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   Abstract—We present a new method for the fully automatic 3D 
reconstruction of the coronary artery centerlines, using two X-ray 
angiogram projection images from a single rotating monoplane 
acquisition system. During the first stage, the input images are 
smoothed using curve evolution techniques. Next, a simple yet 
efficient multiscale method, based on the information of the Hessian 
matrix, for the enhancement of the vascular structure is introduced. 
Hysteresis thresholding using different image quantiles, is used to 
threshold the arteries. This stage is followed by a thinning procedure 
to extract the centerlines. The resulting skeleton image is then pruned 
using morphological and pattern recognition techniques to remove 
non-vessel like structures. Finally, edge-based stereo correspondence 
is solved using a parallel evolutionary optimization method based on 
f symbiosis. The detected 2D centerlines combined with disparity 
map information allow the reconstruction of the 3D vessel 
centerlines. The proposed method has been evaluated on patient data 
sets for evaluation purposes.  

Keywords—Vessel enhancement, centerline extraction, 
symbiotic reconstruction.  

I. INTRODUCTION

ORONARY X-ray angiography is performed to 
specifically image and diagnose diseases of the blood 

vessels of the heart. A major component of any coronary 
analysis tool is the accurate estimation of the vessel 
centerlines. The extraction of vessel centerlines allows for 
better understanding of their topology, and   can be used in 
computing the optimal orientation of the imager for stenosis 
characterization [1] or to  give an initial point for  the 
computation of the deformation field of the vessels along the 
cardiac cycle [2], [3]. Currently, no standard tool is available 
for extracting the centerlines. We describe an automatic 
system for constructing 3D models of the coronary artery 
centerlines from   single – plane   angiograms.  Monoplane 
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angiography provides fast information on the vascular system 
and allows the physicians to surgically interact during the 
image acquisition phase, thus making it the most common 
approach when it comes to diagnosis, planning and execution 
of different cardiovascular treatment methods.  Previous work 
in this field is mainly based on semi-automatic methods for 
the detection and segmentation of the arterial tree and is 
limited to in-vitro bi-plane angiograms [4-8], although an 
automatic approach using monoplane angiograms has also 
been proposed [9]( see also [10] for a review of different 
approaches in the literature ). 
     In this paper a new vessel enhancement method, based on a 
multi-scale approach is presented. Moreover, morphological 
operations, and pattern recognition and evolutionary 
techniques will serve as a means to extract and reconstruct the 
complete arterial tree centerline from X-ray angiogram 
images. In the next section, we will describe in detail the steps 
involved. 

II. METHODOLOGY

A.  Image Acquisition  

      For all procedures a Philips Integris 3000H X-Ray C-arm 
unit was used with an under couch tube/over couch image 
intensifier configuration. The gantry performs a rotation while 
acquiring the images [11]. The gantry motion is characterized 
by constant SID (Source Intensifier Distance) value, constant 
CRA/CAU (Cranio/Caudal) angle value, and varying 
LAO/RAO (Left/Right Anterior Oblique) angle. The 
rotational acquisition is performed with a zero Cranial/Caudal 
angle and with the Left Anterior Oblique (LAO)/Right 
Anterior Oblique (RAO) angle varying from 90 degrees RAO 
to 90 degrees LAO. Two images of the same cardiac phase are 
selected from the angiogram sequence. The best projections 
obtained were along left anterior oblique (LAO), 30° LAO 
caudal, 30° LAO cranial, anteroposterior with cranial and 
caudal angulation, right anterior oblique (RAO), 30° RAO 
caudal, and 30° RAO cranial and left lateral. Pulsed 
fluoroscopy (12.5 p/s) was used. The process is ECG gated 
thus we can determine the phase of heart beat for each frame. 
Gantry information including focal spot to image intensifier 
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distance (SID), field of view (FOV) and gantry orientation 
were automatically recorded and stored with each image file. 
All procedures were performed in accordance with 
institutional guidelines, and all patients gave informed consent 
before PCI. For each patient, we have a single rotational 
sequence consisting of 40-50 images with pixel resolution 
of 512512× and pixel size of 0.2 mm. In addition, a 
precalibration step allows the estimation of the geometrical 
acquisition parameters. 

B.  Smoothing 

 First the input images are normalized. Then, their content 
is regarded as a compilation of iso-intensity contours. Spikes 
of noise corresponding to high curvature are removed and 
oscillations in boundaries smoothed out using variations of 
curvature flow [12]. The curvature evolution equation is as 
follows: 
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I
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     (1) 

   The goal is to generate a flow, which will smooth out 
undesired oscillations yet maintain fundamental characteristics 
of the shape. The concept of min/max switch is utilized in the 
following function: 
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Finally, tI F I= − ∇ . 

   The Ave function is the average value of  φ , given a disk of 
radius R = kh centered on a point (x; y). k is chosen as 1, a 
choice which allows some movement of the zero level 
corresponding to the boundary [12]. Finally, a speed function 
dependent on the average value of f and the local level of 
curvature is obtained. Given I(x; y), the original intensity 

profile, one iterates until tI  goes to zero and stable values are 
reached. The results of the smoothing are shown in Figure 1. 

C.  Proposed Vessel Enhancement Method 

       In X-ray angiography, blood vessels often exhibit low 
intensity contrast with respect to their surrounding soft tissues. 
The problem is particularly severe for fine vessel structures. A 
major challenge for enhancement is the ability to emphasize 
vessel structures without creating artifacts such as edge 
overshot and noise magnification. Ideally, vessel enhancement 
filters should enhance vessels and vessel junctions, while 
suppressing nodules and other non-vessel elements. 
    Digital subtraction angiography (DSA) [13] is a common 
approach to suppress these problems. However, DSA works 
well only on static areas with no ongoing motion (such as the 
vascular system of the brain). In cardiac angiography the heart 
muscle constantly moves and a DSA approach creates motion 
artefacts which could be confused with vessels. 
    A common approach to analyze the local behavior of a 
2D/3D image I is to consider its Taylor expansion in the 
neighborhood of a point 0x  

0 0 0 0( ) ( ) ( ) ( )T TI x x I x x I x x H x x+ Δ ≈ + Δ ∇ + Δ Δ            (3) 

where I∇  is the gradient vector and H denotes the Hessian 
matrix – the matrix  of the second-order partial derivatives of 
I. 
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  is the Hessian  matrix for a 2D image. 

   The elements of the Hessian matrix approximate the 2nd 
order derivatives, and therefore encode the shape information 

Fig. 1 Result of smoothing on one of the angiogram images: (Left) Original X-ray image (Right) Corresponding smoothed image 
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– both a qualitative and quantitative description of how the
normal to an isosurface changes.  Particularly interesting are 
the eigenvalues and eigenvectors of the Hessian matrix. Sato 
et al. [14] and Frangi et al. [15] independently employ 
eigenvalues to design filters for vessel enhancement in 3D 
medical digital images.  
     In this paper, we propose a simple yet highly efficient way 
to enhance vessels in 2D images.  The method is described as 
follows: 
     First a multi-scale representation of the input image is 
obtained over 8 exponentially distributed scales in the interval 
[0.8, 8] mm (note: scale normalization is achieved by 
multiplying the Hessian matrix by 2σ before eigenvalue 
decomposition, where σ is the scale for calculating Gaussian 
image derivatives).  Next, we calculate 2nd-order derivatives 
of each image build the Hessian matrix H for every pixel in 
each image and decompose it into its corresponding 
eigenvalues 1λ , 2λ  where 2 1λ λ  for a bright structure on a 
dark background. Hence, for every pixel in each image, there 
will be two eigenvalues. This procedure is performed for all 8 
scales. During each step, we store the 2 2

2 1 2/λ λ λ+  ratio 
value for each pixel and after a whole run on a certain scale, 
the sum of these ratios (i.e., 2( , ) 1( , ) 2( , )/i j i j i jλ λ λ+∑  where i 

and j are the pixel coordinates) is computed over all the rows 
and columns of the image. We call this number, the winner 
factor (WF) (note that if for a scale, we have 1 2 0λ λ= = , we 
ignore that scale to avoid any division by zero.) 
      Finally, having performed the same process on all the 
other scales, we find the winner image (WI) by comparing 
their respective winner factors. The scale with the largest WF 
is chosen as the winner with the strongest response and the 
last 4 scales with low scores are removed.                                                                                                            
Next, for each pixel in the WI a search is done pixel-by-pixel 
to compare the 2 2

2 1 2/λ λ λ+  ratio of the WI pixels with those 
of the 4 remaining scales. If there exists any scale with a 

higher ratio at the same pixel location, then the eigenvalues of 
the WI at that pixel location are substituted with the ones of 
the other scale with the higher ratio. 
     Following this, we initialize a new blank image with the 
same size as the WI.  The pixel values of this new image will 
be the corresponding largest eigenvalues of the modified 
winner image in the same pixel coordinates. This procedure 
can be better understood through Figure 2. 
     In Figure 3(Left) we can observe the application of the 
above procedure to one of the X-ray images in the database. 
Finally, in order to obtain the vessel enhanced image, this new 
image is multiplied element-wise with itself to get the final 
enhanced vessels. The result of the enhancement stage is 
shown in Figure 3(Right) for the same X-ray angiogram 
image. 

Region growing approaches [16], [17] and parametric 
deformable models (snakes) [18] are methods commonly used 
for vessel extraction. The main disadvantage of these 

Fig. 3  (Left) Max Eigenvalue image   (Right) Vessel enhanced using the proposed method 

Fig. 2 Visual illustration of eigenvalue selection procedure 
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approaches is that they often require user interaction in form 
of manually defined seed points, thus making it quite time 
consuming. A method that binarizes the vessel enhanced 
image, using hysteresis thresholding [19] followed by a 
thinning procedure [20], to extract the arterial centrelines, is 
considered next in this paper. The thinning procedure reduces 
the amount of data and shape analysis can be more easily 
made. Vessel bifurcations and end points are automatically 
extracted and organized into a tree structure that makes it easy 
to find specific parts of the coronary tree. 

D.   Hysteresis-like Thresholding 

     Hysteresis thresholding is suited to discard non-tubular 
structures since it offers the possibility to retain only the 
elements that match both an intensity criterion and a criterion 
of size of the connected components. Firstly, we choose a high 
threshold to recognize tubular complexes. Secondly, we 
choose a low threshold with which only the brighter parts of 
tubule complexes are recognized as foreground (since we use 
the negatives of the images). The threshold values are chosen 
low enough to obtain a light over-segmentation.  We compute 
these thresholds as quantiles of the histogram of the vessel 
enhanced image. These quantiles are associated to the relative 
area occupied by vessels in the image. From our experiments, 
we chose the 93rd percentile for the low threshold and the 
98th percentile for the high threshold. 

E.  Extracting Vessel Centerlines 

      An important observation is that the vessel enhancement 
procedure described in section C produces a low vesselness 
response to blob-like structures. Structures in the image with 
similar properties as the blob-like structures are the vessel 
bifurcations. Hence, bifurcations will give a lower vesselness 
response than an ordinary vessel segment. The low response 
can produce small holes in the binarized image, although they 
may seem harmless however the thinning algorithm will 
expand the holes and produce additional lines and bifurcation 
points not reflecting the structure of the vessel tree. Hence, a 
morphological ‘closing’ operator is applied prior to thinning 
in order to remove these additional lines. 
      The aim of skeletonization is to extract a region-based 
shape feature representing the general form of an object, in 
our case the vessel. In this stage, the skeleton is obtained 
using the thinning method proposed in [20].  Here, we want to 
produce a clean and complete vascular tree structure by 
removing isolated artifacts and pixels. Hence, the next step is 
to build a tree structure describing the vessel tree. This 
includes finding bifurcation points, end points. 

• Finding intersecting and end points:
        The bifurcation detection algorithm uses a 3 × 3 window 
to scan the image looking for patterns shown in Figure 4. 
Notice that these patterns are just four examples of the 
segment types. By rotating these patterns 45 degrees or by 

changing the binary value of a pixel, all possible patterns can 
be found.  
   For extracting the endpoints, consider a point on the 
centerline (or any pixel in the binarized thinned image), and 
assume that a minimum radius circle has been drawn from 
each point of the skeleton which has at least one point 
common with a region boundary. Let contact be each 
contiguous subset of the circle which is common to the circle 
and to the boundary. If a circle drawn from its center (say K) 
has one contact only, then K is a skeleton endpoint. If the 
point K has two contacts, it is a normal skeleton point. If K 
has three or more contacts, the point will be a skeleton node-
point. The result of the bifurcation and endpoint detection for 
the right hand side image of figure is shown in figure 4.  

The resulting detected bifurcation and endpoints are shown 
in Figure 5. Finally for the complete extraction of the tree, 
first pixels between two endpoints without any bifurcation in 
between are removed. Next, Size filtering is used to remove 
isolated pixels or regions that are not part of the arterial tree, 
by using the concept of connected pixels labeling. Connected 
regions correspond to individual objects. We first need to 
identify separate connected regions.  Area filtering tries to 
isolate the individual objects by using the information of a 
eight-connected neighborhood and label propagation. Once 
the algorithm is completed, only the resulting classes 
exceeding a certain number of pixels are labeled as blood 
vessels.  

Fig. 4  patterns used for detecting bifurcations 

F.   3D Centerline Reconstruction 
      Centerline reconstruction allows the estimation of the 
magnification factor attached to a 2-D point (at a reference 
time), which yields better measurements, as well as optimal 
viewing angles to avoid overlapping and vessel shortening 
[21], [22]. For reconstructing the centerlines in 3D, we make 
use of a feature-based symbiotic genetic optimization scheme 
capable of optimizing both intra- and inter-row levels 
simultaneously [23]. It utilizes symbiotic Genetic Algorithms, 
which are based on the biological paradigm of symbiosis and 
work on different subparts of a decomposable large-scale 
intractable problem. 
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Fig. 5 detected bifurcation and endpoints 

The populations interact through the fitness evaluation 
function and affect each other continuously, towards the 
cooperative solution of the large-scale problem. This allows 
accurate disparity calculations by performing matching of 
low-level primitives (edgels), while using composite higher-
level structures (edge chains) to maximize Figural Continuity. 
Inter-row consistency is enforced in a powerful way along 
edge chains of variable shapes and lengths. Unlike DP-based 
approaches, intra-row search is not restricted by the ordering 
constraint. A robust match functional based on fuzzy set 
theory is used to combine the feature attributes and for 
measuring the probability of matching two individual edgels. 
Using the above approach we obtain the disparity map as 
shown in the middle image of Figure 6. 

III. RESULTS

We applied the proposed algorithm to a database, which 
was provided by the Athens Euroclinic medical center, 
acquired from patients who held their breath during each 
acquisition.  

It should be noted that the reconstruction of patient’s data is 
more challenging, and is also more difficult to assess. We 
show the extracted centerlines along the corresponding 
disparity map from for a pair of two left and right images in 
Figure 6. The detected 2D centerlines combined with disparity 
map information will allow the reconstruction of the 3D 
vessel centerlines. The typical running time of our centerline 
extraction system on a 3.20GHz Pentium IV is 25.8 seconds 
on average for an 512512× X-ray angiogram image. 

IV. CONCLUSION

 We described a new method for the 3D reconstruction of 
coronary artery centerlines from X-ray angiogram images 
obtained from one single rotational acquisition. The images 
are enhanced, in a multi-scale manner, by convolution with 
the second order derivative of a Gaussian kernel at different 
sizes. The proposed vessel enhancement procedure shows 
excellent background and noise suppression results, when 
applied to the angiograms. To extract the vessel centrelines, a 
thinning method is applied. By extracting corresponding 
feature points in the X-ray images and combining it with a 
priori information about the scene, it is possible to estimate 
the epipolar geometry and reconstruct the scene in three 
dimensions. The results obtained so far demonstrate the 
feasibility of the proposed approach. The final as well as the 
intermediate results have the potential to support image 
interpretation and quantification by the physician. After 
clinical validation, this model could be used to help diagnose 
cardiovascular diseases. Further research in the area includes 
the evaluation of the effect of vessel geometry as well as 
stenosis geometry on the flow within the vessel and also the 
detection of thin and low-contrast vessels while avoiding false 
detection of vessels near pathologies and other non-vascular 
structures. 

 Fig. 6 Left & Right: Angiogram image with superimposed extracted centelrines. Middle: The computed disparity map sing 
symbiosis. 
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