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Abstract: The paper is concerned with defining families of smooth functions that can be used for the ap-
proximation of impulsive types of solutions for linear systems. We review the different types of ap-
proximations of distributions in terms of smooth functions and explains their significance in the charac-
terization of system properties where impulses were used for their characterisation.  For controllable sys-
tems, we establish an interesting relation between the time t and sigma (volatility) in the approximation 
of distributional solutions. An algorithm is then proposed for the calculation of the coefficients of the in-
put required to minimize the distance of our desired target state before and after approximation is pro-
posed. The optimal choice of sigma is derived for a pre-determined time t for the state transition. 
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1. INTRODUCTION 

The use of distributions in the study of linear system prob-
lems is a well-established subject going back to Gupta and 
Hasdorff (1963), Zadeh and Desoer (1963), Verghese (1979), 
Verghese and Kailath (1979), Karcanias and Kouvaritakis 
(1979), Campbell (1980, 1982), Willems (1981), Jaffe and 
Karcanias (1981), Cobb (1982, 1983), Karcanias and Hayton 
(1982), Karcanias and Kalogeropoulos (1989), Willems 
(1991), and references there in. The work so far has dealt 
with the characterisation of basic system properties such as 
infinite poles and zeros Verghese (1979), Verghese and 
Kailath (1979) for regular and singular (implicit) systems, as 
well as the study of fundamental control problems where the 
solution is expressed in terms of distributions. Typical prob-
lems are those dealing with the notions of Almost (A, B)-
invariance and almost controllability subspaces Willems 
(1981), Jaffe and Karcanias (1981).  

In particular, the study of distributional solutions plays a 
key role in many areas in systems and control such as: 

(i) Controllability, Observability. 

(ii) Infinite zero characteristic behaviour. 

(iii) Almost invariant subspaces, almost controllability 
spaces. 

(iv) Dynamics of singular systems etc. 

The distributional characterization is also linked to solution 
of a number of control problems. The solution of such prob-
lems have theoretical significance, given that distributions 
cannot be constructed and only smooth functions can be con-

structed and implemented. The idea of approximating distri-
butional inputs with smooth functions that achieve a similar 
control objective was first introduced by Gupta and Hasdorff 
(1963), Gupta (1966). In this paper, we review different pos-
sible approximations of Dirac distributions when infinite, or 
finite time domain is used that for their approximation and 
give some necessary and sufficient conditions for such ap-
proximation. We also consider the problem of approximation 
of the sum of Dirac distributions and its derivatives and their 
use as inputs to systems. 

We assume that the system is controllable, and under this 
assumption we establish an interesting connection between 
time t and sigma (volatility) parameter of the approximating, 
cumulative Gaussian density function. Surprisingly, the frac-
tion t/sigma is more or less constant and a probabilistic crite-
rion is given describing the first (minimum - stopping) time 
that the desired state is being achieved. Finally, a new algo-
rithm is proposed for the calculation of the coefficients of our 
smooth input signal that approximate the distributional input 
that carries out the transfer of the origin to a desirable point 
in the space. In this algorithm, we want to minimize the dis-
tance of the desired state to be transferred before and after 
approximation. The optimal choice of sigma is derived for a 
pre-determined time t. The results provide a rigorous state-
ment of the early idea presented by Gupta (1966). 

 

2. PROBLEM DEFINITION 

We consider the linear time invariant (LTI) system 

( ) ( ) ( )ox t Ax t bu t′ = + ,                 (2.1) 



 
 

     

 

where ( ) ( )( ), 1;x t n∞∈ ×C MF F  (smooth function over the 

field = �F  or � , which elements belong to the algebra 

( )1;n×M F ), and ( )ou t ∈F  are the state, input vectors, re-

spectively and ( );A n n∈ × �M , ( )1;b n∈ × �M . For the 

simplicity, we can assume, that A  is simple and expressed as 

{ }1 2, ,..., nA diag λ λ λ= ,                    (2.2) 

where 0iλ ≠  for every i n∈
�

 ( { }1,2,...,n n�
�

).  

The paper deal with the following key question: “Can we 
develop an approximation to impulsive behaviour with a re-
spective approximation of the related system and control 
properties?” 

The answer to this question underpins, the development of 
a smooth approximation of impulsive trajectories and thus 
also of the related system and control properties. A number of 
control problems involving distributional solutions relate to 
the adjustment of initial conditions with distributional inputs, 
resulting to distributional state trajectories; these imply 
changing the given state of a linear system to a desired state 
in minimum time. The important questions that arise are: 

(i) How can we approximate distributions and their deriva-
tives by different families of smooth functions and their 
derivatives? 

(ii) What are the different types of approximation?  

(iii) What is the impact of the approximation on the proper-
ties of the associated control problem and on the nature of 
the resulting transition, when smooth functions are used? 

It is assumed that the input to the LTI is a linear combina-
tion of Dirac δ -function and its first 1n−  derivatives, ie 

( ) ( ) ( )
0

n
k

o k
k

u t a tδ
=

=∑ .                   (2.3) 

which is a linear combination of Dirac δ -function and its 

first 1n−  derivatives,  where ( )kδ  or 
k

k

d

dt

δ
 is the thk  deriva-

tive of the Dirac δ -function, and ka  for oi n∈
�

 ( on �
�

 

{ }0,1,2,..., 1n− ) are the magnitudes of the delta function and 

its derivatives. We shall denote the state of the system at time 

0t −=  as ( )0x −  and at time 0t +≥  achieves as ( )0x + . We 

assume that ( ) [ ]0 0 0 0
T

x − = …  at 0t −=
 
and ( )0x +  

[ ]1 2

T

nx x x= …  at 0t +≥ . Furthermore, we assume that 

the system is controllable and thus we can transfer the state 
in any desired point of the state space.  

Furthermore, we assume that our system is controllable, i.e. 
we can transfer the state in any desired point. Let the state of 

the system at time 0t −=  is ( )0 0x − =  and at time 0t +=  

achieves ( )0x + . The existence of an input that transfers the 

state of the system (2.1) from ( )0 0x − =  to ( )0x +  requires 

that the vector ( )0x +  belongs to the controllable subspace of 

the pair. The necessary and sufficient condition for the state 

of a system (1) to be transferred from ( )0 0x − =  at time 

0t −=  to some ( ) { }0 |x A b+ ∈ �  at 0t +=  by the action of 

control input of type (2.3) is that the resulting trajectory ( )x t  

is expressed as ( ) ( ) ( )
1

0

n
k

k
k

x t tβ δ
−

=

=∑  where the coefficients 

kβ  for oi n∈
�

 are chosen to be the components of ( )0x +  

along the subspace 2, , ,b Ab A b 1, nA b−
… , respectively ac-

cording to some projections law. 

In the next section, we consider some background results 
on the approximation of Dirac delta function are presented. 

 

3. APPROXIMATIONS OF DIRAC DELTA FUNCTION 

Defining smooth functions, which can approximate in some 
sense distributions, has been a problem that has been consid-
ered in the literature. In this section, we review these results 
and we suggest a systematic and very rigorous procedure for 
generating sequences of its derivatives. If one of the different 
approximations of Dirac δ -function is being followed, (see 
Gupta and Hasdorff, (1963), Gupta, (1966), Zemanian, 
(1987), Cohen and Kirchner, (1991), Estrada and Kanwal, 
(2000), Kanwal, (2004) etc) the change of the state in some 
minimum practical time depends mainly upon how well the 
approximations have being generated. The relationship be-
tween the approximation used and the resulting time for the 
transition is an important issue that is considered subse-
quently. 

The Dirac δ -function can be viewed as the limit of se-
quence function 

( ) ( )
0

lim aa
t tδ δ

→
= ,                        (3.1) 

where ( )a tδ  is called a nascent delta function. This limits is 

in the sense that 

( ) ( ) ( )
0

lim 0a
a

t f t dt fδ
+∞

→
−∞

=∫ .                    (3.2) 

These properties can often be simulated by using a smooth, 
finite approximation of the Dirac distribution. Such approxi-
mations have additional advantages. In fact, approximating 
the Dirac distribution by a smooth function may actually be a 
better representation of the solution sought in the particular 
problem, especially if the width of the approximation func-
tion can be coupled to the physics of the problem. Following 
the ideas of Cohen and Kirschner (1991), a suitable approxi-
mating function, which is convenient for computations, 
should satisfy the following important properties everywhere 
on the domain under consideration: 



 
 

     

 

1. Its limit with some defining parameter is the Dirac distri-
bution (see eq. (3.1)). 

2. It is positive, decreases monotonically from a finite 
maximum at the source   point, and tends to zero at the do-
main extremes. 

3. Its derivative exists and is continuous function. 

4. It is symmetric about the source point, for instance 0 (see 
eq. (3.1) and (3.2)). 

5. It can be represented by a reasonably simple Fourier inte-
gral (for infinite domains) or Fourier series (for finite do-
mains). 

Next, we discuss the appropriate approximation of Dirac 
function based on the finiteness or infiniteness of the time 
domain. 

    3.1. Infinite Time Domain  

We first point out that the best nascent delta function de-
pends on the particular application. Some well known and 
very useful in applications nascent delta functions are the 
Gaussian and Cauchy distributions, the rectangular function, 
the derivative of the sigmoid (or Fermi-Dirac) function, the 
Airy function etc; see for instance Gupta (1966), Zemanian 
(1987), Estrada and Kanwal (2000), Kanwal (2004) et al. and 
recently the use of a finite difference formula which is con-
verted into an appropriate sequence; see Boykin (2003). A 
short review of such approximations is given next.  

A very useful in applications nascent delta function are: 

● The Cauchy distributions, 

( ) 2 2

1 1 ikt ak
a

a
t e dk

a t
δ

π π
∞ −

−∞
= =

+ ∫ , 

● The rectangular function, 

( ) ( )/ 1
sin

2 2
ikt

a

rect t a ak
t c e dk

a
δ

π π
∞

−∞

 = =  
 

∫ , 

● The derivative of the sigmoid (or Fermi-Dirac) function, 

( ) / /

1 1

1 1a t tt a t a
t

e e
δ −= ∂ = −∂

+ +
,  

● The Airy function  

( ) 1
a i

t
t A

a a
δ  =  

 
. 

Following Boykin (2003), the finite difference formula may 
be easily converted into a sequence that approaches a deriva-
tive of the Dirac delta function in one dimension.  

Thus, we obtain 

( )
1

,
2 2

0,          
2

a

a a
t

at
a

t

δ

 − < <= 
 >


 ,             (3.3) 

which approaches ( )tδ  as 0a → . Moreover, an expression 

for the derivatives of the Dirac delta can be given by the fol-
lowing equation,  

    ( ) ( )
0

00

1
lim ,

kk k

j a jk a
jk

d
x a x b h

hdx
δ δ

→ =→

  = +  
   

∑     (3.4) 

where ox t t= −  and we use  

( ) |
o

k

t tk

d
u

du
δ − = ( ) ( )1 |

k
k

xk

d
u

du
δ− . 

The expression (3.4) is exactly what we might obtain by 
simply making the substitution ( ) ( )af t tδ→  in the follow-

ing finite difference approximation for the thk derivative of a 
test function f  evaluated at ot  which can be represented as  

( ) ( )
0

1
|

o

kk k

t t j o jk
j

d
f t a f t b h

hdt =
=

 ≈ + 
 

∑ .        (3.5) 

Note that ja  and jb  are suitable chosen constants and (3.5) 

becomes exactly in the limit 0h → . Furthermore, due to the 
fact that f  is sampled at discrete points, we can write 

( ) ( )( ) ( )
0

0

1
| lim

o

kk k

t t j o jk h
j

d
f t a t t b h f t dt

hdt
δ

+∞

= →
= −∞

   = − +  
   

∑ ∫  

(3.6) 

   3.2. Finite Time Domain 

Unfortunately, the Gaussian distribution is not a good ap-
proximation of the Dirac distribution on a finite domain, 
namely that the first derivative (which is important in this 
paper) can be discontinuous at a special point. Thus, recently, 
a different approximation has been proposed by Cohen and 
Kirschner (1991), which satisfies all the properties (1) 
through (5). This is the β -distribution of the classical prob-

ability theory. This distribution has the expression 

( )
( ) ( )

( ) ( )

1 1

2 1
,

2 ,

0                            ,

a b

a
B a b

otherwise

π

π θ π θ
θ

β θ π

− −

−

 + −
∀ ∈

= 



J
      (3.7) 

where J  is a finite interval and 

( ) ( ) ( ) ( ) ( )
( )

1 1
,

a b a b
B a b d

a b
π θ π θ θ− − Γ Γ

+ − =
Γ +∫� J

, 

where also ( )xΓ  is the well-known Gamma distribution. 

Since, in the next few lines of the present paper, the infinite 
time domain is used, the interesting reader may consult 
Cohen and Kirschner (1991) for further details. 

 

 



 
 

     

 

3.3 Why a sum of Dirac Delta Functions? 

However, in our approach, our time domain is infinite and 
the classical Gaussian distribution, i.e. 

( ) 2 2/2

0 0

1 1
lim lim

2
t t

t e σ

σ σ
δ

σ σσ π
−

→ →

 = = Φ  
 

,         (3.8) 

where  ( ) 2 / 21

2
xx e

π
−Φ =  is being used.  

Consequently, the approximate expression for the controller 
(2.3) is given by  

                       ( ) ( )
1

1
0

1
,

n
k

k k
k

t
u t aσ σσ

−

+
=

 = Φ  
 

∑                 (3.9) 

where ( )
ii

i

i

t d t t

dtσ σ σ
      Φ = Φ             

. 

Then, we take the limit      

( ) ( )
0

limou t u tσσ →
= .             (3.10) 

Moreover, at the end of this section, we are answering to an-
other significant question: “why a sum of Dirac delta func-
tions?”  

Considering the results of 2nd section and the whole discus-
sion till that part of the 3nd section, generally speaking, we 
should point out that the input for the linear differential sys-
tem (2.1) should be given by a single-layer distribution; see 
Zemanian (1987), Estrada and Kanwal (2000) and Kanwal 
(2004). This kind of distributions has a huge importance in 
many applications.  

Lemma 3.1 If U  is a bounded closed set in F  and Y  is a 
neighbourhood of U , then there exists a function such that 

1n =  on U , 0n =  outside Y , and 0 1n≤ ≤  over F .�  

Definition 3.1 Let S  be a piecewise regular curve in F  and 
σ  is a locally integrable function defined on S . The linear 
continuous functional Sσδ  on the space D  of infinitely dif-

ferentiable complex-valued functions on F  with compact 
support is defined as 

( ) ( ),S S
Sσδ ϕ ϕ ξ σ ξ δ= ∫  

 ϕ∀ ∈D  and is called single (or simple) layer on S  with 

density σ .�  

Note that ( ) ( ) ( )S S
x x Sξσδ δ ξ σ ξ δ= −∫ . 

Definition 3.2 Let S  be a piecewise regular curve in F  and 

Sµδ . The linear continuous functional ( )/ Sd dt µδ−  on the 

space D  of infinitely differentiable complex-valued func-
tions on F  with bounded support is defined as 

( ) ( ) ( )
/ ,S S

d x
d dt S

dt

ϕ ξ
σδ ϕ σ ξ δ

−
− = ∫   ϕ∀ ∈D .  �  

Consequently, it can be easily shown that every distribution 

( )S xσδ  that has compact support is of finite order, see Ze-

manian (1987) Estrada and Kanwal (2000). Thus, it is de-
duced that every distribution ( )S xσδ  whose support is the 

point x τ=  has the form ( ) ( )1

0

n k
kk

c tδ τ−

=
−∑ , i.e. a linear in-

dependent combination of Dirac δ -function and its first 
1n−  derivatives. Consequently, since we are interesting to 

transfer the state of system (2.1) at time 0t −=  from the ini-

tial point ( )0x −  and at time 0t +=  to achieve ( )0x + , (2.3) 

is appropriate, when the support point is 0τ = . 

 

  4. MAIN RESULTS  

In this section, we will try to answer to the following ques-

tions: “if we wish to achieve state ( )0x +  at time 0t +=  what 

are the necessary coefficients ka  for k n∈
�

 and what is the 

optimal choice of volatility σ
 
that it takes the state there at 

time 0t +≥ ?”  In this direction, the following known results 

are significant.  

Lemma 4.1 The solution of system (2.1) is given by  

( ) ( ) ,
t

At A
ox t e e bu dτ τ τ−

−∞

= ∫          (4.1) 

where A  is diagonal and ( )ou τ  is given by combining (3.9) 

and (3.10).�  

Remark 4.1 In the general case, the matrix A  is not always 
simple. However, the problem described above can be solved 
similarly. In this case, we should generate n  linearly inde-
pendent vectors 1 2, , , nv v v…  and a n n×  similarity transfor-

mation [ ]1 2, , , nQ v v v= …  that takes A  into the Jordan ca-

nonical form. In the next lines, we present briefly the more 
essential part. Further details are omitted, since they are far 
beyond the scopes of the present version of the paper.  

Thus, there exists an invertible matrix ( );Q n n∈ ×M F  

such as 1J Q AQ−= , where ( );J n n∈ ×M F  is the Jordan 

canonical form of matrix A . Analytically,   

{ }1 2 , , , ,o q q kJ block diag J J J J+ += …  

• The block diagonal matrix { }1 2 , , ,o qJ block diag J J J= … ,  

where  

                   

( )

1 0

1
;

1

0

i

i
i i i

i

J

λ
λ

τ τ

λ

 
 
 = ∈ ×
 
 
 

�
M F   

is also a diagonal matrix with diagonal elements the eigen-
value iλ , for i q=

�
. Consequently, the dimension of oJ  is 

,s s×
1

q

ii
s τ

=∑� . 



 
 

     

 

• Also, each block matrix { },1 ,2 , , , ,
jj j j j dJ block diag J J J= … ,   

( ),

1

1

;

1
j

j

j

jj z j j

j

J z z

λ
λ

λ

λ

 
 
 
 = ∈ ×
 
 
 
 

�

�

M F  

for 1, 2, ,j q q k= + + … , and j jz d=
�

 . �  

However, only for the simplicity of calculations, we have 
already assumed that the matrix A  is in diagonal form. Con-
sequently, the solution (4.1) is transposed into  

( ) ( )
0

lim  
t

At Ax t e e bu dτ
σσ

τ τ−

→
−∞

  =  
  

∫ ,  

or equivalently,  

( ) ( )
1

10
0

1
lim

t n
kAt A

k k
k

x t e e b a dτ

σ

τ τ
σσ

−
−

+→ =−∞

  = Φ  
  

∑∫ . 

Remark 4.2 In order to make our calculations affordable due 
to the long number of terms that get involved, we consider 

the fact that ( )
21

2/ 1 / 2  
t

t e σσ π
 −  
 Φ = and its derivatives 

tend to zero very strongly with /t σ → ∞  (note that 0σ → ).  

Thus, by letting ( )/ ,t K tσ σ= , where ( ),K t σ  is chosen 

large enough (i.e. ( ),K t σ → ∞ ) that the assumption as 

stated above is valid, i.e.   

( ) ( )( )
( ),

/ , 0,
K t

t K t
σ

σ σ
→∞

Φ Φ →�  

and its derivatives   

( ) ( ) ( ) ( )( )
( ),

/ , 0
K t

k kt K t
σ

σ σ
→∞

Φ Φ →� , for ok n∈
�

.�  

Actually, the choice of ( ),K t σ  depends on the choice of 

time t  and the volatility σ  (note that 0σ → ). In practice, 
the time t  can be fixed, since we can pre-define the time in 
order to change the initial state of the system in (almost) zero 
time, for instance it can be 610t −∝ seconds. So, as we will 
see analytically in the next paragraphs, the problem can be 
transferred into a distance-minimization problem, since we 
want to determine  

( ) ( )( )
* *

*

inf{ :     ,

                             , 0, }.k
o

for a fixed time t

such that K t k n

σ σ

σ

+= ∈

Φ → ∈

�

�

 

For the optimal choice of  *σ  , we have to minimize the dis-

tance ( ) ( )* *ˆx t x t−  using the Euclidian norm, i.e. 

( ) ( )* *

2
ˆ 0x t x t− → ,     (4.2) 

where ( )*x t  is the desired state and ( )*x̂ t  is given by the 

approximation procedure, see equation (4.1).  

The following lemma is required for the subsequent devel-
opments. Our objective is to re-write the equation (4.1). 

Lemma 4.2 The approximated expression (4.3) holds,   

( ) ( )( )
2 21 1

1 2

0

,
i

i

t n
k

i k i
k

e u d K t e a
λ σλ τ

σ τ τ σ λ σ λ
−

− −

=−∞

≈ Φ + ∑∫ ,  (4.3) 

where  

( ) ( ) ( )1 12erf 2 1
x

x y dy x− −

−∞
Φ Φ = −∫� , when ( )0,1x∈ . 

Proof: Substituting the expression (3.9) into the integral 

( )i

t

e u dλ τ
σ τ τ−

−∞
∫ , and we obtain  

( ) ( )
( ) ( )1 1

1 1
0 0

/
/ .i i

kt tn n
kk

kk k
k k

a
e d a e dλ τ λ τ τ σ

τ σ τ τ
σ σ

− −
− −

+ +
= =−∞ −∞

Φ
Φ =∑ ∑∫ ∫  

Let us start with  

( ) 2

2

2
2 2 2 2

2

11 1
122 2

/ 1

2

1

2

i i

i

t t

t

i

e d e e d

t
e e d e

ι ι

τ
λ τ λ τ σ

τ λ σλ σ λ σσ

τ σ
τ τ

σ σ π

τ λ σ
σσ π

−
− −

−∞ −∞

 − +  − 

−∞

Φ
=

 = = Φ + 
 

∫ ∫

∫
 

Now, we will calculate 

( ) ( ) ( )
2

/ /1
/i i i

t t
t

ie d e e dλ τ λ τ λ ττ σ τ σ
τ τ σ λ τ

σ σ σ
− − −

−∞
−∞ −∞

′Φ Φ
= Φ +∫ ∫
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                             / ,i t
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e t e

ιλ σλ σ λ λ σ
σ σ
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1 1
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t
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ιλ σλ λ σ σ λ λ σ
σ σσ
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Similarly, we can prove that  

( ) ( )

( )
2 2

1

1
1 12

1
1

/

1
.

i
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∫

∑
 

Now, we choose ( )/ ,t K tσ σ= , (note that 0σ → ) where 

( ),K t σ  is chosen large enough (i.e. ( ),K t σ → ∞ ) such as   



 
 

     

 

( ) ( )( )
( ),

/ ,     0,
K t

t K t
σ

σ σ
→∞

Φ Φ →�   

and its derivatives   

( ) ( ) ( ) ( )( )
( ),

/ , 0
K t

k kt K t
σ

σ σ
→∞

Φ Φ →� , for ok n∈
�

. 

Consequently, we have 

( ) ( ) ( )( )
2 21

12
1

/
, ,i

kt
k
i ik

e d e K t
ιλ σλ τ τ σ

τ λ σ λ σ
σ

− −
+

−∞

Φ
≈ Φ +∫  

and (4.3) is proven.�   
Furthermore, combining expressions (4.1) and (4.3), we take 

( )( ) ( ) ( )( )
2 21 1, 12

0

, ,
i i

nK t k
i i i k i

k

x K t e K t b a
λ σ σ λ σ

σ σ σ λ σ λ
−+ −

=
≈ Φ + ∑ , 

for 1,2, ,i n= … . (4.4) 

Note that since we have assumed that ( ),
t

K t σ
σ

= → ∞
  

then, we have to consider the solution of (2.1) at time *t =  

( ),K t σ σ  (which can be 610−∝ ).�  

Consequently, the following lemma derives. 

Lemma 4.3 For the diagonal matrix A  we obtain the system  

( )1 *ˆa V x t−= ,             (4.5) 

where ( )* ,t K t σ σ= , ( )1 2, ,..., nV V λ λ λ=  is the Vander-

monde matrix, 

( ) ( )( )
( ) ( )( )

2 2

*
1

, 12

,
ˆ

,
i i

i

i
K t

i i

x K t
x t

e K t b
λ σ σ λ σ

σ σ

σ λ σ
+ −Φ +

� , for i n∈
�

(4.6)  

and [ ]1 1

T

o na a a a −= � . 

Proof: The expression (4.4) can be re-written as follows  
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for i n∈
�

. Now by making some simple algebra, we have 
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or equivalently  
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since the eigenvalues iλ ’s are distinct, the Vandermonde 

matrix exists, from which we can obtain the expression (4.6).   
�  

Now, we will return to the expression (4.2), i.e.  

( ) ( )
( )( ) ( )( )

* *

2

2

1

ˆ

ˆ                , , 0
n

i ii

x t x t

x K t x K tσ σ σ σ
=

−

 = − → ∑  

if and only if we determine ( ),K t σ  such that 
 

( )( )
2 21

1 2, .
i

iK t e
λ σ

σ λ σ
−−Φ + =

      
(4.7) 

The expression (4.2) is very elegant because it transfers a 
pure system and control theory problem into a standard statis-
tical problem. Theoretically speaking, we have already as-
sumed that 0σ → , so expression (4.7) gives 

( )( ) ( )( ),1 , 1 1.
K t

K t x dx
σ

σ−

−∞
Φ = ⇔ Φ =∫       (4.8) 

In probability theory and statistics, the normal distribution 
or Gaussian distribution ( )xΦ  is a continuous probability 

distribution that often gives a good description of data that 
cluster around the mean. The graph of the associated prob-
ability density function is bell-shaped, with a peak at the 
mean, and is known as the Gaussian function or bell curve. 

Actually, in our case we are interested for  

( )( ),K t
x dx

σ

−∞
Φ∫ , 

which is the cumulative distribution function (cdf) of a 
random variable  X evaluated at a number ( ),K t σ  (with 

other words, it is the probability of the event that X is less 
than or equal to ( ),K t σ ). Fortunately, since we want the 

above expression to be equal to 1, i.e. (4.8) holds, we have 
only to look a standard cumulative normal distribution table, 
and we can straightforwardly determine the value of  

( ),K t σ , which can be given by the expression  

( )Pr , 1K K t σ≤ =   , 

assuming that K follows Gaussian (Normal) distribution. In 

practice, we can accept the value of  ( ),K t σ  to be equal or 

greater to 3.90. Consequently, we have obtained an analytic 
formula for the best choice of volatility σ , which is given by  

( ) ( )
*

1* * *, 0.256 .
,

t
K t t t

K t
σ σ

σ
−= = ≈ ⋅

 
(4.9)  

Remark 4.3 It is clear from (4.9) that the choice of the opti-

mal *σ  depends on the desired *t  and vice versa. �    
 
Now we are ready to propose the main result of this paper, 

which can be concluded into the following algorithm. 
 

 



 
 

     

 

Algorithm CIZT  

(Change In Zero Time) 

1st Step: Define the desired 

( ) ( ) ( ) ( )* * * *
1 2

T

nx t x t x t x t =  �  

for the state transmission. 

2nd Step: Pre-determined the required time *t  for the state 
transmission, then using the expression (4.9), the opti-

mal volatility * *0.256 tσ = ⋅  (since ( )* *, 3.9K t σ = ) is 

given. 

3rd Step: Finally, the coefficients [ ]1 1

T

o na a a a −= �   

are calculated by (4.5), i.e. ( )1 *ˆa V x t−= , where  
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is the Vandermonde matrix, and  

( ) ( )( )
( )* * *

* * *

*

,

,
ˆ

i

i

i K t

i

x K t
x t

e b
λ σ σ

σ σ
≈ , for i n∈

�
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Remark 4.4 From the control viewpoint and the type of the 
application (that the change of the initial conditions required), 
it is significant to choose an appropriate time for the initial 
state transition. As we can see in the following example, con-
sidering Remark 4.3, the time can take any desired value, but 
the volatility *σ  should always satisfy the expression (4.9) in 
order to have an excellent approximation, see also Remark 
4.2.       
Example 4.1 (See Gupta, 1966) Consider the system  

( )
( )

( )
( ) ( )1 1

2 2

2 0 1

0 3 2 o

x t x t
u t

x t x t

′   −   
= +      ′ −      

 

where ( ) ( )( ), 2 1;x t ∞∈ ×� �C M  and ( )ou t ∈�  are the 

state vector and the input, respectively. The square diagonal 

matrix ( )2 0
2 2;

0 3
A

− 
= ∈ × − 

�M , and the input vector 

( )1
2 1;

2
b

 
= ∈ × 
 

�M  are derived. 

For this system, it is desired to change the state from 

( ) 0
0

0
x −  

=  
   

at time 0−  to ( )* 3

4
x t

 
=  
   

at time * 610t −=  

seconds (or 1 microsecond). For this task, we want to design 
an input (2.3) to achieve this in 1 microsecond.  

Here the step of our CIZT algorithm should be run.    

1st Step: The desired state is ( )* 3

4
x t

 
=  
 

. 

2nd Step: We have pre-determined the required time 
* 610t −= , so the optimal volatility * 72.56 10σ −= ⋅  (since 

( )* *, 3.9K t σ = ) . 

3rd Step: Then,  

( ) 66 2 10
1̂ 10 3x e

−− ⋅≈  and ( ) 66 3 10
2ˆ 10 2x e

−− ⋅≈ , 

The inverse of the Vandermonde matrix is 

( )
1

1 1 1 2 3 2
2, 3 .

1 3 1 1
V V

−
− − − −   

= − − = =   − −   
 

Finally, the coefficients 
1
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a

a

 
=  
 

  are calculated, i.e. 
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o
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− −
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5.000006 5
                                

1.000001 1

   
= ≈   
   

. 

 

    5. CONCLUSIONS 

In this paper, a methodology has been proposed for approx-
imating the distributional trajectory that transfers the state of 
a linear differential system in (almost) zero time by using the 
impulse-function and its derivatives. Actually, the input vec-
tor has to be made as a linear combination of the δ -function 
of Dirac and its derivatives. However, the approximation is 
based on the Gaussian (Normal) function. The work has in-
volved the following three distinct problems:  

(i) We have started with the impulsive trajectory that trans-
fers the origin to a point in the state space and used this as the 
central point motivating the need to approximate distributions 
by smooth functions.  

 (ii) After that, we have examined the family of Gaussian 
functions, which may be used to approximate distributions 
and we have defined an appropriate Euclidean metric to 
measure how good the approximation is and investigates the 
link of the σ parameter of Gauss functions to the time and 
inevitably to the distance from the desirable initial state.  

(iii) We have pre-determined the minimal time required for 
achieving a solution to the above standard controllability 
problem in terms of approximations to the distributional solu-
tions, by using Gaussian families for the approximation. Fi-
nally, the CIZT algorithm has been proposed for the calcula-
tion of the coefficients of our input function.   

As further research, of special interest is the link of ap-
proximation to the energy and time requirements for the 



 
 

     

 

transfer of the origin to a point within the R-sphere when the 
approximations to the distributional solutions is carried out. 
Such problems can be examined under restrictions on the 
energy of the input signal and we can qualify the links of the 
approximation on the energy and time requirements for the 
control signal. Clearly similar problems can be defined for 
the dual problem of reconstructibility. 
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