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Approximating distributional behaviour of linear systems using Gaussian function
and itsderivatives
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Abstract: The paper is concerned with defining fasiof smooth functions that can be used for fhe a
proximation of impulsive types of solutions for dizx systems. We review the different types of ap-
proximations of distributions in terms of smootmdétions and explains their significance in the albar
terization of system properties where impulses wsel for their characterisation. For controllable-
tems, we establish an interesting relation betwhbertime t and sigma (volatility) in the approxinoat

of distributional solutions. An algorithm is theroposed for the calculation of the coefficientshad in-

put required to minimize the distance of our debit@rget state before and after approximation @s pr
posed. The optimal choice of sigma is derived fprexdetermined time t for the state transition.

Keywords:Linear systems; approximating distributional babax, Gaussian function and its derivatives

structed and implemented. The idea of approximadiistyi-
1. INTRODUCTION butional inputs with smooth functions that achieveimilar
The use of distributions in the study of linearteys prob- ~control objective was first introduced by Gupta &tasdorff
lems is a well-established subject going back tpt&and (1963), Gupta (1966). In this paper, we reviewatht pos-
Hasdorff (1963), Zadeh and Desoer (1963), Vergktse9), s_|ble approximations of Dirac d|str|but|9ns wherﬁ.nne, or
Verghese and Kailath (1979), Karcanias and Kouakist finite time domain is used that for their approxiima and
(1979), Campbell (1980, 1982), Willems (1981), dadind Jive some necessary and sufficient conditions tarthsap-
Karcanias (1981), Cobb (1982, 1983), Karcaniastiamgton ~Proximation. We also consider the problem of appnation
(1982), Karcanias and Kalogeropoulos (1989), Widemof the sum of Dirac distributions and its derivasvand their
(1991), and references there in. The work so far dealt US€ as INputs to systems.
with the characterisation of basic system propersiech as  \ye assume that the system is controllable, and ruhite
infinite poles and zeros Verghese (1979), Verghaed ,sgumption we establish an interesting connectiemween
Kailath (1979) for regular and singular (implicgystems, as time t and sigma (volatility) parameter of the appmating,
well as the study of fundamental control problentere the .,mylative Gaussian density function. Surprisinghg frac-
solution is expressed in terms of distributionspi€gl prob-  jon y/sigma is more or less constant and a prdisébicrite-
lems are those dealing with the notions of AImoSt B)-  yion is given describing the first (minimum - stapg) time
invariance and almost controllability subspaces I8NIE 4t the desired state is being achieved. Finallgew algo-
(1981), Jaffe and Karcanias (1981). rithm is proposed for the calculation of the cazéfints of our
smooth input signal that approximate the distritoail input
that carries out the transfer of the origin to giiddle point
in the space. In this algorithm, we want to minienthe dis-

In particular, the study of distributional solut®mplays a
key role in many areas in systems and control ssch

(i) Controllability, Observability. tance of the desired state to be transferred befnckafter
o o ) approximation. The optimal choice of sigma is dedivor a
(if) Infinite zero characteristic behaviour. pre-determined time t. The results provide a rigerstate-
(iii) Almost invariant subspaces, almost controllabilityment of the early idea presented by Gupta (1966).
spaces.

(iv) Dynamics of singular systems etc. 2. PROBLEM DEFINITION

The distributional characterization is also linkedsolution ~ We consider the linear time invariant (LTI) system
of a number of control problems. The solution oflsiprob-
lems have theoretical significance, given thatritigtions X ()= Ax(t)+ by (9, (2.1)
cannot be constructed and only smooth functionsbeacon-



where x(t)0C” (F,M(nxxﬂ?)) (smooth function over the state of the system (2.1) frorp(O’) =0 to 1((0*) requires

field F=R or C, which elements belong to the algebranat the vectorz(o*) belongs to the controllable subspace of

/\/l(n><1;]F)), and uo(t)DF are the state, input vectors, Cthe pair. The necessary and sufficient conditiantlie state

spectively and ADM(nxnR), bOM(nxLR). For the of 5 system (1) to be transferred frog(O’)=9 at time
simplicity, we can assume, that is simple and expressed as

A=diag{A,4,,...A.} (2.2)
where A #0 for everyiOn (n={1,2,...n} ).

t=0" to some x(0")O{A|} att=0" by the action of
control input of type (2.3) is that the resultimgjéctory x(t)

n-1
is expressed ax(t)=)" B.3Y (t) where the coefficients
The paper deal with the followinkey question: Can we . k=0 .
develop an approximation to impulsive behaviouhvetre- B, for in, are chosen to be the componentslc(t) )
spective approximation of the related system anitrab

n-1 : _
properties?” along the subspacd, Ab, Kb ...,A""b, respectively ac

cording to some projections law.
e e oeec 20hent o the next secion, we considr some backgrousie
also of the related system and control properties. A nuofber’" the approximation of Dirac delta function aregemted.
control problems involving distributional solutionsat to
the adjustment of initial conditions with distributidmaputs,
resulting to distributional state trajectories; these implg. APPROXIMATIONSOF DIRAC DELTA FUNCTION
changing the given state of a linear system to a desired stat

in minimum time. The important questions that arise are: ~ Defining smooth functions, which can approximatsame
sense distributions, has been a problem that hers densid-

(i) How can we approximate distributions and their derivaered in the literature. In this section, we revignse results
tives by different families of smooth functions and theiand we suggest a systematic and very rigorous guoedor
derivatives? generating sequences of its derivatives. If ontmefdifferent

approximations of Dirac -function is being followed, (see

Gupta and Hasdorff, (1963), Gupta, (1966), Zemanian

(iii) What is the impact of the approximation on the propek}987), Cohen and Kirchner, (1991), Estrada andwkn
ties of the associated control problem and on the nature(@P00), Kanwal, (2004) etc) the change of the sitatsome

the resulting transition, when smooth functions are used®inimum practical time depends mainly upon how wied
approximations have being generated. The relatipnisb-

It is assumed that the input to the LTI is a linear combinaween the approximation used and the resulting fionehe

(if) What are the different types of approximation?

tion of Dirac J -function and its firsn—1 derivatives, ie transition is an important issue that is considesethse-
. guently.
— k
Uo(t)‘§ak5( )(t)- (2.3) ' The Dirac &-function can be viewed as the limit of se-

o ) o ) ) ) guence function

which is a linear combination of Diraé -function and its .
a5 (1) =lima, (t), (3.1)

first n—1 derivatives, whered™ or — is the k™ deriva-

dt where J, (t) is called anascentelta function. This limits is

in the sense that

{0,1,2,..n- }) are the magnitudes of the delta function and v
its derivatives. We shall denote the state of the systemat tim L![T]) %, (t)f (t)dt = f (0) : (3.2)
t=0" as 1((0’) and at timet 20" achieves as_<(0*). We -

tive of the Dirac Jd-function, and a, for i0n, (n, =

These properties can often be simulated by usismaoth,
finite approximation of the Dirac distribution. Suapproxi-
- T + ations have additional advantages. In fact, apprating
- [Xl % X‘] att=0". Furthermore, we assume thatme Dirac distribution by a smooth function mayuatly be a
the system izontrollableand thus we can transfer the stat@etier representation of the solution sought inphgicular
in any desired point of the state space. problem, especially if the width of the approxinoatifunc-
tion can be coupled to the physics of the probleallowing
the ideas of Cohen and Kirschner (1991), a suitap{goxi-
mating function, which is convenient for computatp
should satisfy the following important propertiage/where

achievesx(0"). The existence of an input that transfers th@" the domain under consideration:

assume thatg(O‘)z[O 0 .. d att=0 and 1((0*)

Furthermore, we assume that our systenorgrollable i.e.
we can transfer the state in any desired pointthestate of

the system at tima =0 is 5(0‘) =0 and at timet =0"



1. Its limit with some defining parameter is the Dirdistri-
bution (see eg. (3.1)).

2. It is positive, decreases monotonically from a téni

maximum at the source point, and tends to zetheato-

main extremes.

3. Its derivative exists and is continuous function.

4. It is symmetric about the source point, for ins@afc(see
eg. (3.1) and (3.2)).

5. It can be represented by a reasonably simple Rounti
gral (for infinite domains) or Fourier series (fibmite do-

mains).

Next, we discuss the appropriate approximation oh®
function based on the finiteness or infinitenesshef time

domain.

3.1. Infinite Time Domain

We first point out that the best nascent delta tioncde-
pends on the particular application. Some well kmcand
very useful in applications nascent delta functiame the
Gaussian and Cauchy distributions, the rectandutzstion,
the derivative of the sigmoid (or Fermi-Dirac) ftioa, the
Airy function etc; see for instance Gupta (1966@manian
(1987), Estrada and Kanwal (2000), Kanwal (2004Ieand
recently the use of a finite difference formula g¥his con-
verted into an appropriate sequence; see Boyki@3R0A

short review of such approximations is given next.
A very useful in applications nascent delta functioe:

e The Cauchy distributions,

o (t)=

1

a

ma+t?

e The rectangular function,

2 (t)

a

_rect(t/a) _

1o ikt—[ak|
==| e ""dk,
77'-[700

ijw sinc[a—kj & dk,
27— 2T

e The derivative of the sigmoid (or Fermi-Dirac) ftion,

a

e The Airy function

tive of the Dirac delta function in one dimension.

Thus, we obtain

o,(t)=0

0.

a

1

_ 1

t 1+ e*l/a

0=2a(%).

Following Boykin (2003), the finite difference fouta may
be easily converted into a sequence that approactesva-

S e

(3.3)

which approaches)'(t) asa — 0. Moreover, an expression

for the derivatives of the Dirac delta can be gibgrthe fol-
lowing equation,

& o=l (2] Saa (i) co

k-0

wherex=t —t and we use

o)L= (9 L)L

The expression (3.4) is exactly what we might abtay
simply making the substitutiorf (t) - &, (t) in the follow-

a

ing finite difference approximation for thi€" derivative of a
test functionf evaluated at, which can be represented as

d 1) &
Wf(t)h_%:(ﬁj gaj f(,+bh). (35

Note thata, and b, are suitable chosen constants and (3.5)

becomes exactly in the limit — 0. Furthermore, due to the
fact that f is sampled at discrete points, we can write

3—; f(t) ket = Lim{(%jk;;aj]?d(t—(to +b h)) (1) dt}

-0

(3.6)
3.2. Finite Time Domain

Unfortunately, the Gaussian distribution is notaodj ap-
proximation of the Dirac distribution on a finiteomain,
namely that the first derivative (which is importan this
paper) can be discontinuous at a special points,Tiacently,
a different approximation has been proposed by Garel
Kirschner (1991), which satisfies all the propesti€l)
through ). This is the S -distribution of the classical prob-

ability theory. This distribution has the expressio

(r+6) (m-6)""

_ ,0eng
B.(6)=1 (27)*'B(ab) (3.7)
0 otherwise
where J is a finite interval and
r(a)r(b)

B(ab)2 [ (7+6) (7-6)"" do= F(ash)

where alsol (x) is the well-known Gamma distribution.

Since, in the next few lines of the present pafter,infinite
time domain is used, the interesting reader mayswdon
Cohen and Kirschner (1991) for further details.



3.3Why a sum of Dirac Delta Functions? manian (1987) Estrada and Kanwal (2000). Thuss itle-

However, in our approach, our time domairininite and duced that every dlstrlbutlomfé's(x) whose support is the

the classical Gaussian distribution, i.e. point x=7 has the forngckd(k) (t—r) ,i.e. a linear in-
1 . 1 dependent combination of Dira® -function and its first
I(t) = lim ——e&"/%" =i P — 3.8 ivati i i ;
( )‘}%U\/ﬁe = (3:8) n-1 derivatives. Consequently, since we are intergstin
transfer the state of system (2.1) at time0~ from the ini-
where ®(x) = 1 e*'2 is being used. tial point 1((0’) and at timet =0" to achlevex( ) (2.3)
N2 is appropriate, when the support pointis 0.

Consequently, the approximate expression for tinéralber
(2.3) is given by
4. MAIN RESULTS

=3 t
Yo (t) - g & ot ® (Zj (3.9) In this section, we will try to answer to the fallmg ques-
o t d/t) t tions: ‘if we wish to achieve stat;e(o*) attimet=0" what
where ® (;j _[E(_j J (Ej are the necessary coefficiengs for k(n and what is the

Then, we take the limit optimal choice of volatilityog that it takes the state there at
u (t) =limu (t) (3.10) time t 20" ?” In this direction, the following known results
° 7 are significant.
Moreover, at the end of this section, we are arisgydo an-
other significant question:why a sum of Dirac delta func- Lemma 4.1 The solution of system (2.1) is given by
tions?” )
_ t A
Considering the results of%section and the whole discus- l((t) =¢ I € _bg(r) @, “4.1)
sion till that part of the "8 section, generally speaking, we o o o
should point out that the input for the linear eiifintial sys- Where A is diagonal andi, (7) is given by combining (3.9)
tem (2.1) should be given bysingle-layer distributionsee and (3.10)a
Zemanian (1987), Estrada and Kanwal (2000) and leanw

(2004). This kind of distributions has a huge inance in Remark 4.1 In the general case, the matri is not always
many applications. simple. However, the problem described above casphed

. . similarly. In this case, we should generatelinearly inde-
Lemma 3.1If ¢/ is a bounded closed setih and Y is @ pendent vectorsy, v and anxn similarity transfor-

neighbourhood oft/ , then there exists a function such that Yoo

n=1 onu/, n=0 outside, and0<n< 1 over F .o mation Q =[v,, .,\4] that takesA into the Jordan ca-

nonical form. In the next lines, we present brigfig more
Definition 3.1 Let S be a piecewise regular curvelfhand essential part. Further details are omitted, stheg are far
o is a locally integrable function defined a®1. The linear beyond the scopes of the present version of therpap

continuous functionabbd, on the spaceD of infinitely dif-

ferentiable complex-valued functions df with compact
support is defined as such asJ =Q™"AQ, where JOM(nxnF) is the Jordan

5.0 _I §(E)o(8)5S canonical form of matrixA . Analytically,
S s J = block dlaq ‘lv gﬂ’ \]+2""’ Q}

Thus, there exists an invertible matr'@DM(nx n;]F)

O ¢0OD and is calledsingle (or simple) layer orS with

densityo .o * The block diagonal matri¥, = block diag{ JJ...., J} ,
Note thatad, () = [ &(x~£)a(£)dS . where
Definition 3.2 Let S be a piecewise regular curve Ih and Al 0
i i i A1
o, . The Ilnc.ea_r <_:ontmgous fu_ncﬂonaid/dt(pcfs) on the 3= o O M(r, < F)
space D of infinitely differentiable complex-valued func- 1
tions onF with bounded support is defined as 0 P/

<—d/dt(055),¢> :J‘ (5)d¢(x f) 3S0¢0D. o is also a diagonal matrix with diagonal _eIeme_nE; eige_n-
S value A, for i =q. Consequently, the dimension df is
Consequentlyit can be easily shown that every d|str|bution )
ads(x) that has compact support is of finite order, see Z S S Z i



* Also, each block matrix; = block diag{ J1r 200 }Jd]} ,

DM(ZJ- X q;IF)

for j=q+1.g+2,.. k,andz =d . o

However, only for the simplicity of calculationsevwhave
already assumed that the matwxis in diagonal form. Con-
sequently, the solution (4.1) is transposed into

(g =tm e | & bu(r) o]

ot(2)al

or equivalently,

e‘“llm{j e ti A

Remark 4.2 In order to make our calculations affordable due

to the long number of terms that get involved, wasider

Ay
the fact that ®(t/o)=1/V2re 2[”j and its derivatives

tend to zero vergtronglywith t/ o — « (note thato - 0).

Thus, by lettingt/ o =K (t,0), where K(t,o) is chosen

large enough (i.e.K(t,o) - ) that the assumption as je’

stated above is valid, i.e.
K(t,o) o
o(t/o)2o(K (o)) - o,
and its derivatives

K(t,0)- o
®W(t/o)2 oM (K(t0)) - 0, for kdn,.o

Actually, the choice ofK (t,0) depends on the choice of

time t and the volatilityo (note thato - 0). In practice,

the timet can be fixed, since we can pre-define the time in

order to change the initial state of the systerfaimost) zero

time, for instance it can bed10°seconds. So, as we will

see analytically in the next paragraphs, the probdan be
transferred into a distance-minimization probleincs we
want to determine

=inf{gOR,: for a fixed time t,

such thatd* ( I<( t a)) o n

For the optimal choice ofg” , we have to minimize the dis-
tanceg(t*)—g(f) using the Euclidian norm, i.e.
[=(t)

-x(t )H2 -0, (4.2)

where g(t*) is the desired state an;ji(t*) is given by the
approximation procedure, see equation (4.1).

The following lemma is required for the subsequitel-
opments. Our objective is to re-write the equafid).

Lemma 4.2 The approximated expression (4.3) holds,
j e
where

®7(x) éJ._xmd)(y) dy= x/éerf'l(2x— 1), whenx0(0,1).
Proof: Substituting the expression (3.9) into the intégra

je

1zzn1

Jdr =0 (K(to)+A0) € Z A", (4.3)

dr and we obtain

Let us start with

je 0(19) 4 _j s L g7 ¢

o o2
.
=e? e dr = é CD —+Ao
:[,a\/ir o
Now, we will calculate
w ®(210) dr=ehl (r/a +A j e i ®(110) d
2 o? o o
1 2,2
:e'”“ldb(t d)+A, &’ ¢‘1(l+/1iaj
o o
and
/
_[e T U ——dr
=e‘”"i r/a +/1j T/U
il 5 L 1 4
:e[/i, o(t/0)+—~ o (t/a)}+/1 & o ( +Aaj
o o? o

Similarly, we can prove that

Lool(rio
.[e/]l agwl )

dr

k
m=1 g J g

Now, we chooset/o =K (t,o), (note thato — 0) where

K (t,0) is chosen large enough (i.K.(t,0) — =) such as



K(t,0) -

®(t/o)2o(K(to)) - 0
and its derivatives

K(t,0) -

o (t/o)2 0¥ (K(t,0)) - o0, forkOn,.

Consequently, we have

t (k) 12,2
je-ﬂ.rmdrz/lik ezA’ qn’l( K( ta)+/lia),

k+1
g

—00

and (4.3) is provem
Furthermore, combining expressions (4.1) and (4v8)take

AK (t,a)a+%4202

E(K(t,a)a)ze CD'l(K(t,a)+/1ia) b:z;; aAk,

fori=12,...n. (4.4)

Note that since we have assumed tlgat K (t,a) - 00
g

then, we have to consider the solution of (2.1jrae t* =

K(t,o)o (which can be110°).0

Consequently, the following lemma derives.

Lemma 4.3 For the diagonal matriXA we obtain the system
a=vix(t), (4.5)

where t' =K (t,0)o, V =V(A,4,,...4,) is the Vander-

monde matrix,

% (K(t0)a)

» T , for iIn (4.6)
! (t,a)a+§/\ o cD‘l( K(t’ 0_) +Ai0') b

5 ()

.
anda=[a, a 3 -
Proof: The expression (4.4) can be re-written as follows

x(K(t0)o)

I,o)o+%4202

n-1
= Zak/lik )
o (K(to)+Aa)h ©°
for i On . Now by making some simple algebra, we have

%(t)2—

[ n-1
/]k
% (1) 2ak
n-1
ey | X (T A
3(c)=| 20| Zak |
s (¢ )
5 (1) nZlak/lnk
L k=0 _
or equivalently
1 A4 A2 At
X(t*): 1 4 /122: Pl .
1A, A2 oAt

since the eigenvaluesgl’s are distinct, the Vandermonde
matrix exists, from which we can obtain the expims$4.6).

Now, we will return to the expression (4.2), i.e. i
Ix(€) ()],
= (X0 [k (K(t)o) -5 (K(to)o)] -
if and only if we determineK (t,o) such that
o (K (o) +A0)=e 2" 4.7)

The expression (4.2) is very elegant because nsteas a
pure system and control theory problem into a siechdtatis-
tical problem. Theoretically speaking, we have adre as-
sumed thato -~ 0, so expression (4.7) gives

o} (K(to)=1- [To(d=1 @8
In probability theory and statistics, the normaitdbution
or Gaussian distributiorﬂ)(x) is a continuous probability
distribution that often gives a good descriptiondata that
cluster around the mean. The graph of the assdcfaiab-
ability density function is bell-shaped, with a geat the

mean, and is known as the Gaussian function orcbele.

Actually, in our case we are interested for

J'K(w) ®(x)dx,

—00

which is thecumulative distribution function (cdf) of a
random variable X evaluated at a numbeK (t,o) (with
other words, it is the probability of the eventttbais less
than or equal toK (t,a)). Fortunately, since we want the
above expression to be equal to 1, i.e. (4.8) haléshave

only to look a standard cumulative normal distribattable,
and we can straightforwardly determine the value

K (t,o), which can be given by the expression

PK<K(to)]=1,

of

assuming thaK follows Gaussian (Normal) distribution. In

practice, we can accept tHalue of K (t,0) to beequal or
greater to 3.90. Consequently, we have obtainexhalytic
formula for the best choice of volatility , which is given by

*

. t

o :K(t,d):K(t’J) t" = 0.2561 .

(4.9)

Remark 4.3 It is clear from (4.9) that the choice of the epti
mal ¢’ depends on the desirdd and vice versao

Now we are ready to propose the main result of ghiser,
which can be concluded into the following algorithm



Algorithm CIZT
(Changeln ZeroTime)
1% Step: Define the desired

x(t)=[x(t) x(t)

for the state transmission.

x(1)]

2" Step: Pre-determined the required tinte for the state
transmission, then using the expression (4.9),otfte

mal volatility o” =0.2560 (since K (t*,a* ) =3.9) is
given.

3 Step: Finally, the coefficientsa=[a, a ]’

are calculated by (4.5), i.g:V‘lg( t*) , Where

A A At
V=V(A,4,,..4,)= 14 /]22. - A
1 A /]f' At
is the Vandermonde matrix, and
X (f):M, forin.

A7)

B

. 3
1% Step: The desired state i§(t ) = {4} :

2% Step: We have pre-determined the required time
t' =10°, so the optimal volatilityc™ = 2.56(110° (since
K(t',0)=3.9).

34 Step: Then,
%(10°)= 3" and %, (10°) = 26",

The inverse of the Vandermonde matrix is

v*:v*(—z,—a):ﬁ :2}1:E :ﬂ

Finally, the coefficientsaa = {a‘)} are calculated, i.e.

N

g:

3% (10°)- 232(106)}
& (10°)- (10
N

_[5.000008 _
| 1.00000

Remark 4.4 From the control viewpoint and the type of the 5. CONCLUSIONS

application (that the change of the initial coralis required),
it is significant to choose an appropriate time tioe initial

state transition. As we can see in the followingragle, con-
sidering Remark 4.3, the time can take any desiadak, but

In this paper, a methodology has been proposedpiorox-
imating the distributional trajectory that transfehe state of
a linear differential system in (almost) zero tilmeusing the
impulse-function and its derivatives. Actually, timput vec-

the volatility o should always satisfy the expression (4.9) ifigr has to be made as a linear combination ofdh&inction

order to have an excellent approximation, see Rlsmark
4.2.

Example 4.1 (See Gupta, 1966) Consider the system

EER
where x(t)0C” (R, M(2xLR)) and u,(t)OR are the

state vector and the input, respectively. The sgdégonal

0

-2
matrix A:[O 3}DM(2X 2;R), and the input vector

1
b= L} OM(2xLR) are derived.

For this system, it is desired to change the staim
0 . 3 . .

5(0‘): at time 0 to g(t ): at time t* =107
0 4

seconds (or 1 microsecond). For this task, we wadesign
an input (2.3) to achieve this in 1 microsecond.

Here the step of oI ZT algorithm should be run.

of Dirac and its derivatives. However, the appraadion is
based on the Gaussian (Normal) function. The wark in-
volved the following three distinct problems:

(i) We have started witthe impulsive trajectory that trans-
fers the origin to a point in the state space aatiuhis as the
central point motivating the need to approximattritiutions
by smooth functions.

(ii) After that, we have examined the family of Gaussian
functions, which may be used to approximate distidms
and we have defined an appropriate Euclidean medric
measure how good the approximation is and investgtne
link of the ¢ parameter of Gauss functions to the time and
inevitably to the distance from the desirable atisitate.

(iii) We have pre-determined the minimal time required fo
achieving a solution to the above standard couwtbdity
problem in terms of approximations to the distriboal solu-
tions, by using Gaussian families for the approxiom Fi-
nally, the CIZT algorithm has been proposed fordhkeula-
tion of the coefficients of our input function.

As further research, of special interest is thé liad ap-
proximation to the energy and time requirements tfor



transfer of the origin to a point within the R-sphehen the Verghese, G.C. and Kailath, T. (1979), Impulsiveh®gour

approximations to the distributional solutions &reed out. and Dynamical System®roceedings of 4 Symposium
Such problems can be examined under restrictionshen on Mathematical Theory of Networks and Sysidbedft,
energy of the input signal and we can qualify thkd of the The Netherlands, pp162-168.

approximation on the energy and time requiremenitstife  Willems, J.C. (1981). Almost Invariant spaces: Appfoach
control signal. Clearly similar problems can beimed for to High Gain Feedback-Part |: AlImost controlledariv
the dual problem of reconstructibility. ant subspacedEEE Transactions Automatic Control

Vol. AC-26, pp. 235-252.
Willems, J.C. (1991), Paradigms and Puzzles inTtheory
of Dynamical SystemdEEE Transactions on Automatic
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