we use in SMM estima-
tion are independent of its value. Some of our moments
are conditional on a run starting, at which point xt has
reached xn. Since the predicted xn does not depend on x0,
then neither do these moments. The remaining moments
(both simulated and actual) are forward-looking and only
use conduit/week observations where yield spreads are at
least ten b.p. per year. At spreads of ten b.p. and above, the
mapping between leverage and spreads is no longer flat.
Therefore, the ten b.p. threshold forces us to only use
observations that exceed a certain leverage threshold.
Once we condition on leverage being above this threshold,
the forward-looking moments no longer depend on initial
leverage, 1=x0, because leverage is the model's only state
variable. Our simulated conduits start with 1=x0 low
enough that their initial spreads are well below ten b.p.,
as they were in early 2007. We simulate a large enough
sample so that we have many observations with spreads
above ten b.p., which allows us to measure our simulated
moments precisely.

The remaining parameters to estimate are s (asset
volatility), θ (the weakness of guarantees), α (asset liquid-
ity), and r (the cap on yield spreads). We estimate s as a
structural parameter instead of using price data on ABCP
assets, because those data are not available. Data on
conduit-level asset holdings are not publicly available.
Even constructing an industry-wide price index is impos-
sible, because we lack price data for illiquid assets like
trade receivables, the largest ABCP asset class.

We estimate the four remaining parameters using the
simulatedmethod of moments (SMM). This estimator chooses
parameter values that minimize the distance between
moments generated by the model and their sample analogs.

The following subsection defines our 13 moments and
explains how they identify our parameters. Additional details
are in Appendix C.

4.3. Identification and choice of moments

Since we conduct a structural estimation, identification
requires choosing moments whose predicted values move
in different ways with the model's parameters, and choos-
ing enough moments so there is a unique parameter vector
that makes the model fit the data as closely as possible.
This subsection explains how our 13 moments vary with
the four parameters. Each moment depends on all model
parameters, often through the parameters' effect on lever-
age dynamics or the run threshold. Below, we emphasize
which parameters matter most for each moment, which
explains which features of the data are most important for
each parameter. To illustrate, Table 2 presents the Jacobian
matrix containing the derivatives of our 13 moments with
respect to our four parameters.21 For both subsamples, the
Jacobians have full rank and a low condition number,22

which confirms local identification.

4.3.1. Recoveries from runs
The first moment is the fraction of runs that are

followed by a recovery, meaning that the conduit issues
paper again, at least once within eight weeks of the run's
start.23 In our model, once a run starts, the probability
of a recovery decreases in θ, the guarantee's weakness.
Intuitively, a strong guarantee buys time for asset values to
improve so the conduit can exit the run. The Jacobian in
Table 2 confirms that this first moment is most sensitive to
θ and fairly insensitive to other parameters.

The second moment is the average number of days until
recovery for those runs that experience a recovery within
eight weeks of the run's start. Conditional on a recovery
within a given period, the expected time to recover is shorter
for higher asset volatility s, because higher volatility makes
the conduit re-cross the run threshold sooner. Table 2 shows
that this moment is indeed most sensitive to s.

The remaining parameters have an indirect effect on
our first two moments through the run threshold, xn.
In this case, however, these effects are relatively small,
confirming that the recovery probability and the expected
recovery time essentially identify s and θ only.

4.3.2. Yield volatility
The moments we use to summarize yield spread

volatility are the coefficients β0 and β1 from the following

20 The asset's value immediately prior to τϕ is Fðyτϕ Þ. The asset's value
immediately after is yτϕ .

21 We present the Jacobian evaluated at estimated parameter values
for the weak-guarantee subsample. The properties of the Jacobian for the
strong-guarantee subsample are very similar. In the interest of space, we
report the Jacobian for the strong-guarantee subsample only in the
Internet Appendix. To make the sensitivities comparable across
moments, we express them as elasticities, e.g., ð∂mi=∂αÞ ) ðα=miÞ is the
elasticity of the i-th moment to α.

22 The condition number of a matrix is the ratio of its largest to
smallest singular value. Large condition numbers indicate a nearly
singular matrix.

23 We find empirically that if a run is not followed by a recovery
within eight weeks, then it is unlikely that the conduit will ever recover.
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panel regression of absolute changes in yield spreads on
the lagged yield spread24:

jrit&rit&1j¼ β0þβ1rit&1þɛit : ð6Þ

The predicted yield spread volatility is given by

vart drtð Þ ¼ xt
∂r
∂x

xt ; xn
! "% &2

s2 dt: ð7Þ

The first term in (7) increases in the yield spread, so the
model predicts that yield volatility is high when yield
spreads are high. In other words, we should find β140 in
(6). The model therefore produces time-varying volatility
in debt yields, even though asset volatility, s, is constant.
The term ∂r=∂x in (7) goes to zero as yield spreads
approach zero. Intuitively, if a conduit's leverage is extre-
mely low, yield spreads are near zero, and small changes in
leverage still keep spreads near zero. Therefore, the model
imposes β0 * 0 as an overidentifying moment condition,
regardless of parameter values. As a result, yield volatility

is informative about asset volatility only when spreads are
high.

Asset volatility has a direct, positive effect on yield
volatility through the s term in (7), and also a negative
effect via the first term: a higher s decreases the absolute
slope j∂r=∂xj for given r, provided r is high enough. For our
parameter estimates, and given that we measure our
moments conditional on spreads exceeding ten b.p., the
second effect dominates: we find that the sensitivity of
yield volatility to yield levels decreases with asset volati-
lity, so s is partially identified off its negative effect on β1.
Indeed, Table 2 confirms that β1 depends negatively on s.

Note too that α has a strong positive effect on β1. The
reason is that an increase in asset liquidity decreases the
run threshold, xn, which in turn implies a higher absolute
slope j∂r=∂xj for any given r. Intuitively, if two conduits
with assets of different liquidity have reached the same
yield spreads, it must be that yields are increasing faster
for the one with higher liquidity.

4.3.3. Yield spreads preceding runs
Our next three moments measure average yield spreads

in event time before runs. We define τit as the number of
weeks relative to the run's start, and we use the subset of
data from the 12 weeks preceding each run to estimate the

Table 2
Estimated Jacobian matrix.

This table presents the estimates of the Jacobian matrix for the 13 moment conditions in our SMM estimation procedure, for the subsample of 90 ABCP
conduits in 2007 with SIV or extendible credit guarantees. Moment 1 is the probability that a conduit experiences a recovery within eight weeks of a run's
start. Moment 2 is the average number of days between the run's start and recovery, conditional on a recovery occurring within eight weeks of the run's
start. Moments 3 and 4 are the intercept and slope from a regression of absolute changes in yield spreads on the lagged yield spread. Moments 5–7 are the
intercept and slopes from a regression of yield spreads on the number of weeks relative to a run and the exponent of that same number. Moments 8–13
come from three regressions, each of the indicator 1frun within τ weeksg on the current yield spread. The three regressions use τ¼2, 4, and 8 weeks. Each row of
each matrix contains the estimated elasticities of the given moment with respect to the parameters across its columns. Parameters are estimated by SMM,
which chooses values that minimize the distance between actual and simulated moments. Section 2 describes the model used to simulate moments. The
number highlighted in each row in bold type face corresponds to the moment's highest elasticity in absolute value.

Elasticity of moments with respect to

θ s r α

Moments on time between run and recovery (τ):
1. Pr½τo8 weeks( &0.209 &0.106 &0.036 0.075
2. E½τjτr8 weeks( (in days) &0.104 &0.295 &0.011 0.106

Moments from regression of jritþ1&rit j on rit:
3. Intercept 0.112 0.106 0.724 &0.758
4. Slope 0.002 &0.307 0.133 0.472

Moments describing yield spreads leading up to runs:
Regression of rit on τ½ % weeks relative to run( and expðτÞ

5. Intercept 0.102 &0.186 0.990 &0.311
6. Slope on τ 0.133 &0.149 0.977 &0.870
7. Slope on expðτÞ 0.235 &0.548 1.093 &0.118

Regressions of 1frun within τ weeksg on yield spread:
8. Intercept (τ¼ 2) 0.023 &0.424 0.243 &0.446
9. Slope (τ¼ 2) &0.030 0.177 &0.055 &0.296
10. Intercept (τ¼ 4) &0.414 0.694 &0.498 &2.562
11. Slope (τ¼ 4) 0.028 &0.023 0.057 &0.444
12. Intercept (τ¼ 8) &0.158 0.283 &0.571 &0.344
13. Slope (τ¼ 8) 0.066 &0.067 0.180 &0.097

24 Fig. 3 plots the nonparametric relation in the data and shows that
the linear, parametric specification in Eq. (6) fits the data quite well. We
discard observations with ritr10 basis points per year so that this
moment does not depend on x0, which we do not estimate.
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regression

rit ¼ γ0þγ1τitþγ2 expðτitÞþɛit : ð8Þ

Fig. 4 shows that this specification fits the path of average
yield spreads leading up to runs fairly well. Our next three
moments are the coefficients γ0, γ1, and γ2, which summar-
ize event-time spreads.

As discussed in Section 2.4, the model predicts that a run
begins the instant yield spreads hit r . Since we only have
weekly data, we cannot directly observe yields spreads the
instant a run begins. However, yield spreads in the weeks
leading up to runs are informative about the yield spread the
instant a run begins. Specifically, the level (γ0), slope (γ1), and
curvature (γ2) of the event-time plot of average spreads before
runs all increase in r . The moments γ0, γ1, and γ2 therefore
help identify r . Consistent with this reasoning, the estimated
Jacobian shows that these three moments are by far most
sensitive to r and therefore effectively identify this parameter.

4.3.4. Run probabilities
Our next moments are from three regressions that fore-

cast future runs using current yield spreads. The regressions

have the form25

1frun within τ weeks of ritg ¼ λ0τþλ1τ
rit

maxri
þɛit ; ð9Þ

where maxri proxies for conduit i's maximum yield
spread, r . Since runs in the model begin as soon as rit
hits r , the higher the fraction rit=r , the closer the conduit is
to a run.26 For a conduit that experiences a run, the most
natural proxy for r is the conduit's maximum observed
yield spread. For conduits that never experience a run or
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Fig. 3. This figure shows the relation between yield spread volatility and the yield spread level, both measured in basis points per year (bp/year). The
vertical axis is the absolute value of one-week changes in yield spread. The horizontal axis is the lagged yield spread. The left-hand (right-hand) panels
show results in actual (simulated) data. The top panels show results for the weak-guarantee subsample, which contains the 90 ABCP conduits in 2007 with
extendible or SIV guarantees. The bottom panels show results for the strong-guarantee subsample, which contains the 191 ABCP conduits in 2007 with full
credit or full liquidity credit guarantees. The points show local averages, and the solid line shows predicted values from a regression of absolute changes in
yield spreads on the lagged yield spread. The intercept and slope from this regression provide two of the 13 moments used in the SMM estimation. The
reason there are fewer points in the bottom-right panel compared to the bottom-left panel is that the estimated cap on yield spread is 36 basis points in the
strong-guarantee subsample; all simulated spreads are therefore r36 basis points, whereas there are a few spreads 436 basis points in the actual data.

25 Following Angrist and Pischke (2009), we use ordinary least
squares (OLS) rather than a probit/logit model, because OLS slopes are
easier to interpret, and OLS provides the closest linear approximation of
the conditional expectation function. Figs. 5 and 6 show that the linear
specification in (9) fits the raw data quite well. As in regression (6), we
exclude observations with rito10 basis points per year; run probabilities
for these observations are sensitive to the choice of initial condition x0 in
our simulations, and we want moments that do not depend on x0.

26 Empirically, we find some heterogeneity in maxri. Since the
estimation procedure assumes r is constant across conduits, our esti-
mated r reflects the yield-spread cap for the average conduit. We
estimate in subsamples to the extent possible to accommodate parameter
heterogeneity.
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high yield spreads, we use information from those that do
experience runs: we set maxri to the larger of the conduit's
maximum observed yield spread (since the conduit's r is at
least this large) and the average maxr across conduits that
did experience runs (a proxy for the average r in the
sample). We estimate regression (9) for forecasting hor-
izons of τ¼ 2;4, and 8 weeks. Our last six moments are the
coefficients λ0τ and λ1τ from those three regressions.

The moment λ0τ summarizes the run probability when
spreads are near zero. Therefore, this moment depends
negatively on the distance between x0 and the run thresh-
old, xn, which is itself decreasing in α. Table 2 shows that
λ0τ is strongly decreasing in α, so these moments effec-
tively identify α through α's effect on the run threshold.
Note that a higher r also implies a lower run probability
when yield spreads are near zero. However, since α has a
strong effect on yield levels, which impact the drift of
leverage, a lower α not only implies a lower distance to the
run threshold, but also a quicker transition to it. As a
consequence, the difference between a conduit that never
experiences a run as opposed to a conduit that experiences
a run quickly is more likely to be due to a difference in α
rather than r . Consistent with the above intuition, the

estimated Jacobian shows that λ0τ is more sensitive to α,
than r for the two- and four-week run probabilities, but
not for the eight-week probabilities.

5. Estimation results

We start by assessing how well our model lines up with
data from the 2007 ABCP crisis. We then present and
interpret the structural parameter estimates.

5.1. Model fit

5.1.1. Moments used in SMM estimation
Table 3 compares actual and simulated values of our 13

moments. The left (right) half of the table shows moments
in the weak- (strong-) guarantee subsample.

Moments 1 and 2 focus on recoveries from runs.
Comparing moment one across subsamples, we see that
the probability of a recovery is significantly higher (t¼2.0)
in the strong-guarantee subsample, consistent with the
model's prediction. When recoveries do occur, they arrive
17 days after the run's start, on average (moment 2).
Comparing simulated and actual moments, the model
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Fig. 4. This figure plots average yield spreads (basis points per year, bp/year) in event time leading up to runs in event week zero. The left-hand (right-
hand) panels show results in actual (simulated) data. The top panels show results for the weak-guarantee subsample, which contains the 90 ABCP
conduits in 2007 with extendible or SIV guarantees. The bottom panels show results for the strong-guarantee subsample, which contains the 191 ABCP
conduits in 2007 with full credit or full liquidity credit guarantees. The points show the average yield spread in each week. The solid line shows the
predicted values from the regression of yield spreads on the number of weeks relative to the run and the exponent of that same number. The intercept and
two slopes from this regression provide three of the 13 moments used in SMM estimation. The solid line starts at week &12 because the regression only
uses data from weeks &12 to &1.
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closely matches both the observed probability of a recov-
ery and the average time until recovery.

Moments 3 and 4 measure the overall level of yield
spread volatility and its sensitivity to yield spread levels.
The standard errors of the actual moments indicate that
moments 3 and 4 are measured fairly imprecisely, in large
part because of comovement in yields across conduits. The
sensitivity of yield volatility to the yield level is positive in
both subsamples, consistent with the model's prediction,
but the slope is statistically significant only in the strong-
guarantee subsample (t¼2.13). Although the simulated
and actual moments differ in some cases by more than a
factor of two, the t-statistics in Table 3 indicate that the
differences are not statistically significant. Fig. 3 shows the
nonparametric relation between yield volatility against the
yield level, and it also shows the best-fit relation summar-
ized by moments 3 and 4. We see that the model produces
slightly lower yield spread volatility than we see in the
data. Some of this ‘extra’ yield volatility in the data is likely
due to measurement error.

Moments 5–7 measure yield spreads leading up to a run.
The t-statistics show that, in each subsample, the actual and
simulated moments are not significantly different from each
other. The high standard errors, though, indicate that the
actual moments are measured with considerable error. This

error results from the limited number of runs in our sample,
and also from comovement in yields. Fig. 4 plots yield spreads
in event time leading up to runs, comparing actual and
simulated data, and also comparing the nonparametric pat-
tern in the data to the moments' parametric relation. In both
actual and simulated data, we see that yield spreads start
below ten b.p. per year 26 weeks before runs start, then
spreads increase exponentially leading up to runs. Spreads
reach a higher level in actual data than in simulated data.
By choosing a higher estimate of the yield cap, r , we could
match the actual pattern more closely, albeit at the expense
of other moments. The SMM weighting matrix makes
the estimator match these moments less closely since we
measure them fairly imprecisely.

Examining moments 8–13, we see that yield spreads
forecast runs in the actual data: the slope on yield spreads
is significantly positive (t-statistics between 2.2 and 8.2) in
both subsamples and at forecasting horizons of two, four, and
eight weeks. The simulated slopes are also positive, so high
yields also forecast runs in the model. While the model is able
to fit the directional pattern in the data, the model is not able
to match magnitudes exactly: the simulated and actual slopes
are significantly different, and so are the intercepts. To allow
for an easier comparison, Figs. 5 and 6 plot the relation
between yields and run probabilities. Despite the difference in
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Fig. 5. This figure shows the forecasting relation between yield spreads and runs in the weak-guarantee subsample, which contains 90 ABCP conduits in
2007 with extendible or SIV credit guarantees. The top panels show the relationship using actual data, and the bottom panels show the relationship using
data simulated from the model with the parameter estimates in Table 4. The vertical axis is the probability of a run within τ weeks of the current conduit/
week observation. The horizontal axis is the normalized yield, defined as the current yield spread divided by maxr, a proxy for the conduit's cap on yield
spreads. The left-hand panels show local averages of run probabilities. The right-hand panels show the predicted values from a regression of
1frun within τ weeksg on the normalized yield spread. We estimate this regression for forecasting horizons of τ¼2, 4, and 8 weeks. The intercepts and slopes
from these regressions provide six of the 13 moments used in SMM estimation.
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moments, the forecasting relation looks quite similar in actual
and simulated data for the weak-guarantee subsample
(Fig. 5).27 The similarity is apparent both in the nonparametric
plots (left panels) and parametric plots based on moments
8–13 (right panels).

These forecasting results contribute to the debate over
what causes runs. The literature has been divided in two
groups (see Goldstein, 2014 for a survey). The first group
proposes that a run's causes are unobservable, so it is
impossible to forecast or assign probabilities to runs.28 The
second group, motivated by Gorton (1988), proposes that runs
are caused by deteriorating, observable fundamentals, hence
we can forecast and assign probabilities to runs. Our model,
along with several others, belongs to this second group.29 We
show that yields do forecast runs in our data. Further, our
model of fundamental-driven runs comes close to fitting this
empirical pattern, at least in one subsample.

The fit is not as close in the strong-guarantee subsam-
ple (Fig. 6). Specifically, the model struggles to explain why

conduits with strong guarantees experienced few runs
even when their yield spreads reached high levels. One
potential explanation is that r differs considerably across
conduits in this subsample, contrary to our identifying
assumption that parameters are constant within each
subsample (Section 4.1). As we explain later, the prob-
ability of a run decreases in r . If there are large differences
in r across strong-guarantee conduits, then only those
conduits with sufficiently low r experience a run. Since the
moments that mainly identify r only use data from
conduits that actually experience a run (Fig. 4), then the
estimate of r in this subsample is representative only of
such conduits, and is likely to be lower than the true r for
conduits that did not experience runs. Likewise, maxr, our
proxy for r , could be too low for the high-r conduits,
which would also make their normalized yields too high.30

In other words, some high-r conduits in the strong-
guarantee subsample never actually experienced spreads
near their high-r values, meaning they never came close to
a run. This reasoning would explain why the model over-
predicts run probabilities when normalized spreads are
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Fig. 6. This figure shows the forecasting relation between yield spreads and runs in the strong-guarantee subsample, which contains the 191 ABCP
conduits in 2007 with full credit or full liquidity guarantees. Definitions are the same as in Fig. 5.

27 The reason the moments look different while the plots look similar
is that the model gets the intercept too low but the slope too high, and
these two differences offset each other in the figure.

28 This group follows Bryant (1980) and Diamond and Dybvig (1983).
The unobservable is sometimes labeled a sunspot.

29 Goldstein and Pauzner (2005), He and Xiong (2012a), and Morris
and Shin (1998) also belong to this group.

30 Recall that for conduits i that never experience runs, we set maxri
to the average of maxrj across conduits j that experience runs. With
heterogeneity of r within this subsample, this average would represent
the low-r conduits, so that the imputed value of maxr would be too low
for the rest of the conduits. Normalized yields are defined in (9).
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relatively high in Fig. 6. One potential solution to this
problem would be to partition this subsample further
using, say, proxies for conduits' r . However, doing so
would result in quite small subsamples.

We are not concerned about heterogeneity in the weak-
guarantee subsample, because the model fits well both the
yield spreads in event-time before runs (Fig. 4) and the run
probabilities conditional on spreads (Fig. 5). In other
words, that subsample's r estimate, which mainly relies
on data from conduits that have runs, is consistent with
the run probabilities for all conduits in the subsample.

Table 3 contains p-values for the SMM test of over-
identifying restrictions, which jointly tests whether the
model fits all moments. The low p-values indicate the
data strongly reject the model in both subsamples. We do
not interpret this result negatively, since rejection is
common when trying to match many moments with
few degrees of freedom. In this case, we attempt to match
13 moments with four free parameters, which is quite
demanding.

To summarize, the model fits the data reasonably well
in the weak-guarantee subsample. The model is able to
match not just directional patterns in the data, but also
magnitudes in most cases. Model fit is worse in the strong-
guarantee subsample, potentially because of parameter

heterogeneity. For this reason, we only use estimates from
the weak-guarantee subsample in our policy analysis.

5.1.2. Debt quantities
A key feature of the 2007 ABCP crisis is that the total

quantity of ABCP contracted sharply. Covitz, Liang, and Suarez
(2013) attribute 95% of the total contraction to declines
in conduits that experienced runs. Next, we check whether
our model can quantitatively match the contraction in
ABCP observed in 2007. Since we do not use data on ABCP
quantities to estimate the model, this exercise provides an
out-of-sample check on the estimated model.

Fig. 7 compares the actual and predicted total ABCP
outstanding during 2007. Let the dummy variable 1frunitg

denote whether conduit i is in a run in week t. We
denote conduit i's ABCP held by the market in week t as
Dit
M and the debt held by the sponsor as Dit

S . Total debt
D in our model is the sum of ABCP and sponsor debt:
D¼DMþDS. We predict changes in DM and DS by decom-
posing dDt from Eq. (3) into its two components, which
yields

dDM
it

dt
¼ &δDM

it þ 1&1frunit g
! "

δDitRit ; ð10Þ

Table 3
Moments from SMM estimation.

This table shows the 13 moments used in SMM estimation. The first (last) four columns show moments for the weak- (strong-) guarantee subsample,
which contains 90 ABCP conduits with extendible or SIV credit guarantees (191 conduits with full credit or full liquidity guarantees). Simulated moments
are computed using the parameter estimates in Table 4. Moment 1 is the probability that a conduit recovers within eight weeks of a run's start. Moment 2
is the average number of days until the recovery, provided it occurs within eight weeks of the run's start. Moments 3 and 4 are the intercept and slope from
a regression of absolute changes in yield spreads on the lagged yield spread. Moments 5–7 are the intercept and slopes from a regression of yield spreads
on the number of weeks relative to a run and its exponential. Moments 8–13 come from three regressions, each of the indicator 1frun within τ weeksg on the
current yield spread, where τ¼2, 4, and 8 weeks. The moment condition t-statistic tests whether the actual and simulated moments are equal. The J-test is
the χ2 test for the model's overidentifying restrictions.

Weak-guarantee subsample Strong-guarantee subsample

Simulated Moments Simulated Moments
Actual moments moments estimate condition t-stat. Actual moments moments estimate condition t-stat.

Estimate Std. Err. Estimate Std. err.

Moments on time between run and recovery (τ):
1. Pr½τo8 weeks( 0.451 0.054 0.513 &1.12 0.613 0.060 0.615 &0.04
2. E½τjτr8 weeks( (in days) 17.1 1.4 15.4 1.16 17.4 0.7 17.4 0.04

Moments from regression of jritþ1&rit j on rit:
3. Intercept 0.0011 0.0006 0.0004 1.21 0.0009 0.0004 0.0003 1.58
4. Slope 0.108 0.078 0.223 &1.48 0.128 0.060 0.205 &1.29

Moments describing yield spreads leading up to runs:
Regression of rit on τ½ %weeks relative to run( and expðτÞ

5. Intercept 0.00538 0.00190 0.00248 1.52 0.00347 0.00130 0.00157 1.47
6. Slope on τ 0.00033 0.00012 0.00012 1.80 0.00015 0.00010 0.00007 0.85
7. Slope on expðτÞ 0.00168 0.00268 0.00467 &1.12 0.00525 0.00178 0.00260 1.49

Moments from regressions of 1frun within τ weeksg on yield spreads
8. Intercept (τ¼ 2) &0.003 0.036 &0.146 3.94 &0.001 0.012 &0.158 9.64
9. Slope (τ¼ 2) 0.317 0.087 0.716 &4.54 0.104 0.040 0.755 &14.93
10. Intercept (τ¼ 4) 0.121 0.055 &0.044 2.97 0.016 0.013 0.000 0.93
11. Slope (τ¼ 4) 0.364 0.045 0.758 &8.46 0.155 0.041 0.711 &12.37
12. Intercept (τ¼ 8) 0.297 0.095 0.149 1.55 0.067 0.028 0.217 &4.89
13. Slope (τ¼ 8) 0.413 0.073 0.655 &3.24 0.165 0.034 0.561 &10.02

Test of over-identifying restrictions:
J-test 1,111 6,771
p-Value 0.000 0.000
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dDS
it

dt
¼ &δDS

itþ1frunit gδDitRi: ð11Þ

These equations indicate that a conduit pays off maturing debt
by issuing ABCP with face value Rit to outside investors when
not in a run, and by issuing debt with face value Ri to the
sponsor during a run. Starting on August 1, 2007 when the
ABCP crisis begins, we set DS

it ¼ 0, indicating that no backup
credit lines had been used yet. We then use the equations
above together with estimated parameters to forecast Dit

M and
Dit
S at the conduit level. Since we cannot observe conduit-level

leverage, we use data on conduits' actual rollover yield
spreads rit and run status 1frunit g throughout 2007 to predict
debt quantities. We aggregate across conduits to produce
Fig. 7.

In both the actual data (solid black line) and predicted
data (dashed red line), total ABCP declines sharply in
August 2007 and continues declining through the rest of
the year. The model can explain 73% of the observed
decline in ABCP from August 1 to December 26, 2007.
The fit is surprisingly good given that we do not use debt
quantities to estimate the model. Predicted total conduit
debt (dotted green line) increases steadily throughout
2007 as sponsors take increasing large stakes in their
conduits to pay off maturing ABCP during runs. The model
predicts that backup credit guarantees forced sponsors to
bring $279 billion of conduit debt onto their balance
sheets by the end of 2007. By straining the balance sheets
of sponsoring banks in 2007, the ABCP crisis likely

contributed to the severe disruptions in the banking sector
during the financial crisis.

5.2. Parameter estimates

Table 4 contains parameter estimates along with their
standard errors.31 We provide several consistency checks
below to ensure that parameter estimates are reasonable.

The estimates of θ imply that investors expected conduits
with strong (weak) guarantees to survive 262 (82) days in a
run before the guarantee failed.32 The estimate of θ is
significantly higher (t¼2.04) in the weak-guarantee subsam-
ple.33 This result provides a useful consistency check: our
parameter estimates imply weaker perceived guarantees in
the subsample with weaker explicit guarantees.

The asset's estimated volatility (s) is roughly 3.5% (4.3%)
per year in the strong- (weak-) guarantee subsample. The
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Fig. 7. This figure shows the total face value of debt outstanding during 2007. The solid line shows actual data for Dt
M
, the amount of ABCP outstanding

in our sample of 281 conduits. The dashed red line shows predicted values for Dt
M
. The dotted green line shows the predicted value of total debt Dt, which is

the sum of market ABCP debt, DM, and debt held by the sponsor, DS. The figure also notes that the predicted total face value of debt held by sponsors at the
end of 2007 is $279 billion. We predict debt quantities after August 1, 2007 using Eqs. (10) and (11) with estimated parameters from Table 4, conduits' total
face value of ABCP on August 1, and conduit/week data on rollover yields and run status throughout 2007. We assume sponsors held zero debt on August 1.

31 Parameters' standard errors depend on the 13)13 covariance
matrix for the empirical moments. When estimating this matrix, we take
into account time-series autocorrelation as well cross-conduit correla-
tion, both within moments and across moments. We also perform a two-
step correction to account for measurement error in parameters ϕ and δ.
Details are in Appendix C.

32 Once a run starts, the average time until credit line failure is 1=ðθδÞ.
As Section 4.2 explains, our estimate of 1/δ is 37 days.

33 The θ estimate in the strong-guarantee subsample could be too
high, for the same reason that the subsample's estimate of r is potentially
too low (Section 5.1.1). Adjusting this estimate would make the difference
across subsamples even larger.
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difference across subsamples is statistically significant (t¼6.3),
possibly because conduits offering weak guarantees had
incentives to hold riskier assets. As a comparison to our
estimates, the volatility of the ABX mortgage index in the
first half of 2007 was 5.7%. The other asset categories ABCP
conduits hold, such as trade receivables, are likely less volatile
than the ABX was in 2007 (as suggested by Fig. 1), so an
estimate for s slightly below 5.7% seems reasonable.

The estimated cap on yield spreads, r , is 36 (60) b.p. per
year for the strong- (weak-) guarantee subsample. This
difference in caps across subsamples is statistically significant
(t¼2.7). The reason we find a higher cap in the weak-
guarantee subsample is that spreads in that subsample are
higher in most of the weeks leading up to a run (Fig. 4).34

As we explain in Section 5.1, the r estimate in the strong-
guarantee sample could be too low, so it remains unclear
whether r is truly lower when guarantees are stronger.
Moreover, it is unclear a priori whether strong-guarantee
conduits should have a lower or higher r than weak-
guarantee conduits.35

Our estimate of α, the asset's liquidity or recovery rate in
default, is 97% (92%) in the strong- (weak-) guarantee sub-
sample. The difference across subsamples is not statistically
significant. For comparison, Coval and Stafford (2007) find a
92% recovery rate for stocks during fire sales. Ellul, Jotikasthira,
and Lundblad (2011) report a 93% recovery rate for corporate
bonds during fire sales. For corporate defaults, Hennessy and
Whited (2007) measure recovery rates of around 90%, and
Andrade and Kaplan (1998) estimate recovery rates of roughly
80–90%. Our estimates are on the high end of the literature's
range, which makes sense given that conduits mainly owned
financial rather than real assets.

The last column in Table 4 shows the model's predicted
run threshold implied by our parameter estimates. The model
predicts that lenders run as soon as leverage exceeds 92%
(97%) for the SIV/extendible (full credit/liquidity) subsample.
As a consistency check, we compare these predicted leverage
thresholds to actual data on conduit leverage, which were not
used in estimation. Detailed data on conduit leverage at the
time of the crisis were not available even to regulators, but
from Moody's reports we can make rough estimates of
leverage for 11 SIVs. These conduits' leverage ranged from
92% to 94% preceding runs in 2007,36 which is reassuringly
close to the predicted 92% threshold.

Table 4
Structural parameter estimates and predicted run thresholds.

The first two rows provide parameter estimates in the weak-guarantee subsample, which contains 90 ABCP conduits in 2007 with SIV or extendible
credit guarantees. The last two rows report estimates in the strong-guarantee subsample, which contains 191 ABCP conduits in 2007 with full credit or full
liquidity guarantees. Columns 2–5 report estimated structural parameters, with standard errors in parentheses. Estimation is done by SMM, which
chooses parameter estimates that minimize the distance between actual and simulated moments. Section 2 describes the model used to simulate
moments. Standard errors account for time-series and cross-sectional autocorrelation, both within and across the 13 moments used in estimation.
Standard errors also include a two-step correction for measurement errors in parameters δ (inverse average debt maturity) and ϕ (inverse asset maturity).
The last column shows the leverage threshold for runs (1=xn) predicted by the model for the given parameter estimates; the model predicts that runs
occur as soon as leverage exceeds this threshold.

Parameter estimates Predicted

Weakness Asset Cap on leverage
of credit volatility yield spreads Asset threshold

Subsample guarantee (% per year) (b.p. per year) liquidity for runs (%)
θ s r α 1=xn

Weak guarantees 0.449 4.30 59.8 0.920 92.0
(0.133) (0.10) (6.7) (0.032)

Strong guarantees 0.141 3.54 36.0 0.968 97.1
(0.045) (0.07) (7.0) (0.045)

34 As we explain in Section 4.3, the model uses spreads from the 12
weeks before each run to infer the spread the instant a run starts, which
equals r . Fig. 4 shows that the average spread in week –1 is roughly the
same across subsamples. For strong-guarantee conduits, however, the
spread is much lower in weeks –8 to –2, and the spread increases more
convexly leading up to runs. The estimation procedure takes into account
that each week's average spread is estimated with error, and that the
difference in convexity across subsamples is fairly weak statistically. The
lower spreads in weeks –8 to –2 dominate the higher convexity and high
spread of week –1 to produce a lower estimate of r in the strong-
guarantee subsample.

35 On one hand, a weak-guarantee conduit faces a higher probability
of liquidation given a run, so its expected liquidation costs given a run are
higher than those of a strong-guarantee conduit. Outside the model,
these relatively higher ex post costs could lead the conduit to choose a
relatively higher r in order to reduce its run probability. On the other
hand, a weak-guarantee sponsor expects to provide a credit line for less
time once a run begins, because the credit line is expected to fail sooner.
Since the sponsor lends at a below-market yield spread r during a run, it
loses money while providing the credit line. Since the weak-guarantee
sponsor expects to lose money for a shorter period than the strong-

(footnote continued)
guarantee sponsor during a run, it could choose a lower r and hence a
higher run probability.

36 Moody's Investors Service (2008) reports that SIVs' net asset value
of capital (NAV), defined as the difference between the market value of
portfolio assets minus the notional amount of senior liabilities expressed
as a percentage of paid-in capital, averaged 102.5% in January 2007. NAV
maps into ðFðyt Þ&Dt Þ=Kt in our model, where Kt is paid-in capital. Based
on individual program reports published by Moody's available for 11 SIVs,
we estimate that the ratio of capital notes to senior liabilities, which
maps into Kt=Dt , ranged from 6% to 9% across SIVs in December 2006.
Since Fðyt Þ ¼ yt when μ¼ ρ, we obtain the formula

yt
Dt

¼NAVt )
capital notes

senior liabilities

% &

t
þ1:

This formula, combined with the data from Moody's reports, delivers the
92–94% range for leverage (Dt=yt).
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6. What drives runs?

All the parameters estimated above potentially affect the
likelihood of runs. In this section we use the estimated model
to measure the sensitivity of run probabilities to each of these
contributing factors. We also measure runs' sensitivity to
changes in asset values. In the next section we discuss
implications for regulators, banks, and investors.

6.1. Sensitivity of runs to model parameters

We measure the sensitivity of runs to the model's eight
parameters by computing run probabilities for a range of
counterfactual parameter values. Fig. 8 plots simulated
three-month run probabilities.37 In each panel we vary one
parameter at a time. The bold blue line on the vertical axis
marks the parameter's estimated value.

The top-left panel shows that run probabilities are
extremely sensitive to conduits' leverage (1/x0).38 For
instance, reducing leverage by 1% from 91.4% to 90.4%
reduces the run probability by 32 percentage points from
70%, i.e., roughly a 45% decrease. Not surprisingly, the
model also predicts that yield spreads are highly sensitive
to leverage. For example, changing leverage from 90.4% to
92.0% is enough to increase yield spreads from ten b.p. to
their estimated capped value, 59.8 b.p.

Each of the remaining panels in Fig. 8 shows results for
a high-leverage (solid line) and low-leverage (dash-dot
line) scenario.39 The dashed lines in the top-left panel
mark these two scenarios. The high-leverage scenario
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Fig. 8. This figure shows the sensitivity of run probabilities to the model's parameters: initial conduit leverage (1=x0), asset liquidity (α), asset growth rate
(μ), discount rate (ρ), asset volatility (s), expected debt maturity (1/δ), yield spread cap (r ), expected guarantee lifespan (1=ðδθÞ), and expected asset
maturity (1=ϕ). Expected guarantee lifespan and debt maturity are in years. Asset growth rate and volatility, the discount rate, and the cap on yield spread
are in units of fraction per year. Each panel plots the simulated three-month run probability as a function of parameter values. In each panel we set
parameter values to their estimates for the weak-guarantee subsample (Table 4), thenwe vary the parameter indicated on the panel's horizontal axis. Initial
leverage (top left panel) serves as each simulation's initial condition. The two vertical dashed blue lines in the top-left panel indicate the values we use as
initial conditions in the remaining panels. The bold blue lines on the vertical axes indicate the parameters' estimated value. The solid (dashed-dot) line
shows run probabilities when initial leverage is at the high (low) level indicated in the top-left panel.

37 We tabulate these results and present one-year run probabilities in
the Internet Appendix.

38 Recall that initial leverage is not a parameter we estimate, but
instead serves as the initial condition for these counterfactual
simulations.

39 High (low) initial leverage is 91.4% (90.0%), which produces a 70%
(26%) three-month run probability. We choose these values because they
imply that yield spreads are at 50% (10%) of their capped value, r , for the
high- (low-) leverage case.
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represents the late, severe stage of a funding crisis, while
the low-leverage scenario represents an earlier, less severe
stage. Since results are qualitatively similar between these
two scenarios, we focus on just the high-leverage scenario
for the discussion below.

The top-middle panel shows that runs are extremely
sensitive to small changes in asset liquidity (α) or, equiva-
lently, recovery rates in default. For example, increasing α
by 1% from its estimated value of 0.92 reduces the run
probability by 31 percentage points from 70%, roughly a
45% decrease. Intuitively, a creditor runs because she fears
there will not be enough of the asset to pay her if the
conduit defaults. A higher α increases creditors' recovery
rate in default, reducing the incentive to run. The impact of
liquidity is even more striking given that a 1% change in α
amounts to an 11.5% (1%)0.92/(1&0.92)) change in the
illiquidity discount, which is well within the estimated
discount variation in the literature. For example, Coval
and Stafford (2007) report a standard deviation of 9.72% in
the fire-sale discount of stocks. The estimates in Ellul,
Jotikasthira, and Lundblad (2011) imply a standard devia-
tion of almost 25% for fire-sale discounts on corporate
bonds.

The asset's growth rate μ and the risk-free rate ρ have a
smaller but still significant effect on run probabilities.
Increasing μ by 1% or reducing ρ by 1% from their base-
case values (both 4.9%) reduces the run probability by ten
percentage points, roughly a 14.5% decrease. Increasing μ
or decreasing ρ increases the asset's value, which effec-
tively reduces the conduit's leverage. Reducing the risk-
free rate also makes the conduit's leverage increase more
slowly.

The remaining panels show that every parameter
affects the likelihood of a run and, furthermore, is capable
of bringing the run probability close to zero. However,
we need larger changes in the remaining parameters to
achieve large reductions in run probabilities. Reducing the
probability by 31 percentage points, as achieved by
increasing α by 1%, requires either reducing asset volatility
s from 4.3% to 2.6% per year (a 40% decrease); increasing
average debt maturity 1/δ from 37 to 107 days (a 190%
increase); increasing the cap on yield spreads r from 0.6%
to 2.7% per year (a 358% increase); increasing 1/(θ δ) (the

average time the guarantee survives during a run) from 82
to 422 days (a 413% increase); or reducing the asset's
expected maturity 1/ϕ from 5.8 years to 39 days (a 98%
decrease). As expected, changes that reduce the mismatch
between asset and debt maturity reduce the likelihood of
runs. Increasing the yield cap makes runs less likely by
allowing more room for yields to adjust upwards as
conditions worsen; this effect outweighs the increased
dilution risk that comes with a higher yield cap.

6.2. Sensitivity of runs to asset values

One way to measure the fragility of ABCP conduits in
2007 is to ask, how much did asset values need to drop to
trigger a run? The answer depends on how levered
conduits were before the crisis began. Since these data
are not available, we answer the question for several
starting leverage values. We simulate many conduits for
one year with a given initial leverage value, using esti-
mated parameter values from the weak-guarantee sub-
sample (Table 4).

Table 5 reports statistics on the percentage change in
asset values preceding runs, for several initial leverage
values. The table shows that for a conduit with 85%
leverage, asset values need to drop 4.39% to trigger a
run, on average. For comparison, our estimated asset
volatility is 4.30% per year. As expected, conduits with
higher initial leverage are more fragile, in the sense that a
smaller drop in asset value will trigger a run. For example,
if leverage starts at 90%, asset values need drop only 0.68%
to trigger a run, on average.

7. Policy discussion

There are several reasons why regulators may want to
prevent runs. Runs on financial institutions could disrupt the
flow of credit to nonfinancial firms that rely on interme-
diated finance to fund investment and operations and, thus,
ultimately harm economic activity. The view that bank runs
hamper economic activity is supported by evidence from
banking crises in the United States (Friedman and Schwartz,
1963; Bernanke, 1983; Calomiris and Mason, 2003; Ramirez
and Shively, 2012) and cross-country studies (Kaminsky and

Table 5
The change in asset value required to trigger a run.

This table shows simulated changes in asset value preceding runs. We simulate conduits for one year using parameter estimates for the weak-guarantee
subsample (Table 4). For these parameter values, runs occur as soon as leverage exceeds 0.92. Panel A contains the simulations' assumed initial leverage,
which equals the asset's fundamental value y0 divided by the initial face value of debt D0. Panel B shows statistics on the percentage change in asset value yt
between the simulation's start and the run's start, for those conduits that experience a run.

Panel A: Initial leverage (D0=y0)

0.85 0.86 0.87 0.88 0.89 0.9 0.91

Panel B: Percent change in asset value preceding a run

Mean &4.39 &3.53 &2.69 &1.93 &1.26 &0.68 &0.26
25th percentile &4.97 &4.22 &3.53 &2.85 &2.24 &1.62 &0.95

Median &4.28 &3.47 &2.70 &2.04 &1.50 &1.05 &0.67
75th percentile &3.70 &2.76 &1.85 &1.04 &0.42 0.00 0.02
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Reinhart, 1999; Dell'Ariccia, Detragiache, and Rajan, 2008).
Also, a run on one part of the financial system could trigger
runs on other parts, amplifying the run's costs. For example,
a run on ABCP could trigger a run on money market funds
(the main investors in ABCP) or a run on the large banks
sponsoring ABCP conduits.

Before discussing how regulators might prevent runs,
we describe the warning signs that regulators, banks,
and investors can use to gauge the probability of a future
run. According to the model, the warning signs are high
conduit leverage and high rollover yields. Furthermore, the
model provides a quantitative mapping between these
warning signs and the probability of runs at various
horizons (Fig. 9). While conduit leverage (top panel) is a
useful warning sign for a conduit's sponsor, it is less useful
to regulators or investors, who currently cannot observe
leverage. The bottom panel, which maps yield spreads into
run probabilities, is useful to all parties.

In the previous section we measure how run probabil-
ities change when we perturb each model parameter away
from its estimated value. As in Rochet and Vives (2004),
we interpret these perturbations as interventions by
regulators or conduit sponsors. The estimated sensitivities
are important for regulators interested in controlling the
risk of runs on ABCP conduits and similar intermediaries.
These sensitivities can also help sponsoring banks control
the risk of runs when managing existing conduits or
designing new ones.

Our analysis shows that runs are very sensitive to small
changes in leverage. This result implies that conduits'
sponsors can significantly reduce the probability of future

runs by including more equity in new conduits' capital
structure. Regulators can achieve the same effect by
placing restrictions on new conduits' leverage. Our result
also suggests that once a crisis is underway, modest equity
injections by either conduit sponsors or governments can
make runs significantly less likely. For example, the aver-
age ABCP conduit with SIV or extendible guarantees,
which held $3.9 billion in assets in January 2007, would
have cut its three-month run probability by more than half
with a $39 million equity injection. Such a recapitalization,
which would cost just over $4 billion for all weak-
guarantee ABCP conduits, would imply an expected dead-
weight cost savings of $97 million per program and almost
$11 billion overall.40 Of course, a full welfare analysis
would have to also take into account the positive extern-
alities from preventing runs (e.g., allowing the sponsoring
banks to keep lending to the nonfinancial sector), negative
externalities (e.g., moral hazard and tax distortions), and
ex post wealth transfers to the party buying discounted
assets in a liquidation.

The previous analysis also shows that runs are very
sensitive to α, the asset's liquidity, i.e., expected recovery
rate in default. For example, increasing recovery rates by
1%, which translates into subsidizing asset values in
default by $39 million for the average conduit in 2007,
would have reduced the three-month run probability by
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Fig. 9. The top panel plots the relation between the firm's current leverage and the probability of a run within the next three, six, and 12 months. The
bottom panel shows the relation between the firm's current yield spread (basis points per year, bp/year) and the probability of a future run. Results are
from model simulations using the parameter estimates for the weak-guarantee subsample, which contains the 90 ABCP conduits with SIV or extendible
guarantees (Table 4).

40 The estimated deadweight cost savings equals the change in the
probability of a run times total ABCP NAV times the liquidation discount,
1&α.
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almost a half. It is less clear how governments or sponsor-
ing banks can improve liquidity. One possibility is that
governments make a market in distressed assets or pur-
chase them outright.

We interpret reducing the asset's volatility (s) or increas-
ing its growth rate ðμÞ as buying higher quality assets.
Sponsors can clearly influence asset quality when creating
new conduits, but probably not once a crisis is underway.
Regulators could influence asset quality by placing credit
rating restrictions on the assets conduits buy, similar to the
restrictions on money market funds. However, our results
show that an effective control of the run probabilities would
require large changes in μ and especially s.

Fig. 8 suggests several remaining channels for preventing
runs. Increasing ϕ corresponds to the conduit buying shorter-
term assets, and decreasing δ corresponds to increasing debt
maturities; both reduce the degree of maturity mismatch
between assets and liabilities. Reducing θ corresponds to
strengthening the conduit's guarantee, which, to be credible,
could not only require strengthening its legal terms, but also
improving the sponsor's own financial health. Reducing ρ
corresponds to reducing the federal funds rate. Our sensitiv-
ity analysis implies that interventions targeting these chan-
nels (or that increase rÞ will have small effects on the
likelihood of runs, unless the interventions can change these
parameters by a large amount. For example, to match
the effectiveness of a 1% equity injection in January 2007,
the sponsor of an average weak-guarantee conduit would
have to commit an additional $826 million to the conduit's
backup credit line.41

There are caveats to our policy analysis. First, our
analysis does not consider how policy interventions direc-
ted at ABCP conduits could spill over to other markets.
To wit, an increase in the rollover yield caps (r) could delay
runs on ABCP conduits at the expense of weakening their
sponsor's balance sheet or making money market funds
take on more risk. Second, we do not address how policy
interventions may affect future crises via moral hazard.
Third, our sensitivity analysis is subject to a Lucas-type
critique, as it does not consider how changing one para-
meter could affect other parameters. For example, Cheng
and Milbradt (2012) endogenize the choice of the asset's
growth rate and volatility of a short-term financed firm,
such as an ABCP conduit, and find that a lengthening of
debt maturities could lead to more risk-shifting. A com-
prehensive policy analysis would need to incorporate the
reaction of ABCP conduit managers and investors to any
interventions. We leave this analysis to future research.

8. Conclusions

We estimate a dynamic model of debt runs using data
from the 2007 crisis in asset-backed commercial paper. The
model allows yields to change over time, which introduces
dilution risk: the conduit must offer higher yields to induce
rollover if conditions worsen, which dilutes the claims of
other lenders. Introducing dilution risk into the model can
increase the likelihood of a run by more than an order of
magnitude. Our model of fundamental-driven runs fits
several features of the data, including the sharp contraction
in ABCP outstanding in late 2007, the increase in ABCP yields
leading up to runs, the high probability of recovery once a
run starts, the positive relation between yields and the
probability of future runs, the overall level of volatility in
ABCP yields, and the positive relation between yield volatility
and the yield level. The model fits much better in the
subsample of conduits with the weakest guarantees. We
find that runs are very sensitive to conduit leverage and
expected asset liquidation costs. Given that leverage plays
such an important role in our model, it is surprising that
regulators and investors do not have systematic access to
data on conduits' leverage. We find that runs are much less
sensitive to the degree of maturity mismatch, the perceived
strength of guarantees, and the asset's volatility. These
results can help regulators and banks control the risk of runs.

Our analysis can be extended and improved in three
directions. To keep the estimation tractable, we assume that
yields cannot exceed an exogenous cap. It would be inter-
esting to explore the determinants of this cap. Second,
future research could ask how coordination failures affect
yields, and how a single creditor might buy and renegotiate
dispersed debt during a crisis. Finally, the dynamic debt
runs framework, and estimation method we propose here,
can potentially be used to study runs on money market
funds and sovereign debt.

Appendix A. Model solution

As in He and Xiong (2012a), we focus on symmetric
monotone rational expectations equilibria, in which each
creditor is best-responding to all others' decision to run if
and only if the fundamental asset value drops below a
common threshold, yn. To solve for our model's threshold,
we show first that the creditor's value function depends
only on one state variable: the conduit's (inverse) leverage,
xt, i.e., the ratio of asset value, yt, to total debt, Dt. We start
by characterizing the dynamics of the conduit's debt, then
of xt, and then solve for the threshold xn.

A.1. Debt dynamics

Since all debt is equally likely to roll over in the next
instant, regardless of when and at what yield it was
originated, then the total face value of paper outstanding
at t, Dt, equals the average face value of debt rolling over at
time t. Debt dynamics follow (3) since a fraction δ dt of
debt matures at each instant, and for every dollar of face
value that is rolled over, the conduit issues new debt at
face value Rt.

41 The expected payout to creditors during a run is

E
Z τθ

0
δDne&δt dt

' (
¼

Dn

1þθ
;

where Dn is the total debt outstanding when the run starts. We estimate
Dn as using the NAV per conduit in January 2007 divided by xn ¼ 1=0:92.
The additional capital required to sustain a stronger credit line is there-
fore

Dn )
1

1þθ1
&

1
1þθ0

% &
;

where θ1 ¼ 0:087 is the counterfactual value and θ0 ¼ 0:449 is the
estimated value.
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A.2. Value function

At any date τ, there are three possible payouts for a
lender who holds debt with face value Rs where srτ:

1. The conduit matures at time τ¼ τϕ so that the creditor
is either paid in full or gets a share of the assets
proportional to his face value, i.e.,

Rs

Dτϕ
) min Dτϕ ; yτϕ

) *
¼ Rs min 1;

yτϕ
Dτϕ

% &
: ð12Þ

2. The conduit defaults at time τ¼ τθ after other creditors
run and backup credit lines fail. The creditor recovers a
share of the post-liquidation net present value of the
asset, i.e.,

Rs

Dτθ
min Dτθ ; lyτθ

! "
¼ Rs min 1; l

yτθ
Dτθ

% &
; ð13Þ

where

lyτθ % α
ϕ

ρþϕ&μ
yτθ : ð14Þ

3. The debt contract matures at time τ¼ τδ, allowing the
creditor to choose between rolling over or running.
Because the amount of debt maturing at each instant is
infinitesimally small, a creditor that chooses to run will be
paid off in full. If the creditor rolls over, the old loan is
retired and a new loan is issued with face value Rτδ . Let
Vðyτ;Dτ ;Rs; ynÞ be the value in time τ of one dollar loaned
at time srτ. The lenders' payoff in τδ is therefore

max
roll over or run

fRsVðyτδ ;Dτδ ;Rτδ ; y
nÞ;Rsg

¼ Rs max
roll over or run

fVð+Þ;1g: ð15Þ

Combining these three possible payoffs, the time t
value to a creditor who last loaned one dollar at time
srt equals

V yt ;Dt ;Rs; yn
! "

¼ Et e&ρðτ& tÞRs min 1;
yτ
Dτ

% &
1fτ ¼ τϕg

# $

þEt e&ρðτ& tÞRs min 1; l
yτ
Dτ

% &
1fτ ¼ τθg

# $

þEt e&ρðτ& tÞRs max
rollover or run

fVðyτδ ;Dτδ ;Rτδ ; y
nÞ;1g1fτ ¼ τδg

# $
:

ð16Þ

For xt % yt=Dt , Eq. (16) simplifies to

Vðyt ;Dt ;Rs; ynÞ ¼ RsWðxt ; xnÞ; ð17Þ

where

Wðxt ; xnÞ ¼ Etfe&ρðτ& tÞ minð1; xτÞ1fτ ¼ τϕgg

þEtfe&ρðτ& tÞ minð1; lxτÞ1fτ ¼ τθgg

þEt e&ρðτ& tÞ max
rollover or run

fRτWðxτ; xnÞ;1g1fτ ¼ τδg

# $
:

ð18Þ

Wðxt ; xnÞ is the value at time t of each dollar of face
value. This value does not depend on when the creditor
last rolled over, due to the memory-less properties of the
exponential distribution. Moreover, applying Ito's Lemma
and Eq. (3), it is straightforward to show that inverse
leverage follows:

dxt
xt

¼ μ dtþs dZtþδ dt&δRt dt: ð19Þ

In other words, the fraction change in inverse leverage
equals the fraction change in the asset's value (μ dtþs dZt)
plus the fraction of debt maturing (δ dt) minus the frac-
tional amount of new debt issued (δRt dt). Since the value
function (18) and the dynamics of xt are both functions of
xt only, xt is the only state variable of the problem.

A.3. Equilibrium debt prices and run threshold

Creditors break even if for every $1 invested in the
conduit at time t, they receive a loan worth $1. Formally,
creditors break even if

1¼ RtWðxt ; xnÞ: ð20Þ

Since face values cannot exceed the cap, R, the rollover
face value is

Rt ¼min ½R;Wðxt ; xnÞ&1(: ð21Þ

The following proposition states that runs will not occur at
face values Rt below the cap R but only when Rt exactly
hits the cap. That is, the equilibrium condition that defines
xn is

R ¼Wðxn; xnÞ&1: ð22Þ

Proposition 1. Let Rt % min½R;Wðxt ; xnÞ&1(. Then

Rt ¼
Wðxt ; xnÞ&1 if xt4xn;
R ¼Wðxt ; xnÞ&1 if xt ¼ xn;
R if xtoxn:

8
><

>:
ð23Þ

Proof of Proposition 1. Note first that any creditor's con-
tinuation payoff must be equal to one. By definition, for
any xt, the payoffs are

max
run or roll over

f1;RtWðxt ; xnÞg

¼ max
run or roll over

f1;min½R;Wðxt ; xnÞ&1(Wðxt ; xnÞg

¼ max
run or roll over

f1;min½RWðxt ; xnÞ;1(g¼ 1: ð24Þ

First, we show Rt ¼ R if xtoxn. If xtoxn, creditors will
refuse to roll over their loan at maturity. Because running
gives them a payoff of one, rolling over must give them a
strictly lower payoff, i.e., RtWðxt ; xnÞo1. By definition of Rt,
this inequality becomes

min½R;Wðxt ; xnÞ&1( )Wðxt ; xnÞo1: ð25Þ

Since Wðxt ; xnÞ&1 )Wðxt ; xnÞ ¼ 1, it must be that min
½R;Wðxt ; xnÞ&1( ¼ R. Therefore, Rt ¼ R.
Suppose that xtZxn. In this case, creditors choose to

roll over. If they do so, their payoff must be at least as
high as running, which pays one. Because their payoffs are
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bounded above by one, then rolling over must always pay
one. Therefore, for xtZxn

min½R;Wðxt ; xnÞ&1( )Wðxt ; xnÞ ¼ 1
) min½RWðxt ; xnÞ;1( ¼ 1: ð26Þ

The previous equality holds if either RWðxt ; xnÞ41 for
every xZxn or if there exist some x0A ½xn;1Þ where
RWðx0; xnÞ ¼ 1 and RWðxt ; xnÞ41 for all other xtax0.
Because Wðx; xnÞ is strictly increasing in x, then x0 is
unique. Moreover, because RWðx0; xnÞ ¼ 1 is a minimum,
then x0 ¼ xn, i.e., the lowest point in the support. In
summary, then either

Rt ¼
Wðxt ; xnÞ&14R for all xtZxn;
R if xtoxn:

(
½caseðiÞ( ð27Þ

or

Rt ¼
Wðxt ; xnÞ&1 if xt4xn;
R if xt ¼ xn;
R if xtoxn:

8
><

>:
½case ðiiÞ(: ð28Þ

Next we show that case (i) cannot be true, because it
implies a contradiction. In case (i) we have

Rn %Wðxn; xnÞ&1oR; ð29Þ

exactly at the run boundary. Hence, we have

1¼ RnWðxn; xnÞoRWðxn; xnÞ: ð30Þ

The equality above is from the definition of Rn, and the
inequality is from W40 and RnoR. By the assumed
continuity of Wðx; xnÞ at x¼ xn, there exists a ξ40 such
that for all x0Aðxn&ξ; xnÞ, RWðx0; xnÞ41. We therefore have
a contradiction: At x0oxn, the investor runs (since we
assume runs happen below xn), but at x0 it is not optimal to
run (since RWðxn; xnÞ, the payoff from rolling over at Rt ¼ R,
is strictly greater than one, the payoff from running). □

A.4. Analytical solution to the ODE for Wðx; xnÞ below the
run threshold

Using Eqs. (18) and (19), we can write the general
Hamiltonian–Jacobi–Bellman (HJB) equation:

ρW xt ; xn
! "

¼ μ&δ Rt&1ð Þ½ (xtWx +ð Þþ
s2

2
x2t Wxx +ð Þ

þϕ½minð1; xtÞ&Wð+Þ(
þθδ1fxt oxng½minð1; lxtÞ&Wð+Þ(

þδ max
rollover or run

fRtWðxt ; xnÞ;1g&Wð+Þ
' (

: ð31Þ

For a given threshold xn, the HJB equation can be solved
analytically for xtoxn⟺Rt ¼ RoWðxt ; xnÞ&1. The general
solution to this Ordinary Differential Equation (ODE) is

W x; xn
! "

¼ d1xηþd2x& γ&
a5
a3

&
a4

a3þa1
x; ð32Þ

for

η%
1
2a2

a2&a1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2&a1Þ2&4a3a2

q% &
41;

&γ %
1
2a2

a2&a1&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2&a1Þ2&4a3a2

q% &
o&1;

a1 ¼ μþδ&δR
! "

;

a2 ¼
s2

2
40;

a3 ¼ &ðϕþρþθδþδÞo0;
a4 ¼ θδl1fxr1=lgþϕ1fxr1gZ0;
a5 ¼ δþθδl1fxZ1=lgþϕ1fxZ1g40;

with limits

Wx 0; xn
! "

¼
θδ

αϕ
ϕþρ&μ

% &
þϕ

δRþðϕþρ&μÞþθδ
40; ð33Þ

W 0; xn
! "

¼
δ

ϕþρþθδþδ
40; ð34Þ

lim
x-1

W x; xn
! "

¼
ϕþδ

ϕþδþρ
; ð35Þ

and where the values of d1 and d2 are obtained by impos-
ing smooth-pasting and value-matching at x¼ 1; x¼ 1=l,
and on xn.

Case 1: For 0oxnr1
The solution is

W x; xn
! "

¼ A1xη&
a5
a3

&
a4

a3þa1
x for xrxn;

A1 ¼
1
R
þ

a5
a3

' (
ðxnÞ&ηþ

a4
a3þa1

ðxnÞ1& η: ð36Þ

Case 2: For 1oxnr1=l
The solution is

W x; xn
! "

¼
A2xη& a5

a3
&

a4
a3þa1

x for xr1;

B1xηþB2x& γ&
b5
a3

&
b4

a3þa1
x for 1oxrxn;

8
>><

>>:

A2 ¼
1
R
þ

b5
a3

% &
ðxnÞ& ηþ

b4
a3þa1

ðxnÞ1&η&B2ðxnÞ& γ&η

&
ϕ

γþη
γ
a3

&
γþ1
a3þa1

' (
;

B2 ¼
ϕ

γþη
ð1&ηÞ
a3þa1

þ
η
a3

' (
;

B1 ¼ A2þ
ϕ

γþη
γ
a3

&
γþ1
a3þa1

' (
: ð37Þ

Case 3: Can xn41=l?
For some parameter values, case 2 implies that cred-

itors run on a solvent conduit. That is, if FðytÞ4Dt (which
implies x41), then the conduit is able to repay all the debt
if the asset is not liquidated at a discount. But creditors
will not run frantically, i.e., if the post-liquidation value of
the asset αFðytÞ, is larger than Dt. Intuitively, a creditor
cannot best-respond to other creditors' decisions to run on
a super-solvent conduit, because rolling over guarantees
the creditor a full payment even if the asset is liquidated.
Formally, smooth-pasting at Wð1=l; xnÞ implies that Wxo0
for all 1=loxoxn, i.e., frantic runs require that bond
values decrease in asset values.

Appendix B. Numerical solution of the value function
and run threshold

This appendix describes the algorithm we use to solve
numerically for the value function Wðx; xnÞ and the run
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threshold xn. The solution for W satisfies the HJB equation,
value-matching and smooth-pasting for W everywhere
(including at x¼ xn), the limit condition limx-1Wðx; xnÞ,
and the condition Wðxn; xnÞ ¼ 1=R. The algorithm follows
the following steps:

1. Guess a value for xn.
2. Compute the solution to the HJB for xrxn, using the

analytical solution in Appendix A.
3. Solve W numerically for x4xn, as follows:

(a) Using the standard method, reduce the order of the
ODE by introducing a new variable Z:

Wx % Z; ð38Þ

Zx ¼Wxx

¼ &
2½μþδ(

s2
Z
x
þ

2δ
s2

Z
xW

&
2ϕ
s2

minð1; xÞ
x2

þ
2ðρþϕþδÞ

s2
W
x2

&
2δ
s2

1
x2

: ð39Þ

(b) Solve analytically for Wðxn; xn;AðxnÞÞ and Wxðxn; xn;
AðxnÞÞ ¼ Zðxn; xn;AðxnÞÞ, using the solutions for W in
Appendix A.

(c) Using the initial conditions in step (b), numerically
integrate the system of ODEs in step (a) for
xA ½xn; x(, where x is a very large value of x that
approximates x¼1.

4. Check whether the numerical solution for Wðx; xnÞ is
sufficiently close to its known limit, derived in
Appendix A. If so, we have found the equilibrium
threshold xn. If not, return to step 1.

Appendix C. Details on SMM estimation

This appendix summarizes the SMM estimation proce-
dure, which closely follows DeAngelo, DeAngelo, and
Whited (2011). Additional details are in Strebulaev and
Whited (2012) and Erickson and Whited (2012).

The goal is to estimate parameters b¼ ðα; s; θ; rÞ by
matching a vector of simulated moments as closely as
possible to the corresponding vector of data moments. Let
xi denote a data vector and yikðbÞ denote a simulated vector
from simulation k, where i¼ 1;…;n indexes conduit/week
observations and k¼ 1;…;K indexes simulations. We use
K ¼ 20; Michaelides and Ng (2000) find that a sample at
least ten times larger than the empirical sample delivers
good finite-sample performance. We simulate each con-
duit for T¼8.7 years, which is 1.5 times 1=ϕ, the asset's
expected lifetime. When a conduit's asset matures, the
conduit drops out of the sample and is not replaced. All
simulated conduits begin with initial inverse leverage
x0 ¼ xnþ 1

2 s
ffiffiffi
T

p
. This initial value of x0 is far enough from

xn so that initial spreads are well below the ten b.p.
threshold used to compute our moments, yet x0 is close
enough to xn so that a large enough fraction of simulated
conduits eventually cross the ten b.p. threshold. Of course,
some simulated conduits experience lucky outcomes so

that their spreads never exceed ten b.p. per year. These
conduits' observations do not contribute to any of our
simulated moments.

We denote simulated moments as hðyikðbÞÞ and data
moments as hðxiÞ. All the moments we use, including
means and variances, can be expressed as slopes from
OLS regressions. The SMM estimate of b is

bb ¼ arg min
b

gnðbÞ
0cWngnðbÞ; ð40Þ

where

gn bð Þ ¼ n&1 ∑
n

i ¼ 1
h xið Þ&

1
K

∑
K

k ¼ 1
h yik bð Þ
! "

" #

ð41Þ

is the difference between data moments and simulated
moments, and cWn is a positive definite weighting matrix
that converges in probability to a deterministic positive
definite matrix W. The efficient weighting matrix is the
inverse of the sample covariance matrix of the moments.
Since our 13)13 covariance is estimated with consider-
able noise, we use only its diagonal blocks when comput-
ing the weighting matrix,42 and we divide the diagonal
elements by the number of elements in each group of
moments to apply roughly equal weight to our four sets of
moments. For instance, we divide the elements of cWn

corresponding to moments 8–13 (the forecasting regres-
sions) by six.

The estimator's asymptotic distribution is
ffiffiffi
n

p
ðbb&bÞ⟶

d
Nð0; avarðbbÞÞ; ð42Þ

where

avar bb
) *

¼ 1þ
1
K

% &
∂gnðbÞ0

∂b
W

∂gnðbÞ
∂b0

' (&1

)
∂gnðbÞ
∂b

0

WΩW
∂gnðbÞ
∂b0

' (
∂gnðbÞ0

∂b
W

∂gnðbÞ
∂b0

' (&1

:

ð43Þ

We estimate Ω using the Generalized Method of
Moments (GMM) while taking into account heteroskedas-
ticity and serial correlation, which is equivalent to com-
puting heteroskedasticity-robust standard errors from a
system of seemingly unrelated OLS regressions. Since our
moments are slopes from a system of OLS regressions, this
approach is equivalent to the influence-function approach
of Erickson and Whited (2000) in the special case in
which observations are independently distributed.43 Since
our empirical observations are not necessarily i.i.d.,
we estimate Ω while allowing correlation in regression
disturbances both (1) within and across regressions and
(2) within and across conduits, as long as observations are
near each other in calendar time. The GMM approach

42 We use a 2)2 block for moments 1 and 2 (recoveries from runs), a
2)2 block for moments 3 and 4 (volatility regression), a 3)3 block for
moments 5–7 (event-time regression), and three 2)2 blocks for each of
the forecasting regressions.

43 To estimate slope β in regression yi ¼ x0iβþui, the influence func-
tion is ψ i ¼ ðX0XÞ&1xiui , and the heteroskedasticity-robust GMM or OLS
asymptotic covariance of bβ is ðX0XÞ&1E½X0uu0X(ðX0XÞ&1. This covariance
equals the covariance from the influence-function approach, E½ψ iψ

0
i(, in

the special case where E½uiuja i( ¼ 0.
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takes into account that different regressions use different
sets of conduit/week observations. We use the eigenvalue
method of Rousseuw and Molenberghs (1994) to guaran-
tee that bΩ is positive definite. We adjust parameters'
standard errors for first-stage estimation error in para-
meters ϕ and δ using the method of Newey and McFadden
(1994).
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