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Abstract

The computation of the greatest common divisor (GCD) of a set of polynomials has
interested the mathematicians for a long time and has attracted a lot of attention
in recent years. A challenging problem that arises from several applications, such
as control or image and signal processing, is to develop a numerical GCD method
that inherently has the potential to work efficiently with sets of several polynomials
with inexactly known coefficients. The presented work focuses on : (i) the use of
the basic principles of the ERES methodology for calculating the GCD of a set of
several polynomials and defining approximate solutions by developing the hybrid
implementation of this methodology. (ii) the use of the developed framework for
defining the approximate notions for the GCD as a distance problem in a projective
space to develop an optimization algorithm for evaluating the strength of different
ad-hoc approximations derived from different algorithms. The presented new im-
plementation of ERES is based on the effective combination of symbolic-numeric
arithmetic (hybrid arithmetic) and shows interesting computational properties for
the approximate GCD problem. Additionally, an efficient implementation of the
strength of an approximate GCD is given by exploiting some of the special aspects
of the respective distance problem. Finally, the overall performance of the ERES
algorithm for computing approximate solutions is discussed.
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1 Introduction

The computation of the Greatest Common Divisor (GCD) of polynomials is
a fundamental problem in many mathematical areas such as linear systems,
control theory, network theory and communications. The GCD is central to
the development of algebraic synthesis methods and its robust computation
is a key issue. Finding the GCD of a set of m real univariate polynomials
of maximal degree n, is a classical problem that has been considered before
{[2,3,9,17,20,25,7,22,27,28] and reference therein} and can be seen in several
engineering problems and applications such as image processing, signal pro-
cessing, robotics and others. However, engineering models are not exact and
they are always characterised by parameter uncertainty. This introduces some
considerable problems with any framework based on exact symbolic tools,
given that the underlined models are always characterised by parameter un-
certainty. The central challenge is the transformation of algebraic notions to
an appropriate analytic setup within which meaningful approximate solutions
to exact algebraic problems may be sought. This motivates the need for trans-
forming the algebraic problems into equivalent linear algebra problems and
then develop approximate algebraic computations, which are appropriate for
the case of computations on models characterised by parameter uncertainty.

A number of important invariants for linear systems rely on the notion of
GCD of many polynomials and, in fact, the GCD is instrumental in defin-
ing system notions such as zeros, decoupling zeros, zeros at infinity, notions
of minimality of system representations etc.̇ On the other hand, systems and
control methods provide concepts and tools, which enable the development of
new computational procedures for the GCD. The computational methods for
specifying the GCD or the approximate GCD of polynomials are separated
in two main categories: The Euclidean type methods [4,5,26], which rely on
pairwise computations and the Matrix based methods, which are based on pro-
cessing a matrix formed directly from the coefficients of the given polynomials.
According to the way that the matrix is processed, the matrix based methods
are separated in those which a) form and work with a matrix that corresponds
to the whole set of polynomials [2,3,9,20,25,28] and b) form a matrix for two
polynomials and work on pairwise computations [10,22,26,33].

A major challenge for the control theoretic applications of the GCD is that
frequently we have to deal with a very large number of polynomials. It is this
requirement that makes the pairwise type approaches for GCD [4,5,22,26,33]
not suitable for such applications. The GCD related work described in this
paper goes back to the attempt to introduce the notion of almost zero of a set
of polynomials [19] and study the properties of such zeros from the feedback
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viewpoint. This work was subsequently developed to a methodology for com-
puting the approximate GCD of polynomials using numerical linear algebra
methods, such as the ERES [25] and matrix pencil methods [20]. The results
in this area of computations are important in the development of meaningful
solutions to algebraic system theory problems for models characterised by pa-
rameter uncertainty and they are linked to a large range of related problems
such as :

(i) Almost non-coprimeness and solutions of polynomial Diofantine Equa-
tions.

(ii) Characterisation of Almost uncontrollability and Almost unobservability.
(iii) Approximate factorisation of rational transfer function models.

The existence of certain types and/or values of invariants and system prop-
erties may be classified as generic or nongeneric [15,23,32,16] on a family of
linear models. Computing, or evaluating nongeneric types, or values of invari-
ants and thus associated system properties on models with numerical inac-
curacies is crucial for applications. For such cases, symbolic tools fail, since
almost always lead to a generic solution, which does not represent the approx-
imate presence of the property on the set of models under considerations. The
formulation of a methodology for robust computation of nongeneric algebraic
invariants, or nongeneric values of generic ones [21], has as prerequisites :

(a) The development of a numerical linear algebra characterisation of the
invariants, which may allow the measurement of degree of presence of
the property on every point of the parameter set.

(b) The development of special numerical tools, which avoid the introduction
of additional errors.

(c) The formulation of appropriate criteria, which allow the termination of
algorithms at certain steps and the definition of meaningful approximate
solutions to the algebraic computation problem.

It is clear that the formulation of the algebraic problem as an equivalent
numerical linear algebra problem, is essential in transforming concepts of al-
gebraic nature to equivalent concepts of analytic character and thus setup the
right framework for approximations.

This paper focuses on the development of a hybrid implementation of the
method known as ERES (Extended Row Equivalence and Shifting operations)
[25] for the computation of the GCD of many polynomials, which inherently
has the potential to define approximate solutions to the GCD problem and
the development of a numerical method for evaluating the strength of such
approximations [18]. The basic principle of the methodology is that the GCD
is a property of the row space of the basis matrix of the set of polynomials, and
this property is also invariant under the symbolic operation of shifting. The
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ERES method is thus a matrix based method based on a property of invariance
of the GCD [17], that is row transformations and shifting operations on the
basis matrix of the set of polynomials, which is formed from the coefficients
of the polynomials of the set. The present method has the advantage that :

• It can handle many polynomials simultaneously, without resorting to the
successive two at a time computations of the Euclidean or other pairwise
based approaches [4,5,22,26,33].
• It invokes a numerical termination criterion that allows the derivation of

approximate solutions to the GCD computation problem.
• It allows the combination of symbolic-numeric operations performed effec-

tively in a mixture of numerical and symbolical steps.

In this paper the definition of the approximate GCD is considered as a distance
problem in a projective space. The evaluation of the strength of approxima-
tion for approximate GCD computations has been an important drawback
until recently for all matrix based methods dealing simultaneously with many
polynomials. A rigorous definition of the approximate GCD has been given
recently [18] that allows the computation of the strength of approximation
and sets up a framework for computing the optimal approximate GCD. This
approach is based on recent results [11] on the representation of the GCD of
many polynomials in terms of the factorisation of the generalised resultant
and a Toeplitz matrix representation of the GCD. These results allow the
parameterisation of all perturbations, which are required to make a selected
approximate GCD, an exact GCD of the perturbed set of polynomials. The
evaluation of the strength of approximation is equivalent to an evaluation of a
distance problem in a projective space and it is thus reduced to an optimiza-
tion problem.

This paper aims:

• To use the basic principles of the ERES methodology [17,25] for defining
approximate solutions to the GCD problem by developing the hybrid im-
plementation of this methodology.
• To use the recently developed framework for defining the approximate no-

tions for the GCD as a distance problem in a projective space [18] to develop
an optimization algorithm for evaluating the strength of different ad-hoc ap-
proximations derived from different algorithms.

The new present implementation of ERES combines in an optimal setup the
symbolical application of rows transformations and shifting, and the numer-
ical computation of an appropriate termination criterion, which can provide
the required approximate solutions. This combination highlights the hybridity
of the ERES method. Generally, symbolic processing is used to improve on
the conditioning of the input data, or to handle a numerically ill-conditioned
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subproblem, and numeric tools are used in accelerating certain parts of an
algorithm, or in computing approximate outputs. The effective combination
of symbolic and numerical operations depends on the nature of an algebraic
method and the proper handling of the input data either as rational or floating-
point numbers. Symbolic-numeric implementation is possible in software pro-
gramming environments with symbolic-numeric arithmetic capabilities such
as Maple, Mathematica, Matlab and others, which involve the efficient combi-
nation of exact (rational-symbolic) and numerical (floating-point) operations.
This combination gives a different perspective in the way to implement an
algorithm and uses the notion of hybrid computations.

In the following, R and Z denotes the real and integer numbers respectively and
R[s] denotes the polynomial ring of univariate polynomials with coefficients
from the reals. Capital letters denote matrices and small underlined letters
denote vectors. If A ∈ Rµ×ν is an µ × ν matrix with elements from R, then
its rank will be denoted by ρ(A), the respective transposed matrix will be
denoted by At and by ‖A‖F or simply ‖A‖ we denote the Frobenius matrix
norm of A, [8,14].

1.1 Notation and preliminary definitions

Let us consider the set of univariate polynomials

Ph+1,n =
{
a(s), bi(s) ∈ R[s], i = 1, 2, . . . , h with

n = deg{a(s)}, p = max
1≤i≤h

{
deg{bi(s)}

}
≤ n

}
(1)

We represent the polynomials a(s), bi(s) with respect to the highest degrees
(n, p) as :

a(s) = ans
n + an−1s

n−1 + . . .+ a1s+ a0 , an 6= 0

bi(s) = bi,ps
p + . . .+ bi,1s+ bi,0 , i = 1, 2, . . . , h (2)

The set Ph+1,n will be called an (n, p)-ordered polynomial set and whenever
we want to denote the number of elements and the maximal degree of a poly-
nomial set we shall use this notation, otherwise the set of polynomials will be
abbreviated as P . Also, we shall denote by Π(n, p;h + 1) the family of poly-
nomial sets Ph+1,n having h + 1 elements and highest degrees (n, p), n ≥ p ;
i.e. if the degrees of the polynomials in the set are denoted by di, i = 0, . . . , h,
then d0 ≥ d1 ≥ d2 ≥ . . . ≥ dh and d0 = n, d1 = p.

5



Definition 1 For any Ph+1,n set, we define a vector representative (vr)
p
h+1

(s) and a basis matrix Ph+1 represented as :

p
h+1

(s) = [a(s), b1(s), . . . , bh(s)]
t = [p

0
, p

1
, . . . , p

n−1
, p

n
] · en(s) = Ph+1 en(s)

where Ph+1 ∈ R(h+1)×(n+1), en(s) = [1, s, . . . , sn−1, sn]t.

If c is the integer for which p
0

= . . . = p
c−1

= 0, p
c
6= 0, then c = w(Ph+1,n)

is called the order of Ph+1,n and sc is an elementary divisor of the GCD. The
set Ph+1,n is considered to be a c-order set and will be called proper if c = 0,
and non-proper if c ≥ 1. Clearly,

gcd(Ph+1,n) = sc · gcd(Ph+1,n−c)

In the following and without loss of generality, we assume that Ph+1,n is proper.

2 The ERES methodology

Given a set Ph+1,n of many polynomials with a basis matrix Ph+1 the following
operations are defined [17]:

(i) Elementary row operations with scalars from R on Ph+1.
(ii) Addition or elimination of zero rows on Ph+1.

(iii) If at = [0, . . . , 0, al, . . . , an+1] ∈ Rn+1, al 6= 0 is a row of Ph+1 then we
define as the Shifting operation

shf : shf(at) = [al, . . . , an+1, 0, . . . , 0] ∈ Rn+1

By shf(Ph+1,n), we shall denote the set obtained from Ph+1,n by applying
shifting on every row of Ph+1. Type (i), (ii) and (iii) operations are referred to
as Extended-Row-Equivalence and Shifting (ERES) operations. The following
theorem describes the properties characterizing the GCD of any given Ph+1,n

[17].

Theorem 2 For any set Ph+1,n, with a basis matrix Ph+1, ρ(Ph+1) = r and
gcd{Ph+1,n} = φ(s) we have the following properties :

(i) If RP is the row space of Ph+1, then φ(s) is an invariant of RP (e.g.
φ(s) remains invariant after the execution of elementary row operations
on Ph+1). Furthermore if r = dim(RP ) = n+ 1, then φ(s) = 1.

(ii) If w(Ph+1,n) = c ≥ 1, shf(Ph+1,n), then

φ(s) = gcd{Ph+1,n} = sc · gcd {shf(Ph+1,n)}
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(iii) If Ph+1,n is proper, then φ(s) is invariant under the combined ERES set
of operations.

Remark 3 The GCD of any set of polynomials is a property of the row space
of the basis matrix of the set. Thus, the computation of the GCD requires
selection of a basis that is best suited for such computations. The issue of
selecting the best possible base from all those provided by the rows of the basis
matrix without transforming the original data is critical for such computations
and this problem is referred to as selection of the best uncorrupted base [25].
It is this property, which indicated that not all polynomials are required for the
computation of the GCD.

From Theorem (2) it is evident that ERES operations preserve the GCD
of any Ph+1,n and thus can be easily applied in order to obtain a modified
basis matrix with much simpler structure. The successive application of these
operations on a basis matrix of a set of polynomials leads to the formulation of
the ERES methodology for computing the GCD of a set of polynomials [25].
After successive applications of ERES operations on an initial basis matrix,
the maximal degree of the resulting set of polynomials is reduced and after a
finite number of steps the resulting basis matrix has rank one. In that stage,
any row of the matrix specifies the coefficients of the required GCD of the set.
Provided that operations are performed exactly, the computation of the GCD
by using the ERES method is straightforward.

The development of the ERES algorithm requires the treatment of the follow-
ing problems :

P1 Selection of the best uncorrupted base of the given set of polynomials.
P2 Application of the ERES operations.
P3 The development of a proper termination criterion.

The above requirements are actually the most essential parts of the ERES
algorithm and their proper implementation determines the overall behavior of
the algorithm. In the context of symbolic-numeric implementation, the prob-
lems P1-P3 can be handled as follows:

P1: A method for the selection of the best uncorrupted base [25] relies on the
properties of the Gram matrix and uses tools from the theory of com-
pound matrices [24]. However, this method seems to become inefficient
due to its high complexity for sets of many polynomials. Alternatively, it
is simpler to get a base of the original set of polynomials by applying sym-
bolically (rational operations) a triangularisation method, such as Gaus-
sian elimination, to the original basis matrix Ph+1. Although the original
data are transformed, the introduction of round-off errors is avoided and
the computation of the GCD remains unaffected.

P2: The most reliable tool for applying row operations is Gaussian Elimi-
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nation with partial pivoting. Due to the iterative nature of the ERES
method this process is preferable to be treated symbolically in order to
avoid the propagation of errors during the iterations. Additionally, the
first application of the Gaussian elimination to the basis matrix Ph+1 can
give us a base of the rowspace of Ph+1. The Shifting transformation is by
definition a symbolic operation and together with the Gaussian Elimina-
tion with partial pivoting they represent the main procedure of the ERES
algorithm.

P3: The algorithm’s termination criterion relies on the proper detection of the
final unity rank matrix and it can be based on the numerical computation
of the singular values of a normalized matrix, obtained at the end of
each iteration of the main procedure. We shall refer to it as the rank-1
procedure.

Therefore, the new approach for the implementation of the ERES algorithm
involves the use of exact (rational) operations for its main procedure and
numerical (floating-point) operations for the rank-1 procedure. The effects
from this combination on the ERES algorithm will be discussed next and the
algorithm in its new formulation is referred to as Hybrid ERES algorithm. The
numerical implementation of the ERES algorithm in finite precision arithmetic
has been analyzed in [25].

3 Implementation of the Hybrid ERES Algorithm

3.1 The hybrid structure of the algorithm

The construction of the algorithm of the ERES method is based on stable
algebraic processes, which are applied iteratively on the initial basis matrix
Ph+1 ∈ R(h+1)×(n+1). The main target of the ERES method is to reduce the
number of the rows of Ph+1 and finally to end up to a unity rank matrix,
which contains the coefficients of the GCD. An important key element in
the implementation of the Hybrid ERES algorithm is the selection of the
appropriate data structures to represent the input data. In a symbolic-numeric
software programming environment the type of data structures suggests the
type of arithmetic operations. Arithmetic operations with integers or fractions
of integers (rational operations) are performed in infinite accuracy and this is
an important feature to take into advantage.

Having a set Ph+1,n and its basis matrix Ph+1, a necessary preliminary step is to
convert the given floating-point data to rational format (fractions of integers)
and the next steps are implemented symbolically, using rational operations :
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• Reorder the rows of Ph+1 such that its first row corresponds to the polyno-
mial of the lowest degree.
• Scale the first row of the Ph+1 so as to have the maximum pivot.
• Apply Gaussian elimination with partial pivoting to Ph+1.
• Apply Shifting on every row of Ph+1 .

• Delete the zero rows and columns and form a new basis matrix P
(·)
h+1 with

reduced dimensions.

These steps underlie the main procedure of the Hybrid ERES algorithm. We
shall denote by P

(κ)
h+1 the matrix, which occurs after the κth iteration of the

main procedure of the algorithm (κ = 1, 2, . . .). If the produced matrix P
(κ)
h+1

has zero elements in its last column (i.e. the polynomials, which correspond to

the rows of the matrix, have different degrees) the above steps go over P
(κ)
h+1.

If the matrix P
(κ)
h+1 in the κth iteration has no zero elements in its last column

(i.e. the polynomials, which correspond to the rows of the matrix, have the
same degree), then a numerical copy of it is made and the next steps are
implemented numerically, using finite precision floating-point operations :

• Normalization of the rows of the matrix P
(κ)
h+1 using the Euclidean norm.

• Computation of the singular values of P
(κ)
h+1.

These steps underlie the rank-1 procedure of the Hybrid ERES algorithm. If
the matrix P

(κ)
h+1 has numerical εt-rank equal to 1 according to a small specified

accuracy εt > 0, the algorithm stops and gives an appropriate solution. Oth-
erwise, the algorithm continues with the main procedure using the rational
matrix P

(κ)
h+1. All the above steps are illustrated in Figure 1.

3.2 Computation of the GCD

The computation of the GCD with the Hybrid ERES algorithm depends on
the accuracy of the input data and the performed operations. If the coefficients
of the polynomials of the given set are exactly known and the GCD exists, then
the successive symbolic application of the processes of the main procedure of
the algorithm to the basis matrix of the set will lead to a final matrix with
rank equal to one exactly. Thus, any row of this matrix give the coefficients
of the GCD.

Otherwise, we must search for an approximate numerical solution, which is
actually provided by the rank-1 procedure of the algorithm. The numerical
computation of the singular values of P

(κ)
h+1 is a typical process to estimate

the rank of a matrix and provides the ERES algorithm with a termination
criterion. This criterion is applied when the polynomials, which correspond

9



Fig. 1. The Hybrid ERES Algorithm
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to the rows of the matrix, have the same degree and it is described in the
following theorem [25] :

Theorem 4 Let A = [a1, . . . , aµ]t ∈ Rµ×ν , µ ≤ ν, a1 6= 0, i = 1, . . . , µ.
Then for an appropriate accuracy εt > 0 the numerical εt-rank of A equals to
one (ρεt(A) = 1) if and only if the singular values σµ ≤ σµ−1 ≤ · · · ≤ σ1 of
the normalization AN = [u1, . . . , uµ]t ∈ Rµ×ν , ui = ai/‖ai‖2 of A satisfy the
conditions

|σ1 −
√
µ| ≤ εt and σi ≤ εt, i = 2, 3, . . . , µ .

Every time when the algorithm reaches that stage, there is a potential εt-rank
1 matrix for a specific tolerance εt and if we accept values of εt ≤ 10−1, we
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can obtain a series of matrices, that yield an εt-GCD. The computation of the
εt-GCD can be done according to the following proposition [25] :

Proposition 5 Let A = U · Σ ·W t be the singular value decomposition of a
given matrix A ∈ Rµ×ν , ρ(A) = 1. Then a “best” rank one approximation
to A in the Frobenius norm is given by A1 = σ1 · u · wt, where σ1 is the
largest singular value of A and u and w are the first columns of the orthogonal
matrices U and W of the singular value decomposition of A respectively. The
vector w is then the “best” representative of the rows of matrix A in the sense
of the rank one approximation.

Therefore, the polynomial that comes from the first row of the right singular
matrix of P

(N)
h+1, can be considered as the numerical output of the Hybrid ERES

algorithm.

Of course, the singular value decomposition is undoubtedly a robust numerical
procedure and, since we seek a unity rank matrix to stop the algorithm, the
only essential information we need is concerned with the first two singular
values of the matrix P

(N)
h+1. Thus, it is not necessary to perform the whole

singular value decomposition. The development of a partial singular value
decomposition algorithm is presented in [30,29]. The outline of a variation of
the classical singular value decomposition method, especially developed for
the efficient computation of the unique singular value and its right singular
vector of an approximate εt-rank 1 matrix, is presented next and we shall refer
to it as the PSVD1 method.

3.3 The partial SVD algorithm for approximate rank-1 matrices

Let us have a matrix A with dimensions m × n and let σ1 ≤ . . . ≤ σk−1 ≤
σk, k = min{m,n} be its singular values. The following algorithm is estab-
lished :

Algorithm 1 The PSVD1 Algorithm

INPUT: – a matrix A ∈ Rm×n

– a bound εt > 0 such that σ1 ≤ . . . ≤ σk−1 ≤ εt ≤ σk,
k = min{m,n}.

STEP 1: Bidiagonalization phase.

If m ≥ n then
transform A into upper bidiagonal form Bu by Householder
transformations: A = Uu ·Bu · V t

u

else
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transform A into lower bidiagonal form Bl by Householder
transformations : A = Ul ·Bl · V t

l

end if

STEP 2: Rank 1 detection phase.

Having a bidiagonal matrix Bu (or Bl), we only need to partition the bidiagonal
into unreduced subbidiagonals such that only one singular value is greater than
εt. In order to detect such a property, we construct a 2n × 2n symmetric
tridiagonal matrix T with zero main diagonal from the elements of Bu (or Bl)
and compute the Sturm Sequence for T and εt [13]. The positive symmetric
eigenvalues of T are the singular values of Bu (or Bl) and the number of sign
agreements in Sturm Sequence correspond to the number of singular values,
which are greater or equal to εt, [8].

– Let a = [ai], i = 1, . . . , k be the elements of the main diagonal
of Bu (or Bl), and b = [bi], i = 1, . . . , k − 1 be the elements of
the superdiagonal of Bu (or the subdiagonal of Bl).

– Construct c = [a1, b1, a2, b2, . . . , bk−1, ak] ∈ R2k−1

– Compute the Sturm Sequence for θ := εt :
p0(θ) = 1, p1(θ) = −θ
For i from 2 to 2k do

pi(θ) = −θ pi−1(θ)− c2i−1 pi−2(θ)
end do

– Let N := the number of sign agreements between the
sequential terms pi(θ) of the Sturm Sequence.
Convention: If pi(θ) = 0 then pi(θ) is in sign agreement
with pi−1(θ).

If N ≥ 2 then
use a bisection method to compute a new bound εt.
(We use the bisection method to find an estimation of the
second larger singular value σk−1 [8].)
Quit

else

STEP 3: Back transformation phase.

– Find the largest (by absolute value) diagonal element ah
for h = 1, . . . , k of Bu (or Bl).

– Construct an appropriate Givens Rotation matrix G for
the hth row of Bu (or the hth column of Bl).

If m < n then
σk := the hth diagonal element of S := G ·Bl

12



w := the hth row of the matrix V t
l

else
σk := the hth diagonal element of S ′ := Bu ·Gt

w := the hth row of the matrix W := G · V t
u

end if

end if

OUTPUT: σk, w, εt

The PSVD1 algorithm can detect a unity rank matrix very efficiently. The pro-
cess that dominates the algorithm is the bidiagonalization of the initial matrix
using Householder transformations. It is a stable process and requires about
O(2mn2 − 2

3
n3) multiplications if m < 5

3
n or O(mn2 + n3) multiplications if

m ≥ 5
3
n [30]. Also, when the initial matrix has not an εt-rank equal to 1, it

is not necessary to compute all the sequential terms of the Sturm sequence
because in this case, we only need a couple of sign agreements to conclude
that we do not have a εt-rank 1 matrix. This simple test helps to save more
computational time and if we scale the terms of the sequence properly, we can
have a very quick and efficient way to detect an approximate εt-rank 1 matrix.
In the case where we do have a unity rank matrix, the unique singular value
and right singular vector can be computed explicitly without matrix products.
Finally, the overall cost in computational operations is about the same size
of that of the bidiagonalization method. The bidiagonal reduction may also
be applied on an upper triangular matrix R, obtained from A by orthogonal
transformations such that A := QR. This step can improve the performance
of the algorithm [6]. A method for a more accurate bidiagonal reduction, which
combines Householder and Givens transformations, is presented in [1].

The PSVD1 algorithm is a quick and effective tool for the detection of an ap-
proximate unity rank matrix. It can increase the performance of other meth-
ods, such as the ERES method, and can be easily implemented in any software
programming environment.

3.4 Selection of the proper numerical tolerance εt, εG.

The numerical accuracy εG has to do with the magnitude of the elements
of the matrix that we obtain at the end of the main procedure of the ERES
algorithm in each iteration. In most cases, εG can be set equal to 2−1εm, where
εm is the machine’s epsilon (hardware numerical accuracy).

On the other hand, εt is linked with the accuracy of the solution, which is
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obtained from the rank-1 procedure of the Hybrid ERES algorithm. An initial
value of εt can be set by the user as an input (usually εt = εG ≈ εm). However,
as we described previously, every time when the algorithm reaches the rank-1
procedure, an εt-GCD can be obtained according to a new value of εt, which
is actually determined from the PSVD1 procedure. Thus, at the end of the
Hybrid ERES algorithm, we can have a series of εt-GCD’s for all the different
values of εt, computed by the algorithm itself. Unlike the previous version of
the numerical ERES algorithm [25] where the choice of the εt was absolutely
arbitrary, in the new presented hybrid algorithm of the ERES method, the
numerical accuracy εt is proposed by the algorithm and this helps us to develop
a better strategy for the best selection of the GCD.

3.5 Behavior of the ERES algorithm using hybrid computations

The combination of rational and numerical operations aims at the improve-
ment of the stability of the ERES algorithm and the presence of good ap-
proximate solutions. The main iterative procedure of the algorithm and es-
pecially the process of Gaussian elimination, is entirely performed by using
rational operations. With this technique any additional errors from the Gaus-
sian elimination are avoided. The operations during the Gaussian elimination
are always performed accurately and if the input data are exactly known and
a GCD exists, the output of the algorithm is produced accurately from any
row of the final unity rank matrix. Obviously, rational operations do not re-
veal the presence of approximate solutions. In cases of sets of polynomials
with inexact coefficients, the presence of an approximate solution relies on the
proper determination of a numerical εt-rank 1 matrix for a specific accuracy εt.
Therefore, the singular value decomposition together with the normalization
process of the matrix P

(κ)
h+1 are performed by using floating-point operations.

Optionally, when we are interested in an approximate solution, we can also
specify a numerical accuracy εG to control the magnitude of the elements of
every matrix P

(κ)
h+1. The polynomial that comes from the proposition 5, can be

considered as a GCD approximation and represents the numerical output of
the ERES algorithm.

The normalization of the rows of any matrix P
(κ)
h+1 (by the Euclidean norm)

does not introduce significant errors and in fact the following result can be
proved [25]:

Proposition 6 The normalization P
(N)
h+1 of a matrix P

(κ)
h+1 ∈ Rh′×n′, computed

by the method in the κth iteration, using floating-point arithmetic with unit
round-off u, satisfies the properties

P
(N)
h+1 = N · P (κ)

h+1 + EN , ‖EN‖∞ ≤ 3.003 · n′ · u
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where N = diag(ν1, ν2, . . . , νh′) ∈ Rh′×h′, νi =
(∥∥∥P (κ)

h+1[i, 1 . . . n
′]
∥∥∥
2

)−1
for

i = 1, . . . , h′ is the matrix accounting for the performed transformations and
EN ∈ Rh′×n′ the error matrix.

The PSVD1 method is applied to the matrix P
(N)
h+1. The preliminary stage

in this algorithm is the bidiagonal reduction of P
(N)
h+1 and in most bidiagonal

reduction methods the error is expressed in the following form:

P
(N)
h+1 + δP

(N)
h+1 = U B V t ,

‖δP (N)
h+1‖2 ≤ u f(h′, n′) ‖P (N)

h+1‖2

where B is bidiagonal, U and V are orthogonal, u is the machine precision
and f(h′, n′) is a modestly growing function of the dimensions of P

(N)
h+1, where

h′ < h+ 1 and n′ < n+ 1.

It is important to notice that the rank-1 procedure is actually applied to a
numerical copy of the matrix P

(κ)
h+1 and thus the performed transformations

during the rank-1 procedure do not affect the matrix P
(κ)
h+1 when returning

to the main procedure. For this reason, there is no accumulation of numerical
errors. The only errors appearing are from the rank-1 procedure concerning the
normalization and the partial singular value decomposition of the last matrix
P

(κ)
h+1 and represent the total numerical error of the Hybrid ERES algorithm.

The combination of symbolic and floating-point operations ensures the sta-
bility of the algorithm and gives to the ERES the characteristics of a hybrid
computational method.

3.6 Computational cost

For a set of polynomials the amount of multiplications or divisions performed
in the κth iteration of the algorithm depends on the size of the matrix P

(κ)
h+1 and

it is summarized in Table 1. The first iteration is the most computationally
expensive iteration since the initial basis matrix is larger than any P

(κ)
h+1. Unless

we know exactly the degree of the GCD of the set we cannot specify from the
beginning the number of iterations required by the algorithm. Practically, the
number of iterations is about O(n). The computational cost of the PSVD1
method is dominated by the bidiagonalization of the input matrix.

The ERES method and its hybrid form presented here always produces esti-
mates of the GCD as the result of the rank 1 approximation. Estimating how
good such approximations are has been an open issue until recently [18], when
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Table 1
Required operations for the matrix P

(κ)
h+1 ∈ Rh′×n′

Gaussian elimination Normalization PSVD1

O( z
3

3 ), z = min{h′ − 1, n′} O(2h′n′) O(2h′n′2 − 2
3n′3)

a proper framework for defining the notion of the approximate GCD and the
evaluation of its strength has been defined. These issues are considered next.

4 The Notion of Approximate GCD and its Computation

The following results provide the fundamentals of a framework for the charac-
terization of the almost GCD of a polynomial set and its strength. The notion
of approximate GCD is defined as a distance problem and the quality of the
approximate GCD is defined by the strength of the approximation between
the given set and the given d-GCD variety [18]. Note that almost every poly-
nomial may be considered as an approximate GCD as long as its degree is less
or equal to the smallest degree in the set [18].

4.1 Representation of the GCD

The representation of the GCD relies on the square nonsingular Toeplitz ma-
trices [11]. The following result provides a representation in matrix terms of
the standard factorization of the GCD of a set of polynomials.

Definition 7 Let

v(s) = λrs
r + · · ·+ λ1s+ λ0 ∈ R[s] where r ∈ Z∗+, λr, λ0 6= 0 (3)

be a polynomial. A special Toeplitz matrix representation Φ̂v ∈ R(n+p)×(n+p) of
v(s) can be defined by

Φ̂v =



λ0 0 · · · · · · · · · · · · 0

λ1 λ0
. . .

...
...

. . . . . . . . .
...

λr
...

. . . . . . . . .
...

0 λr
. . . . . . . . .

...
...

. . . . . . . . . λ0 0
0 · · · 0 λr · · · λ1 λ0


(4)
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The matrix Φ̂v is lower triangular and unless its main diagonal is zero, it is
always invertible. Its inverse Φ̂−1

v ∈ R(n+p)×(n+p) is also lower triangular and
can be found easily by computing its first column only.

Definition 8 Consider the set P ≡ Ph+1,n, (1).

(i) We can define a p× (n+ p) matrix associated with a(s) :

S0 =



an an−1 an−2 · · · a1 a0 0 · · · 0

0 an an−1 · · · · · · a1 a0
. . .

...
...

. . . . . . . . . . . . 0

0 · · · 0 an an−1 · · · · · · a1 a0


and n× (n+ p) matrices associated with each bi(s), i = 1, 2, . . . , h :

Si =



bi,p bi,p−1 bi,p−2 · · · bi,1 bi,0 0 · · · 0

0 bi,p bi,p−1 · · · · · · bi,1 bi,0
. . .

...
...

. . . . . . . . . . . . 0

0 · · · 0 bi,p bi,p−1 · · · · · · bi,1 bi,0


An extended Sylvester matrix or generalized resultant for the set P is
defined by :

SP =



S0

S1

...

Sh


∈ R(p+hn)×(n+p) (5)

(ii) The matrix SP is the basis matrix of the set of polynomials :

S[P ] = {a(s), sa(s), . . . , sp−1a(s); b1(s), . . . , bh(s), sbh(s), . . . , s
n−1bh(s)}

which is also referred to as the Sylvester Resultant set of the given set P
[12,32].

We can relate an (n, p) extended Sylvester matrix to any polynomial set Ph+1,n′

with two maximal degrees n′ = n − j and p′ = p − j, j > 0 by assuming the
first j coefficients of the polynomials of Ph+1,n′ to be zero. The new matrix
will be called (n, p)-expanded generalized resultant of the set Ph+1,n′ .

Remark 9 The set of all generalized resultants corresponding to h + 1 poly-
nomials with maximal nominal degrees (n, p) will be denoted by Ψ(n, p;h+ 1).
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Note 1 In the following, we will denote by m the row dimension of the above
extended Sylvester matrix SP , where m = p+ hn.

Toeplitz matrices and their properties are crucial elements in the representa-
tion of the GCD, which is defined by the following factorization of resultants
result [11] :

Theorem 10 Let P ∈ Π(n, p;h + 1) be a proper polynomial set (1). Let SP
be the respective extended Sylvester matrix (5), and φ(s) be the GCD of the
set with degree 0 < d ≤ p. Then, there exists a transformation matrix Φ̂φ (4),
such that

SP =
[
Om,d|S̃(d)

P∗
]
· Φ̂φ (6)

where Om,d is the m×d zero matrix, m = p+hn, P∗ ∈ Π(n−d, p−d;h+1) is
the set of coprime polynomials obtained from the original set P after dividing
its elements by the GCD, φ(s), and S̃

(d)
P∗ is the respective (m,n+p−d) extended

Sylvester matrix of P∗.

We will denote by S
(d)
P∗ = [Om,d|S̃(d)

P∗ ] the corresponding (n, p)-expanded gen-
eralized resultant of the reduced co prime set P∗ ≡ P∗h+1,n−d . The following
results show an important property of generalized resultants [11,31].

Theorem 11 Let P ∈ Π(n, p;h + 1) be a polynomial set (1) and SP the
respective generalized resultant (5). Then

ρ(SP) = n+ p− d ⇔ deg{gcd(P)} = d

Proposition 12 The GCD of P is the same as the GCD of S[P ], that is :

gcd(P) = gcd(S[P ])

4.2 The Notion of the Approximate GCD

We will now consider the notion of the approximate GCD and the develop-
ment of a computational procedure that allows the evaluation of how good is
the given approximate GCD. Defining approximate notions of GCD using the
Euclidean approach for two polynomials has been an issue that has attracted
a lot of attention recently [10,26,28]. Our approach [18] is based on the resul-
tant properties of the GCD and applies to any number of polynomials without
resorting to the features of a particular algorithm.

The essence of current methods for introduction of approximate GCD is the
relaxation of conditions characterizing the exact notion. We will define the
strength or quality of a given approximate GCD by the size of the minimal
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perturbation required to make a chosen approximate GCD an exact GCD of
a perturbed set of polynomials.

Let us have a set Ph+1,n ∈ Π(n, p;h+ 1) as defined in (1) and (2) and a(s) =
at en(s), bi(s) = bti ep(s), i = 1, . . . h with ej(s) = [sj, sj−1, . . . , s, 1]t for j =
n or p respectively. We may correspond to the set Ph+1,n the vector

p
h+1,n

=
[
at, bt1, . . . , b

t
h

]t
∈ RN (7)

where N = (n+ 1)+h (p+ 1), or alternatively a point Ph+1,n in the projective
space PN−1. The set Π(n, p;h + 1) is clearly isomorphic with RN , or PN−1.
An important question relates to the characterization of all points of PN−1,
which correspond to sets of polynomials with a given degree GCD. Such sets of
polynomials correspond to certain varieties of PN−1, which are defined below.
We first note that an alternative representation of Ph+1,n is provided by the
generalised Sylvester resultant SP ∈ R(p+hn)×(n+p) which is a matrix defined
by the vector of coefficients p

h+1,n
. If we denote by Ck(·) the kth compound

of SP [24], then the varieties characterising the sets having, a given degree d,
GCD are defined below [18]:

Proposition 13 Let Π(n, p;h+1) be the set of all polynomial sets Ph+1,n with
h + 1 elements and with the two higher degrees (n, p) , n ≥ p and let SP be
the Sylvester resultant of the general set Ph+1,n. The variety of PN−1, which
characterise all sets Ph+1,n having a GCD with degree d, 0 < d ≤ p is defined
by the set of equations

Cn+p−d+1 (SP) = 0 (8)

Conditions (8) define polynomial equations in the parameters of the vector
p
h+1,n

, or the point Ph+1,n of PN−1. The set of equations in (8) define a variety

of PN−1, which will be denoted by ∆d(n, p;h+1) and will be referred to as the
d-GCD variety of PN−1. ∆d(n, p;h+ 1) characterises all sets in Π(n, p;h+ 1),
which have a GCD with degree d.

Remark 14 The sets ∆d(n, p;h + 1) have measure zero [7] and thus the ex-
istence of a nontrivial GCD of degree d > 0 is a nongeneric property.

The important question that is posed, is how close the given set Ph+1,n is to
given variety ∆d(n, p;h + 1). Defining the notion of the approximate GCD is
linked to introducing an appropriate distance of Ph+1,n from ∆d(n, p;h+1). In
fact, if Qih+1,n is some perturbation set (to be properly defined) and assuming

that P ′ ih+1,n = Ph+1,n + Qih+1,n such that P ′ ih+1,n ∈ ∆d(n, p;h + 1), then the

GCD of P ′ ih+1,n, φ(s), with degree d defines the notion of the approximate
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GCD and its strength is defined by the size of the perturbation Qih+1,n. Nu-
merical procedures such as ERES, produce estimates of an approximate GCD.
Estimating the size of the corresponding perturbations provides the means to
evaluate how good such approximations are. By letting the parameters of the
GCD free and searching for the minimal size of the corresponding perturba-
tions a distance problem is formulated that is linked to the definition of the
optimal approximate GCD. The key questions which have to be considered for
such studies are:

(i) Existence of perturbations of Ph+1,n yielding

P ′h+1,n = Ph+1,n +Qh+1,n ∈ ∆d(n, p;h+ 1)

(ii) Parameterisations of all such perturbations.
(iii) Determine the minimal distance of Ph+1,n from an element of ∆d(n, p;h+

1) with a given GCD u(s), and thus evaluation of strength of u(s).
(iv) Determine the minimal distance of Ph+1,n from ∆d(n, p;h + 1) and thus

compute the optimal approximate GCD.

Here we are concerned with the issues (i)-(iii), which relate to the evaluation
of the strength of a given approximation, which is not necessarily optimal.

4.3 Parametrisation of GCD varieties and the Computation of Strength of
the Approximate GCD

The characterisation of the ∆d(n, p;h + 1) variety in a parametric form, as
well as subvarieties of it, is a crucial issue for the further development of the
topic. The subset of ∆d(n, p;h + 1), characterised by the property that all
Ph+1,n in it have a given GCD u(s) ∈ R[s], deg{u(s)} = d, can be shown to
be a subvariety of ∆d(n, p;h + 1) and shall be denoted by ∆u

d(n, p;h + 1). In
fact ∆u

d(n, p;h + 1) is characterised by the equations of ∆d(n, p;h + 1) and a
set of additional linear relations amongst the parameters of the vector p

h+1,n
.

Proposition 15 Consider the set Π(n, p;h+ 1), PN−1 be the associated pro-
jective space, Ph+1,n ∈ Π(n, p;h + 1) and let SP be the associated resultant.
Then,

(i) The variety ∆d(n, p;h + 1) of PN−1 is expressed parametrically by the
resultant

SP =
[
Om,d|S̃(d)

P∗
]
· Φ̂u (9)

where Om,d is the m×d zero matrix, m = p+hn, Φ̂u is the (n+p)×(n+p)
Toeplitz representation of an arbitrary u(s) ∈ R[s] with deg{u(s)} = d

and S̃
(d)
P∗ ∈ Rm×(n+p−d) is the (n, d)-expanded generalized resultant of an

arbitrary set of polynomials P∗ ∈ Π(n− d, p− d;h+ 1).
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(ii) The variety ∆u
d(n, p;h+ 1) of PN−1 is defined by (9) with the additional

constraint that u(s) ∈ R[s] is given.

Clearly, the free parameters in ∆d(n, p;h+1) are the coefficients of the polyno-
mials of Π(n−d, p−d;h+1). Having defined the description of these varieties
we consider next the perturbations that transfer a general set Ph+1,n on a
set P ′h+1,n on them. If Ph+1,n ∈ Π(n, p;h + 1) we can define an (n, p)-ordered
perturbed set by:

P ′h+1,n ,Ph+1,n −Qh+1,n ∈ Π(n, p;h+ 1) (10)

=
{
p′i(s) = pi(s)− qi(s) : deg{qi(s)} ≤ deg{pi(s)}, i = 0, . . . , h

}
Using the set of perturbations defined above we may now show that any poly-
nomial from a certain class may become an exact GCD of a perturbed set
under a family of perturbations.

Proposition 16 Given a set Ph+1,n with maximal degrees (n, p), n ≥ p and
a polynomial v(s) ∈ R[s] with deg{v(s)} ≤ p. There always exists a family of
(n, p)-ordered perturbations Qh+1,n such that for every element of this family
P ′h+1,n = Ph+1,n −Qh+1,n has a GCD which is divisible by v(s).

The above result establishes the existence of perturbations making v(s) an
exact GCD of the perturbed set and motivates the following definition, which
defines v(s) as an approximate GCD in an optimal sense.

Definition 17 Let Ph+1,n ∈ Π(n, p;h+ 1) and v(s) ∈ R[s] be a given polyno-
mial with deg{v(s)} = r ≤ p. Furthermore, let Σv = {Qh+1,n} be the set of all
(n, p)-order perturbations such that

P ′h+1,n = Ph+1,n −Qh+1,n ∈ Π(n, p;h+ 1) (11)

with the property that v(s) is a common factor of the elements of P ′h+1,n. If
Q◦h+1,n is the minimal norm element of the set Σv, then v(s) is referred as an
r-order almost common factor of Ph+1,n, and the norm of Q◦h+1,n, denoted by
‖Q◦‖ is defined as the strength of v(s). If v(s) is the GCD of

P◦h+1,n = Ph+1,n −Q◦h+1,n (12)

then v(s) will be called an r-order almost GCD of Ph+1,n with strength ‖Q◦‖.

Thus, any polynomial v(s) may be considered as an approximate GCD, as long
as deg{v(s)} ≤ p.

Theorem 18 [18] For Ph+1,n ∈ Π(n, p;h + 1), let SP ∈ Ψ(n, p;h + 1) be the
corresponding generalized resultant and let v(s) ∈ R[s], deg {v(s)} = r ≤ p.
Then:
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(i) Any perturbation set Qh+1,n ∈ Π(n, p;h + 1) that leads to P ′h+1,n =
Ph+1,n − Qh+1,n, which has v(s) as common divisor, has a generalized
resultant SQ ∈ Ψ(n, p;h+ 1) that is expressed as shown below:
(a) If v(0) 6= 0 then

SQ = SP − S(r)
P∗ · Φ̂v = SP −

[
Om,r|S̃(r)

P∗
]
· Φ̂v (13)

where Om,r is the m × r zero matrix, Φ̂v is the (n + p) × (n + p)

Toeplitz representation of v(s) as defined in (4) and S
(r)
P∗ ∈ Rm×(n+p)

is the (n, p)-expanded generalized resultant of an arbitrary set of poly-
nomials P∗ ∈ Π(n− r, p− r;h+ 1).

(b) If v(s) has k zeros at s = 0, then

SQ = SP − S̃(r)
P∗ ·Θv (14)

where S̃
(r)
P∗ is again the (n, p)-expanded resultant of an arbitrary set of

polynomials P∗ ∈ Π(n−r, p−r;h+1) and Θv is the (n+p−k)×(n+p)
representation of v(s) defined by:

Θv =



λk λk−1 λk−2 · · · · · · λ0 0 · · · · · · 0

0 λk λk−1 λk−2 · · · · · · λ0 0 0
...

. . . . . . . . .
...

. . . . . .

0 · · · · · · 0 λk λk−1 λk−2 · · · · · · λ0


(15)

(ii) If the parameters of P∗ are constrained such that S̃
(r)
P∗ has full rank, then

v(s) is a GCD of the perturbed set P ′h+1,n.

Corollary 19 Let Ph+1,n ∈ Π(n, p;h+1) and v(s) ∈ R[s], deg{v(s)} = r ≤ p.
The polynomial v(s) is an r-order almost common divisor of Ph+1,n and its
strength is defined as a solution of the following minimization problems:

(a) If v(0) = 0, then its strength is defined by the global minimum of

f(P ,P∗) = min
∀P∗

∥∥∥SP − [Om,r|S̃(r)
P∗
]
· Φ̂v

∥∥∥
F

(16)

(b) If v(s) has k zeros at s = 0, then its strength is defined by the global
minimum of

f(P,P∗) = min
∀P∗
‖SP − S̃(r)

P∗ ·Θv‖F (17)

where P∗ takes values from the set Π(n, p;h+ 1).

Furthermore v(s) is an r-order almost GCD of Ph+1,n, if the minimal corre-
sponds to a coprime set P∗ or to full rank SP∗.
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For the computation of the minimization problems in (16) or (17) we need
an appropriate numerical procedure. However, the successful computation of
such a global minimum is not always guaranteed. The minimization problem
in (16) or (17) is actually non-convex and in cases of sets of many polynomials,
where the number of arbitrary parameters is usually large, it is very likely to
lead to unsatisfactory results. On the other hand, it is easier to find some
bounds for the main function in (16) which is:

‖SQ‖ =
∥∥∥SP − [Om,r|S̃(r)

P∗
]
· Φ̂v

∥∥∥
We shall analyze how the norm ‖SQ‖ is bounded and what information we
can get from these bounds. Without loss of generality, we assume a given
polynomial v(s) with no zero roots. If we combine the relations (4) and (13),
we shall have the following equation :

SQ · Φ̂−1
v = SP · Φ̂−1

v −
[
Om,r|S̃(r)

P∗
]

(18)

Let ŜP = SP · Φ̂−1
v and split ŜP such that

ŜP = Ŝ
′

P + Ŝ
′′

P (19)

where Ŝ
′′
P has the same structure as S

(r)
P∗ =

[
Om,r|S̃(r)

P∗
]
. Specifically, if we

denote by A[i, j] the (i, j) element of a matrix A, the partition of ŜP is based
on the next rule :

Ŝ
′

P [i, j] =

 ŜP [i, j], if S
(r)
P∗ [i, j] = 0

0, if S
(r)
P∗ [i, j] 6= 0

∀ i, j (20)

Therefore, Ŝ
′′
P can be presented as Ŝ

′′
P =

[
Om,r|S̄

]
, where S̄ is a m× (n+p−r)

matrix. From (18) and (19) we get the following relation:

SQ · Φ̂−1
v = Ŝ

′

P +
[
Om,r|S̄

]
−
[
Om,r|S̃(r)

P∗
]

=

= Ŝ
′

P +
[
Om,r|S̄ − S̃(r)

P∗
]

(21)

It readily follows that

SQ = Ŝ
′

P · Φ̂v +
[
Om,r|S̄ − S̃(r)

P∗
]
· Φ̂v (22)

and if we use the Frobenius norm, which relates in a direct way to the set of
polynomials, we get :

‖SQ‖ ≤ ‖Ŝ
′

P‖ ‖Φ̂v‖+ ‖
[
Om,r|S̄ − S̃(r)

P∗
]
‖ ‖Φ̂v‖ (23)
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It is clear that any exact common factor of the polynomials of the set is
expecting to give ‖SQ‖ = 0. Therefore, we may consider a polynomial as a
good approximation of an exact common divisor or the exact GCD of a given
set, if ‖SQ‖ is close enough to zero.

The structure of the matrices here allows us to select the arbitrary parameters
of the set P∗ such that

S̄ = S̃
(r)
P∗ (24)

Then, if we apply the Frobenius norm and the result (24) to the equations
(21) and (22) and since the condition number of Φ̂v according to Frobenius
norm is [8] :

Cond(Φ̂v) = ‖Φ̂v‖ ‖Φ̂−1
v ‖ ≥ n+ p > 1 (25)

the following important inequality will be obtained :

‖Ŝ ′P‖
‖Φ̂−1

v ‖
≤ ‖SQ‖ ≤ ‖Ŝ

′

P‖ ‖Φ̂v‖ (26)

Apparently, if ‖Ŝ ′P‖ = 0, then ‖SQ‖ = 0 and therefore the given polynomial
v(s) can be considered as an exact common divisor of degree r of the original
set. Otherwise, the inequality (26) gives a lower bound of ‖SQ‖, which indicates
the minimum distance towards ‖SQ‖ = 0.

Remark 20 Given a polynomial v(s) with no zero roots, we shall denote by:

(i) S(v) the strength of v(s) given by the minimization problem (16).

(ii) S(v) = ‖Ŝ ′P‖
(
‖Φ̂−1

v ‖)
)−1

the lower strength bound of v(s).

(iii) S(v) = ‖Ŝ ′P‖ ‖Φ̂v‖ the upper strength bound of v(s).

The computation of the strength bounds S(v) and S(v) is straightforward and
the results can be used as an indicator of the strength of the given approxima-
tion. For example, if S(v) >> 1, then the given approximation has very poor
quality and the opposite holds if S(v) << 1. The strength bounds are very re-
liable indicators of the strength of a given GCD approximation v(s) provided
that the respective matrix Φ̂v is well conditioned ( Cond(Φ̂v) ≈ O(n+ p) ).

The following algorithm establishes a methodology for the evaluation of the
strength bounds of a given approximate GCD.

Algorithm 2 The algorithm of Strength Bounds.

INPUT : Give a set P ∈ Π(n, p;h+ 1) of univariate polynomials.
Give a univariate polynomial v(s) of degree r ≤ p with
no zero roots.
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STEP 1 : Construct the (n, p)-expanded Sylvester matrix SP of P.

Construct the special Toeplitz representation Φ̂v of v(s).

Compute the first column of the inverse of Φ̂v and

construct the matrix Φ̂−1
v .

STEP 2 : Compute the matrix ŜP by solving the linear system :

Φ̂ t
v · Ŝ t

P = S t
P

STEP 3 : Split appropriately ŜP such that ŜP = Ŝ
′
P + Ŝ

′′
P , (20) .

Compute the Frobenius norms ‖Ŝ ′P‖, ‖Φ̂−1
v ‖ and ‖Φ̂v‖.

OUTPUT : S(v) = ‖Ŝ ′P‖
(
‖Φ̂−1

v ‖)
)−1

, S(v) = ‖Ŝ ′P‖ ‖Φ̂v‖

Due to the special structure of the matrices SP and Φ̂−1
v , it is possible to avoid

the matrix operations and compute the norms explicitly and more efficiently.
The inverse of the lower triangular matrix Φ̂v is computed by solving a simple
linear system of the form Φ̂v x = e1n+p, where x represents the first column

of the matrix Φ̂−1
v and e1n+p = [1, 0, . . . , 0]t ∈ Rn+p. The number of operations

required by the above algorithm is presented in Table 2. The total amount of
operations is about O

(
3n2h+10n2+2nr−r2

2

)
for n = p. For an effective computa-

tion of the GCD, the respective matrix Ŝ
′
P is quite sparse and the required

operations are less than O(2hn2).

Table 2
Required operations for the computation of the Strength Bounds S(v) and S(v).

Φ̂−1
v ŜP ‖Ŝ′P‖ ‖Φ̂−1

v ‖ ‖Φ̂v‖

O
(

(n+p)2

2

)
O
(
n2+p2h

2

)
O (np(h + 1)) O

(
(n+p)2

2

)
O
(

(n+p)r−r2
2

)

5 Computational results

In this section we shall present a number of results given by the previous
algorithms for different sets of several polynomials. More specifically, we use
the ERES algorithm to find the εt-GCD of a set of polynomials Ph+1,n for
εt accuracy and we evaluate the given GCD approximation v by computing
the strength bounds S(v) and S(v) and, of course, its strength S(v). Our in-
tention is to show the advantages of the hybrid implementation of the ERES
algorithm in contrast with its fully numerical implementation. Thus, we shall
denote by H-ERES the Hybrid ERES algorithm as described in the previous
section 3 and presented in figure 1, and N-ERES the fully numerical ERES al-
gorithm as presented in [25]. The algorithms were implemented in the software
programming environment of Maple using both rational and variable floating-
point arithmetic 2 . For the computation of the GCD in the examples 21 and

2 The program codes of the ERES and the other presented algorithms are available
from the authors.
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22, the software numerical accuracy of Maple was set to 16 digits in order to
simulate the common hardware accuracy. On the other hand, for the compu-
tation of the strength bounds and the strength of the given approximation,
the software numerical accuracy was set to 64 digits for more reliable results.
The strength of the given approximation was computed in Maple by using a
built-in numerical minimization routine. An extended example is presented in
the appendix.

Example 21 We consider the set P3,11 ∈ Π(11, 11; 3), h = 2, n = p = 11
with polynomials :

a(s) =−16.316 s11 + 182.73 s10 − 185.83 s9 + 106.68 s8

−266.22 s7 + 125.80 s6 − 195.53 s5 + 243.81 s4

+23.013 s3 + 64.186 s2 − 24.300 s− 43.810

b1(s) = 4.6618 s11 − 52.209 s10 + 53.094 s9 − 30.481 s8

+76.064 s7 − 35.944 s6 + 55.866 s5 − 69.659 s4

−6.5751 s3 − 18.339 s2 + 6.9428 s+ 12.517

b2(s) =−4.1155 s11 + 47.507 s10 − 59.034 s9 + 2.2157 s8

−45.276 s7 + 83.932 s6 − 34.013 s5 + 15.007 s4

+4.3083 s3 − 9.0031 s2 + 14.297 s− 14.783

The exact GCD of the set P3,11 is g(s) = 1 and the tolerance εG is set equal to
the machine’s epsilon in 16-digits accuracy εm ≈ 2.2204 · 10−16. The H-ERES
algorithm gave us five possible approximate solutions for different values of the
tolerance εt. In Table 3 we denote these solutions by vi(s), i = 1, 2, . . . , 5.

Table 3
Results for the εt-GCD of the set P3,11 .

H-ERES v1(s) v2(s) v3(s) v4(s) v5(s)

Degree 1 8 4 5 2
εt 9.5 · 10−2 6 · 10−2 3 · 10−3 6 · 10−4 5 · 10−5

S(v) 14.1684562 144.132727 0.72610271 4.00725481 0.02571431

S(v) 3.07315597 0.53653745 0.22191334 0.06286887 0.00319468
S(v) 69.9370280 3563.87058 930.143927 322.951121 0.19880416

Cond(Φ̂v) 22.7573962 6642.35195 4191.47371 5136.90032 62.2296806

Main Iter. 20 6 14 12 18
Rank-1 Iter. 11 4 8 7 10

From the presented results in Table 3 we can conclude that:

(i) The “best” approximate solution is the polynomial

v5(s) = s2 − 11.28371806974011 s+ 11.64469379842480
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which has the lowest strength S(v) = 0.02571431 and it is given for εt =
5 · 10−5.

(ii) The strength S(v) is well bounded when Cond(Φ̂v) < (h+ 1)(n+p) = 66.
(iii) The number of iterations of the main procedure is greater than the respec-

tive number of iterations of the rank-1 procedure.

The N-ERES algorithm gave approximately the same results with a restriction
to 8 digits of accuracy and εG > 10−6. 2

Example 22 [9,28] We consider the set P7,5 ∈ Π(5, 4; 7), with polynomials :

a(s) = s5 − 4.000001 s3 + 0.99999999 s2 − 4.0000009

b1(s) = 1.000001 s4 − 4.9999999 s2 + 3.999996

b2(s) = 2.000001 s3 + 1.000002 s2 − 8.000008 s− 4.00001

b3(s) = s3 + 1.000002 s2 − 4.000001 s− 4.000009

b4(s) = 2.000003 s5 + 1.000003 s2 − 8.000008 s3 − 4.00001

b5(s) = 3.0000003 s4 − 14.0000009 s2 + 7.9999998

b6(s) = 1.000001 s4 − 7.0000032 s2 + 12.000001

The exact GCD of the set is g(s) = 1.

Table 4
Results for the ε-GCD v(s) of the set P5,7 .

Alg. Deg εt, εG S(v) S(v) S(v)

H-ERES 2 10−4 3.8340580 · 10−7 1.2513283 · 10−7 1.3154232 · 10−6

Alg [9] 2 10−4 4.5660000 · 10−7 1.4922755 · 10−7 1.5687127 · 10−6

Alg1 [28] 2 10−4 5.1120196 · 10−7 1.6715856 · 10−7 1.7572068 · 10−6

Alg2 [28] 2 10−4 2.2630548 · 10−6 7.4117014 · 10−7 7.7913400 · 10−6

In Table 4, we denote by Alg [#] the algorithm presented in the respective cita-
tion. In [28] there are two variations of the presented algorithm, denoted here
by Alg1 and Alg2. In this example, there was no significant difference in the
performance of the H-ERES and N-ERES algorithms. In fact, we obtained the
same GCD from both of them but it is worthwhile to compare its strength with
the solutions proposed in [9,28]. Actually, the GCD provided by the H-ERES
algorithm is v(s) = s2−4 and it has the lowest strength amongst them. We can
also notice that the lower strength bound S(v) and the upper strength bound
S(v) give us a good estimation of the quality of our approximation before we
solve the minimization problem and evaluate the actual strength S(v). The
condition number of the matrix Φ̂v is Cond(Φ̂v) = 10.51221518 . 2

Example 23 We tested and compared the algorithms H-ERES and N-ERES
for various random sets of polynomials and some representative results are pre-
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sented in Table 5. More speciffically, we examined random sets of polynomials
with integer coefficients between −107 and 107, which have an exact GCD with
rational coefficients. The N-ERES algorithm uses the data as floating-point
numbers and in every polynomial set Ph+1,n in Table 5 the selected software
floating-point accuracy of the system, denoted by Dig, is selected as the min-
imum accuracy that N-ERES requires to produce a polynomial, which has at
least the same degree as the respective exact GCD. The H-ERES algorithm
uses the data as symbolic numbers and produces the GCD of the set accurately.
However, we can also have a numerical solution given by the rank-1 procedure
(PSVD1 algorithm) according to the proposition 5. For the numerical part of
the H-ERES algorithm, the software floating-point accuracy remained the same
with the selected accuracy for the N-ERES algorithm in order to compare the
results. The internal accuracies of the algorithm are εt = εG ≈ 10−Digits.

We compared the two algorithms in respect with the numerical relative error
between the exact GCD and the given solution, the number of main itera-
tions and the required time of execution. The results in Table 5 show that
the H-ERES algorithm produces numerical solutions of better quality than the
N-ERES algorithm.

The following notation is used in the next Tables 5 and 6 :

Set Set Ph+1,n of random polynomials.
Main Number of main iterations.
h, n, p Parameters of the set as defined in (1).
SVD Number of SVD or PSVD1 calls.
d Degree of the exact GCD of the set Ph+1,n.
Time Time of execution in seconds.
Dig. Number of digits of software accuracy.
Rel. Err. Relative error.
Alg. Type of algorithm.

The relative error is given by Rel =
‖v−g‖2
‖g‖2 , where v, g are the coefficient

vectors of the provided solution v(s) and the exact GCD g(s) respectively.
‖ · ‖2 denotes the Euclidean norm.

In the case of large sets of polynomials, the N-ERES fails to produce accurate
results in the standard floating-point precision of 16-digits of accuracy. On the
contrary, the H-ERES algorithm works with this accuracy and gives very good
results, which are presented in Table 6 3 .

2

3 The sets of polynomials in Tables 5 and 6 are the same.
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Table 5
Results from H-ERES and N-ERES algorithms for random sets of polynomials.

Set h, n, p, d Dig. Alg. Main SVD Time Rel. Err.

P11,10 10, 10, 10, 1 16 N-ERES 5 2 0.203 5.28309 · 10−16

H-ERES 3 3 0.266 6.44538 · 10−16

P21,20 20, 20, 20, 2 55 N-ERES 5 2 0.688 1.02570 · 10−19

H-ERES 3 3 0.797 1.00764 · 10−53

P31,30 30, 30, 30, 3 34 N-ERES 6 2 1.749 3.38425 · 10−20

H-ERES 2 2 2.156 2.53046 · 10−33

P31,40 30, 40, 40, 4 45 N-ERES 10 2 3.375 3.45159 · 10−21

H-ERES 4 3 14.250 1.14197 · 10−44

P51,30 50, 30, 30, 5 58 N-ERES 2 2 3.812 1.27734 · 10−19

H-ERES 3 3 3.703 4.14280 · 10−56

Table 6
Results from H-ERES algorithm in 16 digits of accuracy.

Set h, n, p, d Dig. Main PSVD1 Time Rel. Err.

P11,10 10, 10, 10, 1 16 3 3 0.266 6.44538 · 10−16

P21,20 20, 20, 20, 2 16 3 3 0.704 2.65026 · 10−16

P31,30 30, 30, 30, 3 16 3 3 2.171 4.78899 · 10−16

P31,40 30, 40, 40, 4 16 5 4 14.156 1.65847 · 10−16

P51,30 50, 30, 30, 5 16 3 3 3.094 5.44165 · 10−16

6 Conclusions

The computation of an approximate GCD of set of many polynomials is a
challenging problem. There are several algorithms, which have employed the
process of singular value decomposition in their structures in order to estimate
the degree of a GCD for a specific tolerance εt [7,9,10]. The ERES method
is a simple method, which use the SVD method as a numerical tool for the
computation of an approximate GCD. A new kind of implementation of the
ERES algorithm is presented, more reliable and efficient in computing ap-
proximate solutions. This new implementation takes advantage of the hybrid
nature of the algorithm and its ability to yield exact or approximate solutions
by manipulating the input data.

The ERES method is quite effective, when properly implemented in a pro-
gramming environment of hybrid arithmetic. We can have large sets of real
polynomials without restrictions to the type of data. Actually the method is
proved to be faster when the polynomials of a given set Ph+1,n are linearly
depended. The main advantage of the ERES algorithm is that it succeeds
in reducing the size of the original matrix very quickly during the iterations
and this leads to fast data processing and low memory consumption. What is
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more important with ERES is that for a fixed tolerance εG and without any
further cost, the method can detect various degrees of polynomials for differ-
ent tolerances εt, which can be considered as degrees of approximate GCDs.
This important result derives from theorem 4 and this theorem guarantees
the existence of an εt-GCD. The performance of the algorithm is better, when
using hybrid computations. This type of computations provides us with more
accurate results within acceptable time limits and without using high soft-
ware floating-point accuracy. Furthermore, we can make the algorithm faster
by using the PSVD1 algorithm.

The investigation of the approximate GCD for many polynomials has been
introduced and the overall approach has been based on its characterization
as a distance problem. This has been achieved by a combination of previous
results related to the representation theory [11], the definition of the strength
of the approximation [18] and the study of the optimisation properties of the
defined problem. The theoretic characterisation of the best approximate GCD
requires further investigation of the optimisation results of [18].

A An extended example

In this appendix we shall demonstrate the steps of the Hybrid ERES algorithm
computing the GCD of a set of polynomials.

Let us have the following set P3,2 ∈ Π(2, 2; 3), h = n = p = 2 with polynomials:

a(s) = 2.0 s2 + 2.380952380952381 s− 0.3809523809523810

b1(s) = s2 − 3.642857142857143 s+ 0.5

b2(s) = 1.5 s2 − 7.214285714285714 s+ 1.0

The coefficients of the set P3,2 are given in 16-digits floating-point format. The
basis matrix of the set has the form :

P3 =


−0.3809523809523810 2.380952380952381 2.0

0.5 −3.642857142857143 1.0

1.0 −7.214285714285714 1.5


The data of P3 are converted to an approximate 4 rational format and the

4 The conversion is done according to Maple’s arithmetic by using the directive
convert.
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matrix obtains the following form:

P ′3 =


− 8

21
50
21

2

1
2
−51

14
1

1 −101
14

3
2


The error from this conversion is

‖P ′3 − P3‖∞ = 2.8571428571428571 · 10−16

This is our initial error in 16-digits floating-point arithmetic, where the respec-
tive machine’s epsilon is εm = 2.22044604925031308 · 10−16. This error does
not grow during the iterations of the algorithm. ‖ · ‖∞ denotes the infinity
matrix norm, [8,14].

We are starting now the process of the H-ERES algorithm :

• Main procedure. Iteration 1

Initial matrix P
(0)
3 : 

− 8
21

50
21

2

1
2
−51

14
1

1 −101
14

3
2

 (A1)

Row reordering and Scaling :


−80

21
500
21

20

1
20
− 51

140
1
10

1
10
−101

140
3
20

 (A2)

Gaussian elimination with partial pivoting :


−80

21
500
21

20

0 − 27
280

27
40

0 0 0

 (A3)
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Shifting transformation : 
−80

21
500
21

20

− 27
280

27
40

0

0 0 0

 (A4)

• Main procedure. Iteration 2

Initial matrix P
(1)
3 :  −

80
21

500
21

20

− 27
280

27
40

0

 (A5)

Row reordering and Scaling : −
27
280

27
40

0

− 4
105

5
21

1
5

 (A6)

Gaussian elimination with partial pivoting :−
27
280

27
40

0

0 − 1
35

1
5

 (A7)

Shifting transformation : −
27
280

27
40

0

− 1
35

1
5

0

 (A8)

Deletion of zero columns : −
27
280

27
40

− 1
35

1
5

 (A9)

Passing to rank-1 procedure.

• Rank-1 procedure Normalization :

P
(N)
3 =

−0.09642857142857143 0.6750000000000000

−0.02857142857142857 0.2000000000000000

 (A10)

PSVD1 :
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The final matrix P
(N)
3 has rank 1 for selected tolerance εt = 10−15 and

the respective right singular vector is

wt = [−0.141421356237309, 0.9899494936611661]t

• GCD computation :
The solution is given either from the rows of the final matrix of the main

iterative procedure :

v(s) = s− 1

7

or from the vector w :

v′(s) = s− 0.1428571428571427

The polynomial v′(s) is an εt-GCD and the distance between these two
solutions is

‖v − v′‖∞ ≈ 1.57 · 10−16

Now, we shall evaluate the strength bounds of the polynomial v′(s) according
to the Algorithm 2. We follow the next steps :

• Construction of the required matrices :

SP =



2.0 2.380952380952381 −0.3809523809523810 0

0 2.0 2.380952380952381 −0.3809523809523810

1.0 −3.642857142857143 0.5 0

0 1.0 −3.642857142857143 0.5

1.5 −7.214285714285714 1.0 0

0 1.5 −7.214285714285714 1.0


(A11)

Φ̂v′ =


−0.1428571428571427 0 0 0

1.0 −0.1428571428571427 0 0

0 1.0 −0.1428571428571427 0

0 0 1.0 −0.1428571428571427


(A12)

Φ̂−1
v′ =


−7.000000000000008 0.0 0.0 0.0

−49.00000000000011 −7.000000000000008 0.0 0.0

−343.0000000000011 −49.00000000000011 −7.000000000000008 0.0

−2401.000000000010 −343.0000000000011 −49.00000000000011 −7.000000000000008

 (A13)
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ŜP =

5.425000000000012 · 10−14 −0.2142857142857063 1.0 0.0

3.797500000000013 · 10−13 5.425000000000012 · 10−14 −0.2142857142857063 1.0

2.485000000000006 · 10−14 −0.1428571428571391 0.5000000000000000 0.0

1.739500000000006 · 10−13 2.485000000000006 · 10−14 −0.1428571428571391 0.5000000000000000

−2.473333333333339 · 10−14 −0.2857142857142889 −0.3809523809523810 0.0

−1.731333333333339 · 10−13 −2.473333333333339 · 10−14 −0.2857142857142889 −0.3809523809523810


(A14)

Ŝ
′

P =



5.425000000000012 · 10−14 0.0 0.0 0.0

3.797500000000013 · 10−13 5.425000000000012 · 10−14 0.0 0.0

2.485000000000006 · 10−14 0.0 0.0 0.0

1.739500000000006 · 10−13 2.485000000000006 · 10−14 0.0 0.0

−2.473333333333339 · 10−14 0.0 0.0 0.0

−1.731333333333339 · 10−13 −2.473333333333339 · 10−14 0.0 0.0


(A15)

S̄ = S̃
(r)
P∗ =



−0.2142857142857063 1.0 0.0

0.0 −0.2142857142857063 1.0

−0.1428571428571391 0.5000000000000000 0.0

0.0 −0.1428571428571391 0.5000000000000000

−0.2857142857142889 −0.3809523809523810 0.0

0.0 −0.2857142857142889 −0.3809523809523810


(A16)

• Computation of the Frobenius norms ‖Ŝ ′P‖, ‖Φ̂−1
v ‖ and ‖Φ̂v‖ :

‖Ŝ ′P‖= 4.6128999736247051 · 10−13

‖Φ̂v′‖= 12.288205727444521

‖Φ̂−1
v′ ‖= 350.14568396597551

Cond(Φ̂v′) = 4302.6621991506793

• Computation of the strength bounds :

S(v′) = ‖Ŝ ′P‖/‖Φ̂−1
v′ ‖= 1.317423056990459 · 10−15

S(v′) = ‖Ŝ ′P‖ · ‖Φ̂v′‖= 5.668426387602378 · 10−12

The strength of the polynomial v′(s) = s − 0.1428571428571424 is evaluated
by the minimization problem (16) :

f(P ,P∗) = min
∀P∗

∥∥∥SP − [Om,r|S̃(r)
P∗
]
· Φ̂v′

∥∥∥
F
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where

[
Om,r|S̃(r)

P∗
]

=



0 a1 a2 0

0 0 a1 a2

0 a3 a4 0

0 0 a3 a4

0 a5 a6 0

0 0 a5 a6


and ai, i = 1, . . . , 6 are arbitrary parameters. The built-in minimization rou-
tine of Maple gives the next result :

S(v′) = f(P ,P∗) = 1.8451526088542018 · 10−15

for

{a1, a2, a3, a4, a5, a6} = {2.0, 2.666666666666668, 1.0,−3.5, 1.5,−7.0}

in 16-digits software accuracy. 2
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