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ON CERTAIN BLOCKS OF SCHUR ALGEBRAS

JOSEPH CHUANG AND KAI MENG TAN

Abstract. In this paper, we use what is known about defect 2 blocks
of symmetric groups to deduce information on corresponding blocks of
Schur algebras. This information includes Ext-quivers, decomposition
numbers, and Loewy structures of the Weyl modules, principal inde-
composable modules and tilting modules.

Schur discovered an important relationship between the complex general
linear groups and the symmetric groups which he used to construct the
irreducible polynomial representations of the complex general linear groups
from knowledge of the irreducible characters of the symmetric groups. Green
gave a modern treatment and development of Schur’s ideas in [4]. In his
set-up, which works over any infinite field, the general linear groups may
be ‘replaced’ by finite-dimensional algebras called Schur algebras. Many
authors have further developed and exploited Green’s approach.

In [1] we obtained the characters of Young modules of defect 2 blocks
of symmetric groups; by a theorem of James, this is equivalent to knowing
the composition multiplicities of simple modules in Weyl modules of the
corresponding blocks of Schur algebras. As we also explicitly described the
Loewy series of these Young modules in [1] we are here also able to obtain
Loewy series of Weyl modules, projective modules, and tilting modules in
the corresponding blocks of Schur algebras. We then reverse the process,
returning to the symmetric groups by applying the Schur functor; we are
able to describe the Ext-quivers and the structures of the Specht modules
of defect 2 blocks of symmetric group algebras.

1. Preliminaries

Let k be an algebraically closed field of prime characteristic p. The
general linear group GLn(k) acts naturally on the space kn of column
vectors and therefore on the r-fold tensor product (kn)⊗r via the diago-
nal action; the Schur algebra S(n, r) is defined to be the k-linear span of
the image of GLn(k) in the endomorphism ring of (kn)⊗r. General ref-
erences for Schur algebras and their representation theory are [4] and [8].
Any finite-dimensional polynomial representation of GLn(k) is a direct sum
of homogeneous representations, and any homogeneous polynomial repre-
sentation GLn(k) → GLm(k), homogeneous of degree r, factors through
the natural homomorphism GLn(k) → S(n, r). So instead of studying
finite-dimensional polynomial representations of GLn(k) directly, we con-
sider finite-dimensional representations of the Schur algebras.
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We use > and B to denote the lexicographic and dominance orders on
the set of partitions (see, e.g., [6, §3]). Also, if λ is a partition, then λ′ is the
conjugate partition. The map λ 7→ λ′ is lexicographic and dominance order-
reversing, i.e. λ > µ (resp. λ B µ) if and only if µ′ > λ′ (resp. µ′ B λ′). A
partition λ = (λ1, λ2, . . .) is called p-singular if λi+1 = . . . = λi+p for some
i, and p-regular otherwise. It is called p-restricted if λ′ is p-regular.

We name some important S(n, r)-mdoules. For a partition λ of r, denote
by ∆(λ) the Weyl module associated to λ, by L(λ) the unique simple quo-
tient, and by P (λ) a projective cover of L(λ). The modules L(λ), as λ runs
over partitions of r, forms a complete set of representatives of the isomor-
phism classes of simple S(n, r)-modules. A simple module L(µ) occurs as a
composition factor of the Weyl module ∆(λ) only if µ ≤ λ and, L(λ) occurs
with multiplicity one. The projective module P (λ) has a Weyl filtration,
that is, it has a filtration such that the corresponding factor modules are
isomorphic to Weyl modules [2, (2.2)]. In any such filtration ∆(µ) occurs
as a factor [∆(µ) : L(λ)] times. Moreover the filtration P = P0 ⊃ P1 ⊃ · · ·
may be chosen so that if Pi/Pi+1

∼= ∆(λi), then λ0 ≤ λ1 ≤ · · · .
If V is an S(n, r)-module then the dual space V ∗ can be given the structure

of an S(n, r)-module, called the contravariant dual of V (see, e.g., [4, §2.7]).
It is known that the simple S(n, r)-modules are self-dual (see, e.g., [4, (3.5a)
and (3.3e)]).

We shall assume throughout that n ≥ r. In this case there exists an
idempotent e ∈ S(n, r) such that eS(n, r)e is isomorphic to the group algebra
kSr, where Sr denotes the symmetric group of degree r [4, §6.1]. The Schur
functor f : S(n, r)-mod→ kSr-mod, takes an S(n, r)-module V to the kSr-
module eV .

We will use the standard notation for kSr-modules. Given a partition
λ = (λ1, λ2, . . . ) of r, we obtain the permutation module Mλ = k↑kSrkSλ

by
inducing the trivial module of the Young subgroup Sλ

∼= Sλ1 ×Sλ2 × · · ·
to Sr. One of the most important submodules of Mλ is the Specht module
Sλ, which is a p-modular reduction of an ordinary irreducible representation
of Sr whose character is denoted by χλ. As λ runs through the partitions
of r, the χλ give a complete list of irreducible characters of Sr. The Specht
module Sλ has a simple, self-dual head Dλ if the partition λ is p-regular, and
as λ runs through the p-regular partitions of r, the set of Dλ is a complete
list of mutually non-isomorphic simple modules of kSr.

It is known that Sλ⊗sgn is isomorphic to the dual of Sλ
′
, where sgn is the

signature representation [6, Theorem 8.15]. If λ is p-regular, let λ∗ be the
p-regular partition such that Dλ ⊗ sgn ∼= Dλ∗ . Note that the map λ 7→ λ′∗

gives a 1-1 correspondence between p-restricted and p-regular partitions of
r which preserves p-cores.

The Young module Y λ is defined to be the unique indecomposable direct
summand of Mλ which contains Sλ as a submodule (see, e.g., [5]). It is the p-
modular reduction of a unique (up to isomorphism) ordinary representation
of Sr; we define [Y λ : Sµ] to be the multiplicity of χµ in this character. A
Young module is self-dual, and is projective if and only if λ is p-restricted,
in which case Y λ ∼= P (Dλ′∗). Note that every indecomposable projective
kSr-module is a Young module.
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We collect together some facts:

Lemma 1.1. Let λ and µ be partitions of r.

(1) We have f∆(λ) ∼= (Sλ)
∗
, the dual of Sλ.

(2) We have

fL(λ) ∼=

{
Dλ′∗ , if λ is p-restricted;

0, otherwise.

(3) We have fP (λ) ∼= Y λ.
(4) The Schur functor f induces an equivalence between the category of

finite-dimensional projective S(n, r)-modules and finite-dimensional
kSr-modules which are isomorphic to direct sums of Young modules.

(5) We have [∆(λ) : L(µ)] = [Y µ : Sλ] and if µ is p-restricted then

[∆(λ) : L(µ)] = [Sλ
′

: Dµ′ ].
(6) If λ is p-restricted, then L(λ′∗) is the unique composition factor of

P (λ) having the largest partition (in dominance order).
(7) If λ is p-restricted, then P (λ) is self-dual.
(8) If λ is p-regular, then ∆(λ) has a simple socle L(λ∗′).

Proof. Parts (1) and (2) are proved in §6.3 and §6.4 of [4] and part (5) is
proved in [5]. Parts (3), (6), (7), and (8) are (2.5), (2.8), (2.9), and (2.10)
of [2]. Part (4) with ‘projective’ replaced by ‘injective’ follows from (2.4) of
[2] and the discussion following it. To get part (4) from this, note that if V
is an S(n, r)-module, then f(V ∗) and (fV )∗ are naturally isomorphic, and
that Young modules are self-dual.

We remark that there is an typographical error in the statement of (2.9)
in [2]. It said that P (λ) is self-dual if λ is p-regular. However, its proof
assumed that λ is column p-regular (i.e., p-restricted). Proposition 4.6.6 of
[8] made the same mistake. �

We now discuss the blocks of kSr and S(n, r). By ‘Nakayama’s Conjec-
ture’ (see, e.g., [7, §6.1.21–6.1.42]), two Specht modules Sλ and Sµ of kSr

lie in the same block if, and only if, λ and µ have the same p-core. Hence
a block of kSr is determined by a p-core partition τ of r − wp (where w
is a nonnegative integer, known as the weight of the block). An irreducible
character, Specht module, simple module, or Young module of kSr lies in
this block if, and only if, its associated partition of r has p-core τ . The
defect group of a block having weight w is isomorphic to Cp o (Sw)p where
(Sw)p is a Sylow p-subgroup of Sw (see, e.g., [7, 6.2.39]). The defect of such
a block is thus w+ νp(w!), where νp is the standard p-valuation. Hence, for
example, B is a defect 2 block of kSr if, and only if, w = 2 and p > 2.

Because every indecomposable projective kSr-module is a Young module,
parts (3) and (4) of the preceding lemma imply that there exists a 1-1
correspondence between blocks of kSr and blocks of S(n, r) such that if B
is a block of kSr then the Schur functor sends S(n, r)-modules lying in the
corresponding block SB to kSr-modules lying in B. Moreover if τ is the
p-core partition associated to B then it is clear that τ is associated to SB
in the following way: a Weyl module or simple module of S(n, r) lies in the
block SB if and only if its associated partition of r has p-core τ . We denote
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the set of such partitions by PB. This labelling of the blocks of S(n, r) was
discovered by Donkin [2, (2.12)].

If B is a block of kSr associated to a p-core partition τ , then we denonte
by B′ the block of kSr associated to the conjugate partition τ ′. Tensoring
with the signature representation of kSr induces an equivalence between
the module categories of B and B′.

If B has defect 0 then it is semisimple, and then SB is semisimple as
well; this case is not particularly interesting. If B is a block of defect 1, its
structure is known completely, and from this the structure of SB may be
determined (see, e.g., [8, §5.6]).

2. Decomposition numbers

For the remainder of the paper, we let B be a block of defect 2 of kSr

and let SB be the corresponding block of S(n, r). We are thus assuming
w = 2 and p > 2.

In this section we point out that we can already determine the multi-
plicity of simple modules as composition factors of Weyl modules of SB by
combining results of Richards [9] and ours [1].

We introduce some terminology and results due to Richards [9]. Given
a partition λ ∈ PB, one can remove two p-hooks in succession from the
diagram of λ. There may not be a unique way to do this, but the absolute
value of the difference of the leglengths of the two hooks is well defined and is
denoted by ∂λ. If ∂λ = 0 we say, following Richards, that λ is black if either
λ has two p-hooks and the larger leg-length is even, or λ has a p-hook and
a 2p-hook and the leg-length of the 2p-hook is congruent to 0 or 3 (mod 4),
and that λ is white otherwise.

Definition 2.1. Given λ ∈ PB, we shall write λ+ (resp. λ−) for the next
larger (resp. smaller) partition in PB, if it exists, having the same ∂-value
as λ, and having the same color as well if this value is 0.

Remarks .

(1) [9, Lemma 4.3] λ− is defined if, and only if, λ is p-regular.
(2) [9, Lemma 2.11 and Theorem 4.4] If λ is p-regular, then λ− = λ∗′.
(3) It is clear that (λ+)− = λ whenever λ+ is defined and that (λ−)+ = λ

whenever λ− is defined. Thus combining with (1) and (2) above, we
see that λ+ is defined if, and only if, λ is p-restricted, and that
λ+ = λ′∗.

Theorem 2.2. Suppose λ, µ ∈ PB. Then

[∆(λ) : L(µ)] =

1,
if λ ∈ {µ, µ+}, or

both |∂µ− ∂λ| = 1 and µ+ B λ B µ;

0, otherwise.

The dominance condition µ+ B λ is to be treated as vacuous if µ+ is unde-
fined.

Proof. If µ is p-restricted, [∆(λ) : L(µ)] = [Sλ
′

: Dµ′ ] by lemma 1.1(5). It
is easy to check that ∂-values and colors are preserved under conjugation of
partitions. Therefore in this case the proposition is just a restatement of [9,
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Theorem 4.4]. blah of Richards. If µ is not p-restricted, then [∆(λ) : L(µ)] =
[Y µ : Sλ], by lemma 1.1(5), and one can verify that the proposition holds,
using lemma 2.1 and theorem 2.2 (including the remark following theorem
2.2) of [1]. �

3. Ext-quiver and Weyl modules

In this section we compute the Ext-quiver of SB and describe completely
the structures of Weyl modules of SB.

Theorem 3.1.

(1) Suppose λ, µ ∈ PB and λ ≥ µ. Then

dimk Ext1SB (L(λ), L(µ)) =

{
1, if |∂µ− ∂λ| = 1 and µ+ B λ B µ;

0, otherwise.

The dominance condition µ+ B λ is to be treated as vacuous if µ+
is undefined.

(2) If λ ∈ PB is p-regular, then ∆(λ) has Loewy length 3 and a simple
socle isomorphic to L(λ−).

(3) If λ ∈ PB is p-singular, then ∆(λ) is either simple or has Loewy
length 2.

Remarks . As the simple S(n, r)-modules are self-dual, we have

Ext1SB (L(µ), L(λ)) ∼= Ext1SB (L(λ), L(µ)),

so the theorem determines the Ext-quiver of SB.

Proof. Before beginning, we note that dimk Ext1SB (L(λ), L(µ)) is equal to
the multiplicity of L(µ) in the second Loewy layer of ∆(λ) as long as µ ≤ λ
because P (λ) has a filtration by ∆(ν)’s with ν ≥ λ and such that ∆(λ)
occurs just once.

We prove all three statements by induction on λ with respect to lexico-
graphic order. If λ is p-singular, then λ− is not defined, so by theorem 2.2,
all the ∂-values of the partitions µ for which L(µ) is a composition factor of
rad(∆(λ)) have the same parity. As all these µ’s are strictly smaller than
λ in the lexicographic order, we have by induction that there are no exten-
sions between these L(µ)’s, and consequently all three statements hold in
this case.

Now suppose λ is p-regular. Then λ− is defined and is p-restricted. By
lemma 1.1(8) and the remarks after definition 2.1, ∆(λ) has a simple socle
L(λ−). Now by theorem 2.2 the composition factors L(µ) of the heart of
∆(λ) satisfy |∂µ − ∂λ| = 1 and λ B µ. In particular, the ∂-values of the
µ all have the same parity. By the induction hypothesis, these composition
factors do not extend each other. Hence the theorem will be proved once
we show that the heart of ∆(λ) is nonzero.

So assume the contrary, looking for a contradiction. In this case, ∆(λ) has
composition length 2, with a simple head L(λ) and a simple socle L(λ−). Let
Ω = {µ ∈ PB | [∆(µ) : L(λ−)] = 1, µ /∈ {λ, λ−}}. Note that by induction,
we have µ ∈ Ω if, and only if, λ > µ ≥ λ− and Ext1SB (L(µ), L(λ−)) 6=
0. Since P (λ−) has a multiplicity-free Weyl filtration whose factors are



6 JOSEPH CHUANG AND KAI MENG TAN

∆(λ−), ∆(µ) (µ ∈ Ω), ∆(λ), we see that Ω must be non-empty, for [P (λ−) :
L(λ−)] ≥ 3 (as [P (Dλ) : Dλ] ≥ 3 [10, Theorem I(3)]).

Let ν be the largest partition in Ω. The heart of P (λ−) has a filtration
with factors rad(∆(λ−)), ∆(µ) (µ ∈ Ω), L(λ). It is clear from this filtration
that [P (λ−) : L(ν)] = 1. And since L(λ−) extends L(ν), L(ν) must lie in the
head of the heart of P (λ−). However, as ∆(ν) is non- simple with a simple
head L(ν) (as [∆(ν) : L(λ−)] = 1), L(ν) is not lying in the socle of the heart
of P (λ−). But the heart of P (λ−) is self-dual since P (λ−) is self-dual. This
gives us the required contradiction. �

Remarks . We note that the module structures of the Weyl modules of SB
are completely determined, using theorems 2.2 and 3.1.

We have two immediate corollaries to the previous theorem:

Corollary 3.2. Group the simple modules of SB according to the parity of
the ∂- values of the associated partitions. Then this gives a partition of the
the simple modules of SB displaying the bipartite nature of the Ext-quiver
of SB. �

Corollary 3.3. Let λ, µ ∈ PB with λ ≥ µ. The following statements are
equivalent:

(1) Ext1SB (L(λ), L(µ)) is non-zero;

(2) Ext1SB (L(λ), L(µ)) is one-dimensional;
(3) µ+ B λ B µ and |∂λ− ∂µ| = 1, the dominance condition µ+ B λ to

be treated as vacuous if µ+ is undefined;
(4) [∆(λ) : L(µ)] = 1 and ∂λ and ∂µ have different parity;
(5) [∆(λ) : L(µ)] 6= 0 and ∂λ and ∂µ have different parity;
(6) [P (λ) : L(µ)] 6= 0 and ∂λ and ∂µ have different parity.

Proof. Statements (1), (2), and (3) are equivalent by theorem 3.1, statements
(3), (4), and (5) are equivalent by theorem 2.2, and (5) clearly implies (6).
Finally if (6) holds, then some ∆(ν) which occurs as a factor in a Weyl
filtration of P (λ) must have L(µ) as a composition factor; because ∆(ν) is a
factor in this filtration it also must have L(λ) as a composition facter. Since
L(λ) and L(µ) are composition factors of ∆(ν) with different parities, they
must lie in consecutive Loewy layers of ∆(ν), as ∆(ν) has Loewy length at
most 3 by theorem 3.1. Also, as ∆(ν) always has a simple head and has a
simple socle when ∆(ν) has Loewy length 3, we see that L(λ) must extend
L(µ). �

4. Principal Indecomposable Modules

In this section we obtain the Loewy structures of the principal indecom-
posable modules of SB. We first introduce a non-standard notation:

Notation . For a module M , we write ``(M) for the Loewy length of M .

Suppose P0 is a principal indecomposable SB-module. Let s be the
maximal integer for which there exist indecomposable projective modules
P1, . . . , Ps and nonisomorphisms ψi : Pi → Pi−1 such that ψ1 ◦ · · · ◦ ψs 6= 0.
In the light of lemma 1.1(4), s is also the maximal integer for which there
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exist Young modules Y1, . . . , Ys and nonisomorphisms φi : Yi → Yi−1 such
that φ1 ◦ · · · ◦ φs 6= 0 (where Y0 = fP0). We note that ``(P0) = s+ 1.

Scopes [10, Theorem I(7)] showed that any projective module of B has
Loewy length five and its Loewy layers and socle layers coincide, while we
[1, Theorem 2.4] showed that any non-projective Young module has Loewy
length 1 (in which case it is simple) or 3, and its Loewy layers and socle
layers coincide as well.

Lemma 4.1. Let φ : Y → Y ′ be a homomorphism of a Young module into
another which is not an isomorphism, and let M be a submodule of Y such
that φ(M) 6= 0. Let l = ``(Y ) and l′ = ``(Y ′) be the Loewy lengths of Y and
Y ′. We have

``(φ(M)) ≤ ``(M)−


0, if l < l′;

1, if l = l′;

(l − l′), if l > l′.

Proof. We first note that since φ(M) is a quotient of M , it is clear that
``(φ(M)) ≤ ``(M).

Let m be the Loewy length of M . Then M ⊆ socm(Y ) = radl−m(Y )

and φ(radl−m Y ) ⊆ radl−m(Y ′) = socl
′−(l−m)(Y ′). Therefore φ(M) ⊆

socm−(l−l
′)(Y ′).

Supose l = l′. Then φ(Y ) ⊆ rad(Y ′): this is clear if l = 1 or l = 5, and may

be checked directly if l = 3, using [1, Theorem 2.4]. Thus φ(radl−m Y ) ⊆
radl−m+1(Y ′) = socl−(l−m+1)(Y ′), and therefore φ(M) ⊆ socm−1(Y ′). �

Now let s be a positive integer, and let Y0, . . . , Ys be Young modules.
Suppose there exist nonisomorphisms φi : Yi → Yi−1 such that Φ = φ1 ◦ · · · ◦
φs 6= 0. For j ∈ {−4,−2, 0, 2, 4}, let

nj = |{i | l ≤ i ≤ s and ``(Yi−1)− ``(Yi) = j}|.
Then we have

s = n−4 + n−2 + n0 + n2 + n4, and

``(Y0)− ``(Ys) = −4n−4 − 2n−2 + 2n2 + 4n4.

Moreover, by the above lemma,

``(Φ(Ys)) ≤ ``(Ys)− 4n−4 − 2n−2 − n0.
Therefore

``(Y0)− ``(Ys) = −4n−4 − 2n−2 + 2n2 + 4n4

≥ −4n−4 − 2n−2 + 2(s− n−4 − n−2 − n0)
= −6n−4 − 4n−2 − 2n0 + 2s

≥ 2(``(Φ(Ys))− ``(Ys) + s).

Hence,

s ≤ 1
2(``(Y0) + ``(Ys))− ``(Φ(Ys))

≤ 1
2(``(Y0) + 5)− 1

= 1
2(``(Y0) + 3).

¿From this calculation and the comments above we deduce that:
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Proposition 4.2. The Loewy length of a projective module P (λ) is bounded
above by 5, 4, or 3 when the corresponding Young module Y λ has Loewy
length 5, 3, or 1, respectively. �

In fact, these bounds are exact:

Theorem 4.3. The Loewy length of a projective module P (λ) is 5, 4, or
3 when the corresponding Young module Y λ has Loewy length 5, 3, or 1,
respectively.

Proof. It is clear that Y λ has Loewy length 5 if, and only if, λ is p-restricted,
and since fP (λ) = Y λ, P (λ) has Loewy length at least least five.

If Y λ has Loewy length 3, then λ is not p-restricted. Thus fL(λ) = 0,
and therfore f(rad(P (λ))) ∼= Y λ. Thus rad(P (λ)) has Loewy length at least
3, and hence P (λ) has Loewy length at least 4.

There is only one partition in PB that is both p-singular and non-p-

restricted, namely that denoted by λ(p−1) in [1], and Y λ(p−1)
has Loewy

length 3. Thus, if Y λ has Loewy length 1, then λ is p-regular, and using
theorem 3.1(2), we see that ∆(λ) has Loewy length 3, and so P (λ) has
Loewy length at least 3. �

Theorem 4.4. Let λ, µ ∈ PB with λ 6= µ, and suppose that ∆(µ) is a Weyl
factor of P (λ). Then i-th Loewy layer of ∆(µ) lies completely in the j-th
Loewy layer of P (λ), where

j = i+ 2− |∂λ− ∂µ|.

Proof. Since ∆(µ) is a Weyl factor of P (λ), we have [∆(µ) : L(λ)] 6= 0, and
using theorem 3.1(1), this implies that |∂λ− ∂µ| = 0 or 1. If |∂λ− ∂µ| = 0,
then µ = λ+. Since λ+ is p-regular, theorem 3.1(2) shows that ∆(λ+) has
Loewy length 3. Also, as λ is p-restricted, we see that P (λ) has Loewy
length 5 by the previous theorem. The bipartite nature of the Ext- quiver of
SB shows that the head L(λ+) of ∆(λ+) must lie in the third Loewy layer.
The statement now follows for this case.

If |∂λ−∂µ| = 1, then by theorems 3.1(1) and 2.2, we see that Ext1SB (L(λ), L(µ)) 6=
0, and thus the head L(µ) of ∆(µ) must lie in the second Loewy layer of P (λ).
Since the Loewy length of P (λ) is at most 5, together with the bipartite na-
ture of the Ext-quiver of SB, the statement will fail only if a composition
factor, L(ν) say, of the second Loewy layer of ∆(µ) actually occurs in the
fifth Loewy layer of P (λ). Assuming that this is indeed possible, then λ is
p-restricted, and so P (λ) is self-dual. Thus the head and socle of P (λ) are
isomorphic, in particular, they are both simple. But the fifth Loewy layer of
P (λ) is a submodule of its socle, and as λ is p-restricted, the socle of P (λ)
should come from the socle of the Weyl factor ∆(λ+). �

5. Tilting modules

Tilting modules of Schur algebras are indecomposable self-dual modules
having a Weyl filtration. For each partition λ of r, there is an associated
tilting module T (λ) which is characterised by ∆(λ) ⊆ T (λ), and its other
Weyl factors ∆(µ) satisfy µ < λ. Moreover, the multiplicity of the factor
∆(µ) in the a filtration of T (λ) is equal to [∆(µ′) : L(λ′)] [3, (3.8)]. It is
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also clear that T (λ) is simple if, and only if, ∆(λ) is simple; in which case
T (λ) = ∆(λ) = L(λ).

If λ is a p-regular partition of r, let µ = λ∗′. Then µ is p-restricted and
by lemma 1.1(7), we see that P (µ) is a tilting module. Moreover, by lemma
1.1(6) and the known filtration of P (µ), we see that ∆(µ′∗) = ∆(λ) is a
submodule of P (µ), so that P (µ) = T (λ).

In this section, we will obtain the Loewy structures of the tilting modules
of SB. From the above comments, we only need to look at the non-simple
tilting modules associated to p-singular partitions. Theorem 3.1(3) showed
that these partitions have associated Weyl modules having Loewy length 2.

Since the Loewy lengths of the principal indecomposable modules of SB
are bounded above by 5, any indecomposable module having Loewy length
5 must in fact be projective. In fact, it must be of the form P (µ) with
µ p-restricted using theorem 4.3. Hence the Loewy lengths of the tilting
modules of SB associated to p-singular partitions are bounded above by 4.

Using the fact that the multiplicity of ∆(µ) in a Weyl filtration of T (λ) is
[∆(µ′) : L(λ′)] and theorem 2.2, it is routine to enumerate the Weyl factors
of T (λ) (with λ p-singular) and hence its composition factors (with multi-
plicity). We find that there are at most two composition factors occurring
twice and the remaining composition factors occurring once. Moreover, the
∂-values of the composition factors of the same (resp. different) multiplicity
have the same (resp. different) parity. A little thought shows that T (λ) must
have Loewy length 3: the composition factors having multiplicity 2 occur in
the head and in the socle, and the composition factors having multiplicity 1
lie in the semi-simple heart.

6. Analogous results for symmetric groups

In this section, we apply the Schur functor in order to get analogues of
the results in section 3 for symmetric groups.

Let λ and µ be p-restricted partitions in PB. We have fL(λ) ∼= Dλ′∗

and fL(µ) ∼= Dµ′∗ . Suppose that Ext1SB (L(λ), L(µ)) 6= 0. Then as fP (λ) ∼=
P (Dλ′∗), we would get Ext1B(Dλ′∗ , Dµ′∗) 6= 0.

Conversely suppose that Ext1B(Dλ′∗ , Dµ′∗) 6= 0. Then there exists a ho-

momorphism φ : P (Dµ′∗) → P (Dλ′∗) such that the image of φ is not con-

tained in rad2(P (Dλ′∗)). By lemma 1.1(4), there exists a homomorphism φ̃ :

P (µ)→ P (λ) such that fφ̃ = φ. Now suppose that Ext1SB (L(λ), L(µ)) = 0,

looking for a contradiction. There the image of φ̃ is contained in rad2(P (λ)),
so there exist indecomposable projective SB-modules P1, . . . , Pt, and noni-

somorphisms α̃i : P (µ)→ Pi and β̃i : Pi → P (µ) such that φ̃ =
∑t

i=1 β̃i ◦ α̃i.
Applying the Schur functor, we get φ =

∑t
i=1 βi ◦ αi, where αi = fα̃i :

P (Dλ′∗) → fPi and βi = fβ̃i : fPi → P (Dλ′∗) are nonisomorphisms. If

fPi is projective then the image of βi ◦ αi is contained in rad2(P (Dλ′∗)).
If fPi is not projective, then because it is a Young module it has Loewy
length at most 3. So in this case the image of βi ◦ αi is contained in
soc3(P (Dλ′∗)) = rad2(P (Dλ′∗)). Therefore, the image of φ is contained

in rad2(P (Dλ′∗)), a contradiction.
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So we have proved that Ext1SB (L(λ), L(µ)) 6= 0 if and only if Ext1B(Dλ′∗ , Dµ′∗) 6=
0. As Ext1SB (L(λ), L(µ)) is at most one-dimensional by theorem 3.1 and the

same holds for Ext1B(Dλ′∗ , Dµ′∗) by [10, Theorem I(5)], we actually have

that dimk Ext1SB (L(λ), L(µ)) = dimk Ext1B(Dλ′∗ , Dµ′∗).

Theorem 6.1. Let ρ and σ be p-regular partitions in PB with ρ ≤ σ. The
following statements are equivalent:

(1) Ext1B(Dσ, Dρ) is non-zero;
(2) Ext1B(Dσ, Dρ) is one-dimensional;
(3) σ B ρ B σ− and |∂σ − ∂ρ| = 1;
(4) [Sρ : Dσ] = 1, and ∂ρ and ∂σ have different parity;
(5) [Sρ : Dσ] 6= 0, and ∂ρ and ∂σ have different parity;
(6) [P (Dρ) : Dσ] 6= 0, and ∂ρ and ∂σ have different parity.

Proof. Let λ = ρ′ and µ = σ′. Then λ and µ are p-restricted partitions in
PB′ , and λ ≥ µ. Using corollary 3.3, we only have to show that the i-th
statement of this theorem is equivalent to the i-th statement of the corollary.

For statements (1) and (2), from the comments above, we note that
dimk Ext1SB′ (L(λ), L(µ)) = dimk Ext1B′(D

ρ∗ , Dσ∗) = dimk Ext1B(Dρ, Dσ). For

the remaining statements, we first note that the ∂-values are preserved under
the map ν 7→ ν ′. Moreover,

µ+ B λ B µ ⇔ (σ′)′
∗ B ρ′ B σ′

⇔ σ B ρ B σ∗′ = σ−,

and [∆(λ) : L(µ)] = [Sλ
′

: Dµ′ ] = [Sρ : Dσ] and [P (λ) : L(µ)] = [P (Dλ′∗) :

Dµ′∗ ] = [P (Dρ) : Dσ], since λ and µ are p-restricted.
�

Thus we can conclude that grouping the simple B-modules according to
the parity of ∂-values of their associated partitions also gives a partition of
the simple B-modules displaying the bipartite nature of the Ext- quiver of
B.

Proposition 6.2. Let λ ∈ PB. The Loewy length of Sλ is bounded above
by 3. Moreover, Sλ has Loewy length 3 if, and only if, λ is both p-regular
and p-restricted.

Proof. Since f∆(λ) = (Sλ)∗, and ∆(λ) has Loewy length at most 3 by
theorem 3.1, we see that Sλ has Loewy length at most 3 as well.

If Sλ has Loewy length 3, then so has (Sλ)∗ = f∆(λ). Thus, λ is p-regular
by theorem 3.1. Also, fL(λ) 6= 0, as otherwise f(rad(∆(λ))) = (Sλ)∗ has
Loewy length at most 2. This shows that λ is p-restricted.

If λ is both p-regular and p-restricted, then Sλ has a simple head Dλ and
a simple socle Dλ′∗ . Since the ∂-values of λ and λ′∗ = λ+ are the same, the
head cannot extend the socle by the previous theorem. Thus, Sλ has Loewy
length at least 3. �

Since Sλ has a simple head Dλ (resp. simple socle Dλ′∗) if λ is p-regular
(resp. p-restricted), using the theorem and proposition of this section as well
as [9, Theorem 4.4], we will be able to obtain the Loewy structures of the
Specht modules of B.
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Remarks . Instead of using the Schur functor to translate the results of
Schur algebras obtained in this paper, the results of this section can also
be obtained independently by considering directly the defect 2 blocks of
symmetric groups.
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