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1. Introduction 

Structures such as high-rise buildings, benefit from shallow flooring systems since the floor-to-floor height 

is a significant factor. The fact that a conventional composite beam is deeper than a reinforced concrete 

beam is a strong disadvantage. Hence, in several situations it is important to reduce the overall depth of 

the floor using partially encased composite beams [1]. These fully composite beams also have other 

advantages such as increased fire resistance, load carrying capacity, local buckling stiffness and dramatic 

increase in the bending stiffness compared to conventional beams. Moreover, a lower construction cost 

compared to the reinforced concrete or the steel frame systems is achieved by using partially encased 

composite beams eliminating the construction time and amount of formwork and scaffolding [2, 3, 4, 5].  

Comparing conventional composite flooring systems and partially encased composite beams it is seen that 

the concrete between flanges in the latter case increases the bending stiffness and reduces the vertical 

displacements. Despite the advantages in terms of structural behaviour and cost, the behaviour of encased 

perforated beam is not entirely understood yet.  

Whilst numerous research papers were found in the literature review regarding conventional composite 

flooring systems with the use of plane and perforated steel beams and partially encased composite beams 

with the use of plain steel sections, only recently has very limited study been carried out on partially 

encased composite beams with the use of perforated steel sections [1, 6, 7]. 
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Fig. 1: USFB used with profiled steel decking (top) and with precast concrete unit (bottom) (adopted by 
[8]) 

2. New composite flooring system 

For conventional composite floor beams or down stand composite beams, the thickness of the flanges 

increases with the increase in span. Consequently, the steel sections are often heavier than needed [9]. The 

Ultra Shallow Floor Beam (USFB), is a new type of composite floor beam, which is fabricated by welding 

two highly asymmetric cellular tee-sections together along the web. Profiled steel decking or precast 

concrete floor units sit on the bottom flange, as shown in Fig. 1.  The top and bottom tee-sections are cut 

from different parent sections where the top tee is much smaller than the bottom tee. This asymmetric 

section property reduces the weight of the beam and also increases the moment capacity. The circular or 

elongated web openings provide a channel for reinforcing tie-bars, building services and ducting through 

the structural depth of the beam, thus minimising the overall floor depth. Transverse reinforcing tie-bars 

can provide longitudinal shear strength by tying the concrete on both sides of the web. Shear studs can be 

also used, welded horizontally on the web of the steel beams. Full service integration can be achieved 

when deep profiled steel decking is employed, as pipes or ducks pass through between the ribs of the steel 

decking. As the floors are cast, the in-situ concrete passes through the web openings, which may or may 

not include a tie-bar or duct. This concrete plug forms a unique mechanism for transferring longitudinal 

shear force along the beam. A special end diaphragm is used for deep decking floor applications so that the 

concrete fully surrounds the steel section, apart from the bottom plate. ‘Arching’ action is occurred 

through the concrete partial encasement, which is resisted by the end plate connections.  

The common range of application for USFBs based is for slab depths of 180 to 300mm, in which the 

concrete is placed flush with top flange. The nature of the choice of UC for the bottom tee-sections and UB 

for the top tee-sections is that the asymmetry in flange areas can be over 3 to 1. Composite action reduces 

this effective asymmetry and improves the bending resistance. In practice, the span to depth ratio of 

USFBs is generally in the range of 25 to 30, which means that serviceability rather than bending or shear 

resistance will control [10]. Therefore, a further initial study has been conducted by the authors on the 

derivation of dynamic properties of USFBs through FE modal analysis and experimental verification [11]. 



3. Aim and objectives  

The aim of this study is to investigate the contribution of concrete in perforated steel beams in resisting 

the vertical shear when the concrete is cast between the flanges of the steel beam. It should be noted that 

this experimental programme was intended to simulate a symmetric UB section without any mechanical 

shear connectors. The percentage of the section enhancement and its additional shear capacity when the 

web openings are in-filled with pure concrete was obtained. Consequently, the effect of the bond strength 

of the interface between the steel and the concrete, as well as the bearing strength of the open web area 

and the Vierendeel failure mechanism due to the confined concrete was explored in this research 

programme.   

The main task was to validate the new approach and develop an elaborate model so it could be used for 

further studies such as vibration, dynamic analysis, etc. Hence, the sub-objectives of this research study 

are listed as follows:  

 

 To demonstrate significant shear enhancement due to the concrete infill. 

 To provide a minimum concrete vertical shear contribution that can be applied in all cases of USFBs 

based on the concrete encasement and the contact behaviour between the steel and the concrete. 

 To establish FE models which are capable of predicting the structural behaviour of simply supported 

USFBs with large isolated circular web openings. 

 To examine both the load carrying capacities and the failure modes of the USFBs. Also, to study the 

steel buckling behaviour, the concrete internal stresses (cracks), as well as the angles of the concrete 

cracks, both experimentally and through the FE analyses.  

 To perform a sensitivity FE study based on both concrete and steel material properties and their 

constitutive relationships. 

 To propose a simple design method of predicting the load carrying capacity of the particular steel-

concrete beam arrangement.   

 
4. Experimental work 

Four USFBs were tested in this research programme. These are directly comparable with other 

experimental work conducted by the authors [12, 13]. Correspondingly, the web opening diameter, do, is 

equal to 0.76h. For small web opening diameters, for instance 30% of the beams depth, it is easy to show 

that a load path of 45o between flanges transfer the load across the web opening. However, for larger web 

openings the load path is not so clear. 



4.1 Test specimen and measurement devices 

A UB305x165x40 with material physical properties shown in Table 1 was used. For precautionary 

reasons it was decided to test all the beams at the 14th day of curing, aiming for between 25 to 30MPa (to 

be no greater than 35MPa) concrete strength on the day of the test. 

The load was applied through two hydraulic jacks and a spreader plate. The applied load and hence the 

bending moments were obtained from the load cells connected to the jacks. High shear forces were 

generated in the area of the web openings and so the existence of the concrete dramatically affected the 

results. 

To measure vertical deflection three dial gauges were placed under the tension steel flange and aligned 

with the edge of the hole. Two dial gauges were applied at the high moment side (HMS) of each web 

opening (Dial Gauge 1 and 3) and one dial gauge at mid-span of the test beams (Dial Gauge 2).  

4.2 Test cubes procedure  

In this research programme a desirable maximum compressive strength was required to determine the 

possible section enhancement at low concrete strengths. The strength was determined from the 14th day 

of curing to try and test at the minimum possible compressive strength used by the standards (i.e. 25MPa).    

 

A mix design was necessary for this experimental programme. Compression tests were undertaken on 

samples, removed from the forms and allowed to cure for predetermined periods such as 3, 7, 14 days etc.. 

The concrete strength tests are standardized and the method of making compressive specimens in the 

field is covered under BS EN197:Part 1:2000 [14]. Based on the guidelines of BRE [15], the fourteen days 

compressive strength is equal to 85% of the twenty-eight days compressive strength. Moreover, thirteen 

days of air-cured concrete compressive strength is equal to 70% of the thirteen days water-cured concrete 

compressive strength. The mix with the w/c ratio equal to 0.61 conformed to the requirements and this 

was used for casting the composite beams.  

4.3 Casting the USFBs 

Four composite specimens were cast using Lafarge Blue Circle OPC CEM-I 42.5 N conforming to BS EN 

197: Part 1 [14]. Sharp sand with a maximum size of 5mm was used as the fine aggregate. River gravel 

with a maximum size of 10mm was used as the coarse aggregate to overcome the problems associated 

with having to cast the specimen on one side (Fig. 2). Twenty-four hours (± 4 hours) later, the specimens 

were de-moulded and left to air-cure in a storage room covered in sheeting for thirteen days. The storage 

room’s temperature was 19 to 23oC at 50% to 60% relative humidity.  



The casting of the composite beams was not routine because the bearing plates at the supports and the 

web openings make the whole procedure more difficult. This was accomplished by casting the beams on 

the floor and pouring the concrete through the web openings (Fig. 2). Vibrators were used to ensure that 

the concrete was well compacted. The compaction of the concrete was also improved by the high water-

cement ratio (0.61). Silicon was used to avoid water leakage between the steel and the framework.  

    

Fig. 2: Casting procedure of USFBs (i.e. USFB No. 1) 

4.4 USFB with lower grade concrete  

Three USFBs were cast with a w/c ratio equal to 0.61. Taking into consideration the usual uncertainties 

caused by human or climate interferences which occur when the beams are cast in situ, another composite 

section (USFB 4) was also cast with a slightly higher w/c ratio (and hence lower grade concrete). 

Segregation was observed when the concrete cubes of the latter specimen were tested. An additional aim 

of this test was to verify the percentage of the shear improvement and the failure mode due to concrete 

infill (i.e. concrete is a path to the load), and to clarify whether it is the concrete strength or the concrete 

itself that provides the enhancement to the perforated steel beam.   

The compressive cube strength are shown in Fig. 3. USFB No.4 (i.e. Mix7) was tested after 52 days of 

curing as it needed more time to gain the required concrete strength limit (25-30MPa). 



 

Fig. 3: Concrete cube compressive strength 

Specimen  
Average Steel Yield 

Stress  
fy (MPa) 

Average Steel 
Tensile Strength  

fult. (MPa) 

14-Day Cube 
Compressive 

Strength of Concrete, 
fcu (MPa) 

USFB No.1  
318.25 430.75 

27.91 
USFB No.2  26.77 
USFB No.3  25.33 
USFB No.4    25.60 (at 52nd Day) 

Table 1: Material physical properties  

4.5 Test procedure 

After a preloading stage, the load was applied in steps at a low displacement rate and held at each step to 

allow load relaxation. All test specimens were loaded past the ultimate load to obtain a significant part of 

the post-failure curve. Concrete crack patterns were recorded throughout the tests.  

Initially, the beams were loaded with approximately 10kN and the dial gauges zeroed. The load was then 

released and reloaded gradually in 40 to 50kN increments. The loading increments were reduced after the 

first diagonal cracking to approximately 20 to 30kN, up to the point of the beams’ ultimate load carrying 

capacity. In the post-elastic region there was a further reduction to approximately 5 to 10kN per step. The 

tests were performed not only until the maximum load was reached, but also until a sufficient branch of 

the descending post-failure load deformation curve was recorded. The general test-procedure is 

summarised in the following four steps: i) preloading, ii) monotonic loading, iii) gradual loading and 

relaxation and iv) unloading. 



4.6 Load-deflection relationships 

Virtually linear behaviour was observed in all tests (Fig. 4) until around 500kN which is at approximately 

89% of the ultimate load carrying capacity of the composite beams. The ultimate load was attained at 

around 600kN, after which unloading occurred. Failure occurred around 75%, 67%, 70% and 71% of the 

maximum load for USFB No.1, USFB No.2, USFB No.3 and USFB No.4, respectively. Generally, in the post-

elastic region a significant and sudden drop of load occurred directly after reaching the ultimate load 

capacity. This is a result of large concrete cracks occurring in the vicinity of the web openings and their 

rapid propagation, due to the steel yielding. The deflections were found to be higher in USFB No.1, where 

the post-elastic behaviour is more gradual than the other tests. Finally, an unloading procedure was 

conducted in all composite tests in order to record the plastic-permanent deformation. It should be noted 

that all USFBs have the same steel section stiffness. A dissimilar proportion of cracks about the symmetry 

of the beam was observed, with few cracks forming on one side as compared to the other side which was 

totally crushed. Similarly, in the bare steel perforated beam asymmetrical behaviour was observed 

between the left and right side.  

 

Fig. 4: Load-deflection curves for non-composite and composite beams for (Dial Gauge 1, 2 and 3) 

4.7 Failure mechanism 

Diagonal tension cracks occurred at around 200 to 250kN. At about 300kN cracks could be clearly seen. 

The latter cracks were fully extended between the load spreader and the supports (e.g. Fig. 5 and 6). Also, 

at this point a few vertical flexural cracks were propagated in the region of maximum moments, starting 

from the tension face and extending upwards to the mid-depth of the beams. It is worth noting that this 

load was the ultimate load carrying capacity of the bare steel beam. At around 550kN the plasticity of the 

USFBs commenced. Full development of diagonal cracks ensued at this point in all composite beams. 

Eventually, crushing of the concrete occurred in the vicinity of the web openings as it is shown in Fig. 7 

and 8. From the first load steps and during testing, micro-cracking was heard, especially for the USFB No.4 

with the lower grade concrete, as the chemical bond of the concrete material was low (high w/c ratio). The 



position of the principle diagonal cracks was not identical for all the USFBs. There is a slight variation of 

the angle of the cracks from 25o to 37o; however the failure mechanism was the same. Around 600kN the 

ultimate load carrying capacity was achieved followed by a post-elastic descending curve showing a 

considerable decrease of the load carrying capacity. This was accompanied by large cracks in the vicinity 

of the web openings and concrete bursting. This can be seen in Fig. 9 to 12 for the right half span of the 

USFBs, for both front and back face. Following the formation of the large cracks there was some residual 

strength in the concrete and the load carrying capacity was somewhat higher than that of the non-

composite steel beam.  

Essentially, USFBs fail due to concrete crushing in the compression zone. Complete composite action up to 

the ultimate load carrying capacity, was found. Therefore, the proposed system enables the development 

of sufficient strength and consequently effective composite behaviour, without causing serviceability 

problems. Moreover, the longitudinal shear strength of the proposed system consists of the frictional force 

and the shear-bond strength between the steel and the concrete, as well as of the bearing strength of the 

web opening area. However, in this experimental study the concrete is partially encased since the bearing 

plates at the supports restrain the longitudinal movement of the concrete. In actual construction the end 

plate connections will play the same role. Also, it was observed that the plastic behaviour of the composite 

sections is mainly due to the steel beam’s low stiffness and high deformation. In general, the concrete 

provides a load path from the top to the bottom steel flange, as well as a restraint to the steel web.    

  
Fig. 5: USFB No.2  

 

  
Fig. 6: USFB No.3  

 



 
Fig. 7: USFB No.2 at point D with concrete crushing 

 

 
Fig. 8: USFB No.3 at point D with concrete crushing 

 

  
Fig. 9: USFB No.1 with concrete bursting 

  

Fig. 10: USFB No.2 with concrete bursting 



 

  
Fig. 11: USFB No.3 with concrete bursting 

 

  
Fig. 12: USFB No.4 with concrete bursting 

 

4.8 Composite action due to partial encasement 

The effect of partial encasement on overall flexural action is dependent on the mechanism of shear 

transfer and the relative slip between the steel section and the concrete. These tests failed by high 

Vierendeel bending actions in the vicinity of the openings, as shown in Fig. 13 and 14. However, it is 

apparent that considerable ‘arching’ action occurred through the concrete encasement, which is resisted 

by the bearing plates at the supports of the relatively short span beams. Hence, the contribution of the 

confined concrete between the steel flanges in resisting vertical shear is achieved.  

 

Following the completion of the composite tests the crushed concrete was removed from the area around 

the web openings. It is worth mentioning that the concrete was removed only by using a hammer and 

manpower - no heavy equipment was used in trying to remove the crushed concrete. This helps to 

visualize the size of the concrete area around the web opening that is strongly affected by the web opening 

existence.  

 



The steel beam was slightly deformed compared to the non-composite beam [12], while local web 

buckling is faintly observed on the diagonal line from the load spreader to the supports. This implies a 

transfer of shear forces across the web openings after the concrete crushed while loading was applied in 

the post-elastic region. The transfer of shear forces caused local bending moments and therefore local web 

buckling.  

At the web opening the concrete encasement acts as a strut in compression, which is confined between the 

flanges and inclined diagonally across the web opening, as illustrated in Fig. 15. The magnitude of this 

strut action depends on the ability of the flanges to resist the local compression forces by transverse 

bending. The dimensions of the flanges contribute significantly to the bending and shear resistances of 

USFBs [16, 17]. It is worth noting that a symmetric section was used in the current research to simplify the 

investigation, whist asymmetric sections are used in practice. The transverse bending moment is shown in 

Fig. 16 when the bearing force applies on the flange. The vertical forces are resisted by tension in the web-

post between the web openings. The horizontal forces act on the bottom flange with a combination of 

friction, due to the strut force and the shear-bond. The lower bound of the shear-bond strength with the 

partially encased flange is given as 0.2MPa in BS EN1994-1-1:2004 [18]. A coefficient of friction of 0.6 for 

concrete on steel may be assumed for the local strut action. 

 
 

   
Fig. 13: Failure mode for partially encased USFB No.1 at opening after removal of the damaged concrete 



  
Fig. 14: Failure mode for partially encased USFB No.2 at opening after removal of the damaged concrete  

 

 
Fig. 15: Compression force acting in the concrete encasement across the web openings 

 

 

Fig. 16: Strut action in concrete causing flexural bending 
 



A simple model for the vertical shear resistance of the concrete encasement is to consider the vertical 

component of this strut force as a bearing force which causes transverse bending in the flanges. From the 

above tests as well as others conducted at City University London [19], it was concluded that the shear 

force, Vc, that is resisted by the concrete encasement is dependent on the top flange dimensions and may 

be taken as [10]: 

   
    (

  
      

)  
   

    
                             

Where bf, min is the lesser thickness of the top and bottom flanges. In using this formula, the ability of the 

flanges to resist the horizontal component of the force is dependent on the frictional force and shear-bond 

resistance, which is not critical, given the inclination θ of the strut force to the vertical, where:  

     -        ⁄                             

The compression resistance of the concrete strut may govern for thick steel flanges. It is given by the limit 

in the above equation, and it may govern when     ⁄   .   

5. Sensitivity FE study of the USFBs 

5.1 Introduction 

For the computational approach to the problem, a three-dimensional FE model was developed, in which 

contact elements were implemented at the interface of the concrete and steel. Several material model 

parameters were varied, such as the steel and concrete strength, the constitutive relationships which 

model the materials, as well as the steel and concrete contact capacity. Hence, the parameters that limit 

the beams’ load carrying capacity and their sensitivity to these changes are examined. 

A FE model was developed in ANSYS v11.0 to further investigate the load-deflection behaviour and failure 

modes of the composite USFBs. Due to the introduction of concrete in the FE models a complex non-linear 

analysis was developed. Consequently, a detailed description of the techniques and tools used to apply the 

boundary conditions and the material properties was also made. Apart from the geometrical and material 

non-linearity, the contact surface between the steel and the concrete takes a decisive role in modelling the 

friction between these two materials when no mechanical connectors are provided. The characteristics of 

the contact elements were determined individually by shear-bond tests (i.e. push-out tests) between the 

steel and concrete, conducted at City University London’s laboratories [19].  

 

 



5.2 FE model and boundary conditions 

Since a principal objective of this work was to predict a correct failure mode, it was important to develop a 

FE model as close to the physical system as possible (Fig. 19). Therefore, a 3D model was developed with 

a fine mesh of 20mm element size consisting of 68,569 elements. With regards to the concrete crack 

modelling with FE software, several researchers have studied the effect of the element size in the non-

linear analysis of reinforced concrete structures [20, 21], and they have shown that the results are indeed 

dependent on the mesh. Whilst considering symmetry, it was decided to develop the full model in terms of 

its length and the half model in terms of its width, in order to accurately apply the support conditions. The 

load and the supports were directly applied to the steel beam and not to the concrete in order to avoid 

early local concrete cracking. For better stress distribution, the load was applied as a pressure on an area 

and the supports were modelled as restrictions to the degrees of freedom on appropriate areas. 

5.3 Contact element and contact algorithm 

CONTA173 is a 4-node element that is intended for flexible-to-flexible contact analysis. In flexible-to-

flexible contact, both contact and target surfaces are associated with deformable bodies. CONTA173 is also 

a surface-to-surface contact element. The contact detection points are the integration points and are 

located at Gauss points. The contact elements are constrained against penetration into the target surface, 

at its integration points.  

A number of methods are available for modelling friction in contact analyses, but the most commonly used 

methods are based on a ‘Coulomb’ friction model. In this model the two contacting surfaces are permitted 

to carry shear stresses across their interface up to a defined value, before they begin sliding. The 

equivalent shear stress at which sliding begins is defined as: 

                               

Contact elements offer two models for ‘Coulomb’ friction: isotropic friction and orthotropic friction. The 

isotropic friction model is incorporated in this study as it uses a single coefficient of friction, based on the 

assumption of uniform stick-slip behaviour in all directions. When a penetrating node stays in contact 

with the target surface, it may either stick to the surface or slip along the surface.  

5.4 Element types and material models 

Steel: Typical 8-node solid SOLID45 elements were used to model the steel perforated beam. Mainly 

nominal, but also actual measured, material properties were used. This was for precautionary reasons, as 

well as for the generalization of the FE results. The bi-linear stress-strain relationship for both 

compression and tension with strain hardening used, show sufficient agreement with the previous 



experimental study of the non-composite steel beam [12, 13, 22, 23]. The Young’s Modulus, E, and the 

Poisson’s Ratio, v, of steel are taken as 205GPa and 0.3 respectively.  The yield strength, fy, as well as the 

ultimate strength, fult., varies as given in Table 3. The variation of the material strength applies to the 

sensitivity study of the material properties. In most analyses, an ultimate strain of around 0.25 was 

assumed for the structural steel [24], hence the Tangent Modulus, ET, was varied from 540 to 700MPa.   

Concrete: 8-node solid iso-parametric SOLID65 elements with the integration points for the cracking and 

crushing checks were used to model the concrete in ANSYS. SOLID65 models the non-linear response of 

brittle materials and is based on a constitutive model for the tri-axial behaviour of concrete after Williams 

and Warnke [25]. The element is capable of plastic deformation and cracking in three orthogonal 

directions. Once the principal stresses at the integration points reach the tensile and compressive 

strength, the cracking or crushing of concrete elements can be formed. These elements are also able to 

predict the non-linear behaviour of concrete materials using a smeared approach, which depends on five 

material parameters. Steel reinforcement was not present in the actual experiment in this research 

programme; hence default values were kept for the smeared reinforcement capabilities of SOLID54 

elements.   

Cracking and crushing are determined by a failure surface. The tensile strength, ft, is typically 8-15% of the 

compressive strength, fc [26]. Investigating the sensitivity of the results, the ultimate concrete compressive 

and tensile strengths for every beam model were calculated using various constitutive relationships found 

in the literature [25, 27, 28, 29, 30]. The concrete in compression was modelled as an elasto-plastic 

material (Fig. 17) either with or without strain softening. The concrete plasticity (crushing) in the 

compression zone was modelled using the multi-linear option from ANSYS with Von-Mises plasticity. 

The compressive cylinder strength, fc, varied (eg. 20MPa, 21.12MPa: the average cylinder strength from 

Table 1, 26.7MPa and 32MPa), whereas the other parameters such as Young’s Modulus, Ec, and tensile 

strength of concrete, ft, are treated as generic data and evaluated by the applying constitutive relationships 

(Table 2). In Table 2, fc is the stress at any strain ε, f1 is the stress at strain ε1 and εo is the strain at the 

ultimate concrete cylinder compressive strength fc (fc = 0.8fcu was always used).     

 



 

Fig. 17: Material models of uni-axial loading: (a) Steel and (b) concrete  
 

 

Table 2: Constitutive relationships modelling the concrete material from the literature 

Concrete compressive strength was varied in order to examine the percentage of shear enhancement of 

the USFBs. The concrete tensile strength was also varied taking into consideration the mesh size of the 

concrete elements and the value of fracture energy, Gf. It is worth noting that the interfacial fracture 

energy is almost linearly related to the root of the tensile strength of concrete. In addition, various values 

of concrete Poisson’s ratio, v, were examined, as they are related to the condition (i.e. quality) of concrete 

and different values have been used by researchers.  

Shear Transfer Coefficient for open/closed crack, β1,2: These are also known as “shear retention factors” 

and can vary between ‘0.0’ for no aggregate interlock and 1.0 for full aggregate interlock. In the opening, β1 

or closing β2 are assumed to take a value of 0.25 and 0.7 respectively for plain concrete of all grades. 



Various shear transfer coefficients are used in this study for open cracks and closed cracks. High values 

were taken for the closed crack (e.g. 0.9, 1.0) so as to prevent possible fictitious crushing of the concrete 

before load transfer occurs through a closed crack.  

Friction Coefficient, μ: Various friction coefficients were used in order to compare the results. The results 

showed an increase of the stiffness in the strain of the compressive top flange for beam with higher bond, 

but in the tensile flange the stiffness is nearly the same. A reason for this behaviour is the cracking of 

concrete in tensile zone, which starts from the first load steps. In the experiments the bond strength is also 

different in the compressive zone from that in the tensile zone of the composite beam, and this could be 

another reason for possible discrepancy between the experimental and the FE results. The local bond 

strength and the corresponding slip are almost linearly related to the tensile strength of concrete.  

Solution Method: The full Newton-Raphson procedure was used, even though this requires the stiffness of 

the structure to be re-calculated for every iteration. A large-displacement and static analysis was 

implemented with the maximum number of sub-steps in a load step being 1,000-10,000 in order to apply 

the load increments very smoothly where it is necessary. Failure of the beam occurs when convergence 

fails, with a very small load increment. This method is comparable with the experimental data from 

Buckhouse [33]. The vertical deflection at mid-span of the composite beams and the FE divergence load 

was monitored. 

5.5 FE results from sensitivity study 

The failure loads obtained from this study are summarised in Table 3 and categorised mainly according to 

the constitutive relationships used to model the material properties. Sub-categories are also indicated, 

based on both the steel and concrete strengths. 

It was observed that the numerical solutions are very sensitive to the steel strength in contrast to the 

concrete strength and small changes lead to significantly different results. It is found that the USFBs with 

steel yield strength of 265 to 285MPa compare well with the experimental behaviour, even though there is 

a reduction of 16.8 to 10.5% in the average steel yield strength (i.e. fy=318.25MPa), as obtained from the 

coupon tests. This applies to the increased stiffness of the 3D solid elements as well as the complex failure 

mechanism of the USFBs. Essentially, it was verified that the ultimate load carrying capacity of the USFBs 

is governed by the steel strength and in particular when the concrete strength is low. 

Furthermore, it is apparent that apart from the steel and concrete strength, the shear transfer coefficients 

and the coefficient of friction play a significant role in simulating the structural behaviour. It was found 

that the most effective applicable factors for opened and closed cracks, β1 and β2, are 0.3 and 1.0, 



respectively. Dramatic change of the divergence load is obtained when the coefficient of friction, µ, is 

reduced significantly (eg. µ=0.4). For µ greater than 0.6 full cracks were recorded. Similarly, full cracks 

were recorded when the yield strength of the steel is greater than 300MPa. The discrepancy for the value 

of ultimate load obtained by means of the numerical solution and experiment was about 22.5% using solid 

elements, while it was only 4.5% using shell elements. Observing the real tests it was found that no slip 

occurred between the steel and the concrete up to the yield point. Subsequently, a value of 1.0 (i.e. perfect 

bonding) was mainly used at the contact surface. For µ≠1.0, a significant interlocking between the steel 

and the concrete exists after de-bonding due to the non-uniform strain across the section of the member.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



*MISO – Multi-linear Isotropic Hardening Plasticity is adopted 
**BISO – Bi-linear Isotropic Hardening Plasticity is adopted 

Steel Cont. Concrete Results 
FE 

Model 
fy 

(MPa) 

fult. 

(MPa) or 
ETan. 

 μ 
fc 

(MPa) 
ft 

(MPa) 
ν β1,2 

Refer. 
Theory 
Based  

FFEA 
(kN) 

265* 410  1.0 26.70 1.86 0.20 0.3,1.0 [28] 627 59 
265* 410  1.0 26.70 1.86 0.17 0.3,1.0 [28] 617 3 
265* 410  0.8 26.70 1.86 0.17 0.3,1.0 [28] 611 7 
265* 410  0.3 26.70 1.86 0.17 0.3,1.0 [28] 548 8 
265* 410  1.0 26.70 1.86 0.15 0.3,1.0 [28] 547 58 
265* 410  1.0 26.70 1.86 0.15 0.6,0.6 [28] 555 16 
265* 410  1.0 26.70 1.86 0.15 0.1,0.9 [28] 607 18 
265* 410  1.0 26.70 1.86 0.15 1.0,1.0 [28] 635 19 
265* 
275** 

410 
ETan.=200 

 1.0 
0.8 

26.70 
26.70 

1.86 
1.86 

0.00 
0.15 

1.0,1.0 
0.1,0.9 

[28] 
[28] 

648 
618 

20 
25 

355* 530  1.0 26.70 1.86 0.20 0.3,1.0 [28] 637 11 
355* 530  1.0 26.70 1.86 0.17 0.3,1.0 [28] 633 12 
355* 530  0.0 26.70 1.86 0.17 0.3,1.0 [28] 470 13 
275* 410  0.9 20.00 2.786 0.2 0.3,1.0 [26] 577 B5 
275* 410  0.6 20.00 2.786 0.2 0.3,1.0 [26] 563 B6 
355* 499  0.9 20.00 2.786 0.2 0.3,1.0 [26] 730 B2 
355* 530  0.9 20.00 2.786 0.2 0.3,1.0 [26] 733 B4 
355** ETan.=20  0.9 20.00 2.786 0.2 0.3,1.0 [26] 734 B3 
275* 410  1.0 21.12 2.863 0.2 0.3,1.0 [26] 591 B11 
275* 410  0.9 21.12 2.863 0.2 0.3,1.0 [26] 584 B10 
275* 410  0.7 21.12 2.863 0.2 0.3,1.0 [26] 578 B12 
275* 410  0.4 21.12 2.863 0.2 0.3,1.0 [26] 508 C8 
275* 410  1.0 21.12 2.863 0.2 1.0,1.0 [26] 599 B13 

318.25* 430  1.0 21.12 2.863 0.2 0.3,1.0 [26] 630 D1 
265* 410  0.9 32.00 3.524 0.2 0.3,1.0 [26] 588 C1 
275* 410  0.9 32.00 3.524 0.2 0.3,1.0 [26] 611 C4 
275* 410  0.6 32.00 3.524 0.2 0.3,1.0 [26] 574 C14 
285** ETan.=20  0.9 32.00 3.524 0.2 0.3,1.0 [26] 622 C6 
285* 350  0.9 32.00 3.524 0.2 0.3,1.0 [26] 641 C5 
355* 499  0.9 32.00 3.524 0.2 0.3,1.0 [26] 742 B1 
275* 410  0.9 21.12 1.839 0.3 0.3,1.0 [27] 545 B9 
275* 410  0.9 32.00 2.260 0.3 0.3,1.0 [27] 621 C12 
275* 410  0.6 32.00 2.260 0.3 0.3,1.0 [27] 597 C13 
275* 410  0.7 21.12 2.505 0.15 0.3,1.0 [24] 571 C11 
265* 410  1.0 32.00 3.083 0.15 0.3,1.0 [24] 629 31 
265* 410  0.8 32.00 3.083 0.15 0.3,1.0 [24] 600 32 
265* 
275* 
275* 

410 
410 
410 

 0.5 
0.9 
0.9 

32.00 
32.00 
32.00 

3.083 
3.083 
3.083 

0.15 
0.15 
0.15 

0.3,1.0 
0.3,1.0 
0.0,1.0 

[24] 
[24] 
[24] 

565 
615 
243 

33 
B14 
B15 

BARE STEEL PERFORATED BEAM 
265* 410  --- --- --- --- --- --- 331 60 

318.25** 430  --- --- --- --- --- --- 352 75 
355** ETan.=2000  --- --- --- --- --- --- 352 61 

Table 3: Results of the FE parametric study  



5.6 Load-deflection relationships 

Various load-deflection curves at the mid-span are plotted against the results of the experimental test of 

USFB No.1 (Fig. 18). In addition, the load-deflection curve of the non-composite perforated beam is 

plotted for comparison.  

Most of the FE results correlate satisfactorily with the experimental results, while up to the ultimate load 

level insignificant steel deflection occurs. Thereafter, the steel yields following the large concrete strains 

and the formation of large cracks, whilst the load capacity drops considerably. For the USFB with the 

lower concrete compressive strength more cracks developed even though the capacity of the USFB 

remained the same. In the experimental tests large steel deflections ensue in the post-elastic curve.  

There are several effects that might cause the deviation of the stiffness between the FE and the 

experimental beams. One reason could be the concrete micro-cracks in the experimental beams due to 

drying shrinkage in the concrete. Additionally, cracks generated from different elastic modulus of 

aggregate and cement, thermal effects, as well as human factors could cause reduction of the stiffness in 

the experimental beams.  

      

Fig. 18: Force-deflection curves comparison between experimental test (USFB No.1) and various 
numerical solutions from “Table 2” 

5.7 Post-elastic behaviour in FEA 

The maximum load is recorded following the divergence of the FE analysis. The problem of implicit solvers 

is the sudden loss of stiffness if the material failure is taken into account [34]. The last descending branch 

of the load-deflection curve corresponds to the composite beam behaviour as a ‘mechanism’. The load 

which the system can carry gradually decreases with increasing deflection, while at some point no more 

loads can be resisted and the beam ‘fails’. In the experimental work, the failure was accompanied by 

appearance of wide intensive diagonal concrete crushing. In the finite element analysis, post-peak 



softening usually means a localisation of failure. Hence, some special techniques such as non-local mode, 

gradient or time dependent formulations (explicit solvers) need to be employed.  

The Newton-Raphson method used in this research proved to be generally economical because much 

larger incremental steps were possible. However, in the regions of peak loads on the load-deflection 

response, numerical difficulties sometimes occurred and it is necessary to use the modified Newton-

Raphson iteration scheme under which the stiffness of the structure is calculated only at the beginning of 

the increment, or the modified Riks (Arc-length) method in order to prevent local instabilities due to large 

amounts of cracking. 

To trace a post-peak response, either a quasi-static (transient), a stabilisation solver usually with an 

energy dissipation factor, an arc-length method or a displacement load control is necessary. The most 

widely utilised is the arc-length method in ANSYS, which controls the load level together with the length of 

the displacement increment. This method permits to compute the post-critical load-deflection path.  

5.8 Concrete crack patterns and failure modes  

Thirty-nine numerical tests are presented simulating the particular USFB configuration using different 

constitutive relationships and parameters. It is worth noting that in all cases the flexural and the diagonal 

cracks were generated. Characteristic results of concrete cracks, slippage profiles and steel stresses at the 

contact surface between the steel and the concrete are plotted. By examining the stress distribution, it was 

seen that failure occurred due to substantial steel yielding, combined with concrete crushing.     

In Fig. 19 the crack development is shown for four load steps. Nonlinear numerical solutions are capable 

of replicating the full range of cracks including the pure flexural, flexural shear and the critical shear crack. 

Smeared cracks are spread over the high shear stress region (Fig. 19 (c)) and occur mostly at the ends of 

the beam between the support and loading area. The path of shear cracks follows the trajectory of the 

principal stresses, as can also be seen in the experimental study. Depending on the geometric as well as 

the material properties of the USFB, the critical crack might extend to the top of the compression concrete 

fibres and then stabilise, as shown in Fig. 19 (d). At the ultimate load carrying capacity the vertical beam 

deflections were not large. 

Analytically, diagonal shear failure begins with the development of a few vertical flexural cracks at the 

mid-span, followed by a break of the bond between the bottom steel flange and the concrete. A critical 

shear diagonal crack develops in the vicinity of the web openings of the steel perforated beam. Very small 

flexural cracks appear from the beginning of the test, while shear diagonal cracks are not developed until 

the load level of approximately 400kN. Similar behaviour was observed at around 250 to 300kN, when the 

experimental tests were conducted. By looking at the inside view of the FE model (Fig. 20), it was found 



that the cracks begin at the mid-width of the beam section, where the concrete passes through the web 

openings and more specific cracks are initiated as the steel web starts to deflect. These cracks are fully 

developed in the vicinity of the web openings at approximately 450kN, while cracks move outwards (i.e. 

transverse to the web). Crack propagation and the steel stresses at the mid-width of a USFB are shown in 

Fig. 20.  

The vertical deflection, contact stresses and the contact surface condition for the particular USFB FE 

model, when using a friction coefficient, µ, equal to 0.9, are presented in Fig. 21. The Von-Mises stresses of 

the steel beam for the particular USFB model are also presented in Fig. 21.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Fig. 19: Bending and shear crack development at the front side of the beam; (a) Purely flexural (bending) 
vertical cracks, no yielding in steel, no concrete plasticity (b) Developed flexural cracks, developed 

flexural/shear cracks, just before initiation of the critical shear cracks (c) Critical shear diagonal cracks are 
clearly identified and (d) Full cracking state, yielding in steel, concrete plasticity, big displacements 

increment just before divergence of the FE model, there are splitting cracks at the upper part of the beam 
due to compression 
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Fig 20: Shear crack development (left) and Von-Mises stresses of the steel (right); in the vicinity of the 
right web opening at the mid-width of a USFB 
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Fig. 21: Vertical deflection (left), contact stresses (middle) and contact surface condition (right) 

 

Fig. 21: Von-Mises stresses in the steel beam  

6. Proposed design method evaluating vertical shear strength 

The experimental programme and non-linear FE analyses showed that the concrete in-fill in the 

perforated sections and the composite action enhance the vertical shear strength of the USFB. Liang et al. 

[24] proposed a design method for the vertical shear strength of simply supported conventional un-

perforated composite beams (where the concrete slab sits on top of the plain steel beam) with any degree 

of shear connection. This method is modified herein to include USFB sections. Comparison is then made 

amongst the different approaches for evaluating the vertical shear strength of the perforated sections. 

The composite action as presented by Liang et al. [24] is as follows:   

      (       √ )                        

When β > 1, the vertical shear strength is not affected by the degree of shear connection and this indicates 

that the composite beam exhibits full shear connection. According to BS5950 and EC3, for symmetric 

beams with spans up to 6m and 5m respectively, the minimum degree of shear connection is 0.4. In 

general, when no mechanical shear connection (i.e. reinforcement tie-bars, studs, ducting, etc.) is provided 

between the steel beam and the concrete slab, the two components work independently to resist vertical 

shear. However, in this particular FE study the degree of shear connection is assumed equal to the friction 

coefficient between the steel and the concrete, simulating the frictional force and shear-bond since no 

mechanical shear connection is provided. 
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Hence, the vertical shear strength of such a beam is expressed by: 

                      

The contribution of the concrete is now taken as the shear strength of the concrete infill and it is proposed 

that: 

           
  ⁄                  

The effective shear area of concrete is evaluated as: 

    (     )(     )                       

It should be mentioned that the concrete in the web opening, as well as the effect of longitudinal steel 

reinforcement in the concrete slab, are not considered in the above equation.  

In order to better correlate the theoretical approach with FE analyses and experiments, the shear capacity 

of the steel beam is evaluated with various approaches such as the following: 

1. The basic shear capacity from Chung et al. [17]: 

         
       

   
[(     (      

 ))      ]              

2. Another approach for the shear resistance for perforated beams (Lawson and Hicks, 2006) is shown 

below: 

         [       
       

√ 
]              

Where the shear resistance, Vpl,Rd, for un-perforated beams EC3 EN1993-1-5 [35] is limited by either the 

plastic shear resistance: 

       
  (

  

√ 
)

   
              

Where Av is taken as                    , and the value of      is equal to 1.  

Comparing the FE results with the results obtained from the theoretical formulae given above, it is found 

that: 

 The basic shear capacity approach given by Chung et al. [16] for steel perforated beams is the closest 

approach to the FE analyses, with an average deviation (Ftheory/FFE) ratio of 0.93.  



 The shear resistance approaches given by Lawson and Hicks [36] Eq. 7 and 8, slightly underestimate 

the results compared to the FE analyses, with average deviation ratios of 0.90 and 0.86, respectively. 

The most effective approach is when the shear resistance is limited by the plastic shear resistance for 

the un-perforated section (Eq. 7).  

 

The comparison leads to the following conclusions: 

 The smaller the degree of shear connection, β, used in the FE models, the greater the deviation ratio is.  

 For steel grade S275, the FE results are closer to the theoretical design values. In contrast, when steel 

grade S355 is used, the FE results obtained are overestimated because of the increased stiffness of the 

FE model with solid elements.  

 
 

7. Conclusions 

The USFB offers lower structural depth inversely to conventional composite beams, where the concrete 

slab sits on top of the plain (or perforated) steel beam. The decrease of the structural depth for every floor, 

and the ease of construction for large spans, as heavy propping is not needed, makes USFBs worth 

studying. Although the capacity of the perforated beam is reduced by using large web openings (do=0.76h), 

the designer can take advantage of the inherent double shear strength provided by the confined concrete 

between the flanges and the bearing plates at the supports. Hence, increased flexural strength of the 

composite beams as well as longitudinal shear strength due to the concrete passing throughout the web 

openings is achieved.  

The following conclusions can be drawn from this study: 

 

 With the concrete in-fill, the ultimate vertical load carrying capacity of the USFB increases by up to 

108% (i.e. double the capacity) compared to the corresponding non-composite perforated steel beam. 

This percentage is higher when the friction coefficient is closer to 1.0 (i.e. fully bonded). It is assumed 

that there will be a lower concrete contribution if bearing plates are not provided at the supports. 

 All four experimentally tested USFBs showed consistent behaviour in terms of the failure mode, 

stiffness and the ultimate load carrying capacity. 

 The failure mode of the non-composite beam changes when there is in-filled concrete between the 

flanges.  

 The concrete failed first before any significant distortion of the steel web occurs. 



 The last descending post-elastic branch of the load-deflection curve corresponds to the composite 

beam behaviour as a ‘mechanism’. Failure is accompanied with the appearance of wide diagonal 

concrete crushing.      

 Following the formation of large diagonal cracks, there is some residual strength in the concrete 

preventing local buckling of the perforated steel beams and the load carrying capacity is somewhat 

higher than that on the non-composite beam.  

 The shear resistance of the USFB, without using any mechanical shear connectors, is provided mainly 

of contributions from the concrete confinement and the steel flange thickness. 

 Strut action of the concrete confinement across the web openings reduces the Vierendeel bending 

effects and improves the vertical shear transfer in the vicinity of the web openings.  Hence, the vertical 

shear force resisted by the concrete at a web opening is dependent on the on the flange dimensions.  

 The horizontal component of the strut action is dependent on the frictional force, shear-bond 

resistance and the bearing strength of the web opening area. 

 

In order to study the parameters affecting the structural behaviour of simply supported USFBs with larger 

circular web openings, three-dimensional finite element models employing solid elements were 

developed. The FE results are summarised below:  

 The FE models accurately simulate the structural behaviour of the USFBs tested up to the ultimate 

load carrying capacity level. Comparison between the measured and the predicted load carrying 

capacities against the Vierendeel mechanism was found to be close. 

 Various constitutive relationships modelling the concrete material properties were found from the 

sensitivity-parametric studies to affect the load carrying capacity of USFBs differently.   

 As the composite beams examined did not contain confined reinforcement, the concrete tensile 

strength played a major role in defining the divergence load. 

 All cracks in the FE models develop at a higher load compared to those observed in the experiments.  

 A design method for simply supported conventional un-perforated composite beams presented by 

Liang et al. [24] was modified for the shear resistance of the both perforated sections and simply 

supported USFBs with any degree of shear connection between the steel and the concrete. The results 

compared well with those from the FE analyses. 

 Overall, it is shown that the FE models not only provide quantitative justification as to the structural 

adequacy of the proposed design method, but also provide advanced computational-based analytical 

and design tools for the detailed structural behaviour of USFBs.  
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Abbreviations 

Aec   Effective shear area of concrete 

bf     Width of the top flange of steel beam  

CSR   Specification of the Cohesion Sliding Resistance 

do   Web opening diameter 

h   Overall depth of the steel beam 

PCon   Contact pressure  

r   Root radius of steel UB section 

tf  Flange thickness 

tw   Web thickness 

Vc  Nominal shear strength (contribution of the concrete to the vertical shear strength)  

Vo  Shear strength of the beam in pure shear (with zero degree of shear connection)   

VS   Shear capacity of the web of the steel beam to the vertical shear strength  

Vuo   Ultimate shear strength of the composite beam in pure shear 

μ   Coefficient of friction  

β  Degree of shear connection at a cross-section  
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