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Abstract:  

   This thesis discusses two important designs, analysis and optimization of polarization-

based devices such as polarization rotator and splitter. Many optical sub-systems integrate 

with guided wave photonic devices with two-dimensional confinement and high contrast 

between the core and cladding. The modes present in such waveguides are not purely of the 

TE or TM type. They are hybrid in nature, where all six components of the magnetic and 

electric fields are present. This causes the system fully to be polarization dependent. 

Currently, the polarization issue is a major topic to be dealt with during the design of high 

efficiency optoelectronic subsystems for further enhancement of their performances. To 

characterize the device polarization properties a vectrorial approach is needed. In this work, 

the numerical analysis has been carried out by using the powerful and versatile full vectorial 

H-field based finite element method (FEM). This method has been proved to be one of the 

most accurate numerical methods to date for calculating the modal hybridness, birefringence 

and consequently to calculate the device length, which is an important parameter when 

designing devices concerning the polarization issues. Polarization devices may be fabricated 

by combining several butt-coupled uniform waveguide sections. The Least Squares Boundary 

Residual (LSBR) method is used to obtain transmission and reflection coefficients of all the 

polarized modes by considering both the guided and the radiated modes. On the other hand, 

finite element method cannot calculate the power transfer efficiency directly, hence the 

LSBR method is used along with the FEM for this purpose. The LSBR method is rigorously 

convergent, satisfying the boundary conditions in the least square sense over the discontinuity 

interface. Using this method, the power transfer from the input to the coupler section and at 

the output ports can be evaluated. When designing polarization rotators, it is necessary to 

calculate the modal hybridness of a mode. In this research, it is identified that when the 

symmetric waveguides are broken, the modal hybridity is enhanced, and thereby a high 

polarization conversion is expected. This work is devoted to the study of design optimization 

of a compact silicon nanowire polarization device. An interesting and useful comparison is 

made on their operating properties such as the crosstalk, device length, polarization 

dependence, and fabrication tolerances of the polarization in directional coupler based 

devices. In this study initially the H-field modal field profile for a high index contrast silicon 

nanowire waveguide is shown. The effects of waveguide’s width on the effective indices, 

hybridness, power confinement in the core, and the cladding have been investigated. The 

modal birefringence of such silicon nanowire waveguides also is shown. It is presented here 

that for a silicon nanowire waveguide with height of 220 nm, fundamental and second modes 

exist in the region of the width being 150 – 300 nm, and 500 – 600 nm, respectively. A 

compact 52.8 µm long passive polarization rotator (PR) using simple silicon nanowire 

waveguides is designed with a power transfer of 99 % from input TE to output TM power 

mode, with cross-talk better than – 20 dB and loss value lower than 0.1 dB. Furthermore, an 

extensive study of fabrication tolerances of a compact (PR) is undertaken. The design of an 

ultra-compact polarization splitter (PS) based on silicon-on-insulator (SOI) platform is 

presented. It is shown here that a low loss, 17.90 µm long compact PS, and wide bandwidth 

over the entire C-band can be achieved.  
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Introduction: 

 

1.0 Telecommunications: 

 

   It has been a while since human beings are able to transmit information by the application 

of light. Fire and smoke signals were used by Greeks in 800 BC to send information. This 

technique was used in situations such as victory in a war, alerting against the enemy, call for 

help, etc. Needless to say, mostly only one type of signal was conveyed. During the second 

century B.C. signalling lamps were used to encode optical signals. As a result, they were able 

to send any message they wanted. No development in optical communication was achieved 

till the end of the 18th century. The following factors limited the speed of the optical 

communication link: the human eye as the receiver, the requirement of line of sight 

transmission paths, and unreliable nature of transmission paths which is influenced by 

atmospheric effects. It should be mentioned that fog and rain are regarded as the above said 

effects. Semaphore was developed by Chappe in 1791 to telecommunicate on land which was 

also with limited information transfer.  

 

   Telegraph was invented by Samuel Morse the end a new era called electrical 

communications was started all over the world. The application of wire cables for 

transmitting Morse coded [1] signal was implemented in 1844. It was in 1872 when the photo 

phone was proposed by Alexander Graham Bell with a diaphragm giving speech transmission 

over a distance of 200 m. But in a matter of four years, he changed the photo phone into 

telephone which used electrical current for speech signals transmission. 

 

    It was in1878 when the first telephone exchange was installed at New Haven. Meanwhile, 

radio waves were discovered by Hertz in 1887. Radio communication with no wires was 

presented by Marconi in 1895. Radio waves and microwaves used as the carrier transmitted 

the signals over a long distance using modulation techniques. During the middle of the 

twentieth century, it was understood that if optical waves were used as the carrier, an increase 

of several orders of magnitude of bit rate distance product would be possible [1]. According 

to Shannon-Hartley theorem invented in 1948, channel bandwidth, signal power and the noise 

can limit the transmission capacity. 

 

    In the old optical communication system, there was an enormous transmission loss (10
5
 to 

10
7
 dB/km). As a result, the bit rate distance product is only about 1 (bit/s)-km. Meanwhile, 

the information carrying capacity of telegraphy is about hundred times smaller than a 

telephony. Even though the high-speed coaxial systems were evaluated during 1975, they had 

smaller repeater spacing. It should be mentioned that microwaves are used in modern 

communication systems with the increased bit rate distance product. However, laser regarded 

as one of the coherent optical carriers will have more information carrying capacity.  

 

   Consequently, the communication engineers were into optical communication that uses 

lasers in an effective manner from 1960 onwards. Laser was invented by Maiman in 1960 and 
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a new era in optical communication was started. Compared to radio waves and microwaves, 

the light waves coming from the laser, a coherent source of light waves with high 

directionality, high intensity and high monochromaticity with less divergence, are used as 

carrier waves which are capable of carrying large amount of information. CO2 laser was 

fabricated and designed and by an Indian electrical engineer, H. M Patel, and also 

demonstration of semiconductor LASER  in the early 60’s by Maiman paved the way to 

develop a transmission medium capable for transmitting and processing large bandwidth of 

signals reliably. 

 

1.1 Fibre Optic  

   Initially metallic and non-metallic waveguides were fabricated in order to guide light in a 

waveguide.  They were not suitable for telecommunication since they had enormous losses. 

Tyndall discovered that the phenomenon of total internal reflection can transmit light through 

optical fibres. During 1950s, the optical fibres were used in endoscopes to see the inner parts 

of the human body. It should be added that such fibres had large diameters of about 1 or 2 

millimetre and could provide a much more reliable and versatile optical channel than the 

atmosphere.  

   In 1966, a paper was published by Kao and Hockham which was about the optical fibres 

communication system [2]. However, the fibres of that time suffer from an enormous loss of 

1000 dB/km which was larger than a few dB/km losses in the atmosphere. Immediately Kao 

and his fellow workers figured out that the impurities existed in the fibre material were the 

causes of such high losses. 

    It was in 1970 when Kapron, Keck and Maurer could reduce the losses to 20 dB/km by the 

development of a pure silica fibre. At this attenuation loss, repeater spacing for optical fibres 

links become comparable to those of copper cable systems and as a result, the optical fibre 

communication system became an engineering reality.  

   Earlier multimode fibres were used to transmit light with sources operating at wavelength 

near 800 nm. In these systems, the fibre employed has attenuation of 3dB/km and much 

better than the coaxial cable which has attenuation of 10-20 dB/Km. The fibres employed in 

the optical purpose suffers chromatic and modal dispersion. 

    Maurer's team made further development on the fibre. With the single mode fibre, it would 

eliminate the modal dispersion. Single mode fibres operated at 1310 nm wavelength are 

designed to carry higher capacity for the long distances with low intrinsic loss and zero 

modal dispersion.  

   A laser operating at the 1550 nm band was developed afterwards and when signals were 

transmitted down the fibre, it was found that the attenuation of the fibre was at its minimum. 

However such 1550 nm laser was less effective than the 1330 nm laser for reducing 

dispersions in fibre. Nevertheless, with these developments and other advancement, liked 

dispersion compensating techniques and development in hardware, liked integrated circuit 
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(IC) or optical electronics integrated circuits (OEIC), fibre optics telecommunications were 

now widely deployed. 

1.2 Photonic integrated circuit (PIC) – Deeply etched Waveguides: 

   A broad class of electronic functionalities can be synthesised from a small set of elementary 

components and it is the power of micro-electronic integration technology.  Transistors, 

resistors and capacitors are the examples of the above said elementary components. A 

technology supporting the integration of these elementary components can be used for a 

broad class of applications. Furthermore, a large market can pay back the investments made 

in its development. In spite of the fact that photonic integration has lots in common with 

micro-electronic integration, a major difference is the variety of devices and device –

principles in photonics. We do have couplers, multiplexers, filters,  lasers, detectors, switches, 

modulators, to mentions just a few devices, and a wide range of different operations and 

principles and materials has been reported for each of these devices. Developing a monolithic 

technology capable of realising even a modest subset of all such devices is impossible. As a 

result, reduction of the board variety is the key for the success of integration in photonics. 

   A strong transverse confinement of light can be caused by deep etching process. Deep 

etched waveguides can be narrower and, most importantly, they have much lower bending 

loss compared to shallow etched waveguides. Because of the very small radius (< 10 µm), 

they can be used for low-loss interconnection. It allows for a strong reduction of the size of 

interconnection circuits. In addition, deep etched MMI-couplers and deep etched AWG’s, 

which are considered as the key components in Photonic Integrated Circuits (PIC), can be 

made much smaller than shallow etched ones. It seems that deep etching is the key to reduce 

the device dimensions. 

1.3 Large-Scale Photonic Integrated Circuits on Silicon: 

   Large-scale photonic integrated circuits (LS-PICs) are very promising for many 

applications [3], [4] such as wavelength division multiplexed systems, optical interconnects, 

next-generation optical networks, coherent transceivers, lab-on-chip, etc. Because LS-PIC 

provide different advantages, including higher performance, lower component-to-component 

coupling losses, reduced device footprint, lower package costs and lower power consumption. 

   However, some factors make the progress on LS-PICs limited; one of which is that the 

material system for photonics is much more complex than electronics. Currently, the focus is 

on silicon and InP substrate technologies [5] which is a good platform for LS-PICs since it 

enables both passive and active components in the same substrate [6].  

   Silicon-based PICs [7], [8], [9], [10], [11], [12], [13], [14] have also become very popular, 

because of the following reasons: their compatibility with mature CMOS (complementary 

metal–oxide–semiconductor) technologies with excellent processing control, low cost and 

high volume processing. In addition, silicon-on-insulator (SOI) nanowires enable ultra-sharp 

bends (e.g., 1-2 µm) which is because of their ultra-high refractive index contrast [13]. As a 

consequence, various ultrasmall SOI nanowire-based devices such as arrayed-waveguide 
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gratings (AWG) [8], [9], [10] and Microrings [12] can be realized. However, as silicon is not 

a direct band gap semiconductor material, because it is not a good option for active PICs with 

lasers, as well as photodetectors. Fortunately, some technologies are available to solve the 

issue. As an example,  the hybrid III–V/Si platform provides a very promising solution for 

realizing integrated active photonic devices on silicon [4], [14]. As a result, it is feasible to 

realize LS-PICs on a silicon substrate. However, we should remember that there are still 

several essential issues when regarding the realization of silicon LS-PICs.  

   It is well known that SOI nanowire PICs are usually severely polarization-sensitive, 

because of the huge structural birefringence [9]. Although it is often possible to use specific 

approaches and diminish the polarization dependence for some components [15], a general 

solution for the polarization issue is the application of a polarization diversity system 

consisting of polarization beam splitters (PBSs) and polarization rotators (PRs) [7], [11]. 

Polarization diversity is also very important for many other applications, including coherent 

receivers, as well as polarization multiplexing technologies [16] for polarization-multiplexed 

transmission systems. In the section on ‘Polarization handling’, a review will be presented for 

our work on polarization handling, such as PBSs and PRs. 

1.4 Silicon-On-Insulator (SOI) waveguides: 

   A Silicon wire waveguide based on the silicon-on-insulator (SOI) structure is regarded as a 

promising platform for highly integrated, ultrasmall optical circuits or microphotonics 

devices required for future optical network systems [17], [18], [19]. Si/SiO2 waveguides 

achieve strong light confinement as a result of the large refractive-index difference between 

Si and SiO2 (Δn = 2). The large difference makes possible core sizes of less than a 

micrometer providing a single-mode propagation at a wavelength of 1.5 µm. Furthermore, its 

strong confinement allows sharp bends with radii of just a couple of micrometers. As a result, 

Si wire waveguides should enable us to make optical circuits which are significantly smaller 

and have a higher integration density than would be otherwise possible. Also it is possible to 

integrate Si wire waveguides with Si electronic circuits because both can be made on an SOI 

substrate leading to the new functional optical devices controlled electronically. 

   Another feature of Si wire waveguides is their high power density which is because of the 

strong confinement. Even a 50-mW laser diode can yield a power density of 100 MW / cm
3
. 

Si wires might become a platform for nonlinear optical devices. In addition, the matured 

fabrication technologies and high-quality substrates for Si microelectronic devices can be 

used in order to make Si wire systems which are great advantage in the development of the Si 

wire waveguide system. 

   Several components based on Si wire waveguides have already been demonstrated such as 

ring resonators, rotators, splitters, and arrayed waveguide gratings [20], [21] and [9]. 

However, there are a number of big problems in the practical use of Si wire waveguides. 

When they are connected to an optical fibre, the coupling loss is quite large which is due to 

the fact that the mode field sizes are very different.  
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   In addition, because of the high refractive-index contrast, the scattering loss at the sidewalls 

can govern the propagation loss. One approach to reduce such losses is the application of a 

spot-size converter to efficiently couple the waveguide to a fibre and to improve the 

fabrication process for optical waveguides in which the sidewalls have to be extremely 

smooth. Recently, different types of spot-size converters that can reduce the coupling loss 

have been proposed [22]. The propagation loss can be reduced to a great extent by improving 

the fabrication process [23]. The reduced losses mean that it has become possible to use Si 

wire waveguides in the practical optical devices. 

   The core size of a Si wire WGs is less than a micrometer for single mode propagation and 

because of this small core, the power density of a Si wire is higher by a factor of about 1000 

than that of conventional single-mode fibre. As a consequence, it is expected that nonlinear 

optical effects will occur when using a low input power equivalent to that in optical 

communications. A wide range of nonlinear phenomena [24] can be produced by light 

propagation with such a high power density, including stimulated Raman scattering (SRS), 

self-phase modulation (SPM), stimulated Brillouin scattering (SBS), two-photon absorption 

(TPA), cross-phase modulation (XPM) and four-wave mixing (FWM). During the past few 

years, all-Si active optical devices have been extensively studied in connection with the 

above said nonlinear effects. A variety of different applications such as amplifier, laser [25], 

modulator [26] and wavelength converter [28] have been investigated. 

1.4.1 Waveguide Modal Analysis: 

   The Maxwell equations are able to govern light propagation in waveguides. The optical 

modes of the waveguide are the Eigen solutions to the Maxwell equations, subject to the 

appropriate boundary conditions which are imposed by the waveguide geometry. 

 

   In the slab waveguide system, two orthogonally polarized modes can be supported: the 

transverse electric (TE) mode defined as electric field perpendicular to the propagation 

direction and lying in the plane of the core layer, and the transverse magnetic (TM) mode 

referring to the field distribution with the magnetic field perpendicular to the propagation 

direction and in the plane of the core layer (i.e., the electric field is normal to the core layer). 

It should be notified that in a waveguide, light is confined two-dimensionally in both the x-

and y-directions and is guided along the propagation z-direction. 

 

    The requirement for the field components defined for the slab waveguides, either             

Ey = Ez = Hx = 0 for TE or Hz = Hy = 0, H = Hx for TM, is not valid any more since the 

propagation light must satisfy the boundary conditions which are imposed by the waveguide 

in both the Y- and X-directions. The existence of pure TE and TM modes is only possible in 

planar slab waveguide with 1-dimensional confinement. However, when practical optical 

waveguide is with 2-dimensional confinement, the modes are classified as quasi-TE and 

quasi-TM modes containing all the six components of the E and H fields. Furthermore, in the 

high index contrast silicon nanowires, the modal hybridness is much higher. In order to find 

all the 3 components of the H-field and the evolution of fully hybrid quasi-TE and quasi-TM 

modes along a guides-wave device all the methods used must be fully vectorial in nature. 
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   These modes can be denoted as H
y
pq and H

x
pq, respectively, where p and q are the number 

of the extremal field (maximum and minimum) in the x- and y-direction. For H
y
pq modes, 

H
y
11 field is dominant and these can also be identified as quasi-TE modes. Similarly H

x
pq 

modes with dominant H
x

11 field are also known as quasi-TM modes. These modes can also be 

classified as E
x
pq and E

y
pq modes [29]. 

1.4.2 Single mode condition: 

   Optical devices based on planar light-wave circuits (PLCs) are attractive which is because 

of their excellent performance and compact size. An optical waveguide is usually required to 

be single mode in order to avoid the influence from higher-order modes. It should be notified 

that in most of the sensors and telecommunication applications, waveguides are required to 

support a single mode, which means only the fundamental mode is allowed to propagate in 

the waveguide.  As a result, it is important to determine the single-mode condition before the 

(PLCs) is designed. To satisfy the single-mode condition, the SOI rib waveguide is etched 

shallowly giving a weak confinement and in which case a high integration density is 

impossible. The great difference between the refractive indices of Si and SiO2 (or air) has 

attracted and the size of the Si waveguide will be reduced to several hundred nanometers. 

Such kind of Si waveguide is usually called a nano-Si rectangular waveguide. The scattering 

loss (per unit length) for a nano-Si rectangular waveguide is much larger [30], [31] than that 

for a conventional waveguide of micrometer dimensions which is due to the sidewall 

roughness. On the other hand, the total size of the (PLCs) devices based on nanowire 

waveguides are reduced significantly compensating for the large scattering loss per unit 

length. As a result, the total loss in a PLC device based on nanowire waveguides can be 

sufficiently low for practical use. 

1.5 Waveguide Birefringence: 

   A high index-contrast between the silicon core and the cladding (SiO2 or air) is that SOI 

waveguides generally have a considerable birefringence [32]. Consequently, considerable 

drawbacks that limit device performance and compromise its operation are resulted following 

polarization mode dispersion (PMD), polarization dependent loss (PDL), and polarization 

dependent wavelength (PDλ) [33]. In addition, a very strict fabrication tolerance is imposed 

on silicon photonic devices through the dependence of polarization. For example, by 

considering a photonic filter based on a 10 µm radius ring resonator with 300 nm wide silicon 

waveguide, a difference of the resonant wavelengths between TE and TM modes larger than 

100 GHz is induced by the fluctuation of the core width of only 1 nm (i.e., 300 ± 1 nm) [34]. 

Therefore, a suitable approach to minimize the dependence of microphotonic silicon device 

performance on the polarization of the incoming light is achieved due to the accuracy of 

improvement of technological process, such as electron-beam (e-beam) lithography and 

reactive ion etching (RIE), as well as the design of silicon photonic devices characterized by 

zero birefringence [35]. Other proposed solutions can be the use of high birefringent silicon 

nitride (Si3N4) bent waveguides on SOI platforms [36], the control of SOI waveguide 

birefringence by inducing silicon core [37] and the depositing of thin doped top layer onto 

silicon wafer [38].   
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   For large SOI ridge waveguides (with a ridge height of 1-5 µm), the birefringence is on the 

order of 10
-3

-10
-5

, while the birefringence of SOI nanowires can be several orders of 

magnitude higher [9]. Accordingly it is possible to achieve a nonbirefringent SOI optical 

waveguide by optimizing the waveguide dimension [39,40,41,42,43,44]. But this is only in 

theory and only for the case with large SOI ridge waveguides, because fabrication 

inaccuracies cause the typical dimensional variations which generate an acceptable 

birefringence [44]. The  polarization-independent is almost possible  for the case of the 

demonstrated AWG demultiplexer made of 5-µm thick SOI ridge waveguides by simply 

optimizing the waveguide dimension. For the case of using thinner SOI ridge waveguides, the 

birefringence can also be minimised by controlling the stress generated from an oxide 

cladding [45].  

   In comparison with the case of large SOI ridge waveguides, it is much harder to achieve a 

desired nonbirefringent SOI nanowire experimentally by controlling the waveguide 

dimensions because of the stringent fabrication tolerance. The results of experiments show 

that large structural birefringence of SOI nanowires [46] usually causes significant 

polarization dependence in the photonic integrated devices [9]. Moreover, the polarization-

dependent properties can vary significantly compared to those devices based on the 

micrometer optical waveguides. For example, for a SOI-nanowire AWG device, both the 

channel wavelength and the channel spacing are polarization sensitive. This makes 

conventional polarization-compensation approaches ineffective, so new solutions are 

demanded. However, it should be taken into account that and other specific technological 

solutions such as the subnanometer accuracy are not always suitable for large scale 

integration and low cost fabrication. 

    In [47], [48], [49], directional coupler, multimode interference (MMI) couplers and 

microring resonators are proposed as special approaches to reduce the polarization sensitivity 

of SOI-nanowires-based photonic integrated devices. 

1.6 Polarization Diversity: 

      It is not always suitable for large scale integration and low cost fabrication to make use of 

Sub-nanometer accuracy and other specific technological solution such as the use of stressed 

or doped layer. 

   The scheme of polarization diversity is generally adopted as an optimal approach to solve 

the problem of the polarization dependence which is affecting high refractive index contrast 

SOI photonic devices [7], [11], [50], [51], [52], [53]. The schematic proposed in Figure 1.1 

indicates that an analysis of the principle of operation of a polarization diversity circuit can 

help to achieve this purpose. The basic architecture of a polarization diversity circuit 

consisting of polarization splitters (PSs) and rotators (PRs) [54], [55] are represented in the 

configuration sketched in Fig.1.1. In particular, by using a polarization splitter (i.e., PS1) the 

orthogonal polarization components of the input light are split into two different waveguides 

at the input section. Consequently, in order to obtain a 90  rotation, a polarization rotator 

(i.e., PR1) is employed in one of the waveguides. 
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   In this way, a single polarization is obtained and the two paths will probably be operated in 

parallel with identical structures. In this case, only TE polarized optical signals are used in 

operation of the functional device. 

   For instance, a polarization sensitive microring resonator could be employed for optical 

signal processing like filtering or add-drop multiplexing. At the output section, a symmetrical 

configuration, including one polarization splitter (i.e., PS2) and one polarization rotator (i.e., 

PR2) will be implemented to combine both polarizations without any interference. In 

conclusion, it is also possible to use spot size converters (SSC) at both output and  input 

sections for coupling the optical signal from the input fibre to the circuit and vice versa. 

Finally, the schematic in Figure.1.1 represents that it is possible to design a reciprocal 

configuration in which the functional device operates with only TM polarized optical signals. 

   These polarization diverse components are also very useful for various applications such as 

coherent optical communications, which attract a lot of attention for long-haul optical fibre 

communications. The reason is that it improves the spectral efficiency in a great deal [16]. 

Similar coherent technology can be also very efficient in the future network-on-chip for 

optical interconnects. In this case, it is better to implement the polarization diversity 

components which are very small. Recently the polarization-handling technology also plays 

an important role for realizing integrated photonic quantum circuits [56]. Furthermore, the 

polarization-diversity technology is considered as a general solution to eliminate the 

polarization-sensitivity of photonic integrated devices based on SOI nanowires and at the end 

enables polarization transparent silicon nano-PICs [7], [57], which play an important role in 

the fibre-fed cases. There are usually numerous elements integrated monolithically for these 

applications, and consequently obtaining ultrasmall elements consisting of polarization 

diversity components is desired, which can be realized by using the giant birefringence of 

SOI nanowires. 

 

Figure 1.1 Schematic of a polarization diversity photonic circuits [55]. 

 

1.7 Aim and Objective Thesis: 

   The discussion given so far provides an insight of the potential work on ultra-compact 

polarization diversity components for the future silicon nanophotonic integrated circuits. The 

primary aims and objectives of this research work can be summarized as follows: 
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1. A rigours, accurate and efficient finite element method based on vector H-field 

variational formulation has been implemented for the analysis of optical waveguide. 

2. To implement the least squares boundary residual (LSBR) method together with the 

exploitation of the accurate modal solutions obtained from the finite element method 

in order to achieve an accurate waveguide junction analysis and to account for power 

transfer phenomenon.  

 

3. To study in depth of the silicon strip waveguide by the use of vector H-field finite 

element method. The characteristics of the modal H-field profiles, will be studied in 

detail, in doing so the critical size of such waveguides can be determined. 

 

4. To design and characterise a novel compact silicon nano-wire waveguide polarization 

rotator device by implementing the finite element method and least squares boundary 

residual method to show that such device can achieve almost 100  polarization 

conversion with very short device lengths. 

 

5. To apply the full vectorial numerical techniques consist of finite element method and 

least squares boundary residual method in order to study the characteristics of passive 

polarization splitter based on silicon-on-insulator (SOI) technology. To design an 

efficient device which splits transverse electric (TE) and transverse magnetic (TM) 

polarizations into two separate ports, which can be fabricated by using a compact 

silicon nano-wire waveguides technology. 
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The Finite Element Method 

2.0 Introduction:  

   The natural starting point for analysing how wave propagate in passive devices is the set of 

wave propagation equations first formulated by James Clark Maxwell. Various numerical 

methods for passive devices solve  these equation by using the Galerkin and moment methods 

[58],[59], transfer matrix method [60], finite-element-based methods [61], [62], and finite-

difference-based methods [63].  

   The numerical methods available for modelling of photonic devices are immensely varied 

to suit the needs of users. These methods have origins in mathematics, physics and 

engineering which many of them have been applied successfully in various disciplines. 

Closed-form solutions and analytical methods were historically used for modelling 

phenomena/devices to a large extent. The more complicated devices became progressively, 

the more limited the applicability of analytical became leading to variation numerical 

methods. This caused a rapid growth in low-cost computing power, which brought about the 

computerizing or automation of numerical algorithms. Therefore, in recent years it has been 

possible to have accurate simulations of highly complex devices through the use of 

computerized codes based on different numerical methods.   

   This chapter introduces numerical modelling in photonics, discussing the extent to which 

each method is applicable and examining the limitation of each. It also explains some of the 

basic assumptions and simplifications made to Maxwell’s equations and what follows from 

them. These physical insights accompany the mathematical treatment. We discuss criteria for 

choosing a modelling method, and assess the finite element method against them. We also 

examine the theoretical background to the H- field Finite Element Method (FEM) as a 

method of analysing waveguides, as well as the method of suppressing spurious solutions by 

including a penalty factor. Finally, the Least Squares Boundary Residual (LSBR) method 

used in the discontinuity analyses when butt coupling uniform guided-wave section are also 

presented. 

2.1 General Equation: 

2.1.1 Maxwell’s Equation: 

   The evolution of electromagnetic fields is described by Maxwell’s first-order differential 

equations which describe the intimate coupling between the electric and magnetic fields. The 

equations relates spatial variation of one field with the time varying of other. They combine 

with four electromagnetic field vectors, using one discipline that govern electromagnetic 

wave phenomena.  

   The four vectors are: the electric field intensity E (Volts/meter). Magnetic field intensity H 

(Amperes/meter), the electric flux density D (Coulomb/meter
2
) and the magnetic flux density 

B (Tesla). The boundary-value problem with the FEM is defined by differential forms.  
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   Differential equation forms of Maxwell’s equations in a homogenous, lossless dielectric 

medium is: 

0





t

B
E                                                                                                                       (2.1) 

J
D

H 





t
                                                                                                                      (2.2)                                                                                                                                                                                                          

 D                                                                                                                                 (2.3) 

0 B                                                                                                                                 (2.4) 

   Where ρ, is the dielectric charge density (coulomb/metre
3
); J, is the electric current density 

(Ampere/metre
2
). The conservation of charge or the continuity of current can be expressed 

(holds for J and the charge density, ρ) as: 

t





J.                                                                                                                            (2.5)                                             

The associated constitutive equations for the medium can be written as: 

ED ̂                                                                                                                                  (2.6) 

HB ̂                                                                                                                                   (2.7) 

   Where    and    represent the permittivity and permeability of the medium, respectively. 

They can be tensors, but for simplicity they are written here merely as ε, and µ. 

   In photonics, the interest in solving Maxwell’s equations is not free space or in one 

continuous medium, but it is consider for a different devices such as optical fibres, Bragg 

gratings, slot waveguides and many other devices.  

   The ε is the permittivity and μ is the permeability of the medium which can be defined by: 

ro                                                                                                                              (2.7) 

ro                                                                                                                              (2.8)                                                                     

   Where εo, εr, μo and μr are the permittivity of the vacuum (8.854 x 10
-12

 Farad/meter), the 

relative permittivity of the medium, the permeability of the vacuum (4π x 10
-7

 Henry/meter) 

and the relative permeability of the medium, respectively. 

   Photonic devices contain more than one material medium, with several boundaries between 

the different medium. Therefore, it is necessary to take into account of boundary conditions, 

when considering the continuity of the electric and magnetic fields inside these components.  
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2.1.2 Boundary Conditions: 

   For a waveguide with arbitrary dielectric distribution, the satisfying of the boundary 

conditions at these interfaces is necessary. They must be met at the boundary surface when 

two different media 1 and 2 come in contact. If the unit normal vector n, is directed from 

medium 1 to medium 2 as shown in Fig. 2.1 in the absence of any surface currents (J = 0) and 

surface charges (ρ = 0), the following boundary conditions apply: 

1. The tangential components of the electric field must be continuous.   

      0)( 21  EEn                                                                                                               (2.9)       

            Et1 = Et2 

2. The tangential components of the magnetic field must be continuous. 

        0)( 21  HHn                                                                                                             (2.10)                                                                        

             Ht1 = Ht2 

3. The normal components of the electric flux density must be continuous. 

         0)( 21  DDn                                                                                                           (2.11) 

              Dn1 = Dn2                             

               ε1Εn1 = ε2Εn2           En1   En2                                                                          (2.12) 

Where ε1 and ε2 are the permittivity in medium 1 and 2, respectively and, also at the interface, 

ε1   ε1. It is mention that, the relative permittivity and refractive index are related by εr = n
2
. 

4. The normal components of the 12btains12 flux density must be continuous. 

0)( 21  BBn                                                                                                        

(2.13) 

               Bn1 = Bn2                                                                                                                            

                       1 Hn1 =  2 Hn1 

Where µ1 and µ2 are the relative permeability in medium 1 and medium 2, respectively and 

for most nonmagnetic media, µ1 = µ 2 = 1. 

    Hn1 = Hn2                                                                                                                                              (2.14)            

The above boundary condition will ensure the continuity of the normal component of the 

magnetic field at the boundary. 
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Fig. 2.1 Boundary between two media of refractive indices n1 and n2 

                               where n, is the unit vector normal to the interface. 

 

 

   Two more boundary conditions include; a perfect electric conductor or a perfect magnetic 

conductor which are encountered in practical waveguide problems. 

When one of the two media becomes a perfect electric conductor (PEC), the necessary 

boundary condition on any electric conducting boundaries is:  

0En         0Hn                                                                                                         (2.15) 

For the lack of surface currents, the boundary condition requires certain magnetic field vector 

components which must be vanish. That is Hn = 0, in the absence of surface currents J = 0 

and Ht = 0. 

When one of the two media becomes a perfect magnetic conductor (PMC), a magnetic wall 

(MW) boundary condition, an useful approach to improve modal field symmetry a magnetic 

wall boundary condition is imposed as: 

0Hn        0En                                                                                                          (2.16) 

The above boundary condition with vanishes of E will ensure the continuity of the normal 

component of the magnetic field, H, at the boundary. 

Solutions of Maxwell’s equations adequately comply with both the constitutive relations and 

the boundary conditions, and mark out the electromagnetic fields inside any photonic devices. 

According to these conditions a unique solution for the problem is obtained. 

   It is mention that, how boundary conditions are classified depends on their mathematical 

representation and the condition imposed. These natural boundary conditions for a given 

formulation can be same as the actual boundary condition, for this case, they can be left free. 

    In some other cases they can be forced, in order to take advantage of the symmetry of the 

waveguide, to reduce the number of elements in FEM and also decreasing the order of the 

matrices to impose complementary symmetry for the waveguides. The above boundary 

conditions can be classified as follows: 
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Φ = 0    Homogenous Dirichlet                                                                                           (2.17) 

Φ = k    Inhomogenous Dirichlet                                                                                        (2.18)                                                                                            

n


 = 0  Homogenous Neumann                                                                                        (2.19)              

Where Φ is a specific component of the vector electric or magnetic field and k is presented as 

a constant value and n is the unit vector normal to the surface. 

   The rate of change of the field is represented by the Neumann boundary conditions when it 

is directed out of the surface. 

2.1.3 Formularization of Domains: 

   So far, it has been evident that boundaries separate a device into regions divided with 

electromagnetic properties, or they impose natural or force boundary conditions. However, 

boundaries may also be considered to exist at infinity. By this it is meant that the device has a 

finite extent in the x, y, and z directions even though the surrounding space extends to 

infinity. Therefore the boundaries between the outer domain of the device and its surrounding 

space needs special care, if the fields and the physical quantities such as power and energy 

are interested and they must well defined, and also a unique solution to provide for them. 

   Where artificial boundaries are set in order to limit the computational domain as a finite 

size, optical fields travelling toward these boundaries in the simulation are reflected back into 

the computational region. Thus, these boundaries have to be assigned an absorbing properties 

to avoid the computational error of this unphysical reflection minimize, which is a purely 

numerical feature. 

   A number of absorbing methods have been devised and they include the transparent 

boundary conditions (TBC) [64], perfectly matched layer boundary conditions (PML) [65] 

and other [66]. The wave equations have to be modified accordingly. For maintenance the 

simplicity, mathematical considerations imposed by these boundary conditions are not treated 

here. How these conditions are implemented in the FEM will be 14btains14e, later. 

   To obtain the behaviour of the fields inside the device described by the solution to 

Maxwell’s equations, (2.1)-(2.4) can be recast into an appropriate form that reflects physical 

considerations as well as practical ones related to the mathematical solution techniques and 

approximation required.  

2.1.4 Time Harmonic and Time-Dependent Solutions: 

   In their coupled differential equation format, Maxwell’s equations describe electric and 

magnetic field propagation in spatial and temporal terms. Thus, the equations in this format 

are appropriate study for dependent of time phenomena, such as pulse propagation, 

reflections, radar, or antennae. 
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   They also describe the evolution of the fields in exotic system such as metamaterials, 

through inclusion of the required equations consist of the permittivity (ε) and permeability 

(µ). 

In many practical applications, the steady state equation form in optical field as a function of 

the physical coordinates are interested. In the discipline of time harmonic fields, continuous 

wave (CW) operation at a single frequency is a favourable, where time evolution is not of 

interest, and can be removed from the analysis. The field can be written in phasor 

representation: 

 
 
 
 
          

          

          

           
 
 
 
 = 

 
 
 
 
        

        

        

         
 
 
 

                                                                                      (2.20) 

This notation allows replacement of the time derivatives in (2.1) and (2.2) by the term jω 

(after suppressing      on both sides of the equation) since: 

 
     

  
 = jω     

Thus, (2.1)-(2.4) can be written in the form: 

                                                                                                                                                  (2.21)      

                                                                                                                                              (2.22) 

                                                                                                                                                            (2.23) 

                                                                                                                                                            (2.24) 

The continuity equation becomes: 

                                                                                                                                                                        (2.25)                                                                            

 

2.1.5 Wave Equations: 

   It is not always an easy task to find the solution of a system for the coupled differential 

equations with boundary conditions. Further, in computational solutions for a six component 

to the electric and magnetic fields must be stored at every point in the device’s physical 

domain. This may not be reasonable for devices of practical size. To deal with this, one 

approach is to decouple the first-order Maxwellian curl equations, (2.1)-(2.4) and obtain 

second-order differential equations for only one field, called the wave equations. We 

eliminate H from (2.1) by use of the constitutive relations [(2.6)]. 

        = ω
2
εµE                                                                                                                                              (2.26) 

A similar approach is followed to eliminate E and obtained: 
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        ω

2
µεH                                                                                                                                       (2.27) 

Further, using the vector identity                      and rewriting        

          yields the vector wave equation: 

                                                                                                         (2.28) 

                                                                                                (2.29) 

                                                                 

2.1.6 General Scalar and Vector Equations: 

   The electric and magnetic fields in Eqs. (2.28) and (2.29) are vectors. The magnitude and 

spatial dependence play a part in the nature of the field and its mathematical explanation. The 

vector field which is also known as the hybrid field, contains both longitudinal component in 

the direction of the field propagation and also transverse component that are perpendicular to 

the direction of the propagation and these components are coupled.  The terms on the right 

hand side (RHS) of the vector equations in Eqs. (2.28) and (2.29) describe the coupling of the 

components. In homogeneous media,       and due to RHS vanishes, leading to 

decoupling of the transverse and longitudinal field components. However, inhomogeneous 

media, the term on the RHS can be neglected in comparison to the other terms in the 

equations, called the scalar or weakly guiding approximation. In this case  
  

 
 , 

  

 
 are small 

compared with the length scale over which E and H solve in space, and it is also leads to 

decoupling of the transverse and longitudinal components: 

 

                                                                                                                                                     (2.30) 

                                                                                                                                                    (2.31) 

 

Equations (2.30) and (2.31) are homogeneous and represents the scalar wave equations for 

the electric and magnetic fields, respectively. The field components in the solution of these 

equations are independent from each other and both are transverse, but the longitudinal 

components are negligible. 

2.2 Modal Solutions in Waveguides: 

   For structures where the refractive index is almost homogeneous in one direction and 

considered in z direction of propagation and only varies in the transverse directions, modes of 

the structure, which can be obtained by solving Eqs. (2.28) – (2.31). Modes of a system 

represent the eigenfunctions or eigenstates of the system. For a simple photonic device such 

as a waveguide, modes are the steady state, discrete solutions to the wave equation that 
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satisfy the boundary conditions for obtaining refractive index distribution, n(x,y). When light 

is coupled into the waveguide, modes show the equilibrium superposition of the waves. On 

coupling light into the device, it will be guides in the form of one or more of the modes of 

that device. Each guided mode has characteristics such as an effective index and field 

distribution that are unique and do not change with time or even for different power of the 

incident light. Modal analysis imply the process of finding the propagation constant and the 

field profiles of all modes that a waveguide can support and also to be able to determine the 

nature and behaviour of the electric and magnetic field inside the device under CW operation. 

   Several methods for finding the modes in waveguides exist. These methods can be 

considered into three groups, namely the analytical, semi-analytical and the numerical 

solutions. An analytical solution can be obtained for stepped 2-D optical slab waveguides and 

stepped optical fibre. However, in all practical optical waveguide with 2-dimentional 

confinement, analytical techniques are not possible and some other methods have to be 

considered. Among the semi-analytical approaches are methods such as the effective index 

method [67], Marcatili’s method [68] and its improvement with perturbation techniques [69] 

and the coupled-mode analysis [70]. 

   Semi-analytical approach, works well for uniform waveguides or coupled waveguides 

carrying few modes. However, when the refractive index distribution is too complex, then 

numerical methods have to be used. There are several numerical methods in photonics, some 

of them are scalar and a few others treat with both vector and scalar problems. Numerical 

solutions can also be grouped into two categories and these are the domain solution and the 

boundary solution. Some of the example of the domain solutions include the finite element 

method (FEM), Finite Difference Method (FDM), Variational Method (VM) and Multilayer 

Approximation Method (MAM). The boundary solutions include the Boundary Element 

Method (BEM), Point Matching Method (PMM) and Mode Matching Method (MMM). 

   A brief description of the most commonly used analytical and numerical solution 

techniques for modelling in opto-electronics will be presented in subsequent sections. 

2.2.1 Marcatili’s Method: 

Marcatili’s Method (MM) was one of the first semi-analytical approximation methods to be 

developed for the analysis of buried waveguides and couplers [68]. The method was 

developed for guiding structures with large dimensions and a small birefringence (less than 

5%). The field is assumed to exist in the rectangular waveguide core region and also in the 

four neighbouring cladding regions which are obtained by extending the width and the height 

of the waveguide to infinity. 

 The field is also assumed to vary sinusoidally in the core region and exponentially in the four 

cladding regions, thus the field is approximated to the field in two slab waveguides; one 

vertical and the other horizontal. Two transcendental or eigenvalue equations for each slab 

waveguide are solved simultaneously to give the axial propagation constant. Marcatili’s 

method works well in the regions far from cut-off but does not provide a satisfactory solution 

close to cut-off region [71]. 
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2.2.2 Effective Index Method: 

   The Effective-Index (EI) method was first proposed by Knox and Toulios in 1970 [72] with 

a view to improving Marcatili’s earlier approach [68] for the fundamental mode of a simple 

rectangular core waveguide. This resulted in the effective index method becoming one of the 

most popular methods in the 1970s for the analysis of optical waveguides whereby the 

rectangular structure is replaced by an equivalent slab with an effective refractive index 

obtained from another slab. The rectangular dielectric waveguide is divided into two slab 

waveguides in each transverse direction. The initial step solves the transcendental equation 

for a vertical slab waveguide by applying the appropriate boundary conditions. The effective 

index calculated in this step is then used as the refractive index of the horizontal slab 

waveguide and by solving the eigenvalue equation gives a good approximation to the 

effective index of the original waveguide structure. This method is significantly more 

efficient than those methods that solve the rectangular structure directly since only the 

solutions for slab waveguides are required. The advantage of the effective index method is 

that it can be applied to a wide variety of structures including channel waveguides, strip 

waveguides and arrays of such waveguides [73] and also for various types of optical fibre 

devices [74], [75]. The disadvantage of this method is that it does not give good results when 

the structure operates near cut-off region. However, the simplicity and speed of the method 

have encouraged many engineers to search for different approaches that will improve the 

accuracy of the effective index method which subsequently lead to many different variants of 

the effective index method to be developed including the effective index method based on 

linear combination of solutions [76], [77] or the effective index method with perturbation 

correction [73]. 

2.2.3 Numerical Methods: 

   As a rapid growth in the integrated photonic circuits have included the use of arbitrary 

shaped dielectric waveguides, which include many arbitrary inhomogeneous and also 

anisotropic, which do not treat themselves with analytical solutions. Therefore, to deal with 

them, it is needed to expanding the numerical method for analysing such waveguides. These 

methods can be used to finding accurate characterisation of most of devices. Since the advent 

of computers with large memories, considerable attention has been paid to methods of 

obtaining numerical solutions of the boundary and initial value problems. These methods are 

usually evaluated in terms of their generality, accuracy, efficiency and complexity. 

    For an appropriate modelling method for a given structure, some factors with regard to the 

selection of numerical methods for analysing optical waveguide problems are given as 

follow:  

 The modelling need of a structure depends on the shape of the cross-section area, 

whether it is convex or concave or also it is uniform or non-uniform. 

 Whether the modelling of a structure requires the fundamental or higher order modes. 

 Whether the method requires near cut-off frequency or modal field distribution. 

 Whether the method is employed with more than two homogenous media. 

 The requirement of accuracy needed for eignvalues and perhaps eigenfunctions. 
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 The accuracy of the technique in modelling the dielectric boundaries and regions. 

 Whether the method has a mechanism of generating spurious numerical solutions and 

if so whether the method can identify and/or eliminate them. 

  The computational efficiency of the method, including its computer storage 

requirements. 

 Whether the method should be programmable specifically for each region of the 

structure separately. 

 Whether a computer program requiring human intervention or some exploratory work 

with the computer is needed.  

 The assumptions and limitations of the numerical approach, for specific cases.  

   The commonly used numerical solution methods will be briefly discussed in the following 

subsections. 

2.2.3.1 Boundary Element Method: 

   The Boundary Element Method (BEM) is interpreted as a combination technique of the 

conventional boundary integral equation method and discretisation techniques [78]. The 

BEM is a boundary solution method and therefore the fields would be required only at the 

nodes which are on the boundaries of the region. The derivation of the integral equations with 

respect to the unknown fields at boundaries is obtained by the method of weighted residuals 

or the Green’s formula. These integral equations are then discretised to a set of linear 

equations to be solved for the numerical solutions. The BEM can be used for the analysis of 

arbitrary shaped discontinuities as is with the finite element method, but the boundary 

element method can be performed using far fewer nodes than by finite element method. 

Moreover, the BEM can handle unbounded field problems easily and therefore has the 

possibility of modelling domains extending to infinity without an infinite element analysis 

which is often performed in the finite element method. However, the BEM can only be 

applied to homogenous structures [79] and also it has been known that the matrices involved 

are dense matrices unlike those used with the finite element method which are spares. 

Therefore, the finite element method can be treated as more numerically efficient than the 

boundary element method. 

2.2.3.2 The Point Matching Method: 

   The Point Matching Method (PMM) is one of the oldest and simplest ‘boundary solution’ 

technique for the analysis of isotropic homogenous dielectric waveguides. Its application was 

first reported by J. E. Goell [80] to investigate the propagation characteristics in rectangular 

cross section dielectric waveguides. The numerical analysis used in the technique by Goell is 

based on expressing the internal and external fields in term of circular harmonics. The field 

inside the dielectric and outside the dielectric are expressed by a sum of Bessel functions and 

modified Bessel functions multiplied by trigonometric functions, respectively and their 

derivatives. By matching the tangential fields at optimally selected points around the 

boundary called ‘matching points’, a system of linear equations is obtained. By applying the 

condition of nontrivial solution, a characteristic equation including the propagation constant 
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is obtained and solved for each mode eigenfunction by standard matrix techniques. The point 

matching method is capable of analysing dielectric waveguides with arbitrary cross sections 

and composite structure and also computing coupling coefficients between two rectangular 

rods. Improved results for the point matching method were reported [81] by rotating the grid 

of equiangularly spaced matching points in order to place a matching point at the corner of 

rectangular dielectric waveguide. However, the point matching is not suitable for the analysis 

of a 3-D waveguides structures with inhomogenous index distribution such as graded index 

fibres. 

2.2.3.3 Mode Matching Method: 

   The Mode Matching Method (MMM) which is also known as the Equivalent Network 

Method is an approximate solution method for the analysis of open dielectric waveguides 

[82]. In this approach the structure is artificially bounded and the waveguide cross section is 

vied in terms of constituent parts of building blocks, which are usually portions of uniform 

dielectric layered structures interfaced by the dielectric step discontinuities. Then each 

constituent is analysed separately and all the parts are put together to compromise the final 

structure of interest. 

    A transverse equivalent network for the structure is obtained by representing the uniform 

dielectric regions as uniform transmission lines and by characterising the step discontinuities 

as transformers. From this, the dispersion relation can be derived to obtain the waveguide 

propagation characteristics. In the earlier analysis of the mode matching method due to the 

artificial bounding of the structure, the continuous spectrum [82] and TE and TM coupling at 

the sides of the waveguide are neglected. Dagli and Fonstad [83] reported a modified 

approach, which take into account the continuous spectra. Rather than artificially bounding 

the structure to discretise the continuous modal spectrum, here, they are discredited by 

converting integrals into summations using suitable basis function expansions. In [84] and 

[85] reported a vectorial wave analysis of rectangular optical waveguide using equivalent 

network method by taking the TE-TM coupling and the discrete continuous spectrum 

coupling into account.  

2.2.3.4 Spectral Index Method: 

   The Spectral Index (SI) method may be used to find quickly and easily the guided modes 

and propagation constants of semiconductor rib waveguides [86] and [87]. Here the true open 

structure is replaced by slightly larger, partially closed one, which is simpler to analyse, in 

order to model penetration of the optical into the cladding. The spectral index method can be 

expressed using steps in the region below the rib. First of all, the Fourier transform is applied 

in order to reduce the dimensionality of the problem to a one-dimensional structure and the 

field is expressed in spectral space using Fourier transform. 

    Next, in the rib region the wave equation is exactly expressed using Fourier series in terms 

of cosine and sine functions then two solutions are linked by employing a transfer 

relationship and consequently, giving a transcendental equation which can be solved for the 

propagation constant of the original rib structure. The presence of the strong discontinuities at 
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the dielectric interfaces is dealt with by using an effective rib width and an effective outer 

slab depth. The spectral index method has been extended to include rib coupler problems 

[88], [89] cases with loss and gain [90] and also it has been used to analyse multiple rib 

waveguides [91]. 

2.2.3.5 Beam propagation Method: 

   The beam propagation method was first applied to optoelectronics in 1980 [92] and the 

solutions for the optical waveguides can be made to generate mode-related properties such as 

propagation constants, relative mode powers and group delays with high precision and 

considerable flexibility. 

The Beam propagation Method (BPM) describe the evolution of the total field propagation 

along a waveguide and it is the most widely used tool in the study of light propagation in 

longitudinally varying waveguides such as tapers, Y-junction, bends and gratings.  

For employing the beam propagation method, it is necessary to use the mathematical model 

solutions. In this case, the wave equation can be expressed as: 

  

  
                                                                                                                                                                         (2.32) 

where  ,   shows the electric or magnetic field and the operator consist of the transverse 

spatial derivate and also the refractive index variation, respectively. Through the solution of 

(2.32) the optical field in BPM algorithms is followed to be travelling primarily of its z 

direction, which is discretized into small intervals so that the field at the beginning of the step 

is given its natural form. The device input where the field is launched may be considered as a 

laser.  

   The BPM algorithm then propagates the field through the interval in its default direction, 

which in final process of the propagation is employed as the source for the next field 

propagation step and so on. The total length along the z axial is product the number of 

propagation steps, n, and as well as path of each step, Δz. A few popular methods related to 

BPM methods are considered as a follow: 

   The initial BPM is based on the Fast Fourier Transform (FFT) and only solves the scalar 

wave equations under paraxial approximation. Therefore the FFT-BPM was only developed 

for the case of weakly guiding structures, neglecting the vectorial properties of the field. 

Several numerical algorithm to treat the vectorial wave propagation (vector BPM) using the 

finite difference method, have been reported [93], [94], [95]. The VBPMs are capable of 

simulating polarized or even hybrid wave propagation in strongly guiding structures. 

Recently, the finite element method has been utilised to develop BPM approaches.  

   A unified finite element beam propagation method has been reported [96] for both TE and 

TM waves propagation in strongly guiding longitudinally varying optical waveguide. In [97] 

has reported a full-vectorial BPM algorithm based on the finite element method to 

characterise  3-D optical guided wave devices. 
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Beam propagation methods are explained in type of vector or scalar, which its equation from 

the (2.32) can be extracted in the scalar form: 

   

      
     

                                                                                                                   (2.33) 

where   
  

  

    
  

    in Cartesian coordinates and shows the transverse spatial derivate 

operator.  

   The scalar BPM algorithms treat with the total field and all the guided and radiation modes 

in the structure is exist. It is noted that the specific form of (2.33), explains the moving of the 

waves in both directions as the forward and the backward. In generally (2.33) deal with the 

reflections. BPM algorithms that solve (2.33) are termed as bi-directional methods and are 

very iterative in nature. More detail of bi-directional methods will be described in 2.2.3.5.1. 

2.2.3.5.1 Bi-Directional in Beam propagation Method: 

   Using from (2.33) in a quadratic equation to express of two components, one representing 

the forward and the other one backward propagation elements. The reflected field is assumed 

to be known at the input of the structure, then a BPM-based transfer matrix approach is 

applied to relate the forward and backward fields at the output to those at the input. Based 

upon this relation and the boundary conditions, the reflected field is found in an iterative 

manner. This approach is simple to program and has the advantage that only one pair of fields 

must be stored [98].  

   An iterative bi-directional BPM approach, which deals with problems involving an 

arbitrary number of dielectric interfaces and/or high index contrast. This approach has 

significantly reduced time and memory requirements compared to other multi-interface 

techniques.  

2.2.3.5.2 Imaginary axis-distance in Beam propagation Method: 

   Although the BPM has been seen to be useful to study the wave evolution along 

longitudinally varying structures, but the imaginary distance beam propagation method (ID-

BPM) also has shown its usefulness as a mode solver of optical waveguides [99], [100]. By 

propagating an arbitrary starting field along, in general, a complex axis, and with the 

appropriate selection of the step size, different modes can be sequentially extracted from the 

starting field. The main advantages of using the ID-BPM are that the matrices of the BPM are 

in general complex, so lossy waveguides can be treated as conventionally as those that are 

lossless, without any additional numerical effort. Also, the incorporation of an absorbing 

boundary condition into the BPM algorithm makes it capable of dealing not only with guided 

modes but also with leaky modes as well. 

2.2.3.6 Finite Difference Method: 

   The Finite Difference Method (FDM) is one of the oldest and perhaps the most commonly 

used numerical techniques in analysing dielectric waveguide problems. Its application to the 
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modelling of optical waveguides dates from the early eighties, originally evolving from 

previous finite difference models for metal waveguides [101]. The finite difference method 

discretises the cross section of the device that is being analysed and it is therefore suitable for 

modelling inhomogeneous media and complicated boundaries. In FDM, it is necessary to 

define the a finite cross section by enclosing the dielectric guide in a rectangular box with the 

side walls as either electric or magnetic walls and the field at these boundaries are assumed to 

be very small. The enclosed cross section is divided into a rectangular mesh allowing for the 

material discontinuities only along mesh lines [102]. The nodes are placed on mesh points so 

that each node can be associated to maximum of four differential vector, semi-polarized or 

scalar wave equation can be approximated in terms of the fields at the neighbouring nodes of 

the mesh. Taking into account the continuity and discontinuity conditions of the electric and 

magnetic components at the field interfaces an eigenvalue problem is generated which can be 

solved in order to obtain the modal propagation constants and their modal field profiles. The 

accuracy of the method depends on the mesh size, the assumed nature of the electromagnetic 

field (scalar, polarized or vector) and the order of the finite difference scheme used. When the 

device operates near cut-off the size of the box has to be sufficiently large to allow substantial 

penetration of the field into the substrate. If a uniform mesh used then it can result in a very 

large number of nodes and large matrices and therefore the disadvantages like long run times 

and high memory requirements may become apparent. 

2.2.3.7 Finite Element Method: 

   The Finite Element Method (FEM) is well-established numerical method for the solution of 

a wide range of guided wave problems. It can be very easily applied not only to optical 

waveguides of any shape but also to optical waveguides with any refractive index distribution 

an to those with any anisotropic materials or nonlinear materials. This method is based upon 

dividing the problem region into non-overlapping patchwork of polygons, usually triangular 

elements. The field over each element is then expressed in terms of polynomials weighted by 

the fields over each element. 

   By applying the variational principle to the system functional and thereby differentiating 

the functional with respect to each nodal value, the problem reduces to a standard eigenvalue 

matrix equation. This is solved using iterative techniques to obtain the propagation constants 

and field profiles [103], [104].  

   The accuracy of the finite element method can be increased by using finer mesh. A number 

of formulations have been reported, however, the full vectorial H-field formulation is the 

most commonly used and versatile method in modelling optical waveguides due to much 

easier treatment of the boundary conditions. This method can accurately solve the open type 

waveguide problems near cut-off region and much better results were obtained by introducing 

infinite elements to extend the region of explicit field representation to infinity [105]. 

   One drawback associated with this powerful vector formulation is the appearance of 

spurious or non-physical solutions. Suppression of these spurious solutions can be achieved 

by introducing a penalty term into the variational expression [106]. In order to eliminate the 

spurious solutions completely, another approach is employed using the edge elements [104], 
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[107]. In modelling more complex structures, the finite element method is considered to be 

more flexible than the finite difference method due to the ability of employing irregular 

mesh. Since this method is used in this work, a more detailed description of the finite element 

method will be presented next. 

 2.3 Elementary aspect of the Finite Element Method: 

   The Finite Element Method (FEM) has emerged as one of the most successful numerical 

methods for the analysis of waveguides from low frequency to microwave to optical region. 

It is needed capable of solving waveguides arbitrary refractive index distribution. In this 

thesis a full-vectroial H-field based FEM has been used to characterise waveguide operating 

at optical frequencies. 

   Basic idea about the FEM is that it is breaking up a complex domain into smaller elements 

and finding reasonable equation for them. The unknown field, Ψ, is approximated by a 

functional equation which usually describe as a polynomial to be solved (such as (2.27)). This 

interpolation function reads the value of Ψ at the element nodes and is used to obtain values 

of the unknown field at any point inside the element. Each small element has its own 

independent interpolation function. Therefore for each element, e, field express the unknown 

field as: 

Ψ     
 
   Ψ                                                                                                                   (2.34) 

Where n is the total number of nodes in a given element and    is the interpolation function. 

Generally, higher degrees of the polynomial solutions closer to the actual field. As the 

function is required to be continuous everywhere inside the element, the solution yields the 

explicit functional form, which can be computed the value of Ψ at any point in the element, 

including those points that do not fall on vertices/nodes. Further, because the field is an 

interpolation of values at the vertices, if two element share vertices due to common boundary, 

the field will be continuous across the boundary (Figure 2.2). 

 

Figure 2.2 Two triangular elements with a common boundary. 

 

   In the FEM, instead of differential equations for the system investigation, corresponding 

functional to which a variational principle [108], [109] is applied are set up, where the region 

of interest is divided into the so called, elements, an equivalent discretized model for each 

element is constructed, and then all the element contributions to the system  are assembled.  
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   In other words, the finite-element method can be considered a subclass of the Ritz-Galerkin 

[110] method, in which piecewise defined polynomial functions are used for trial functions 

and infinite degrees of freedom of the system are discretized or replaced by a finite number of 

unknown parameters.  

   In classic analytical procedures without subdivision processes, the system is modelled using 

analytical functions defined over the whole region of interest, and therefore these procedures 

are applicable only to simple geometry and materials. Of the various forms of discretization 

possible, one of the simplest is the finite-difference method, and its original versions use a 

regular mesh, i.e. a rectangular grid with nodes at the intersections of orthogonal straight 

lines. However, a regular grid is not suitable for curved boundaries or interfaces, because 

they intersect gridlines obliquely at points other than the nodes. Moreover, a regular grid is 

not suitable for problems with very steep variations of fields.  

   The FEM is somewhat similar to the finite difference method, however in the FEM, the 

field region is divided into elements; that is, into subregions. Elements can have various 

shapes and sizes, such as triangles and rectangles, allowing the use of an irregular grid. 

   Therefore, the FEM is suitable for problem with sharp variations of fields. Furthermore, 

this approach can be easily adapted to inhomogeneous and isotropic problems, and it is 

possible to systematically increase the accuracy of solutions obtained as necessary.  

Furthermore, the FEM scheme can be stabilished not only by the variational method but by 

the Galerkin method, which is a weighted residual method. Therefore, the FEM may be 

applicable to problems where a variational principle does not exist. 

2.4 Installing the FEM approach: 

   FEM or any numerical method would be a tool to simulate the behaviour of 

electromagnetic fields in a photonic device. Initially, some physical parameters such as a 

modal effective index, resonant frequency, and power or loss in the device are interested and 

it is necessary to understand how these physical quantities are connected to the way in the 

FEM setting up. The FEM can be governed by way of two approximate which one of them 

the variational method [109] and another one the Galerkin formulation [110]. Both 

approaches lead to expressions that can be discretized with the FEM methodology and 

reduced to eigenvalue matrix equations, the starting point for each is different. Each method 

study in the following subsections. 

2.4.1 Variational formulation: 

   The variational method requires minimizing an expression (functional) set up in terms of 

variables such as the fields, potentials in the system, with respect to a small variation in these 

variables, which can be defined as: 

Parameter = SV {Expression/functional involving fields, potentials}                               (2.35) 

Where SV is stationary value, allows expressing the physical quantity of interest as a 

parameter to be determined by minimizing the functional. 
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   Establishing a variational principle is the main task, and often a good starting point is 

energy type expressions such as stored electromagnetic energy or power flow. Minimizing 

the expression that would normally contain Hermitian or quadratic form of the fields 

involved yields the associated Euler-Lagrange equations. The use of a variational approach in 

the formulation of a finite element analysis, has the advantage that is allows a particular 

analysis and also programming the computer, to be generalised to solve any problem of the 

same mathematical nature. The latter approach is the Rayleigh-Ritz method [111]. The 

difference in the variational method and FEM approaches is that the former minimizes the 

functional over the entire domain, while in the latter a global functional obtained from 

contributions in every element is minimized. In the following, the vector H field formulation 

by the variational route by using the wave equation (2.26) will be expressed. This equation 

can be written as a generalized eigenvalue equation: 

                                                                                                                                                                  (2.36) 

Where the vector operators L and M are defined as: 

                                                                                                                           (2.37) 

                                                                                                                                                                                (2.38) 

And the eigenvalue: 

                                                                                                                                    (2.39) 

It can be shown that minimizing the functional [108]: 

     
 

 
       

 

 
                                                                                      (2.40) 

Is equivalent to writing the variational expression in the form: 

      
      

      
                                                                                                                             

Where S.V stands for stationary value of, when the operator L in (2.34) is self –adjoint, that 

is, 

                                                                                                                   (2.42) 

And positive definite: 

        
                             
                               

                                                                                             (2.43) 

The self-adjoint property leads to symmetric matrices. H is a trial function and the symbol    

< > represents the inner product. For vector fields the inner product can be defined as: 
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                                                                                                               (2.44) 

   Given the components of one function in the direction of the others, while the asterisk 

denotes complex conjugation. Substituting L, M, and λ in (2.41) and using (2.44) it obtains:                                                                                                               

       
                  

        
                                                                                          

Equation (2.45) is the full vectorial H field functional that is obtained by the variational 

method.  

   Minimization of this expression gives the frequency of guided modes in optical structures. 

Minimization of (2.41) or finding the stainory value of the expression given by (2.45) yields a 

matrix equation of the form: 

                                                                                                                   (2.46) 

This particular formulation yields ω for a given β or wavelength and is described in (2.6.2). 

2.4.2 The Galerkin Method: 

   The Galerkin method is a form of the weighted residual method (WRM) [112]. Given a 

deterministic problem expressed mathematically in the form: 

                                                                                                                          (2.47) 

Where L1 is a linear operator, for example, a double or single differential, u is the unknown 

function and υ represents the source or excitation, it is possible to seek a solution in terms of 

an expansion of some known basis functions, ui with unknown coefficient, bi: 

       
 
                                                                                                               (2.48)        

The basis functions, ui, are a complete set, and appropriate choice of the coefficients, bi, 

minimizes the error residual defined as: 

                 
 
                                                                              (2.49) 

   The error residual can only be zero when the expansion in (2.48) represents the exact 

solution. In any other situation the error is nonzero, and our effort is to minimize it by 

choosing a set of weight function, wi, such that the error residual, R(s) is orthogonal to each 

of the wi that also form a complete set:  

         
 
                            for j = 1,2,...N                                                      (2.48) 

Where (2.48) leads to matrix form 

                                                                                                                        (2.49) 

In our case, the unknown function, u, is the magnetic field, H, and the operator L1 is defined 

as                 and the source, [v] = 0. 
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   The above procedure is known as the generalized Galerkin method, or the method of 

moments. The orthogonality of the weight functions to the error residual is implemented as 

an inner product defined in (2.50). The formulation obtained via the Galerkin method is 

equivalent to that the variational method. An important point to note is that the inner product 

in (2.50) requires integration of a function of the form 

        
 
                          When the operator L1 contains terms like  

  

   , it 

becomes necessary to choose weight functions (and shape functions for the Galerkin method) 

that are double differentiable (the strong form of the WRM). However, when the integral is simplified 

by integrating by parts (              ), we can reduce the burden to first-order 

differentiability and obtain the weak form of the WRM.  

   The Galerkin formulation therefore directly solves the governing differential equation 

(2.47) for the boundary value problem and discretises it in smaller domains, the contributions 

from which summed up, and uses the the basis and weight functions to arrive at the matrix 

equation, (2.51). The two equations, (2.46) and (2.50) are similar in nature. 

2.5 Scalar and Vector form in Variational approach: 

   In section 2.1.6 how to make the weakly guiding approximation with low index contrast 

described and due to use the scalar wave equation. In the following section finite element 

form for both scalar and vector forms will be described. 

2.5.1 Scalar form: 

   Scalar form can be applied in situations where the field can be described as predominantly 

TE or TM mode. In this case the magnitude of the longitudinal components is very small. 

Therefore, it is sufficient to follow the variations of any one of the transverse components, 

that satisfy (2.30) or (2.31), respectively, and to express the fields as quasi-transverse electric 

(TE) or quasi-transverse magnetic TM modes. 

   In planar (infinite slab) waveguides, mode can be purely TE or TM. However, in optical 

waveguides with 2-dimensional confinement, the modes are never purely TE or TM and are 

denoted by quasi-TE or quasi-TM modes. The scalar formulation is preferred due to the less 

complex equation that has to be solved. It has been applied to the analysis of wave 

propagation in homogeneous isotropic media [113], open boundary problem [114], and even 

for the analysis of anisotropic waveguides [115]. For quasi-TE modes in the domain Ω, 

where the domain field components is Ex, the formulation can be expressed as [116]: 
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                                                                      (2.52)                    

   Where β is the propagation constant and n is the refractive index and    is the free-space 

wavenumber. An FEM program based on the above mentioned functional yields β
2
 are the 

eigenvalue of the matrix equation for given   . For quasi-TM modes, Hx is the dominant field 

component; the formulation may be given as follows: 
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Where β, n, and k0 have their usual meaning defined above. A FEM program based on this 

functional yields   
  as the eigenvalue of the matrix equation for a given propagation constant 

β. The scalar functional defined in (2.52) has the continuity of  
   

   
  as the natural boundary 

condition, and the functional in (2.53) has the continuity  
 

   
  

   

   
  as the natural boundary 

condition, where    is the outward normal unit vector. 

   The scalar explanation for the quasi-TE and quasi-TM modes and using the Ritz variational 

method in order to minimize the functional (2.52) and (2.53) and obtain the FE solution is 

considered. Details of how to the interpolation functions are chosen and the nodes/vertices 

are created are discussed in 2.6.3. 

2.5.2 The Vector Formulation: 

   Vector formulations of the Maxwell equations manage a means for solving wave 

propagation problems where all six electromagnetic field components are present. The scalar 

formulation is inadequate for the hybrid modes of anisotropic or inhomogeneous waveguide 

problems. Therefore, for the guided modes of a three dimensional which modes are hybrid in 

nature, using the vector wave analysis is required for a precise evaluation of their propagation 

characteristics. 

   They also provide better solution convergence for some modal types as compared to 

corresponding scalar formulations. There are many types of finite element methods for such 

vector analysis, depending on which electromagnetic field component is used for 

formulation. They include: 

 The longitudinal electromagnetic (Ez and Hz) field components; 

 The transverse electromagnetic field components; (Ht+Et) 

  The transverse electric field components; Et 

 The transverse magnetic field components; Ht 

 The three electric field components; E 

 The three magnetic field components; H 

 The six electromagnetic field components (three each of the E and H fields).( E+H) 

Of all these formulations, those that minimize the number of components to store (by 

considering, for example, only E and H fields) are computationally more efficient. The 

accuracy they yield is important along with the ease with which boundary conditions can be 

implemented. Some of the more popular formulations will be discussed next. 

   The vector E-field approach was first applied in English and Young [117]. This formulation 

is suitable for generally anisotropic and lossless problems. The natural boundary condition in 

this formulation corresponds to a magnetic wall; therefore it becomes essential to force the 

electric wall boundary condition (      . Such a condition is quite difficult to impose 
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for an irregular structure. It requires an additional integral to insure continuity of the fields at 

the dielectric interfaces. The most advantageous formulation is the vector H-field formulation 

[105], [106], [118] in terms of all three components of the magnetic fields. It is valid for 

general anisotropic problems with a nondiagonal permittivity tensor. The natural boundary 

condition for this formulation is that of the electric field (n×E = 0, n.H = 0); therefore for 

arbitrary conducting guide walls, the boundary can be left free. In dielectric waveguides, the 

permeability, µ, is always assumed to be that free space. 

    Therefore, each component of H is continuous in the entire region and arbitrary variation 

of the refractive index in the waveguide cross section does not necessitate imposition of 

interface boundary conditions. Total vector formulations that involve both the E and H fields 

[119] have also been proposed. However, these do not have much advantage over the vector 

H field formulation due to computational burden associated with storing and calculating all 

the six components needed.   

2.5.2.1 The Vector H-field Formulation: 

   The vector H- field formulation is more suitable for dielectric waveguide problems because 

the magnetic field is continuous everywhere and the natural boundary conditions correspond 

to those of the electrical wall therefore no forced boundary conditions at the boundaries are 

required. This functional for the vector formulation is given by (2.45). 
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Where ω, is the angular frequency, Ω is the waveguide cross-section ̂  and ̂  are the 

permittivity and permeability tensors respectively.  

   To obtain the stationary solutions of the formulation (2.54) this is minimised with respect to 

each of the variables, which are the unknown nodal field components Hx, Hy and Hz. This 

minimisation leads to a matrix eigenvalue equation as stated in equation (2.46), where [A] is a 

complex Hermitian matrix and [B] is a real symmetric and positive-definite matrix. Because 

of the general 90⁰ phase difference between the axial and transverse components of the H-

field [120], the Hermitian matrix [A] can be transformed to a real symmetric matrix for a 

loss-less problem. In general, the matrices [A] and [B] are quite sparse. 

    The eigenvectors {Φ} represents the unknown field components at the nodal points for 

different modes with λ as their corresponding eigenvalues and also λ is proportional to ω
2
. In 

order to obtain a solution for a given wavelength, the propagation constant, β value has to be 

changed iteratively until the output eigenvalue corresponds to that wavelength. By varying β 

over the range of interest, it is possible to calculate the dispersion characteristics for the 

various modes. However, the above formulation (as well as the E-field) yields spurious 

solutions because the divergence condition, 0 H  is not satisfied automatically, therefore 

alternative approach, such as the penalty coefficient method [105], [118] have been proposed 

to eliminate those non-physical solutions. This method will be discussed in follow.  
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2.5.2.2 Spurious Solution: 

   The vector variational formulations suffer from the form of spurious or non-physical 

modes, which mixed up with the physical and accurate solutions during the computations. 

There are various methods exploited to detect these non-physical solutions from the physical 

method. The characteristic of spurious solutions is the inconsistency and the random fashion 

of the field varied. The explanation to the cause of these solutions could be due to the 

enforcement of the boundary conditions or nonzero divergence of the trial fields [64], [105]. 

In electromagnetic waveguide problems the spurious modes do not arise if the trial field 

precisely satisfies the condition      . Spurious modes occur in a full vector formulation 

where the divergence-free condition is neither implied nor forced and are distinctive in giving 

particularly high values of     . 

   To eliminate these spurious modes, it is necessary to differentiate between the physical and 

the non-physical solutions. For a physical mode, mathematically, its eigenvector satisfies the 

condition      . So it is possible to identify the spurious solutions from the physical ones 

by calculating the       for each solution over the waveguide cross section. The solution 

with low values of       are the real modes whilst those with high values are the spurious 

modes. Based on this phenomenon, Rahman and Davies [106] developed the so called 

penalty function method. It is a useful way of imposing certain constraints on solution 

variables. The method has been used in structural engineering problems to impose specific 

boundary conditions. This method was used to successfully eliminate these spurious solutions 

in problems of microwave or optical waveguide and improving the quality of the field. In this 

approach, an additional integral is added to the variational formulation equation (2.52), which 

satisfies the condition      . The penalty term can be written as [49]. 
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Where p is the dimensionless penalty factor. The value of p is often taken to be around 1/εn, 

where εn is the dielectric constant of the core of the waveguide. In this method the divergence 

free constraint is imposed in a least-squares sense and the larger the penalty factor the more 

heavily the constraint is implemented giving a further reduction of the spurious modes from 

the spectrum. The penalty function also improves the quality of the eigenvectors without 

increasing the order of the matrix in the eigenvalue problem. 

2.6 FEM Formulation in Mathematical Aspect: 

   The differential operator equations which describe the physical problem are replaced by an 

appropriate extermum functional J, which is the variational for the desired quantity. The 

problem can be regarded as obtaining the solution H over a specific region in the transverse 

plane so that the boundary conditions and also the extermum requirement are satisfied. The 

axial dependence is assumed the form        and the transverse plane is used for 

discretisation. 
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2.6.1 Discretisation of the Domain: 

   The discretisation of the domain into sub-regions (finite element) is the initial stage in the 

finite element method. The shape, size, number and configurations of the elements have to be 

chosen carefully such that the original body or domain is simulated as closely as possible 

without increasing the computational effort needed for the solution. Each element is 

essentially a simple unit within which the unknown can be described in a simpler manner. 

There are various types of elements available as a one, two and three dimensional elements 

for using in finite element formulations. When the geometry and material components can be 

considered in terms of two independent spatial coordinates, the two-dimensional elements as 

shown in Fig.2.2 can be used. The elementary and popular element for analysing an arbitrary 

waveguide structure in two-dimensional is the triangular element. Selection of the element 

size, dictates the accuracy in the final solution. By dividing the waveguide cross section into 

triangular elements, the unknown H is also considered as to be discretised into corresponding 

sub-regions. These elements are easier to analyse rather than analysing the distribution over 

the whole cross section. As shown in Fig 2.3, the transverse plane is covered with a grid of 

discrete nodes which are the vertices of each triangular element. The values of H at these 

nodal points are the basic unknowns. The intersections of the sides of the triangular elements 

are called nodal lines. 

 

Fig. 2.3 Finite element discretisation of a waveguide with triangular elements. 

 

2.6.2 Shape Functions: 

    For the approximation of the field over each element, it is important to consider a 

continuous function that is allowed to vary in a linear way over the element region. The 

function varying is bounded by the fact that at the nodal points, which should takes values 

equal to the nodal values in terms of   ,    and   . In this case, the functions have to be 

expressed in regarding to its nodal values. These functions are referred to the shape functions. 

   The continuous field function        in the problem domain can be replaced by a set of 

discrete values (ϕi, i = 1,2,3,.....,m), where m is the total number of nodes. Across the adjacent 
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triangles this function will be continuous. For these functions to be acceptable which they 

must satisfy some conditions between the elements; usually the continuity of the field across 

the boundaries is preferred. For each first order triangle element ϕ is interpolated 

continuously, this shown in Fig. 2.3 which can be performed by representing the nodal shape 

function (interpolation function) as Ni (x,y). Thus, using the interpolation function the 

element field can be written as: 
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Where ϕi are the nodal field values. The equation (2.56) can also be shown in a matrix form 

as: 
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          ee Nyx  ,                                                                                                        (2.58) 

Where [N] is referred to as shape function matrix and the column vector {ϕe} is the vector 

corresponding to the element nodal field values at the three vertices of the triangular.                                                                                

 

Fig. 2.4 Illustration the First-order triangular element with the components. 

 

The first-degree polynomial (a+bx+cy) is used over each element for a simple first order 

triangular element. The element shape function can be presented in a matrix notation as: 
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Where T denotes a transpose, x1, x2, x3, y1, y2, and y3 are the x and y coordinates of the three 

nodes respectively. Ae is the area of the triangular element given as:    
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The shape function matrix can also be written as: 
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And ai, bi, ci (i = 1,2,3) are the constants for a given element and calculated as: 
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   The values of a2, b2, c2, a3, b3, and c3 can be obtained by a cyclic exchange in equation 

(2.62) simultaneously. The shape functions Ni can also be expressed in terms of the areas of 

the triangle shown earlier in Fig. 2.3 as: 

123  trianglesub of area

P23  triangleofarea
iN                                                                                               (2.63)                                                                                      

Similarly N2 and N3 can be defined in the same way. Hence, Ni has the following property: 
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   The shape function N1 yields the value 1when evaluated at the node 1(x1,y1) and the value 0 

at nodes 2 and 3 and all the other points passing through the nodes on the line. This is the 

unique first-degree interpolation functions N2 and N3, the value 1 is at nodes 2 and 3, 

respectively, and the other nodes are 0.  

2.6.3 Element and Global Matrices: 

   The solution of the optical waveguide problem by the FEM can be transformed to a 

standard eigenvalue problem as in equation (2.46) where matrices [A] and [B] are known as 

global matrices and consist of the summation of the element matrices for each triangular 

element of the discretised cross-section of the optical waveguide.  

   In this section, the assembly of the element and global matrices is shown, with respect to 

the shape functions and the nodal field values of each triangular element, based on the 
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variational formulation. Considering each triangular element, the three unknown H-field 

components Hx, Hy and Hz of the magnetic field can be written as follows: 
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Where Hxi, Hyi and Hzi for i=1,2,3 are the x, y and z components of the nodal magnetic fields. 

The nodal magnetic field vector [H]e for each element can be described as: 
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In more compact form, the above equation (2.66) can be written as: 

    ee HNH                                                                                                                 (2.67) 

Where {H}e is the column vector which contains the three components of the nodal field 

values of the elements and [N] is the shape function matrix. Also using equation (2.67), the 

curl of H equation can be written as: 
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Where the matrix [Q] can be written as: 
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Where [0] = [0 0 0] and [N] = [N1 N2 N3] and some of the shape function derivatives are 

assumed substituted using equation (2.64) as shown: 
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The values of the constants b1, b2, b3, c1, c2 and c3 were given earlier in equation (2.62). By 

substituting the expressions shown in equations (2.67) and (2.68) in to the variational 

formulation of equation (2.69), the vector H-field formulation functional for an element can 

be obtained as: 

   

 











dHH

dHH






ˆ

ˆ 1

2  

      

       
















dHNHN

dHQHQ

ee

ee






ˆ

ˆ 1

2                                                                                     (2.71) 

 

      

      














dHNNH

dHQQH

e

TT

e

e

T

e






ˆ

ˆ 1

2  

Re-arranging the last part of the above equation (2.71), the following can be obtained: 
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Where Δ represents the integration over the triangular element domain. T and * denote the 

transpose of a matrix and the complex conjugate transpose, respectively. The [Q] matrix was 

defined earlier in equation (2.69). A transpose operation on this matrix would define the [Q]* 

matrix. For isotropic material, the relative permittivity εr is a scalar quantity. For waveguides 
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consisting of anisotropic material the relative permittivity ε can be taken as a tensor 

represented by a 3 3 matrix and the inverse of the matrix should be implemented. 

   The total function, J associated with the whole cross-section of the waveguide can be 

obtained by summing Je of all the individual elements as: 





N

e

eJJ
1

                                                                                                                            (2.73) 

Where N is the number of elements. 

   The minimisation of the functional given in equation (2.73) can be performed by 

differentiating with respect to the field nodal values and equating it to vary as below: 
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Thus the following relation can be obtained: 
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Thus the following eigenvalue equation can be obtained: 
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Where the matrices [A] and [B] can be defined as: 
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[A] and [B] are the global matrices of the eigenvalue equation, while [A]e and [B]e represent 

the element matrices. Column matrix {H} contains all H-field nodal values over the whole 

cross section of the waveguide structure. The evaluation of the elements [A]e and [B]e are 

shown in the Appendix. 

   When solving waveguide problems by using finite elements, the key factor affecting 

storage requirements and computational effort is the choice of algorithm to solve the matrix 

equation. The global matrices [A] and [B] shown in equation (2.77) are highly sparse. The 

sparcity increases with the order of the matrices and decreases with the polynomial order of 

the shape functions. It is obvious that using higher order basis functions, one may obtain a 

         
  


n

e

n

e

T

e dNNBB
1 1

̂



Chapter 2  The Finite Element Method 

38 
 

more accurate solution of the problem under consideration. However, the added disadvantage 

to that is that the process involves increasing the programming effort, particularly when 

considering waveguide problems with material anisotropy, infinite elements and penalty 

functions. In addition to that higher order polynomials for a given matrix order increases the 

density of the matrix although this can be handled with reasonable effort by using a 

sophisticated matrix solver. 

2.7 The finite element method and Least Squares Boundary Resdiual Methods: 

The finite element method (FEM) is described to be more accurate and versatile in order to 

find the modal solution than the other available techniques [103], this is because, to its 

preferable properties, which have been already mentioned in detail. The FEM can be 

employed to arbitrary shaped guides which the refractive indices, nonlinearities and 

anisotropies can have arbitrary profiles. 

   The power transfer efficiency between two guides can be calculated from the supermodes 

of the coupled structures, which requirement that the accurate eigenvalues and eigenvectors 

can be obtained. Since the FEM can be able to calculate the supermodes of the propagation 

constants from the coupled structures, this approach is used where possible. To find the 

power transfer efficiency, the coupled mode [121-122], or simple overlap integral [123] 

techniques can be used. An alternative and a powerful tool to analyse the coupled structures 

is the employment of the least squares boundary residual method. The advantage of this 

method, compared to other available techniques, is that it can calculate the reflection 

coefficients of the modes, and also it enforces the satisfaction of the field continuity more 

rigorously at the interfaces. 

2.7.1 Using the data from the finite element results: 

   In majority of the coupled devices the calculation of only the propagation constants and the 

field values is not so much concern. Hence an additional technique [121-123] has had to be 

developed to finding the power transfer from the input to the intermediate or output sections. 

However, it has been shown in this study that the LSBR method is an accurate and versatile 

numerical tool to calculate the power transfer between the coupled waveguides. The LSBR 

method employees the propagation constants and the field values generated by the finite 

element and also used to calculate the transmission and the reflection coefficient at the 

discontinuity interfaces. From the LSBR technique the continuity of the tangential 

components of the E-field and H-field in the least squares sense over the discontinuity 

interface by considering a several modes to yield the general scattering matrix are 

accommodated. The LSBR method can be applied to a wide range of discontinuity problems, 

consist of abrupt changes at the transverse plane between arbitrary guiding structures of 

uniform cross section.  

   By applying the LSBR, problems including the vertical shifts, horizontal misalignments, 

sudden changes of width or height change in guide dimensions or materials or combinations 

of all these verities can be solved and the other hand the LSBR method is employed to find 

the optimum matching of the two side waveguides by controlling the geometries and material 
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properties of the guides. The LSBR method is rigorously convergent, and the error 

minimisation being global rather than sampled and the method has  flexibility of introducing 

and electric/magnetic weighting factor to balance electric and magnetic field continuity 

errors. 

2.7.2 Analysis of the waveguide discontinuities: 

 

   Considering the abrupt junction of two dielectric waveguides as illustrated in Fig. 2.5. It is 

assumed that the discontinuity junction is excited by an incident wave of one mode from side 

I. This incoming wave is partly reflected, partly transmitted and radiated at the junction 

interface. Let Et
in 

and Ht
in

 be the transverse components of the electric and magnetic fields of 

the incident wave respectively. Some of the incident wave is reflected back into the side I. On 

the other hand, many modes will be generated at the discontinuity plane to satisfy the 

boundary conditions. These can be guided or radiated modes in both sides of the 

discontinuity. 

 

 

Fig. 2.5 Discontinuity representation of LSBR. 

    

   The total transverse electric and magnetic fields Et
I
 and Ht

I
 in side I and Et

II
 and Ht

II
 in side 

II at the discontinuity plane (z = 0), can be expressed in terms of the eigenmodes in side I and 

side II, respectively as follows: 
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





0i

II

tii

II

t HbH                                                                                                                                        (2.81) 

  The generated modes at the discontinuity of the plane, may be propagated, radiated or 

evanescent, and ai are the amplitudes of the different i
th

 modes from modal field profiles    
  

and    
  reflected from the junction in side I and bi are the amplitudes of the i

th
 modes 

transmitted in side II, with their modal electromagnetic field profiles,    
   ,    

   .       

The LSBR method looks for a stationary solution to satisfy the continuity conditions of the 

tangential fields in a least squares sense by minimising error functional J,  
  

   
   and  
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Where Z0 is the free-space wave impedance and w is a convenient, positive and 

dimensionless weighting factor, and the integral is calculated over the discontinuity plane. To 

obtain the approximate numerical solution to the problem, the infinite series expansion of 

equations (2.78) to (2.81), including all the relevant propagating modes plus as many 

radiating and/or evanescent modes as is convenient. The minimum criterion of equation 

(2.81) reduces to the following linear equation: 

vCx                                                                                                                                                            (2.82) 

Here C is the square matrix generated from the eigenvectors and υ is an array due to the 

incident mode. The solution of this equation gives the vector in {x} consisting the required 

modal coefficient ai and bi of the reflected and the transmitted modes. These constitute one 

column of the scattering matrix, corresponding to the chosen incident mode. Vector {x} is 

made up of all the unknown modal amplitudes. The elements of C and υ are given by: 

tjtitjtiij HHwZEEC ,, 2                                                                                                          (2.83) 

ti

in

tti

in

ti HHwZEEv ,, 2                                                                                                            (2.84) 

Where i, j = 1,...,N and N is the total number of modes in side I and II and the vector Et and 

Ht are made up of all the corresponding modal fields in both sides. Inner products involved in 

the above expression are defined similar as equation of (2.44). 

2.8 Summary: 

   The application of the finite element technique according to the variational principle in 

modal analysis for the variety of the waveguide structures has been discussed in this chapter. 

A brief properties for the different numerical methods involved in the analysing waveguide 
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problems also has been mentioned. A detail of mathematical discipline is provided for the H-

field based FEM formulation.  

   The characteristic of the scalar and vector formulations, some kind of boundary conditions 

and shape functions have been also detailed. Since the vector formulation suffer from the 

appearance of spurious solutions, to employ of the penalty functions aspect was discussed in 

detail in order to eliminate the non-physical modes.  

   A rigorously convergent least squares boundary residual method is described for using to 

analyse the discontinuities in the waveguides. The method is able to calculate the power 

transfer between two waveguides by utilising of the scattering and transmitting coefficients. 

The role of the finite element program using of the LSBR technique is also presented 

followed by the calculation of the insertion loss. The application of this method for 

optimising and also improvement of the performances in such photonic devices will be 

presented in the subsequent chapters.   
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Rigorous Modal Analysis of Silicon Strip Nano-Scale Waveguides 

 

   In this chapter, a rigorous H-field-based full-vectorial modal analysis is carried out and this 

is used to characterize, more accurately, the abrupt dielectric discontinuity of a high index 

contrast optical waveguide. The full vectorial H- field vector profiles are described in detail. 

The single and second mode operation, vector field profiles, modal hybridness, birefringence, 

and power confinement of this silicon nanowire are also presented. 

3.0 Introduction: 

   Revolution of the electronic technology was only possible due to both miniaturization and 

also integration of millions of transistors into single VLSI chip. On  the other hand, optical 

communication systems of today rely heavily on hybrid integration of a limited number of 

relatively larger discrete components like lasers, modulators, multiplexer, detector etc. 

Similar to the revolution that single chip integration brought to electronics, one way to reduce 

the cost of optoelectronics, is to make the devices as small as possible and find a material 

system for monolithic integration of all the components.  

   Photonic Integrated Circuit (PIC) can improve reliability and reduce the size of most 

complex systems by using fewer components. However, there has not been a large scale PIC 

commercially deployed because of the high development cost and poor flexibility associated 

with the fabrication processes of the monolithically integrated subsystems. One way of 

reducing the devices size is to use dielectric material with a refractive index as high as 

possible, which can improve the optical confinement and effectively reduce the waveguide 

dimensions. High index contrast also allows very small bending radius, which suitable for 

increasing the number of components on a chip to increase both functionality and reliability 

of the chip. 

   When the waveguide dimensions of an optical device are much smaller than the operating 

wavelength, unique material and structurally-dependent properties can be exploited and 

recently these have attracted considered attention. Amongst the variety of materials 

considered so far, silicon has been particularly attractive as the low-cost and mature CMOS 

fabrication technology developed for the electronics can be exploited. Its high index contrast 

results a tight modal confinement, allowing efficient scaling and close packing of photonic 

components. In waveguiding applications, the small size of the silicon core with the silica 

cladding has allowed the fabrication of quantum wire [124]. Recently the high index contrast 

in devices with a silicon core and silica or air cladding has initiated a number of studies in the 

silicon photonics field [125]. As a result, it is expected that high speed opto-electronic 

silicon-based technology would be a suitable candidate for ultra-high-speed communications 

[126], slow light devices [127], atomic trapping [128], and sensing applications [129]. It has 

also been reported that in the sub-wavelength regime, the shape of the waveguide becomes 

crucial in the determination of the dispersion properties, and also taking advantage of high 

optical intensities coupled with carefully engineered group-velocity-dispersion (GVD) 

characteristics [130]. 
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   It is the aim of this chapter to present a review in H-modal parameter of the Si photonic 

waveguides. The characterisation of the mode fields of the Si strip with a nanoscale cross-

section will be studied and shown in detail. A prototype of the geometry with the core size of 

the waveguides in Si photonic devices for single mode operation will be illustrated in this 

chapter. For designing any practical device, a single mode condition plays a very important 

characteristic, because its reasonable function depends on the fundamental guided modes. 

Therefore, determining the single mode condition for any specific dimension can be 

considered and, due to this, birefringence, the hybridness, the effective area and power 

confinements of the Silicon strip nano-scale waveguides will be investigated, specifically for 

air-clad waveguides.  

3.1 Waveguide structure: 

   The structure considered here for the rigorous investigation is a typical silicon strip optical 

waveguide or Silicon photonic wire waveguide. The symmetry of the photonic structure 

being studied can be exploited elegantly to reduce the degrees of freedom and hence the 

calculation involved. The idea is that for the given structure and also associated modal field 

was expected, which indentifying the symmetry and the also continuity of the field 

components can be considered and applying these to reduce the order of the matrices and this 

is feasible which determine of the electric and/or magnetic walls boundary conditions. Then 

for a rectangular waveguide, the structure has an inherent 90⁰ rotational symmetry. If only a 

half or a quarter of the structure is need to analyze, it can use a finer mesh and obtain better 

accuracy.  

  

Fig. 3.1 Schematic of a Silicon nanowire waveguide. 

   The structure considered here for a thorough investigation is a conventional silicon strip 

optical waveguide or Si photonic wire waveguide. Particular types of waveguide consist of a 

silicon core with small rectangular cross-section, surrounded by Air. The silicon core can also 

be buried under a thick SiO2 layer. The structure can be fabricated by using SOI (Silicon-On-

Insulator) wafer on a Si substrate. A resist mask can be used on the surface of the Si layer and 

the Si waveguide core can be formed by etching down to the SiO2 buffer layer by use of 

Inductively Coupled Plasma (ICP) dry etcher. In this study, the thickness of the core 

waveguide are taken as H, that of the lower SiO2 buffer layer as 1.50 µm and wavelength as 

1550 nm. The refractive index of the rectangular Si core at 1.55 µm wavelength is taken as 
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3.50. The refractive indices for the SiO2 substrate and air cladding are taken as 1.50 and 1.00, 

respectively. 

3.2 Effective index and Birefringence analysis: 

   In planar (infinite slab) waveguides, modes can be purely TE or TM. However, in optical 

waveguides with 2-dimensional confinement the modes are never purely TE or TM and are 

denoted by quasi-TE or quasi-TM modes. Although scalar formulation based FEM may be 

sufficient for solving solutions on quasi-TE, quasi-TM or any one dimensional waveguide 

problems, it is however, inadequate to found solutions for hybride modes of anisotropic or 

inhomogeneous or any two-dimensional optical waveguide problems. The vectorial based 

FEM formulation is more appropriate for two-dimensional hybride modes problems. In this 

study, the H-field based VFEM may be used to obtain the modal solutions of such a 

waveguide structure.  

   Most of the planar Silicon nanowires are fabricated by using mature CMOS technology that 

was developed for the semiconductor industries. In this case, commercial wafers are available 

for a fixed thickness of Silicon guiding layer on a Silicon substrate with a Silica buffer layer. 

Typically 220 – 400 nm thick Silicon guiding layer are used. 

In the simulation carried out, the waveguide heights (H) at 220 nm, 260 nm, 300 nm, 350 nm 

and 400 nm, while the waveguide width (W) as decreased very slowly from 3 µm to nano-

dimensions to determine higher mode transition to the single mode condition. The effective 

index, neff, of a given mode is normalized propagation parameter, which can be defined by: 

     
  

  
                                                                                                                                          (3.1)  

Where β0 is the propagation constant of the mode and k0 is the free space wavenumber 

defined as: 

   
  

 
        

                                                                                                                       (3.2) 

For this research, due to availability of symmetrical waveguide structure, computational 

discretised using more than twice irregular sized first order triangular elements. 

   Variations the effective indices for the fundamental quasi-TE (H
y
11) and quasi-TM (H

x
11) 

modes with the waveguides width, W, for the Air-cladding are shown in Fig. 3.2. In this case 

height, H was kept constant at 220 nm. It can be noticed that when the width of the 

waveguide is large in comparison to the height of the device structure, the waveguide can be 

support many modes and in that case neff is closer to the refractive index of the Si waveguide 

core. It can be also observed that as the waveguide width is reduced, the effective indices 

values are reduced. Initially it reduces slowly with the width and then rapidly to reach the 

cut-off points, in W ≈ 360 nm. This simulation data generated suggest that the single-mode 

operation occurs when the waveguide width lies approximately between 280 nm to 360 nm 

when the operating wavelength, λ, is 1550 nm with a height of 220 nm.  
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When width of waveguide too large, effective index value reaches asymptotically that of an 

asymmetric silicon slab waveguide of thickness H = 220 nm, with air cladding and silica 

substrate on two sides.  

   It is mention that, when width of silicon nanowire waveguide is too small, this waveguide 

cannot support any mode, effective index value approaches that of the silica index value as 

most of the power would be in silica substrate. 

H = 220 nm
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Fig. 3.2 Variation of the effective indices with the 

waveguide width, W, for the quasi fundamental and 

second TE (H
y

11) and TM (H
x
11) modes, in H = 220 

nm. 

Fig. 3.3 Variation of the effective indices for the 

quasi-TE (H
y
11) and quasi-TM (H

x
11) for the first 

and second modes, with the waveguides width, W, 

in H = 260 nm. 

 

   Next, a higher waveguide thickness is considered in Fig. 3.3. It shows that as waveguides 

width reduces the effective indices of the quasi-TE (H
y
11) and quasi-TM (H

x
11) modes also 

reduces. In this case H = 260 nm, reduction is not striking by the time the waveguide width 

reaches less than about 0.6 µm and 0.9 µm, for the fundamental and second quasi modes, 

respectively. 

   For those regions, all of the effective indices rapidly decrease to achieve a constant value as 

the cross-over point. It can be also noticed that, at this point, for the fundamental quasi-TE 

and TM modes, the height of silicon nanowire is nearly equals the waveguide width. Also, it 

is shown in here that when the dimension of the waveguide’s width is smaller than height, the 

quasi-TM effective index is higher than the quasi-TE mode. 

    It is found that when the height of the waveguide is large, the quasi-TM (H11
x
) mode is 

more dominant. Comparing Fig. 3.4 with Figs. 3.2, and 3.3, it can be noticed that as the 

height is increased, the effective indices for quasi-TE (H
y
11) mode and quasi-TM (H

x
11) mode 

are bigger and also, the larger the height is, the larger cross point value is. These values for 

the quasi fundamental TM (H
x
11) and the second quasi- TE (H

y
11) modes are calculated as 

525 nm, 745 nm, and 858 nm for H = 220 nm, H = 260 nm and H = 300 nm, respectively.  

   Finally, the Fig. 3.4 shows the effective indices for quasi-TE (H
y
11) and quasi-TM (H

x
11) 

modes by reduction of waveguide width when H = 300 nm. 
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H = 300 nm
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Fig. 3.4 Variations of the effective indices for the 

first and second quasi TE and TM modes with the 

waveguides width, W, when H = 300 nm. 

Fig. 3.5 Variations of the effective indices, neff, of 

the fundamental quasi-TE (H
y
11) mode, with the 

waveguides width, W, for different Heights.  

 

   The variations of effective indices with the change of width from 3.5 µm to nano-

dimensions for the fundamental quasi-TE (H
y
11) mode are shown in Fig. 3.5 for the 

waveguides heights, 220 nm, 260 nm, 300 nm, 350 nm, and 400 nm. It can be observed that, 

the difference between the effective indices of the quasi-TE (H
y
11) mode for different height 

are almost the same. The effective index of quasi-TE mode for the waveguide height 400 nm 

is about 3.167 with the waveguide width of 3.0 µm, while the value reduces for the same 

waveguide width to 2.805 with silicon nanowire waveguide height equal to 220 nm. It is 

shown that the increase in waveguide heights leads to the decrease in the shape of trend. It 

can also be noted that when H = 220 nm, it reaches its cut-off state for the fundamental mode 

earlier than the other heights and that the cut-off width is at between 240 nm to 280 nm.   

   The variations of effective indices for the fundamental quasi-TM (H
x
11) mode with the 

waveguides width, W and different heights are shown in Fig. 3.6. If they are compared, as a 

difference between effective indices for quasi-TM (H
X

11) mode for same waveguide heights 

as quasi-TE (H
y11

) mode, it can be find out that the effective indices for quasi-TE modes are 

much more than their asymmetric quasi-TM modes for waveguides heights. For example, 

effective index for quasi-TE mode for waveguide height of 400 nm is 3.167, while this value 

is 2.945 for quasi-TM mode in the same waveguide height. It can also be observed that the 

variation of effective indices for quasi-TM (H
X

11) modes with different waveguides height 

are not the same, compare to variation of quasi-TE (H
y
11) mode in the same waveguide 

height.  

   When it comes to cut-off condition value, its values increasing in fundamental quasi-TE 

(H
y
11) mode compared to quasi-TM (H

x
11) mode for the same waveguide heights. The cut-off 

width is around between 120 nm to 270 nm. 

   Figure 3.7 shows the variations of the modal birefringence with the change of width, for the 

waveguide heights, 220 nm, 260 nm, 300 nm, 350 nm and 400 nm.  
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   The modal birefringence is determined as difference between the effective indices of the 

fundamental quasi-TE (H
y
11) and quasi-TM (H

x
11) modes. 

   In the design of photonic integrated circuit (PIC), for this case, silicon nanowire waveguide 

surrounded by air. 

   It is shown here that modal birefringence increases as W increase and then saturates. This 

figure shows that when the width is large as in the case of width, W = 3.0 µm, the modal 

birefringence is at 0.94 for height equal to 220 nm and for the case of when H = 400 nm, the 

modal birefringence for the W = 3.0 µm is 0.22. 

   It can be noticed that the birefringence values are decreasing as the width of waveguides are 

decreasing. Also, this figure shows that, the high modal birefringence related to the smaller 

waveguide height as H = 220 nm, because the difference between effective indices for the 

quasi-TE (H
y
11) and quasi-TM (H

x
11) modes compare to another silicon nanowires waveguide 

is high.  

   It can be noted that for the different waveguide heights, if it refer to birefringence zero 

zone, the waveguides have a specific values, respect to the width of waveguides. These 

values are taken 0.41 µm, 0.37 µm, 0.32 µm, 0.29 µm and 0.27µm for H = 400 nm, H = 350 

nm, H = 300 nm, H = 260 nm and H = 220 nm respectively. 

    It can be described that for width beyond 500 nm, modal birefringence will be large when 

H is reduced but the width for zero birefringence will be small. It is also shown here that the 

birefringence is zero when the waveguides width and height are of similar values. 

   It can be also observed that modal birefringence is negative when the width of the 

waveguide is reduced to the nano-scale, because in these cases, the fundamental quasi-TM 

(H
x
11) mode becomes dominant. 
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Fig. 3.6 Variations of the effective indices, neff of 

the quasi- TM (H
x

11) mode, with the waveguide 

width, W, for different H. 

 

Fig. 3.7 Variations of the modal birefringence with 

the width, W, for different Height in a Silicon 

nanowire waveguide. 
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3.3 Analysis of modal H-field profiles: 

   In the analysis of modal H-field profiles, for the Air clad, quasi-TE (H
y
11) mode, the Hy 

field component is dominant, and Hx and Hz are the non-dominant components.  

   Also, for the quasi-TM (H
x
11) mode, Hy and Hz are the non-dominant components, while the 

Hx field component is dominant. 

 The dominant Hy field component of the H
y
11 mode is shown as an inset in Fig. 3.8 for the 

waveguide width, W = 0.30 µm, when height of the waveguide is kept in 220 nm. 
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Fig. 3.8 Dominant Hy field profile of the H
y
11 

mode. 

Fig. 3.9 Variation of the Hy field for the quasi-TE 

(H
y

11) mode, along X-axis. 

 

   The field profile shown in Fig. 3.8 clearly identifies the maximum intensity occurring at the 

centre of the core. It is also shown that there is symmetry along the axes. It can be noticed 

that, the mode can be extended into the cladding and substrate, Air and SiO2 regions, 

respectively.  

   To illustrate its variation more clearly, the variation of the Hy field along the waveguide 

width is also shown in Figure. 3.9.  

   The Hy field is monotonically decreasing rapidly along the X-axis, and at the boundary 

between the core and cladding (Si/Air), the magnitude of the Hy field is zero.  

In the contour plot is clearly visible that the modal confinement in the horizontal direction is 

much stronger. The neff, of the quasi-TE (H
y
11) mode was found to be 2.8104, when              

H = 220 nm.   
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H = 220 nm, TE (H
y
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) mode, H

x
 field profile
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Fig. 3.10 Non-dominant Hx field profile of the H
y
11 

mode. 

 

Fig. 3.11 Non-dominant Hz field profile of the 

quasi-TE (H
y
11) mode. 

   For the quasi-TE (H
y
11) mode, Hx field component is non-dominant. In contour plot shown 

in Fig. 3.10. It is found that when W = 0.3 µm, and H = 220 nm. In contour plot shown in Fig. 

3.10, it is clearly visible that the Hx field modal confinement is much stronger, and it spreads 

more in the horizontal direction, resulting in a dumbbell-shaped profile. 

   The contour of non-dominant Hz field component of the quasi-TE (H
y
11) mode is shown in 

Fig. 3.11 that when W = 0.3 µm and H = 220 nm. It can be observed that the maximum 

intensity occurs at the two horizontal interfaces between the Si and SiO2. This because the 

value of Hz is proportional to the derivate    
    and therefore the Hz value is shown to peak 

in the y-direction. 

   For the quasi-TM (H
x
11) mode, the Hx field component is dominant, and Hy and Hz are the 

non-dominant components.  

   In the analysis of modal H-field profiles, for the Air clad, Hx field component of the H
x
11 

mode is shown as in Fig. 3.12 for the waveguide width, W = 260 nm, and height, H = 260 

nm. The field profile shown in Fig. 3.12 clearly identifies the maximum intensity occurring at 

the centre of the core. 

    To illustrate its variation more clearly, the variation of the Hx field along the X-axis is also 

shown in Fig. 3.13. In this case, the Hx field is monotonically decreasing with a rapid 

reduction along the X-axis and when X = 0.13 µm (as H = 260 nm), at the boundary between 

the Si and Air, the magnitude of the Hx field is 61 % of its maximum value. 

 In the contour plot it is clearly visible that the modal confinement in the horizontal direction 

is much stronger. The neff of the H
x
11 mode was found to be 1.50148 when W = 260 nm.  

   The non-dominant Hy field component of H
x
11 mode shown in Fig. 3.14. It has a maximum 

intensity at the centre of the core. It is also shown that there is symmetry along the vertical 
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and horizontal axes. As a high index contrast Si waveguide, the non-dominant Hy field 

component of H
x
 11 mode has a significant magnitude, which is shown in Fig. 3.15. In the 

case where H = 260 nm and W = 260 nm, the maximum magnitude of Hy field is found to be 

12 % of maximum Hx field. 

   The contour of non-dominant Hz field component of the H
x
11 mode is shown as in Fig. 3.16. 

It can be observed that the maximum intensity occurring at the centre of the core. 

    From the Fig. 3.17, the maximum magnitude of Hz is found to be 40 % of the maximum Hx 

field and it is significantly higher than the non-dominant of Hy field amplitude. The Hz field 

is zero along the X-axis. 
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Fig. 3.12 Dominant Hx field profile of the quasi-

TM (H
x
11) mode. 

Fig. 3.13 Variation of Hx field along X-axis in Air 

clad Silicon nanowire for the quasi-TM (H
x

11) 

mode. 
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Fig. 3.14 Hy field profile of the quasi-TM (H
x
11) 

mode. 

Fig. 3.15 Variation of Hy field along X-axis, in Air 

clad Silicon nanowire for the quasi-TM (H
x

11) 

mode. 
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H = 260 nm, TM (H
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Fig. 3.16 Hz field profile of the quasi-TM (H
x

11) 

mode. 

Fig. 3.17 Variation of Hz field along X-axis, in Air 

clad Silicon nanowire for the quasi-TM (H
x

11) 

mode. 

 

3.4 Hybridism analysing: 

Pure TE and TM modes can only exist in planar slab waveguides with 1-dimensional 

confinement. However, in all optical waveguides with 2-dimensional confinement, the modes 

are classified as quasi-TE and quasi-TM modes, which contain all the six components of the 

E and H fields. Besides that, in the high index contrast Silicon nanowires, the modal 

hybridness is much higher. To find all the three components of the H-field and the evolution 

of fully hybrid quasi-TE and quasi-TM modes along a guided-wave device all the methods to 

be used must be fully vectorial in nature. It is mentioned that, the modal hybridness defined 

as the ratio of the maximum value of the non-dominant Hx and / or Hz field components to 

the maximum value of the dominant in Hy modal field component. Modal hybridness is a key 

property in polarization issues. This parameter can be used to calculate polarization cross-talk 

[7] and also in the design of polarization rotator or polarization mode dispersion. 

 The variations of the modal H-field and the hybridness with the waveguide width in 

nanometer scale for the H = 220 nm in fundamental quasi-TE (H
y
11) mode will be analysed in 

this section. 

   Variation of its maximum value with the width is shown in Fig. 3.18, the reduction of 

waveguide width is followed by the steady increase in the maximum value of dominant Hy 

field to a maximum point of about 6.138, at W = 0.34 µm. Then its maximum value drops 

rapidly to less than 1 when the waveguide width reduces further and approaches cut-off 

value.  

   The normalisation of the eigenvector is carried out by the solver and related to the power of 

the mode. In this case when the spot-size was smaller, magnitude of the dominant field was 

higher. For the quasi-TE (H
y
11) mode the Hy field component is dominant and other 

components Hx, and Hz are non-dominants. 
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Fig. 3.18 Variation of the maximum Hy field with 

the width, W, for the quasi-TE (H
y

11) mode in        

H = 220 nm. 

Fig. 3.19 Variation of the maximum Hx field with 

the width, W, in Air clad silicon nanowire for the 

quasi-TE (H
y
11) mode. 

 

   Variation of the maximum Hx modal field with the waveguide width, W, for the quasi-TE 

(H
y
11) mode in H = 220 nm is shown in Fig. 3.19. A low maximum amplitude can be 

observed for a wider waveguide in clearly, however as W is reduced, maximum Hx field 

reaches a peak value, then rapidly reduces as the fundamental quasi-TE mode approaches its 

cut-off region. The maximum value for the Hx non-dominant field is found to be 1.716 at     

W = 320 µm. 

   The variations of the maximum Hz field with the waveguide width, W is also shown, when   

H = 200 nm, in Fig. 3.20, which increases monotonically but with a rapid reduction from the 

W = 0.33 µm. The maximum magnitude of Hz is found to be 45 % of the maximum Hy field 

and it is higher than that the non-dominant of Hx field. It can also be noted that all the three 

H-field components of the quasi-TE (H
y
11) mode are continuous across the junction core and 

the clad. 
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Fig. 3.20 Variation of maximum Hz field with the width, W, 

in Air clad Silicon nanowire for the quasi-TE (H
y

11) mode. 
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   The variation of the modal hybridness with the width for the quasi-TE (H
y
11) mode is shown 

in Fig. 3.21. The modal hybridness, in this case is defined as the ratio of the maximum value 

of non-dominant Hx field to the maximum value of dominant Hy field. It is shown in here that 

when W is small, hybridness will reach a higher maximum value as in the case when H = 220 

nm. It is also shown that as W reduces, the hybridness increases until it reaches its maximum 

value as in 0.28 at the W = 320 nm, and then starts to reduce as it approaches to its cut-off. 

   For the other non-dominant Hz field, the hybridness can also be defined as the ratio of         

Hz / Hy, and this parameter a function of the width, is shown in Fig. 3.22. It can be observed 

that the hybridness increase slightly as the width increases. It is also shown that the Hz , 

hybridness of the fundamental H
y
11 mode is significantly larger than its Hx hybridness. 
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Fig. 3.21 Variation of Hy hybridness with the 

width, W, in Air clad Silicon nanowire for the 

quasi-TE (H
y
11) mode. 

Figure. 3.22 Variation of the Hz hybridness with 

the   width, W, in Air clad silicon nanowire for the 

quasi-TE (H
y
11) mode. 

 

   The variation of the field component ratio with the waveguide width, W, for the different 

height of the waveguides is shown in Fig. 3.23. From the figure, it can be clearly seen that the 

hybrid nature is enhanced by reducing the waveguide width, W. When H = 220 nm, 

hybridness is shown by a blue solid line, reaches its maximum, then rapidly reduces as the 

fundamental mode approaches its cut-off region.  

   The maximum hybridness for the fundamental 220 nm height is found to be 0.2815 at       

W = 311 nm. Furthermore, the behaviour for the higher waveguides are shown to be similar 

to that of the H = 220 nm, in which, as the width decreases, the hybridness increases until 

each higher height of the waveguides approaches its cut-off regions. It can be observed that if 

the width is reduced further, the waveguide cannot support a guided mode. 

   For the non-dominant Hz field, the hybridness can also be defined as the ratio of Hz / Hy, 

and this parameter is a function of the width, is shown in Fig. 3.24.  

   It can be observed that the hybridness increases as the width increases. It is also shown that 

the Hz hybridness of the smallest height is significantly larger than the other heights. The Hz 
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hybridness of the different heights follows a similar behaviour, in which, they all decreases as 

width decreases. 
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Fig. 3.23 Variations of Hy hybridness with the 

width, W for the quasi-TE (H
y

11) mode. 

Fig. 3.24 Variations of Hz hybridness with the 

waveguide width, W for the fundamental H
y
11mode. 

 

3.5 Analysis of optimum parameters in silicon nanowire waveguide: 

   In the design of PIC, some silicon guided wave components may be surrounded by air, 

which the variations of their effective indices and also the effective areas with the width are 

rigorously investigated. Here the air-clad structure has only got one-fold symmetry, so half of 

the waveguide is used in the simulation.  

   For various applications, the mode size or its effective area is an important modal 

parameter. Here, following the second moment of the intensity distribution recommended by 

ISO Standard 11146, the effective area (Aeff) is used to evaluate this area [131] can be given 

by: 

     
      

       
 

     
 

 
    

                                                                                                                                    

   Figure 3.25 shows the variation of the effective index and also the effective area with the 

waveguide width for the quasi-TE (H
y
11) mode. In this case the height was kept constant at 

220 nm. It can be observed that as width reduces, effective area reduces slowly reaches a 

minimum value of 0.16 µm
2
 at W = 0.36 µm, then increases rapidly as mode approaches its 

cut off. 

   Variations of the effective indices and effective areas for the fundamental quasi-TE (H
y
11) 

and fundamental quasi TM (H
x
11) modes are shown in Fig. 3.26. In this case height, H, was 

kept constant at 220 nm. The striking feature is that the effective index for fundamental quasi 

TE (H
y
11) mode is larger than that of the fundamental quasi TM (H

x
11) mode. However when 

the waveguides width, W, becomes smaller, the trends for these two cases are almost similar. 
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   When it comes to effective area for quasi –TE and quasi-TM modes, we can see that the 

both of them reduce as the width reduces. Generally, about the cut-off region for the quasi- 

TE mode and TM mode both effective area increases rapidly.  

 

   The effective indices and effective areas of the fundamental quasi-TE (H
y
11) mode and 

quasi-TM (H
x
11) mode for the waveguide height equal 260 nm are varied with respect to the 

width of waveguide. 
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Fig. 3.25 Variations of the ne and Aeff with the 

width, W, for the quasi-TE (H
y

11) mode. 

Fig. 3.26 Variation of effective indices and 

effective    areas for the quasi-TE (H
y
11) mode and 

quasi-TM (H
x

11) modes with the width. 

            

    According to the Fig. 3.27, the effective index and effective area for the quasi TE mode is 

larger than effective index and effective area for quasi TM mode, but when the width of a 

gets smaller the difference between the effective indices becomes smaller. This difference 

reaches to almost zero, when the waveguide width has nearly 0.23 µm as cross point. 

   Effective area for quasi-TE and quasi-TM mode then expands rapidly, when the waveguide 

width reaches to the lowest value, which is the cut-off point. 

   The variations of the power confinement with the width, W, are shown in Fig. 3.28 for the 

quasi-TE (H
y
11) mode in different heights of the waveguide. 

   The confinement factor in any particular area normalized to the total power, which is 

obtained by integrating the Poynting vector, from the H- and E- fields as given below: 

       
 

                                                                                                                                                 

   It is expected that as the waveguide dimension becomes large, most of the power would be 

confined in the Si core and that, ГSi would be close to 1.0. However, it can be noted that, the 

maximum power confinement in this case is closer to 0.895, because the height of the core 

was restricted to 300 nm.  
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   If the height of the core also becomes larger, then the power confinement in the Si core 

could approach 1.0. It can be observed here that as the width is reduced, the power 

confinement in the Si core also reduces. It can be also observed that although, for a wider 

waveguide, the power confinement for all height of the waveguides almost similar, but for a 

narrower waveguide, say H = 220 nm, the power confinements is smaller.  

 

   The variations of the effective index, neff, the effective area, Aeff and the power confinement 

in the Air cladding region, ГSiO2, with the width, W, of the fundamental H
y
11 mode are shown 

together in Fig. 3.29, for their comparison. It can be observed that for the single mode 

operation in the case of a 220 nm thick waveguide, the value of the width should lie between 

280 nm and 400 nm and this may chosen optimally to be around 360 nm, when the spot-size 

is also the smallest about 0.077. In this case, the power confinement in SiO2 is 0.18 and 

remaining power will be stored in Si core. From this figure, it can be seen that the power 

confinement range in SiO2 for the single mode operation for the single mode operation range 

could be between 0.86 and 0.15 for those width values varying from 280 nm to 400 nm. 

H = 260 nm, Silicon nanowire, Air clad
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Fig. 3.27 Variations of the effective indices and 

effective areas of the quasi-TE and TM modes, 

with width, when H = 260 nm. 

Fig. 3.28 Variations of power confinement factor in 

silicon nanowire, ГSi, with the waveguide width, W, 

for the different height. 
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Fig. 3.29 Variation of neff, Aeff and ГSiO2 with the 

waveguide width, W, for the fundamental H
y
11 

mode, when H = 220 nm. 

Fig. 3.30 Variation of the neff, Aeff and ГSiO2 with 

the waveguide width, W, for the quasi-TE (H
y

11) 

mode, when H = 260 nm.  
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   In Fig. 3.30 investigating the condition for selecting the range of the single mode operation, 

in the case of H = 260 nm thick is considered. To obtain the optimum region in Fig. 3.30, the 

variation of the effective index, power confinement in the SiO2 and also, effective area with 

the waveguide width in quasi-TE (H
y
11) mode are studied as a comparison. It can be observed 

that, in the single- mode region, the value of the spot- size reaches to its smallest value about 

0.18. This region in term of the waveguide width is selected between 280 nm and 380 nm, 

which optimal point can be chosen about 335 nm, when the power confinement in the 

substrate is 0.14 and the remaining power is loaded to the Si core, which corresponding in the 

single mode region, those values for power confinement in the core is varied between 0.35 

and 0.82, respectively. 

 

3.6 Summary: 

   There is an impetus to develop low-cost photonic devices that can be furthered by 

exploiting the well-developed, low-cost CMOS technology. The higher index contrast, ∆n, of 

silicon also allows for smaller waveguides and compact bend designs which will allow more 

reliable PIC to be developed, with increased functionality. 

    It is shown here that for a silicon waveguide with a strong index contrast, the single mode 

operation region is 280 nm to 400 nm, when the waveguide height is varied from 220 nm to 

260 nm and the operating wavelength is 1550 nm. It is also shown here that, for the case of  

H = 220 nm, the effective area not only is minimum, when W  ≈  360 nm, but also these 

values are similar for both the polarizations. In this case, the modal birefringence is also 

small and spotsize is near circular and could be a suitable dimension for many applications.  

   It has also been shown here that the modes in such nanowires with a strong index contrast 

are not pure-TE or TM modes, but have very high non-dominant components.  It should be 

noted that the performance of these highly birefringence guided-wave devices are 

polarization dependent. The existence of higher non-dominant components may have a strong 

effect on the polarization crosstalk in these devices, particularly in the presence of any 

manufacturing deformity which may be introduced. 

   On the other hand, the existence of larger longitudinal field components can also be 

exploited for various novel applications, such as beam shaping or atom trapping. The work 

has revealed that the dispersion properties can be strongly controlled when the waveguide 

dimensions are small, for various linear and nonlinear applications. 

   It has been shown that for a silicon wire waveguide with the nano dimensions, the electric 

and magnetic fields are fully vectorial and all the six components are demonstrated here. 

Therefore, to obtain the modal solutions of the waveguides, it is essential to employ a fully-

vectorial formulation. 

    It also has been investigated that the H-field components are continuous across the 

dielectric interfaces, but, for the E-field components impossible. It should be noted that if, 

instead of the H-field formulation, an E-field formulation is used, this may wrongly force the 

continuity of the E-field across the dielectric interface and introduce a significant error, 
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particularly for a high birefringence of the silicon nano-wire waveguide. Hence, an E-field 

based formulation would also not suitable, unless an additional integral is incorporated at the 

interfaces, which may be tedious if this interface has an arbitrary profile, as in the case of a 

nanowire.  

   In this study, the spatial variations of all components of the H-fields are shown. The modal 

hybridness, the power confinement and the modal birefringence for the Air-clad Si nanowires 

are also shown here. However, in the presence of slanted side walls and bends, there may be 

additional polarization conversion that occurs due to the presence of higher magnitude of the 

nondominant field components and this can only be studied by using a rigorous full-vectorial 

approach, as was done in this work. 
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Design of a Compact Polarization Rotator Using Simple Silicon Nanowires 

 

4.0 Introduction: 

   Revolution of electronic technology was only possible due to miniaturization and the 

integration of millions of transistors into a single VLSI chip. On the other hand, unlike highly 

developed, low-cost, user-friendly electronic goods, optical communication systems of today 

rely heavily on hybrid integration of a limited number of relatively larger discrete 

components such as lasers, modulators, multiplexers, detectors, etc. Similar to the revolution 

that single chip integration brought to electronics, one way to reduce the cost of 

optoelectronics is to make the devices as small as possible and to find a material system for 

monolithic integration of all the components. 

  Photonic integrated circuit (PIC) can improve reliability and reduce the size of a complex 

device by using fewer components. However, so far there has not been a large-scale PIC 

commercially deployed because of high development cost and poor flexibility associated with 

the fabrication processes of the monolithically integrated subsystems. One way of reducing 

the device size is to use dielectric material with a refractive index as high as possible, which 

can improve the optical confinement and effectively reduce waveguide (WG) dimensions. 

High index contrast also allows for a small bending radius, which is suitable for increasing 

the number of components on a chip to increase its functionality and reliability of the chip. 

  Silicon (Si) is the most mature material for electronics but a relatively newer material for 

photonics. The expensive compound semiconductor materials, such as GaAs or InP, can 

provide light sources, but their low yield coupled with higher assembly and packaging costs 

has kept optical communication a costly technology. Recently, it has been suggested [132], 

[133], that silicon-on-insulator (SOI) technology can be considered to be a material choice for 

designing, and also, has great potential as a platform for the integration dense PIC and 

Optoelectronic Integrated Circuits (OEIC) devices. However, the high index difference 

between silicon (Si) core layer and silicon dioxide (SiO2) cladding layer of SOI induces 

strong birefringence, leading to some drawbacks. Telecommunication industry embraces for a 

higher optical transmission network, and the importance of minimizing the unexpected 

polarization rotation and polarization crosstalk (CT) to compensate the polarization mode 

dispersion (PMD) in the optical transmission network, and polarization dependent loss, which 

limit their applications in optical communication, where polarization independent 

characteristic is commonly required. Thus many solutions are proposed to overcome the 

issue, including the polarization independent waveguide, the polarizer and the polarization 

diversity system. 

 

   It is well known that modes in optical WGs with 2D confinement are hybrid in nature, with 

all six components of their E and H fields being present. Circularly symmetric optical fibre 

cannot maintain its polarization state as a signal travels through bends, stressed sections, or 

some small irregularities. 
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 As a result, light input to an integrated optical chip can be randomly polarized. This 

polarization of light has a significant impact on photonic circuit design and operation. 

Therefore, it is desirable to have a fixed degree of polarization state, such as a transverse 

electric (TE) or transverse magnetic (TM) polarization, and it may be necessary to rotate an 

incoming polarization state by incorporating a polarization splitter and polarization rotator 

(PR), in a compact system as a  polarization diversity [134], [135], [136]. 

   The polarization diversity system consists of integrates the polarization splitter, the 

polarization rotator (PR) and the signal processing component together. In such system, the 

input light with arbitrary polarization state is first split into two orthogonal polarization states, 

which travel in separate arms. After rotating first and then passing through photonic 

structures in one arm, while in the other arm passing through the same photonic structures 

first and then rotating, the two polarized beams are combined by a polarization combiner at 

the output of the chip [137], [138]. 

   It has been reported that polarization rotation can be achieved by exploiting the electro-

optic effect in LiNbO3 [139] and InP [140]. However, it was also suggested that a passive 

polarization converter [141] would be preferable because it would be much simpler to 

fabricate and to process. Earlier passive polarization converters based on the use of 

asymmetrically periodic loaded [142]. Then Tzolov [136] proposed the concept of rotation 

coefficient R, and improved the periodic structure to non-periodic structure, which simplifies 

the design and fabrication process. Cascaded [143] WGs also have been reported, but such 

converter has a relatively large device length. To minimize the device length and to reduce 

the excess loss, a single-section passive PR [144] has been suggested, but it may require a 

complicated fabrication process often due to its tilting [145] or slanting sidewalls [146,147], 

or with an asymmetric notch [148]. 

  Up to now, various polarization rotators have been proposed and most of them realized in 

experiment, including bend waveguides [149,150], slanted-angle waveguides [136,151,152], 

double-core waveguides [153,154], multi-etch waveguides [155, 156, 157, 158, 159], 

single/double trench waveguides [160, 161, 162, 163], triangle waveguides [164], and 

adiabatic tapered waveguides [165,166].  

  The material platform has extended from III–V compounds to Silicon, which is more 

suitable for high-density integration and high yield due to the high-index-contrast and the 

complementary metal–oxide-semiconductor (CMOS) compatible fabrication process.  

   The design asymmetric waveguide could be obtained from either to change the material or 

structure of the waveguides. As to the SOI platform, the symmetry could be broken by using 

asymmetric waveguide structure, such as triangle and irregular polygon, and by introducing 

material different from SiO2 to be the upper cladding, such as air and Si3N4. Based on this 

principle, there have been many types of polarization rotators, such as slanted cores 

[136,151], multi-cores [153, 154] and partially-etched cores [155, 156, 157]. However, the 

fabrication processes of the above mentioned PRs are complex, either requiring wet etch 

process or multi-etch process. 
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    In order to simplify the fabrication process, PRs with single/double trench [160, 1561] or 

tapered waveguide [167, 168, 169, 170] were proposed, which needs only one-mask 

lithography [171]. The PR with single/double trench utilizes the reactive ion etch (RIE) lag 

phenomenon, that is, different width trenches correspond to different etch rates in the RIE 

process when the trench is just tens of nanometers in width. But the trench width and depth 

must satisfy certain conditions, thereby increasing the design and fabrication difficulty. For 

the PR based on the tapered waveguide, the mode conversion of the channel waveguides 

happens between the TM fundamental mode and the higher-order TE modes, requiring an 

additional structure to separate the fundamental and higher-order TE modes, such as 

directional coupler [168] or multi-mode interference coupler [170]. In addition, PRs between 

different types of waveguide provide significant performance [158, 159], just several 

micrometers long with high extinction ratio, but the fabrication process is complex, difficult 

to be realized. 

   Silicon on insulator (SOI) – based nano sized compact slot optical WG has assumed 

importance due to its potential applications [171]. Due to high index contrast at the interface, 

transverse electric field shows a very high discontinuity at the interface with very high optical 

confinement inside the low index slot region when the transverse dimension of the slot is less 

than the characteristics decay length of that electric field [171], [172], [173]. Though the slot 

and strip WG dimensions are small but they are highly polarization sensitive. However, for 

polarization diversity system, this problem can be sorted out by incorporating polarization 

splitter and polarization rotator/convertor. 

   Recently, PR made of horizontal slot and strip waveguide (WG) has been reported based on 

mode evolution [174]. Its fabrication is not easy as the required control of tapered structure is 

relatively difficult to realize. Moreover, it can rotate only one polarization state for one input 

direction. Simpler PR by using vertical slots guides have also been reported [175, 176, 177]. 

Three WGs-based polarization splitter and rotator have also been reported [178]. 

 

   Another approach is made for this TE-TM conversion based on 2-D photonic crystal slab 

WG [179]. In this case, though the conversion has been good, but the structure itself is 

complicated. Researchers have also tried to implement TE to TM convertor by increasing the 

polarization crosstalk in μ-bend Si WG [180] or bent guide with slanted side wall [181]. Here 

the conversion efficiency is high though very sensitive to issues like bend loss, slant angle, 

smooth wall of the WG around bent region etc.  

 

   The Si polarization rotator proposed here shows a very compact design without slanted side 

wall or bent. In this paper, design optimization of a Si polarization rotator based on SOI 

technology is presented which requires less complex fabrication process with single mask 

only and compatible with the mature CMOS technology which is backed by a well-

established semiconductor industry.  

 

   The conversion of one polarized mode to the orthogonal polarized mode is realized by 

efficient power coupling between these two polarized modes at the phase matching or 
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resonance condition.  The Si polarization rotator reported here has a relatively small footprint 

and has very low loss compared with the other polarization rotator so far reported. 

 

   The symmetry of the Si nano-scale waveguide which consists of the two Si strip core 

waveguide is therefore been rigorously investigated in this work by using a H-field VFEM 

[182] to calculate the propagation constant and the modal field profiles of the proposed 

waveguide structure and a Si strip waveguide.  

 

   A Beam Propagation Method (BPM) [183] can be used to calculate the power conversion 

between the two polarization states; however, the proposed structure consisting of only two 

discrete interfaces, the Least Squares Boundary Residual (LSBR) [184] method would be 

more efficient to use to calculate the coefficients of the excited modes at the butt-coupled 

junctions and also to find the resulting polarization rotation. The half-beat length and 

polarization crosstalk along with the power loss in the proposed polarization rotator are 

presented in this chapter. Finally, different lateral offsets between the butt-coupled sections 

are also considered to further improve the design.  

 

   This chapter aims presenting at the important characteristics of silicon nanowire waveguide 

which is specified with a nano-scale cross section. A novel comprehensive analysis of the 

performance of polarization waveguide is provided. The supermodes effective indices, field 

ratio as a hybridism, and more particularly, the modal coefficient, conversion ratio and cross-

talk on the device length, have been investigated. 

4.1 Numerical analysis: 

   Accurate calculation of the magnitudes of the non-dominant field components and their 

profiles for the fundamental quasi-TE and quasi-TM polarized modes are of great importance 

when designing a polarization rotator.  In the design of a compact optical polarization rotator, 

a full vectorial finite element method (VFEM) is needed and used here to obtain the modal 

field profiles of the constituent waveguides. In this formulation all the H-field components 

are continuous across the dielectric interface. As for the hybrid modes, a significant non-

dominant field component exist around the dielectric interfaces, hence, H-field formulation 

can treat such waveguides more rigorously.  In the design process, it is necessary not only to 

increase the magnitude of the non-dominant field components but also its profile can also be 

optimized to enhance its overlap with the dominant field components to achieve maximum 

polarization rotation. This full-vectorial FEM modal solution is also used to determine the 

polarization beat length between the quasi-TE and TM polarized fundamental modes.  

  A junction analysis approach is also used, as the proposed polarization rotator structure is 

composed of two butt-coupled uniform waveguide sections with only two discrete interfaces 

between them. A powerful numerical approach, the Least Squares Boundary Residual 

(LSBR) method can be also used, which rigorously satisfies the continuity of the tangential 

electric and magnetic fields at the junction interface in a least squares sense, and obtains the 

modal coefficients of the transmitted and reflected fully hybrid modes at the discontinuity 
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interface. The result of LSBR can provide converted power and polarization rotator along the 

propagation direction of the polarization rotator. The cross-talk is the unwanted polarization 

power, which is normalized to the total input power remains at the end of the device. 

   This particular LSBR method is used to look for a stationary solution to satisfy the 

continuity conditions by minimizing the error energy functional has been discussed in details 

in Chapter 2. The integrations carried out over the junction interface, Ω, between the straight 

and asymmetric Si waveguide. 

4.2 Principle of polarization rotator: 

   In the design of polarization rotator, separation section which supports the highly hybrid 

modes of the quasi-TE and quasi-TM modes, are accommodated between two asymmetric 

waveguides where the hybridness is big. If a standard Si waveguide with smaller modal 

hybridness is placed at this position, this quasi-TM mode would propagate in this waveguide 

without any further polarization rotation. 

   When a quasi-TE mode from a standard Si waveguide with its polarization angle at nearly 

zero degrees   (or 90°) is launched into the asymmetric section, which supports highly hybrid 

modes as M1 and M2, with polarization direction  ±  45 degree, then both of them are excited 

almost equally to satisfy the continuity of the Et and Ht fields at that interface, and travels 

along the asymmetric sections. 

   The half-beat length (Lπ) is a key parameter used in order to identify the optimum length of 

this section to achieve the maximum polarization rotation. The half-beat length is defined as 

follow: 

   
 

  
 

 

       
                   (4-1) 

Where,    and     the propagation constants of the quasi-TE (H
y
11) and quasi-TM (H

x
11) 

modes, respectively. After propagating a distance, L = Lπ the original phase condition 

between the highly polarized modes, M1 and M2 would be reversed and the polarization state 

of the superimposed modes would be rotated by 90° as shown in Fig. 4.1.  

 

Fig. 4.1 Principle of polarization rotator. Fig. 4.2 Schematic diagram of a polarization   

rotator.
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4.3 Waveguide of the polarization rotator: 

   The schematic cross-section of the polarization rotator is shown in Fig. 4.2 consist of two 

silicon nanowires (NW) but with unequal width. They are of equal height, identified by H 

which would be easy to fabricate. However, they have different widths, given here as WTE 

and WTM, to achieve phase matching between the quasi-TE (H
y
11) and quasi-TM (H

x
11) 

polarized modes of these two waveguides with unequal widths and it can easily be fabricated 

by using a SOI wafer on a Si substrate. A single-trench photoresist mask can be used on the 

surface of the Si core and then etched down to the desire depth in the Si core waveguide. The 

Si core waveguide then either can be buried under a thick silica (SiO2) or covered by air. 

 

   In the numerical simulations used, the structure is surrounded by air and initially, W, is 

varied in order to study its effect on modal field profiles and particularly the effect of 

polarization degeneration. In this analysis, the separation between the guides is S, as shown 

here. The refractive index of the silicon and silica are taken as 3.4754752 and 1.4440236 at 

the operating wavelength of 1.55 m. 

4.4 Phase matching condition in polarization rotator state: 

   It is well known that propagation constants or the effective indices of the two polarized 

modes are different for a high index contrast Si NWs due to structural non-symmetry.  

   Variations of the effective indices, neff, in the isolated condition for silicon nanowire with 

the waveguide width for the quasi- TE (H
y
11) and quasi-TM (H

x
11) modes are shown in Fig. 4. 

3, when height of waveguide is kept in constant at 220 nm. This figure shows that, the 

effective indices for the quasi-TE and the quasi-TM modes are different and Si NWs are 

highly birefringent. So, these differences are clearly observed. This graph shows that, when 

the width of the waveguide is large the effective indices reach to that of the slab waveguide 

asymptotically. 

   On the other hand, the effective indices, decreases with the waveguide, W. This reduction 

for the quasi-TE (H
y
11) mode is more rapidly than quasi-TM (H

x
11) mode. It can be also 

noticed that, the quasi-TE and quasi-TM modes approach their cut-off when the width of the 

waveguide is lower than 150 nm, and 100 nm, respectively.  

   Since for most of the Si NW the effective indices of the quasi-TE (H
y
11) and quasi-TM 

(H
x
11) modes are not equal, so a directional coupler using two identical NWs, the quasi-TE 

(H
y
11) mode in one guide will not be phase matched to quasi-TM (H

x
11) mode in the other 

guide. However, by using unequal widths for these two guides quasi-TE (H
y
11) mode in one 

guide can be phase matched to the quasi-TM (H
x

11) mode in the other guide, as illustrated in 

Fig. 4.2. Now, it is considered to find the necessary width of the waveguide (WTE) supporting 

the quasi-TE (H
y
11) mode to be phase-matched with another guide with the waveguide of the 

quasi-TM (H
x
11) mode, WTM. 

   The necessary width of a guide (WTE) supporting the quasi-TE (H
y
11) mode to be phase 

matched with another guide with width (WTM) supporting the H
x
11 mode is studied. 
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   To obtain maximum interaction between the the two polarized modes their effective indices 

are need to be equal. 

    The condition causes the power transfer between the two modes to be almost 100 % which 

means the modes are phase-matched. In this case, the magnitude of the field components of 

the fundamental quasi-TE (H
y
11) mode and also quasi- TM (H

x
11) mode gets to its maximum 

amplitude. 

  It can be noticed that, the minimum device coupling length is also occurred in              

phase-matching condition. 
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Fig. 4.3 Variation of the effective indices for the 

quasi-TE and quasi-TM modes with the waveguide 

width, W. 

 

Fig. 4.4 Phase matching widths condition, W, for the 

quasi-TE (H
y
11) and the quasi-TM (H

x
11) modes in two 

isolated waveguides. 

 

 

 

   Variation of the phase-matching condition for the waveguide height equal to 220 nm is 

shown in Fig. 4.4. The results for the isolated waveguides shows that, when the width of WTM 

is 1200 nm, the width necessary (WTE) for phase-matching its quasi-TE mode is 350 nm, 

when the design is kept in H = 220 nm, and at this time, effective indices for both modes are 

1.80. It is illustrated that, generally the quasi-TM (H
x
11) mode curve of the waveguide width 

as a comparison cover wider range than in waveguide width of the quasi-TE (H
y
11) mode. 

This figure shows that, with increasing the waveguide width of the quasi-TE (H
y
11) mode, the 

required width of the quasi-TM (H
x
11) waveguide is increased, and reach to the saturation 

point.  

   Variations of the effective indices, neff of the quasi-TE (H
y
11) and quasi-TM (H

x
11) modes 

for isolated silicon NW waveguide but with longer heights, H = 260 nm and 300 nm are 

shown in Fig. 4.5. It can be observed that when the width of the guide is large the effective 

indices reach that of a slab waveguide (with the same height) asymptotically. However, as the 

width is reduced, initially effective indices reduce slowly and then quite rapidly as the cut-off 

width is approached.  It can be noticed that effective indices of the H
y
11 mode is higher than 

that of the H
x
11 mode, particularly when the width is large. 
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   It can be noted, but not clearly observed that H
x
11 mode approaches its cut-off when the 

width is lower than 200 nm and 150 nm, for H = 260 nm and 300 nm, respectively. Similarly 

the H
y
11 modes approach their cut-off when W is reduced below 265 nm and 260 nm for H = 

260 nm and 300 nm, respectively. 

   Variations of the waveguide width, WTE, of the quasi-TE (H
y
11) mode necessary to phase 

match a guide with the waveguide width, WTM in quasi-TM (H
x
11) mode are shown in Fig. 4.6 

for three different waveguide heights, H of photonic devices. It can be seen that the curve 

related to H = 350 nm is much bigger than the trend depend on height equal to 260 nm. As 

example, for the height 260 nm, shown by a dark yellow dashed-dotted line, and when the 

width of WTM is 600 nm, the width necessary (WTE) for phase-matching its quasi-TE mode is 

353 nm and at this time effective indices for both the modes are 2.00. However, this phase 

matching condition shown here is strictly valid only for the isolated guides. 
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Fig. 4.5 Variation of the effective indices for the 

quasi-TE and quasi-TM modes, with the waveguide 

width, W. 

Fig. 4.6 The phase-matching widths, W, for quasi-TE 

(H
y
11) and quasi-TM (H

x
11) modes in two unequal 

waveguides. 

 

4.5 Effective indices of the supermodes: 

   In a directional coupler, as shown in Fig. 4.2 to obtain phase-matching between the quasi-

TE (H
y
11) and quasi-TM (H

x
11) modes of the two waveguides of different width is considered. 

It is well known that for non-identical waveguides the loading of one waveguide to another 

are unequal for both of them. So, in the next stage of the design the supermodes of this 

directional coupler structure are studied.  

   Here, the waveguide height is taken as 300 nm, and width of the first guide, WTE, is kept 

fixed at 366 nm, when the effective index of the quasi-TE mode is equal to 2.20. 

   Variation of the effective indices for fundamental quasi-TE (H
y
11) and quasi-TM (H

x
11) 

modes with the second waveguide width, WTM, are shown in Fig. 4.7. In this case separation 

between the guides is taken as 200 nm. So when the WTM was varied, effective index of the 

fundamental quasi-TE (H
y
11) mode remained almost constant, shown by a horizontal line. 

However, as WTM was increased, neff quasi-TM (H
x
11) mode increased progressively. The 

effective index of the quasi-TM (H
x
11) mode reached to be equal to that of the quasi-TE 
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(H
y
11) mode at WTM = 465 nm. Actually, the effective index curves did not cross, but mode 

continuously transforms at the anti-crossing point. 

   Figure 4.8 shows the variations of effective indices for quasi-TE (H
y

11) and quasi-TM 

(H
x
11) supermodes with varied waveguide width, WTE when the height is fixed at 220 nm. For 

this case, the separation was fixed at 150 nm. The right waveguide width was equal to 1.20 

µm and the effective of its TM mode was remained roughly constant at 1.80.  

   According to the figure 4.8, it is seen that, when WTE was increased from 325 nm, the 

optimum point of 359 nm effective index for TE mode was increased, while effective index 

for TM mode was remained stable. It can be noticed that, for the higher value of the device 

length, the effective index for TE mode reached the neff value of the TM mode. 
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Fig. 4.7 Variations of the effective indices for the   

fundamental quasi-TE (H
y

11) and TM (H
x

11) modes 

with the waveguide width, WTM. 

 

Fig. 4.8 Variations of the effective indices for the 

fundamental quasi-TE (H
y
11) and TM (H

x
11) modes 

with the waveguide width, WTM . 

 

 

   Figure 4.9 shows the variations of effective indices for quasi-TE (H11
y
) and quasi-TM 

(H11
x
) supermodes with varied waveguide width, WTM. For this case, the height of waveguide 

and separation were fixed at 260 nm and 200 nm, respectively. The left waveguide width was 

equal to 353 nm and effective index of its TE mode remained roughly constant at 2.00. 

According to this figure, it is seen that, when WTM was increased from 515 nm, the optimum 

point of 575 nm effective index for TM mode was increased, while effective index for TE 

mode was remained stable. It can be noticed that, for the higher value of the device length, 

the effective index for TM mode converted to the neff TE mode. It can be observed that WTM 

is increased from 515 nm, the effective index of its quasi-TM mode progressively increases. 

When WTE  ≈ 575 nm, effective index of its quasi-TM mode becomes equal to that of the 

effective index of quasi-TE mode of the WTE with its width 353 nm. However, as 

supermodes, effective indices of these supermodes, never crosses. When WTM is lower than 

575 nm, first supermode is like the quasi-TE mode is the left guide and the second supermode 

is like the quasi-TM mode in right guide. When WTM ˃ 577 nm, they change their positions 

and the first supermode is now is like the quasi-TM mode in the right guide and 2
th

 

supermode is like the quasi-TE mode in the left guide as stated in this figure. However, when 
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WTM ≈ 575 nm, the soupermodes are highly complex and they are combination of both quasi-

TE and quasi-TM modes, and exist in both the guides. These highly hybrid supermodes are 

shown in Figures 4.11 – 4.18. 

   Variation of the effective indices for the two supermodes are shown in Fig. 4.10 for two 

different waveguide separations, S. Both the cases width of WTE supporting quasi-TE mode is 

kept constant at 353 nm. It can be observed that for a larger separation, S = 200 nm, as the 

width, WTM is varied, effective index of one of the supermode remains almost constant. This 

supermode mostly looks like the H
y
11 mode of guide 1 (quasi-TE mode in WTE with a fixed 

width of 353 nm). On the other hand the effective index of the other supermode increases 

with the 2
nd

 waveguide width, WTM and this mode mostly resembles the H
x
11 mode of this 

guide (WTM). 

   However, the effective index curves do not cross each other but like the supermodes of a 

directional coupler transform from one isolated mode to another. In this case, phase match 

condition is happening the H
x
11 mode of one guide (WTM) with the H

y
11 mode of another 

guide (WTE), near the interactions regions, two supermodes show the mixture of both the 

polarized modes which are highly hybrid in nature.  

   For S = 200 nm, when WTM = 577 nm, H
x
11 mode of this guide is phase matched with the 

H
y
11 mode of WTE = 353 nm width. When the separation is reduced, the interactions between 

the polarized modes are more intense, which demonstrates a larger gap between the two 

effective indices near the phase matching. However, the phase matching width of 2
nd

 guide, 

WTM, changes as mutual loading of two unequal guides for different separations are also 

different. 
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Fig. 4.9 Variations of the effective indices for the 

fundamental quasi-TE (H
y

11) and TM (H
x

11) modes 

with the waveguide width, WTM. 

Fig. 4.10 Variations of the effective indices of two 

supermodes for the fundamental quasi-TE (H
y
11) and 

TM (H
x
11) modes with the second guide width, WTM. 

 

4.6 Analysis of the H-field modal characteristics: 

 

   Near the phase matching these supermodes are highly hybrid in nature and shows a 

combination of the both the polarized modes, and the field profiles of both the modes are 
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shown here. The dominant Hy field component of the quasi-TE (H
y
11) mode is shown in Fig. 

4.11, when the first waveguide width of the supermodes is 353 nm, and second waveguide 

width is fixed in WTM = 593 nm, and its height is kept 260 nm. These supermodes are highly 

hybrid in nature and shows a combination of the polarized modes. It should be noted here that 

the Hy field is mainly in the left waveguide in the directional coupler device in width of the 

waveguide, WTE. However, it can also be observed that field also spread in the other 

waveguide. 

 

    Figure 4.12 shows the 3-dimensional field profile of the dominant Hy field of the quasi-TE 

(H
y
11) mode. In this case sign of the amplitude field is negative and its magnitude is equal to 

3.  The non-dominant Hx field profile of the same supermodes quasi-TE (H
y
11) mode shown 

in Fig. 4.13, which illustrates the Hx field component is predominantly in the right hand side 

guide, in WTM. This field profile is clearly shown to be anti-symmetric in nature. 

   Figure 4.14 shows the 3-dimensional form of the non-dominant Hx field component of the 

quasi-TE (H
y
11) mode and its maximum magnitude is about 3, which normalized to the 

maximum value of the Hy field. In this case signs of both the Hx and Hy fields opposite and 

their magnitudes nearly equal, so the resulting polarization angle is – 45 ⁰ degrees with the X-

axis. It should be noted that since all the three components of the H-field are continuous 

across the dielectric interfaces, the Hx contours do not show any singularities at the corners. 

Vector field profiles of the second supermodes are shown in Fig. 4.15. Its Hx field in this 

figure shows that mainly power is confined in the right of the waveguide. Here, the dominant 

Hx field component of the quasi-TM (H
x
11) mode is nearly similar in shape like that of the 

dominant Hy mode in Fig. 4.5. For this mode magnitude of the Hx field is found to be 

maximum value about 3 in Fig. 4.16. 
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Fig. 4.11 The dominant Hy field component of the 

quasi-TE coupled supermode. 

 

Fig. 4.12 The 3-dimensional view of the dominant Hy 

field of the coupled H
y
11 (TE) supermode. 

 

    

   The non-dominant Hy field component and its 3-D field profile are shown in Figs. 4.17 and 

4.18, respectively, and these field profiles show a similar behaviour as the Hy contours and 
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spatial profile of quasi-TE (H
y
11) mode, but of opposite sign. On the other hand, It can be 

noticed that magnitude of the Hx and Hy fields in the second supermodes (H
x
11mode), were 

similar, so its resulting polarization angle is + 45 degrees with the x-axis. It should be noted 

the waveguide on the left (WTE) had a fixed width and its quasi-TE (H
y
11) mode was matched 

with the quasi-TM (H
x
11) mode of the right guide (WTM), whose width was varied. Hence for 

both the supermodes, it can be observed that its Hy field was mainly in the left guide whereas 

Hx field was mainly in the right side waveguide. 
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Fig. 4.13 The non-dominant Hx field component of the 

quasi-TE  (H
y

11) mode. 

 

 

Fig. 4.14 The 3-D view of the non-dominant Hx field 

of the H
y
11 (TE) mode. 
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Fig. 4.15 The dominant Hx field component of the 

quasi-TM (H
x
11) mode, for the H = 260 nm, WTE = 353 

nm, and WTM = 353 nm. 

 

Fig. 4.16 The 3-D view of the Hx field component in 

quasi-TM for the second supermodes, when,              

WTE = 353 nm, and WTM = 593 nm. 
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Fig. 4.17 The non-dominant Hy field component of the 

quasi-TM (H
x
11) mode, when, H = 260 nm,              

WTE = 353 nm, S = 80 nm, and WTM = 593 nm.  

 

 

Fig.4.18 The 3-D view of the non-dominant Hy field 

component of the quasi-TM (H
x
11) mode, H = 260 nm, 

WTE = 353 nm, S = 80 nm, and WTM = 593 nm. 

 

4.7 Analysis of the hybridism in the polarization rotator device: 

   The optical modes in polarization rotator waveguide devices are hybrid in nature. In the 

design of a polarization rotator, one of the main and most important objectives is to increase 

the non-dominant field values of the quasi-TE and quasi-TM modes. For the fundamental 

quasi-TE (H
y
11) mode, the Ex and Hy field components are the dominant field components, 

and Ey and Hx field components are the dominant field components of the fundamental quasi-

TM (H
x
11) mode. Therefore, if the Hx / Hy ratio for the quasi-TE (H

y
11) mode or the Hy / Hx 

ratio for the quasi-TM (H
x
11) mode is high, there exists a high possibility of achieving 

polarization rotation. Unlike the compact passive polarization rotator, which contains two 

simple silicon nanowire waveguides (NWs) is capable for an enhanced field hybridism by 

destroying symmetry of the structure. The polarization rotator design presented here exploits 

two highly hybrid supermodes supported by a phase matched, that, between two different 

polarized modes in directional coupler structure. 

 

   The effect of the waveguide width, WTM, on the modal hybridism is shown in Fig. 4.19. 

This figure shows the modal hybridness for a coupled structure with a height of 300 nm, a 

fixed waveguide width supermodes TE mode equal to 363 nm, separation of 200 nm and with 

of waveguide soupermodesTM mode is varied. As mentioned that, the modal hybridness is 

defined as the ratio of the maximum value of non-dominant field to that of the dominant 

field. In the case of the H
y
11 mode, the modal hybridness is given by the ratio of the non-

dominant Hx field (the maximum value) to the dominant Hy field (its maximum value) and it 

is shown by a dashed-dot line. The modal hybridness of the H
x
11 mode, calculated from the 

ratio of the maximum value of the Hy field to the Hx field, is also shown by solid line. It can 

be seen here that for both polarized modes, when WTM is reduced from 468 nm to 465 nm, the 

hybridness is increased rapidly. Hybridness of the both the quasi-TE and quasi-TM modes are 

mostly constant equal to ≈ 0.2 for the whole range of WTE varied. However, when                
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WTM ≈ 466 nm, then hybridness of both the quasi-TE and quasi-TM increase rapidly, as two 

degenerate isolated modes of different polarizations forms the two supermodes. As it can be 

observed that hybridness of Hx / Hy is more than hybridness of Hx / Hy, which, 0.95 and 0.84, 

respectively. The further WTM away from resonance point the less values of the field ratio will 

be. This reduction is quite significant. 

 

   Figure 4.20 shows the modal hybridism for both H
y
11 and H

x
11 modes with WTM. It can be 

seen that when WTM was increased hybridism modes were increased to width of resonance 

equal to 577 nm and device length of 530 µm. At exactly 577 nm width of the waveguide TM 

mode, the hybridism reaches its maximum value of nearly one, which indicates that both of 

the transverse field components are almost equal.  

 

   The waveguide considered here remains single mode until WTM = 577 nm and a waveguide 

wider than that supports higher order modes. From this point the increase in WTM caused 

decrease in hybridism modes. However, the hybrid nature of the TM mode is slightly higher 

than that of the TE mode for a given waveguide width (1.135 and 0.91 respectively). Also, 

compare to Fig. 4.19, the spread of hybridness was much more in this case. 
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Fig. 4.19 Variation of the hybridness with 2
nd

 

waveguide width, WTM, for the fundamental quasi-TE 

(H
y
11) and quasi-TM (H

x
11) modes. 

Fig. 4.20 Variations of the hybridness with the second 

waveguide width, WTM, for the fundamental quasi-TE 

(H
y
11) and quasi-TM (H

x
11) modes. 

 

 

   Variations of the modal hybridness of the first supermode with the waveguide width (WTM) 

are shown in Fig. 4.21. It should be noted that when the two polarized modes in two 

waveguides are phase matched the magnitudes of the Hx and Hy fields are nearly equal, but, 

not exactly equal as their core areas were not identical, and hybridness increases.  

 

   It can also be noted when separation between the waveguides is reduced, as shown by a 

solid blue line for S = 80 nm, the reduction of the modal hybridness is slower with the 

waveguide width variation allowing a more stabilized design. A quasi-TE mode in a standard 

silicon NWs will have higher Hy field compared to its non-dominant Hx field. 
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Fig. 4.21 Variations of the hybridness with the 

waveguide width, WTM for the fundamental-TE (H
y
11) 

mode. 

 

Fig. 4.22 Variations of modal hybridness of the quasi-

TE (H
y

11) mode with the waveguide width, WTM, for 

three different values of S = 80 nm, 150 nm, and 200 

nm. 

 

   Around anti-crossing point, these two modes become degenerate and they get mixed up. 

For a quasi-TE mode, the Hy component is dominant whereas for a quasi-TM mode, its Hx 

component is dominant. Near anti-crossing the non-dominant field starts increasing leading to 

higher modal hybridness, which can be defined as the ratio of the maximum values of the Hy 

to Hx field components for the TM and similarly Hx  / Hy for the TE mode. In Fig. 4.22, at 

lower WTM, the mode is near quasi-TM, with Hy component being much smaller. So its 

hybridness is low. As WTM increases, it travels through the anti-crossing region leading to 

stronger mode mixing and higher hybridness. At a higher WTM, away from this anti-crossing 

region, again hybridness reduces. All the peaks appear around the mode exchange regime 

with increasing value as S decreases. Note that for smaller S, curves are wider as mode 

coupling get stronger, the interaction become easier. 

4.8 Calculation of optimum device length: 

   The device length (Lc) is key and an important parameter used in order to identify the 

optimum length of the asymmetrical section to achieve the maximum polarization rotation. 

This parameter is employed for designing polarization rotators because this also represents 

the convertor length that must reverse the polarization state from one to the other. This length 

is the proportion of π over the difference between propagation constant (birefringence). At 

the Lπ, the phase mismatch between the two polarized modes, H
y
11 and H

x
11, is also at its 

minimum. To obtain maximum polarization rotator and also the maximum power conversion, 

the length of the polarization rotator waveguide is needed to be equal to the half-beat length 

Lπ of the two polarized modes. 

   Figure 4.23 shows the variations of the coupling length with the waveguide width, WTE for 

three separations (S = 80 nm, S = 100 nm and S = 150 nm). The fixed values for the device 

were H = 220 nm, neff = 1.80, WTM  = 1.20 µm, with varied waveguide width, WTE. 

   From Fig. 4.23, it can infer that, as S increases, coupling become weaker, and hence, Δβ is 

getting smaller near anti-crossing point, so peak  Lc become larger. From this figure, it should 
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be noted that as separation between the waveguides is reduced the phase matching value of 

WTE reduces. When a directional coupler is composed of two identical WGs, they are always 

phase matched or synchronous. But, for asynchronous coupler composed of non-identical 

waveguides, its phase matching also depends on mutual loading of the waveguides. 

Consequently, the phase matching condition for WTE value changes with S, as shown here, as 

mutual loading are unequal for coupler with unequal widths. 

 

   Figure 4.24 are shows the variation of the coupling length in Log-scale with the WTE – Wres, 

when height of the device is kept in 220 nm, and neff = 1.80. Here, to study the effect of 

fabrication tolerance is used from Wres, which is the phase matching resonating width. It can 

be noticed from this figure that for the Wres = 353 nm, Wres = 356 nm, and Wres = 358 nm, the 

separation between the guides, S, should be 80 nm, 100 nm, and 150 nm, respectively to 

consider the 1
st
 waveguide of width value, WTM = 1.2 µm. In these cases, half beat length (the 

maximum coupling length) is to be 131µm, 160 µm, and 252 µm, respectively, and also, the 

trends are symmetric with respect to the resonance points. 

  

   Figure 4.25 shows the half-beat-length which is normalized to their maximum coupling 

length for the different separations (S = 80 nm, S = 100 nm, S =150 nm and S =200 nm) with 

the waveguide width, WTM. In this case the height equal to 260 nm, and width of waveguide 

(WTE) for the quasi- TE (H
y
11) mode fixed at 353 nm.  

 

   Figure 4.24 shows that when separation was 80 nm the normalization of coupling length 

would cover  ± 70 nm deviations from the optimum width of the fundamental quasi-TM 

(H
x
11) mode. While, for S = 200 nm, the coverage for normalization was ± 16 nm from the 

optimum point in the waveguide width, WTM. This extreme reduction in deviation for S = 200 

nm was result of the poor hybridism as shown in Figs. 4.21, and 4.22. 
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Fig. 4.23 Variations of coupling length (Lc) with WTM 

for three different S = 80 nm, 100 nm, 150 nm. 

 

Fig. 4. 24 Variations of half-beat-length Lc with the 

waveguide width, WTM – Wres. 

 

 

   Variations of the coupling length Lπ in log-scale with the second guide width (WTM) for the 

height of waveguide 260 nm are shown in Fig. 4.26 for different waveguide separations. In 
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this case width of the first NW (WTE) was fixed at 353 nm supporting the quasi-TE (H
y
11) 

mode with its effective index 2.00. It can be noted that when phase matching was achieved 

the difference between the effective indices of the two supermodes were minimum and so the 

coupling length shows a peak value. 
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Fig. 4.25 Variations of normalized half-beat-length Lπ 

with the waveguide width, WTM. 

 

Fig. 4.26 Variations of the coupling length, Lc with 

the second waveguide width, WTM, for different 

waveguide separation, S. 

      

   It can also be observed that, there are various maximum half-beat-length devices for the 

different separations and also, coupling length is higher when separation is increased and its 

variation with the waveguide width (WTM) is also sharper.  

 

   The maximum coupling length which 170 µm would be at separation S = 200 nm, while the 

optimum point for 80 nm separation was 53 µm. It can be noted that phase matching width 

(WTM) for separation, S = 200 nm, 150 nm, 100 nm and 80 nm were respectively 577 nm, 578 

nm, 585 nm and 593 nm, respectively (the width WTE was kept constant at 353 nm).  

 

   The changes in the phase matching condition are due to unequal loading on one guide by 

the other and this loading changes as the separation between the guides reduces. It should be 

noted that for smaller separation not only the coupling length is smaller, but it would be less 

sensitive with the change in the waveguide width. .  

 

   It is also shown that with  ± 70 nm deviation from the optimum point, half- beat-length took 

place on about 82 % of waveguide width, WTM for separation of the 80 nm. However, with ± 

35 nm deviation from the optimum point, the half-beat-length was found to cover almost      

12 % of waveguide width, WTM at S = 200 nm. All mentioned various in coupling length 

devices were symmetric at their optimum points of devices in terms of 2
nd

 waveguide width, 

WTM. 
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4.9 Choice of the Optimum device parameters: 

 

   In this study, the effect of other waveguide parameter, similar effective index difference 

between the 1
st
 and 2

nd
 supermodes, Δn was considered to understand its effect and to obtain 

optimizes parameter values to achieve better polarization conversion. 

 

   The half-beat length (Lc) is a key parameter used in order to identify the optimum length of 

the asymmetrical section to achieve the maximum polarization rotation. At the Lc, the phase 

mismatch between the two polarized modes, H
y
11 and H

x
11, is also at its minimum. Figure 

4.27 shows the variations of the Lc with the WTM. In Fig. 4.27, it is shown in here that Lc 

starts to increase when WTM increases until it reaches its maximum value, and then the Lc 

gradually reduces as WTM further increases. Therefore in this study, when the two modes are 

degenerate, their hybridness is about 1.0, their polarization angles are ± 45° and that Lc also 

reaches the maximum value of 52.8 µm. It is also shown in Fig. 4.27 that the variations of the 

modal birefringence with the change of WTM, the minimum modal birefringence is found to 

be 0.01465 at WTM = 593 nm. 
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Fig. 4.27 Variations of Lc and birefringence with the 

second waveguide width, WTM. 

 

Fig. 4.28 Variations of the hybridness and coupling 

length, Lc with the refractive index difference. 

    

   The effect of index different, Δn = ne-TE – ne-TM, has been investigated in Fig. 4.28. The 

variation of the Hx / Hy and Hy / Hx field ratios for the H
y
11 and H

x
11 modes, respectively, and 

the half-beat length, Lc, with the birefringence are shown in Fig. 4.28. Here, the 1
st
 

waveguide width is kept constant at WTE = 353 nm and the 2
nd

 waveguide, WTM is varied 

from 705 nm to 596 nm.  

   It can be observed from the figure, that hybrid nature is reduced when Δn is reduced, the 

reason believed to be the fact that the modes are much more confined in the guide core and 

the fields at the waveguide slab are rather small (for the same core dimensions).  

   However, one important factor that can be observed is the significant reduction of Lc, which 

can give rise to a better compact polarization rotator design. When Δn = 0.075, the Lc value 

was smaller, but hybridness was also smaller, so will not be a better design. 
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4.10 Least Squares boundary residual method results in the polarization rotator 

device: 

 

   In this section, modal coefficients, power conversion and cross-talk are rigorously studied. 

It was shown in previous section that the modes obtained from the polarization rotator 

waveguide are not pure TE or TM, but hybrid in nature. Moreover due to the asymmetric of 

the rotator waveguide, it is possible to achieve polarization conversion, where if a quasi-TE 

(H
y
11) or quasi-TM (H

x
11) mode is launched at the start of the directional coupler section as 

Figure 4.29, this would excite two highly-hybrid supermodes at the junction between the 

input and rotator waveguides, whose field profiles were shown in Figs 4.11 – 4.18. The 

fundamental boundary conditions is the continuity of the tangential electric (Et) and magnetic 

(Ht) fields at the dielectric interface. A quasi-TE mode in a standard silicon nano-wire will 

have higher Hy field compared to its non-dominant Hx field and also, in quasi-TM mode in 

isolated Si-NWs, the amplitude of the Hx field is higher than the amplitude of its Hy field. 

The rigorous Least Squares Boundary Residual method [184] is used to implement these 

boundary conditions. This method yields the modal coefficients of the two supermodes 

excited in the directional coupler section. 

 

 

 

Fig. 4.29 Discontinuity representation for LSBR. 

 

   4.10.1 Characteristics of the transmitted modal coefficient: 

   According to the section of 4.7, the incoming quasi-TE polarized wave of a standard silicon 

waveguide would excite two highly hybrid, with ± 45° polarized modes in the asymmetric 

section.  

   To quantify further in the analysis, the scattering modal coefficients, Cy and Cx of the two 

fundamental quasi-TE (H
y
11) and TM (H

x
11) modes, respectively, at the junction need to be 

obtained. In this study, a rigorous numerical solution using the LSBR has been used to obtain 

the modal coefficients at the discontinuity interface by enforcing the boundary conditions in a 

least squares sense. 
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   The butt-coupling of the standard input silicon-NW waveguide with vertical side walls, and 

the PR waveguide was considered as the mode conversion can only be expected to happen at 

waveguide discontinuities.  

   For the input waveguide, the silicon NW waveguide width is taken WTE, and no transverse 

offset between the guides has been considered. The junction of the waveguide is shown in as 

in Fig. 4.30. 
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Fig. 4.30 The variations of the excited transmitted 

modal coefficients Cx, Cy, with the PR waveguide, 

WTM, for the input fundamental quasi TE (H
y
11) mode. 

Fig. 4.31 Variations of the transmitted modal 

coefficients Cx, Cy, with the waveguide, WTM-Wr, for 

the input fundamental quasi TE (H
y
11) and quasi TM 

(H
x
11) modes. 

 

 

 

 

   When a quasi-TE (H
y
11) mode from the input guide with very small hybridness is incident 

on the PR waveguide, it excites two highly hybrid modes, Cx, and Cy. The variation of these 

two parameters with the PR waveguide width, WTM, is shown in Fig. 4.30. It can be seen that 

at WTM = 280 nm, Cx is 1.03 and as WTM is reduces, it reaches a minimum value of 0.77 at 

WTM = 225 nm. On the other hand, at WTM = 280 nm, Cy is 0.088 and it reaches a maximum 

value of about 0.75 at WTM = 280 nm, where the hybridness is at its highest.  

   For a system where 100 % polarization rotation can be achieved without any power loss, 

these two values are expected to be equal to 1/√2, indicating that each mode is carrying equal 

and half of the total power (50 % of the total input optical power). Hence in this case, at the 

mode degeneracy condition, since the modal coefficient of both the modes are similar, the 

power carried by each of them is also similar and here the total power loss is found to be only 

0.1 dB, which is very small. 

   The transmitted modal coefficients, Cy and Cx of the fundamental quasi-TE (H
y
11) and 

quasi-TM (H
x
11) modes, respectively, were calculated and the variations of these two modal 

coefficient with the polarization rotator device width, WTM – Wres are shown in Fig. 4.31. To 

study the fabrication tolerances of the device, the height of polarization rotator waveguide 

equal to 260 nm, and separation S = 200 nm, at WTE = 353 nm have been considered for 

various waveguide widths, WTM. 
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   It can be seen that as WTM reduces, the modal coefficient of the transmitted quasi-TM (H
x
11)  

polarized fundamental mode, Cx, reaches maximum value of 0.76 at Wres = 577 nm and 

reduces to 0.08 at WTM = 537 nm, where the hybridness is low. On the other hand, at WTM = 

617 nm, Cy reaches a maximum value of 1.0473 while for the same width of the waveguide, 

Cx is approached a minimum point at 0.0744. It can be observed that with ± 30 nm deviations 

from the resonance width, 43 % and 86 % of the modal coefficient of the transmitted 

fundamental modes Cy and Cx respectively will occur. 
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Fig. 4.32 The transmitted modal coefficient Cx, Cy 

with the width, WTM – Wr for the waveguide. 

 

Fig. 4.33 The transmitted modal coefficient Cx, Cy 

with the width, WTM – Wr for the waveguide. 

   

   The variations of these two modal coefficients with the polarization rotator waveguide 

(WTM – Wres) are shown in Fig. 4.32. To study the fabrication of the device, the height of 

polarization rotator waveguide equal to 260 nm, and effective index 2.00, separation S = 80 

nm, at WTE  = 353 nm have been considered for various waveguide widths,  WTM – Wres. It can 

be seen that as WTM reduces, the modal coefficient of the transmitted H
x
11

 
polarized 

fundamental mode Cx reaches a maximum value of 0.736 at WTM = 593 nm and then reduce to 

0.20688 at WTM = 695 nm. It is also shown that the modal coefficient of the transmitted quasi-

TE (H
y
11) polarized fundamental mode, Cy, reaches its minimum value of 0.7388 as WTM 

reduces to 593 nm.  

Also this figure shows that important of the transmitted coefficient are found for a deviation 

of  ±  85 nm from the resonance point for separation of the 80 nm, which are covered  by 40 

% and 75 % of the fundamental modal coefficient modes, Cy and Cx respectively. 

   Variation of these two coefficients with the 2
nd

 waveguide width are shown in Fig. 4.33, for 

two different separations, for S = 200 nm shown by two dashed lines and for S = 80 nm, 

shown by two solid lines. Here, in the horizontal axis instead of WTM, it is used WTM – Wres, to 

study the effect of fabrication tolerance, where Wres was the phase matching resonating width.  

 

It should be noted that for different waveguide separation, the phase matching width, Wres, 

were slightly different. When the WTM is low and far away from the phase matching an 

incident quasi-TE (H
y
11) mode does not excite two polarized supermodes equally. 
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   In this case, the magnitude of the quasi-TE (H
y
11) mode (given by Cy) is nearly one and 

magnitude of the quasi-TM (H
x
11) mode (given by Cx) is nearly zero.  

 

   However, when the waveguides are phase matched, these two supermodes are highly 

hybrid, then the magnitudes of the two polarized modes are nearly equal. Their values are 

nearly 0.707 = 2, indicating that each of the supermodes is carrying half power. By carefully 

observing the supermodes, it can be stated that a quasi-TE (H
y
11) mode in guide one, which 

has dominant Hy field in 1
st
 guide will excite two supermodes, and they must have similar 

magnitudes so that Hy field in 1
st
 guide adds up but Hx fields in 2

nd
 guide will cancel to match 

the input quasi-TE (H
y
11) mode in the isolated input 1

st
 guide. It can also be noted that when 

separation is smaller, the variation of Cy and Cx are less sensitive with the waveguide change. 

Reflections from both the butt-coupled interfaces were small, with the reflection coefficient 

less than 1 %. 

 

4.10.2 Performances of the device on the polarization conversion: 

   At the start a quasi-TE mode with smaller hybridness supported by left guide, WTE, is 

coupled to the one guide of the directional coupler section as shown in Fig. 4.29. 

   As the modes can be highly hybrid or can be equally or unequally distributed over two 

coupled waveguides, here we have used a notation to identify the polarized powers. The 

power associated with Hx or Ey field is identified as Px and similarly power associated with 

Hy or Ex as Py. These values are numerically integrated over left or right waveguides. 

   Along the polarization rotator, the power Py of the TE polarized mode incident at the 

junction between two interfaces and most of the power will be converted into TM polarized 

mode as a Px at the end of this section. However there may remain some power from Px ; here 

this normalized residual power Py is referred to as polarization cross-talk.  

   If the length of the directional coupler section is taken as Lc, then at this distance two 

excited supermodes would be out of phase and their vector addition will cancel the Hy field in 

first waveguide let guide with width, WTE, and add up the Hx field in guide 2 or right guide 

with width, WTM to yield a polarization rotated H
x
11 mode in guide 2. From the modal 

coefficients shown in Fig. 4.33, and their full vectorial mode profiles polarized power in each 

waveguides can be calculated.  

   The variations of the polarization conversion with WTM, for the H = 300 nm is shown in 

Fig. 4.34, when WTE = 330 nm, neff = 2.00, and separation is kept in 80 nm.   

   The fraction of TE power converted to TM polarized power conversion as a Px is shown by 

a solid line. The amount of TE power remain unconverted in Py power is shown by a dashed 

line. It can be clearly seen that, as WTM increases from 160 nm, the normalized power 

conversion of TE, to the TM polarized power, reaches a maximum value of 0.976 at         

WTM = 225 nm, and then reduces as WTM increases further. With ± 5 nm tolerance from the 

maximum power conversion at the optimum width, the power conversion is found to be 0.880 

when WTM = 220 nm and 0.820 when WTM = 230 nm and this shows that the polarization 
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conversion only decreases by about 10 % for a deviation of ± 5 nm from the desired optimum 

width.  

   The variations of the polarization conversion and cross-talk with the polarization rotator 

device width, WTM is shown in Fig. 4.35. For this design, the device height and separation 

equal to 260 nm, and 200 nm respectively, are considered and also WTE was fixed at 353 nm. 

It can be seen that as the waveguide width WTM – Wres increases from – 40 nm, polarization 

cross-talk starts to decrease and reaches a minimum value, at WTM = 577 nm in optimum 

length, equal to -18.0 dB, as the width starts to deviate away from width of minimum cross-

talk value of – 0.31 dB at WTM = 620 nm. It is again shown that with ± 6 nm at the optimum 

length point, 99 % of polarization conversion (TE to TM) will occur and that the cross-talk 

values are found to be -1.575 dB and -1.70 dB when the widths of TM mode are at 583 nm 

and 571 nm, respectively. 

    The variations of polarization conversion with the waveguide WTM – Wres for the height of 

device 260 nm, effective index of 2.00, WTE = 353 nm and S = 80 nm is shown in Fig. 4.36. It 

can be clearly seen that as WTM increases from WTM – Wres = - 90 nm (WTM = 507 nm), the 

normalized power conversion of TE (Py) to TM (Px) reaches a maximum value of 0.9886 (- 

0.0496 dB) at WTM = 593 nm and then reduces as WTM increases further. With  ± 5 nm 

tolerance from the maximum power conversion at the optimum point width, the power is 

found to be 0.946825 when WTM = 588 nm and 0.972035 when WTM = 598 nm, which shows 

that the polarization only decrease about 4% for a deviation of ± 5 nm from the desired 

optimum width.  

   Along the polarization rotator device, the power Py of the TE polarized mode incident at the 

junction between two interfaces, and most of the power will be converted into TM polarized 

mode Px at the end this section. However, there may remain some power from py; here, this 

normalized residual power Py is referred to as cross-talk.  

 

   In this study, the cross-talk is defined as the unwanted polarized power, normalized to the 

total input power, which remains at the end of the polarization rotator device. It is again 

shown here that at this 593 nm optimum width, the cross-talk reaches a minimum value of – 

19.45 dB, which a very low value. However, with ± 5 nm deviation from the optimum width, 

the cross-talk values are – 15.55 dB and – 13.85 dB when the widths of quasi-TM (H
x
11) 

mode are at 598 nm and 588 nm, respectively.  

 

   Variations of the TM polarized power with Hx field in guide 2 and TE power with Hy field 

in guide 1 with the changes in waveguide width are shown in Fig. 4.37. In this case, instead 

its variation with the waveguide width, changes with the deviation from the idealized design 

are shown to study of the fabrication tolerances simultaneously. 

   It can be observed that the maximum conversion for S = 200 nm, and 80 nm, shown by 

dark green dashed and blue solid lines are about 0.985 and 0.99, respectively. 
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Fig. 4.34 Variations of the polarization conversion, 

and polarization cross-talk with 2
nd

 waveguide width, 

WTM. 

Fig. 4.35 Variations of the polarization conversion 

and polarization cross-talk with the waveguide, WTM – 

Wres. 

 

    The amount polarized power amount polarized power remains unconverted is shown as 

cross-talk (C.T). It is shown here that for separation S = 200 nm, and 80 nm, shown by a 

black dased-dotted line and a red dashed line, respectively, demonstrate that C.T is better that 

–18.0 dB for both the cases. 
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Fig. 4.36 Variations of the polarization conversion 

and the polarization cross-talk. 

 

Fig.4.37 Variations of the polarization conversion and   

the polarization cross-talk with the width tolerance, 

WTM – Wres. 

 

 

4.10.3 Effect of fabrication tolerances in power conversion: 

   The curves above show the maximum polarization conversion and polarization cross-talk 

with the possible width variations, but still assumed to have the correct coupling length. But, 

in practice the fabrication errors cannot be anticipated so, the device length would be the 

same as originally designed even when the width deviation may appear.   

   A study of how the fabrication tolerance on waveguide width, affect the power conversion 

and corresponding cross-talk at specified positions along the propagation direction, Z, has 

been carried out. 
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    In this case as the coupling length will also change with the width variation, and next 

combined effect of these is also simulated. 

   Variations of polarization conversion with the waveguide width WTM is shown in Fig. 4.38. 

To study the fabrication of the device, the height of polarization rotator waveguide equal to 

260 nm, and separation S = 200 nm, at WTE = 353 nm have been considered for various 

waveguide widths, WTM.  

   The variations were studied in two cases. One was varied device length at exact Lπ and the 

other was fixed at optimum length which was 170 µm. In this case, equal to the coupling 

length at the optimum design. The solid line shows the exact Lπ while the dashed line 

represents fixed Lc at 170 µm. As width of waveguides, in quasi-TM (H
y
11) mode varies, the 

device is fabricated at optimum point, polarization conversion decreased sharply compared to 

exact Lπ. This sharp reduction occurred at10 nm deviation from resonance point at ratio for 

optimum length to the device length equal 2. While, the value of polarization conversion at 

optimum point of waveguide width equal to 577 nm is the same for the two cases equal to 

0.984. The trend for optimum device length followed a symmetrical regular fluctuation with 

on offset of ± 6 nm in waveguide, WTM. The ratio of optimum device length to exact Lπ 

device length is numeral order determined the points at which oscillation happened and by 

the time it is damped. As it is seen this trend is exactly enveloped by the trend of varied 

device length. 

   The numerically simulated results are shown in Fig. 4.39 for various waveguide widths, 

WTM, ranging from 165 nm to 280 nm. Here, the optimum device length was fixed at 142 µm, 

because this length correspond to the ideal design condition to obtain maximum power 

conversion. The converted quasi-TM (H
x
11) power, Px, at their corresponding Lπ values, 

increases from – 11.0 dB to the maximum value of  – 0.1 dB, when the width increases from 

165 nm to 225 nm, and then power decreases up to – 11.5 dB  with further increase of the 

width to 280 nm. It can be seen that if the device is fabricated with a fixed device length of 

142 µm, then as the waveguide width, WTM varies; power conversion (Px) will be very much 

lower than that at exact Lπ, except at WTM = 225 ± 5 nm. At WTM = 225 nm, the Lπ matches 

with the exact fabricated device length, therefore giving highest conversion and also lower 

cross-talk of – 16 dB (but not shown here). It can be noticed that, during of the fabrication the 

width, WTM of the uniform sections can be controlled within 225 ± 5 nm, then the loss of the 

power conversion would be about 0.6 dB.    

   Variations of the real polarization conversion for two different waveguide separations, S are 

shown in Fig. 4.40. It can be observed the variation of polarization conversion is not 

monotonic as width is increased or reduced but shown with a periodicity. This is due to the 

effect of change in the coupling length. The length of the PR section is taken as the coupling 

length at the ideal design condition, Z at the resonating case. But when width deviates from 

the design width, its coupling length reduces, which cannot be anticipated.  

   When even multiple of this coupling length equals to the device length, all the polarized 

light reconverts to the original input polarization state, and overall polarization conversion 

will be zero, as shown here. The zero conversions are related to the case when the modified 
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coupling length (due to fabrication error) is 2m times smaller than the originally designed 

length considered for this polarization rotator when m is an integer. It can be observed that, 

for with S = 200 nm as shown by red dashed-dotted curves, even a small change of 10 nm in 

the width the resulting polarization conversion can drop to zero, and this would be very 

difficult to control. On the other hand, for S = 80 nm, shown by a solid blue line, polarization 

rotation drops to zero only when W is ± 45 nm, as in this case coupling length becomes half.  

However, for W = ± 10 nm, the polarization rotation will be 85 %, which could still be 

acceptable as a practically achievable and a viable design.     
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Fig. 4.38 Variations of the converted power Px at        

Z = Lπ , and  Z = 170.0 µm, with the waveguide width 

WTM – Wres. 

Fig. 4.39 Variations of the converted power Px at        

Z = Lπ , and  Z = 142.0 µm, with the waveguide width 

WTM. 

  

   Figure 4.41 compares the variation of the cross-talk at exact Lπ and optimum device length, 

respectively shown by solid and dashed-dotted lines. It is indicated that at optimum point the 

cross-talk for both trends are the same, which is -18.1 dB (0.0156). For a width tolerance ± 

10 nm the value of cross-talk for Lc = 170 µm exceeded the corresponding exact Lπ value – 

1.25 dB, However, further they reached unity value. 
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Fig. 4.40 Variations of the converted power Px at Z = 

52.8 µm and Z = 170 µm, with the waveguide width 

WTM – Wres. 

Fig. 4.41 Variations of the polarization cross-talk at Lc 

= Lπ and Z = 170 µm, with the waveguide width WTM-

Wres. 
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4.11 Band-width performance on the device parameters: 

 

   Next, performance of the polarization rotator, when the operating wavelength varies from 

1500 nm to 1630 nm, was investigated.  

   Figure 4.42 shows the variation of the hybridity and Lc with the operating wavelength, λ. It 

can be seen that the wavelength is reduced; initially hybridity reduces slowly with the 

wavelength and then reaches a minimum value of 0.8208 at λ = 1585 nm, then increases from 

1585 nm to 1505 nm, and reaches its maximum value about 1.00 at λ = 1505 nm. Device 

length, Lc also decreases as λ increases giving a minimum Lc of 32.3 µm at λ = 1630 nm. 

Also, the value of Lc only shows a change of only 45 µm over the whole wavelength range 

considered. 

   The modal coefficients Cx for quasi-TM (H
x
11) and Cy for quasi-TE (H

y
11) modes with the 

operating wavelength, λ were obtained by employing the LSBR method in Fig. 4.43. It can be 

seen that at λ = 1630 nm, Cy is 0.744 and as wavelength is reduced, it reaches a minimum 

value of 0.72921 at λ = 1580 nm. On the other hand, at λ = 1630 nm, Cx is 0.7171and it 

reaches a maximum value of 0.744 at λ = 1570 nm, and Cx shows a reduction from 0.744 nm 

to 0.66433 nm, throughout the reduction from 1570 nm to 1500 nm.   

   Next, the effect of operating wavelength variation on the performance of the polarization 

rotator is studied. Although, as the wavelength changes, coupling length also changes and this 

will also change the Phase- matching conditions, however, in this design, as the waveguide 

separation was very small, coupling was strong, the effect of small change in the wavelength 

is almost negligible, as shown here; this suggests the devices will have a large operating 

bandwidth. 
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Fig. 4.42 Variations of the hybridness and coupling 

length, Lc with the operating wavelength, λ. 

 

Fig. 4.43 Variations of the transmission coefficients, 

Cx, and Cy with the operating wavelength, λ. 

   The effect of temperature variation has also been studied at but this is not shown here. It 

was identified that a small amount of temperature tuning can be possible, which can be used 

to compensate fabrication tolerances, but this tuning range is rather very small. Similarly, the 

previous figure indicates a small amount of wavelength tuning can also be used to 

compensate the fabrication tolerances. 
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Fig. 4.44 Variations of the polarization conversion and polarization 

                                              cross-talk with the operating wavelength. 

 

   4.12 Summary: 

   In chapter 4, various designs of passive polarization rotators have been investigated. 

Numerical simulations have been obtained using the rigorous full vectrorial based Finite 

Element method. Initially, it was demonstrated that the optical waveguides without symmetry 

are particularly suitable to increase the hybrid nature of the fundamental modes, thereby 

increasing the overlap between the polarization states. By using the versatile VFEM 

approach, the asymmetrical directional coupler of the waveguide were presented exactly. 

 

   The design presented here uses two simple silicon nanowires, which would be simpler than 

the design approaches reported earlier by using slot waveguides [174-177]. As this structure 

does not consider any bend section or slanted side wall [145-147] or trench with different 

etching depth [148]. 

   Through a detailed numerical study, a novel design of a compact SOI polarization rotator 

incorporating polarized coupling between two unequal width waveguides is reported here. 

The above results suggests that an appreciable short  52.8 μm long PR can be designed for 

1.55 μm wavelength by exploiting the phase matching between the two orthogonally 

polarized modes of these two guides. 

   A detailed study of the fabrication tolerances of a compact passive, silicon nanowire 

polarization rotator has been presented, by using rigorous numerical tools based on the 

VFEM method and the LSBR method. Maximum power coupling efficiency of 99 % is 

possible from input quasi-TE (H
y
11) mode to output   quasi-TM (H

x
11) mode, with cross-talk 

better than – 20 dB and loss value lower than 0.1 dB. Fabrication tolerances of the designed 

structure were studied by varying different WG parameters and it has suggested that, a part of 

it may be corrected through appropriate temperature tuning or by wavelength adjustment.  

 

   Thus, this high conversion efficiency, low footprint, simpler design, along with the 

existence of well-matured fabrication technologies for SOI structures, should make our 



Chapter 4                                                                                Polarization Rotator 

87 
 

proposal attractive for making an on-chip polarization rotator for their potential deployment. 

This design should be relatively easy to implement for fabrication and can be made with a 

single mask. It is also shown here that operating bandwidth of these PR is considerable wider 

and suitable for WDM applications. 
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Design of a Compact Polarization Splitter by Using Identical Coupled Silicon 

Nanowires 

 

 

5.0 Introduction: 

   Optical systems incorporating rotationally symmetric optical fibres cannot maintain its 

polarization states as it encounters random bends, pressures, or manufacturing imperfections 

which allow power transfer between two orthogonally polarized modes. For many 

communication and sensing systems this creates a major problem where a specific 

polarization state is needed. In this case, a polarization independent or polarization diversity 

system would be useful. TE/TM polarization splitters are important components for design 

and development of polarization diversity optical systems, such as polarization independent 

receivers for coherent detection [185], [186], integrated-optic gyroscopes [187], switches and 

modulators [188]. 

  Instead of pursuing difficult polarization-independent devices on SOI, a polarization 

diversity scheme could be employed [189]. In this case, the orthogonal polarization 

components of the input light can first be split into two different waveguides by using 

polarization splitter (PS) [190]. A polarization rotator (PR) is then employed in one of the 

waveguides to rotate the polarization by 90° [191], [192]. Finally, for the rest of the photonic 

chip only one polarization has to be processed. Therefore, design of compact and efficient PS 

and PR are needed for separating and manipulating the polarization modes in a polarization 

diversity scheme [193]. 

  Polarization splitters are increasingly being considered for use in optical communications, 

data storage, imaging and signal processing systems [194], especially as essential 

components for the realization of integrated–optical circuits for optical sensor and 

communication applications [195], where polarization plays an essential role.  

 

5.1 Design of polarization splitters: 

   For the design of polarization splitter the polarization dependent modal properties are 

exploited. An optical waveguide with small index contrast the resulting modal birefringence 

is smaller. However, this modal birefringence increases for high index contrast waveguide 

such as silicon nanowires.  

   On the other hand, use of anisotropic materials, such as Lithium Niobate [196], or ion-

exchanged glass [197], or InGaAsP-InP [198], and using of metal cladding [199] can enhance 

the modal birefringence. Several metal materials, e.g., gold, silver, copper, and aluminium, 

have also been studied and incorporated into the dielectric waveguides to generate large 

birefringence, which can effectively shorten the dimension of optical components. However, 

metal-clad waveguides are also inherently lossy. It has also been shown that instead of using 
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metal cladding by using simple layered isotropic material, material birefringence can also be 

introduced [200].  

   This modal birefringence can be exploited in the design of guided-wave polarization 

splitter, by incorporating y-splitter, directional coupler, Mach-Zehnder or MMI-based 

designs.  

   The designs of asymmetric asymmetrical y-splitter in highly anisotropic lithium niobate 

were reported by Masuda and Yip [196] and Wei and Wang [201], but as the angle is often 

less than 1, the resulting device length is relatively large. 

 

   Among the possible designs, a popular approach is to exploit the polarization dependent 

coupling of directional coupler because of their simplicity and easy design and also 

reasonable performance. Modal birefringence of optical waveguides produces polarization 

dependent coupling length which can be exploited to design polarization splitter. Small 

material birefringence of GaAs was exploited to design a 3000 m long PS [202]. Metal clad 

can introduce strong modal birefringence and Albrecht et al. Reported a 1600 m long metal 

clad InP rib waveguide based asymmetrical directional coupler [203] and later on Rajarajan 

et al. Reported a more compact 230 m PS [204]. On the other hand, silicon waveguide can 

directly provide stronger shape birefringence Yamazaki [205], and Kiyat et al. Reported an 

even more compact 120 m PBS using silicon rib waveguide [190]. 

   Polarization splitters have also been designed by exploiting polarization dependent imaging 

distance of multimode interference (MMI) couplers. In an earlier work, simple modal 

birefringence was considered for an InP based design where the PS length was 1640 m 

[206] and later on a shorter much 1023 m design was reported [207].  For a very narrow 

width MMI, supporting only two modes, which is also known as zero-gap directional 

couplers or two mode couplers, a short PS can be designed [208]. 

   MZI structures have also been used for realizing PSs. In order to make a compact MZI 

PBS, a large birefringence is needed. One of the earliest work, Soldano et al. Reported [199], 

a 3300 m Mach-Zehnder based PS using metal clad in one arm. Liang et al. [209] reported a 

6000 m long Mach-Zehnder design using natural modal birefringence of silicon rib 

waveguide and more recently Augustin et al. [210] reported a more compact 600 m long 

design using higher waveguide birefringence silicon nanowires using MMI sections in MZI.  

   Recently there have been extensive research activities to develop silicon based photonics, 

by exploiting well developed CMOS technology. This can allow incorporation of both 

photonic and electronic components on the same chip. The high index contrast of silicon 

waveguides also allows more compact waveguides, bends and also other functional devices.  

But its modal characteristics are also strongly polarization dependent due to the strong index 

contrast. The dependence of the TE and TM polarization can be exploited to find the 

polarization splitting ratio in order to design a compact Polarization Splitter. Owing to the 

high-index-contrast at the dielectric interfaces, the normal electric field component has to be 



Chapter 5                                                                                      Polarization Splitter 

90 
 

discontinuous to satisfy the continuity condition of the electric flux density, leading to the 

higher amplitude and field enhancement.  

   Apart from strip silicon nanowires [211], silicon-based slot waveguides [212], where a low 

refractive index nanometer region placed between two high refractive index silicon 

nanowires, have been intensively investigated due to their unique properties and potential 

applications. It is noted that slot waveguides are also highly polarization-dependent, thus 

compact and efficient PS is greatly required for separating the polarization modes in 

polarization diversity schemes. 

   Recently, PSs based on horizontal single [213] and multi-slotted waveguide structures 

[214] have also been proposed. It is noted that slot waveguides are also highly polarization-

dependent, thus compact and efficient PBS is greatly required for separating the polarization 

modes in polarization diversity schemes. Using an asymmetrical DC with a silicon wire, a 

PBS of 13.6 μm in length was demonstrated experimentally, using an asymmetrical DC with 

a silicon wire and a vertical slot, a PS of 13.6 μm in length was demonstrated experimentally 

[215]. Dai [216] and Fukuda et al. [217] have considered asymmetric directional coupler with 

a NW and slot waveguide, ignoring very long coupling length for TE mode compared to TM 

modes. 

   For instance, hybrid plasmonic waveguide (HPW), which confines mode within the low 

index gap between a metal and a high index dielectric, has already been introduced into the 

design of PS [218, 219, 220, 221]. In [218], a PBS based on three-guide structures, where a 

HPW was used as middle waveguide to achieve large birefringence, only allowing TM mode 

to evanescently couple to the cross port. The experimental results are shown that the coupling 

length is almost 6.5 µm. It appears that the performance should be further improved. In 

addition, multi-etch processes are required during the fabrication, which will increase the 

complexity and cost of fabrication.  

   Another possible way to make a short PBs is realized by polarization splitters incorporating 

waveguide bend [222], the polarization dependence of PhC and grating structures (e.g.,    50 

µm [223], 20 µm [224] or out-of-plane grating (e.g.,   14 µm [225]). However, the design is 

usually quite complex, and fabrication is relatively difficult and also, the PhC and grating 

structures usually introduces a relatively large loss.  

   Silicon (Si) is the most mature material for electronics but a relatively newer material for 

photonics. The expensive compound semiconductor materials, such as GaAs or InP can 

provide light sources, but their low yield coupled with the higher assembly and packing costs, 

keep optical communication a costly technology today. Recently, it has been suggested [226] 

that silicon with silicon-on-insulator technology (SOI) can be considered to be material 

choice for designing and integrating dense PIC and optoelectronic integrated circuit (OEIC) 

devices. Refractive index contrast for a silicon nanowires (NWs) is high, its modal 

characteristics are strongly polarization dependent. The dependence of the TE and TM 

polarization is exploited here to find the polarization splitting ratio in order to design a 

compact Polarization Splitter. 
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   The Si polarization splitter proposed here shows a very compact design without slanted side 

wall or bent. In this paper, design optimization of a Si polarization splitter based on SOI 

technology is presented which requires less complex fabrication process with single mask 

only and compatible with the mature CMOS technology which is backed by a well-

established semiconductor industry [226].  

   The conversion of two polarized mode to the two separate polarized modes are realized by 

efficient power coupling between two coupling lengths from the quasi TE and TM polarized 

modes. Our goal here is to evaluate if a design relationship can be achieved such that the 

coupling length for the TE polarization coupling length is exactly twice that of the coupling 

length of the TM polarization. 

   The conversion of two polarized mode to the two separate polarized modes are realized by 

efficient power coupling between two coupling lengths from the quasi TE and TM polarized 

modes. 

   Our goal here is to evaluate if a design relationship can be achieved such that the coupling 

length for the TE polarization coupling length is exactly twice that of the coupling length of 

the TM polarization. 

5.2 Theory of polarization splitters: 

 
   Pure TE and TM modes can only exist in planar slab WGs with 1D confinement. However, 

in all practical optical WGs with 2D confinement, the modes are classified as quasi-TE and 

quasi-TM modes, which contain all six components of the E and H fields. Besides that, in 

high index contrast silicon nanowires, the modal birefringence is much higher. To find all the 

three components of the H-field and the evolution of fully hybrid quasi-TE and quasi-TM 

modes along a guided-wave device all the methods to be used must be fully vectorial in 

nature. Accurate calculation of the modal solution for the fundamental quasi-TE and quasi-

TM polarized modes are of great importance when designing a polarization splitter. In the 

design of a compact optical polarization splitter, a full vectorial method is needed to obtain 

modal solutions of the supermodes and modal field profiles of the constituent waveguides 

across the dielectric interface. In this regard, E-field based formulation has been considered; 

however, since normal component of the E-field is discontinuous around the interface, such 

an E-field based approach would require boundary conditions to be implemented and can be 

difficult for waveguides with arbitrary refractive index profile. 

 

   On the other hand, all the three components of the H-field components are continuous 

across the dielectric interfaces and becoming more popular and such a full-vectorial 

formulation used here, is based on the minimization of the following energy functional [105] 

in terms of the nodal values of the full H-field vector. 

 

   In this chapter, the above-mentioned attractive features of this method are utilized to 

optimize the polarization design especially in the TE/TM Ratio and device length 

calculations.  
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   Although the FEM can be used to calculate the propagation constant for the even and odd 

in the fundamental quasi-TE and quasi-TM modes and also their modal field profiles, alone it 

cannot be used to analyze discontinuity along a guided-wave device or optoelectronic 

subsystem.  

   A full-vectorial beam propagation method (BPM) [226] can be used to calculate the power 

conversion between the two polarization states, however, as the proposed structure being 

consists of two discrete interfaces, a junction analysis method would be more efficient to use 

to find the excited modal coefficients at the butt-coupled junctions and also to find the 

resulting polarization splitter. 

   In this case a powerful, full-vectorial numerical approach, the Least Squares Boundary 

Residual (LSBR) method [184] has been used, which rigorously satisfies the continuity of the 

tangential electric and magnetic fields at the junction interface in a least squares sense, and 

92btains the modal coefficients of the transmitted and reflected modes at the discontinuity 

interface.  

   The LSBR method looks for a stationary solution to satisfy the continuity conditions by 

minimizing the error energy functional, J, as given by [184]. This approach would be more 

rigorous yet computationally efficient than the use of the BPM. The polarization splitter 

proposed here is very compact design without a metal clad section or bent and less complex 

fabrication and also compatible with the mature CMOS technology, by using two simple 

coupled identical nanowires. 

   They are of equal height and identified by H, which would be easy to fabricate and also 

they have the same widths, given as W, and the separation between the waveguides is S.  

For a directional coupler, its coupling length, defined as: 

 

    
                                                                                                                                      (5.1)                                                                                                                           

                                                                                                    

   The Lc is the minimum length necessary for maximum energy transfer, where e and o are 

the propagation constants of the even and odd supermodes of the coupled structure. For most 

of the practical waveguides the coupling length for the quasi-TE and quasi-TM modes are 

different but for low-index contrast waveguides the difference is small. As stated earlier, for 

high index contrast this difference could be relatively larger or by using anisotropic material, 

or metal clad the difference can be further increased. For highly birefringent NWs the 

coupling length for quasi-TE or TM polarizations, Lc
TE

 and Lc
TM

 are significantly different. 

Thus if a relationship between the coupling lengths, Lc
TE

 and Lc
TM

, for the TE and TM 

polarizations, respectively, can be established such that the device length, L, is given by:  

 

      
       

                                                                                                          (5.2) 

   where m and n are integer and when one of them is even and other one is odd, then two 

orthogonally polarized waves will emerge from two different output ports, as shown in      
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Fig. 5.1. This condition may not be very difficult to achieve, but often yields larger m and n 

values.  

 

   Performance error due to any fabrication tolerance is magnified by m or n, which often 

makes such design very sensitive to small changes in waveguide parameters. Here, the design 

target was to have m and n as small as possible, and for the best possible design to achieve    

m = 1 and   n = 2.  

   Hence, we seek a design where, the coupling length for a quasi-TE (Lc
TE

 ) polarization is 

twice that for quasi-TM ( Lc
TM 

) polarization, if possible, allowing most of the quasi-TE and 

quasi-TM  polarized powers emerge from two different ports. 

 

                      

            Fig. 5.1 Principle of a polarization splitter.                                    Fig. 5.2 Cross-section of coupled NWs. 

 

5.3  Study of the H-field modal profile characteristics: 

   From using the H-field formulation, the modal amplitudes, field profile and propagation 

constants of the exited modes, the evolution of the power waveguides along the axial 

direction can be calculated.  

   Utilising of the rigorous finite element numerical method, the percentage of confinement 

power in each of the waveguides for the quasi-TE (H
y
11) and quasi-TM (H

x
11) supermodes in 

polarization state, can be analysed and also optimised for the polarization splitter design has 

been developed. 

   Near the phase-matching condition area, where a relationship can be derived such that two 

times the coupling length for the quasi-TM polarization equal to the coupling length of the 

quasi-TE mode, dominant TE (H
y
11) and /or TM (H

x
11) even and odd like supermodes fields 

are highly magnitude compare to the non-dominant, their field profiles of both the even and 

odd modes in quasi-TE modes will be illustrated. 

   Figure 5.3a shows the Hy field profile of the H
y
11 even supermode, when H = 200 nm,              

W = 350 nm, and S = 100 nm. It can be seen that the guides are coupled and the even 

supermodes power is equally distributed in both the waveguides in the device, where the 

propagation constant of the even mode is slightly higher than those of the two isolated guides.  



Chapter 5                                                                                      Polarization Splitter 

94 
 

   Variation of Hy along the horizontal direction (x) of the same supermode is shown in      

Fig. 5.3b. Here, it can be observed that, field amplitude are the same, which refer to Fig. 5.3a, 

shows that for this component fields also spread equally to the waveguides. On the other 

hand, figure shows that, signs of both the field profiles in the waveguides are the same. 
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Fig. 5.3a H
y
11 field profile for the quasi-TE even 

supermodes. 

 

Fig. 5.3b The composite field profile for the quasi 

–TE (H
y
11) even supermodes. 
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Fig. 5.4a H
y
11 field profile for the quasi-TE odd 

supermodes. 

Fig. 5.4b The composite field profile for the quasi 

(H
y

11) – TE (odd) supermodes. 

 

   Vector Hy field profile and it variation along X of the TE (H
y
11) odd supermode are shown 

in Fig 5.4a and Fig 5.4b, for the height of 200 nm, width and separation are equal to 350 nm 

and 100 nm, respectively. In this case, the field is anti-symmetric and again the power 

confinements in both waveguides are the same. However, for this mode, magnitude of the 

waveguide fields are equal but of opposite sign, so its resulting is shown in negative 

amplitude of the waveguide in the left hand of the TE field profile in Fig 5.4a. Hence for both 
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even and odd supermodes, it can be observed that the sign of the even mode is the same, 

whereas in odd state modes, fields amplitude are opposite sign in the composite field profile. 

5.4 Estimation of accuracy of the modal solutions: 

   The schematic cross-section of the coupled NWs is shown in Fig. 5.2. Here, the width and 

height of the NW are shown by W and H, respectively and separation between the cores is 

shown as S.  The refractive index of the Si and Silica are taken as 3.4754752 and 1.4440236 

at the operating wavelength of 1.55 µm. Here the symmetry conditions of the coupled 

structure have been exploited for the modal solutions of directional coupler. This not only 

avoids mode degeneration by separating two interacting modes, but also allow much 

improved solutions, with a given computer resources. Since this structure has one-fold 

symmetry, only half of the waveguide needs to be considered, which will allow a much finer 

mesh division to be used. The combinations of n⨯H and n.H at the vertical symmetry lines 

have been used to find the even and odd supermodes.  From the modal solutions the coupling 

lengths for the quasi-TE (H
y
11) and quasi-TM (H

x
11) polarizations, Lc

TE
 and Lc

TM
, can be 

calculated and subsequently these coupling lengths ratio can be calculated as: 

RTE-TM = Lc
TE (µm) / Lc

TM (µm)                                                                                                   (5.3) 

   Like all other photonic devices, its performance will also depend on the accuracy of the 

designs and also on the accuracy of the fabrication. Design accuracy will critically depend on 

the accuracy of the modal solutions. Besides this, a small change of the separation distance 

(or its width and height) will not only change the quasi-TE and quasi-TM coupling lengths 

but also the RTE-TM, which will affect the performance and these are discussed in this chapter.   

   The optical propagation in a directional coupler can be expressed in terms of the 

propagation constants () of the even and odd supermodes of the coupled structures, or their 

effective indices. 

    

   Accuracy of the Lc depends on the accuracy of the modal solutions, and more particularly 

on their differences, and it is critical that the accuracy of these parameters is established first.  

As most of the key design parameters are often obtained by using a given numerical methods 

and it is also known that accuracy of these design parameters are also depend on the 

numerical parameters used, and as example, for the FEM the number of elements (or mesh 

divisions used) is the critical numerical parameter, and this is studied first. 

 

   Variations of the effective indices, neff of the fundamental quasi-TE (H
y
11) even and odd 

supermodes for a silicon nanowires with the mesh division is shown in Fig. 5.5. In this case, 

the waveguide Height (H), Width (W) and Separation (S), are taken as 220 nm, 400 nm, and 

100 nm, respectively.  For simplicity equal number of mesh divisions is used in both the 

transverse directions. Variations of the ne-TE (even) and ne-TE (odd) are shown by a blue solid 

line and a red dashed line, respectively. 
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   It can be observed that when the number of mesh increases, effective indices of both the 

fundamental quasi-TE supermodes increase. It can be observed that, the effective index of 

quasi-TE even supermode is higher than that of the quasi-TE odd supermode and both reach 

their saturation points asymptotically. It should be noted that when a 200 * 200 mesh is used 

neff is accurate to 3
rd

 decimal place, and the accuracy is increased to 4
th

 decimal place when 

mesh size is increased to 800 * 800. From these modal solutions, coupling lengths of both 

quasi-TE and quasi-TM polarizations, Lc
TE

 and Lc
TM

, respectively, can be calculated.  

   Variations of the coupling lengths for the fundamental quasi-TE and quasi-TM 

polarizations for H = 220 nm, W = 400 nm, and S = 100 nm with the mesh division are shown 

in Fig. 5.6. A blue solid and a red dashed line represent Lc of the quasi-TE and quasi-TM-

polarizations, respectively. As can be observed from Fig. 5.6, that as the number of mesh is 

increased from 100 to 500, initially the Lc
TE

 (solid) increases rapidly, and with further 

increase of number of mesh, the Lc
TE

 reaches a stable values asymptotically, but for the Lc
TM

 

curve (dashed) decreases exponentially as a number of mesh increases from 100 to 800, and 

reaches its stable value about 3.149 µm. Two separate scales are used for Lc
TE

 and Lc
TM

, and 

it should be noted that changes in their values are rather small. It can be observed that Lc
TM

 

variation is more stable with the mesh, and this is due to the fact that the fundamental quasi-

TM (H
x
11) mode being close to its cut-off its variation with the waveguide’s geometric and 

numerical parameters is small. 

   Variations of the effective indices, neff of the quasi-TE (H
y
11) even and odd supermodes for 

H = 280 nm, W = 300 nm and S = 150 nm with the mesh divisions used in both the transverse 

directions are shown in Fig. 5.7. 

   It can be observed that when the number of mesh increases, effective indices of both the 

fundamental quasi-TE supermodes also increase and reach their saturation points 

asymptotically. Figure 5.7 also shows that effective index of quasi-TE (H
y
11) even-supermode 

is higher than that of the TE odd-supermodes (two different scales are used). 

   From the modal solutions, the coupling lengths for the quasi-TE (H
y
11) and quasi-TM (H

x
11) 

polarization modes, Lc
TE

 and Lc
TM

, are calculated for H = 280 nm, W = 300 nm and                

S = 150 nm, and their variation with the mesh division used are shown in Fig. 5.9. It can be 

observed that as number of mesh division increases the coupling length for both the polarized 

fundamental modes increases. 

   For the design of a polarization splitter the Lc ratio  (RTE-TM) is calculated from the polarised 

coupling lengths, Lc
TE

 / Lc
TM

. Variation of this coupling length ratio (RTE-TM) for H = 220 nm, 

W = 400 nm and S = 100 nm with the mesh division is shown in Fig. 5. 9. It can be noticed 

that as the number of the mesh division is increased, initially this ratio increases appreciably 

and then converges to its stable value. It can be noted that Lc ratio   (RTE-TM) is accurate up to 

the second decimal point when 800 * 800 mesh divisions are used.The modal characteristics 

of the devices were analysed. The coupling length, Lc, for quasi-TE (H
y
11) and quasi-TM 

(H
x
11) modes of the PS structure were calculated using the equation (5.1), where the 

propagation constants were obtained using the full vectorial modal solution approach. 
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Fig. 5.5 Variation of the effective indices for the 

quasi-TE even and odd like modes with the mesh.  

Fig. 5.6 Variation of the coupling lengths for the 

TE and TM polarization with the mesh.   
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Fig. 5.7 Variation of the effective indices for the 

quasi-TE even and odd modes with the mesh.  

 

Fig. 5.8 Variation of the coupling lengths for the 

quasi-TE and quasi-TM polarization with the mesh.  
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Fig. 5.9 Variation of the coupling length ratio of 

the quasi-TE and quasi-TM supermodes with the 

mesh. 

Fig. 5.10 Variation of the coupling length ratio of 

the quasi-TE and quasi-TM supermodes with the 

mesh. 
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   Fig. 5.10 shows the variation of the ratio Lc
TE

 / Lc
TM 

with the mesh division for two 

different designs. It can be noted that the ratio (RTE-TM) increases with the mesh size, 

following exponentially and then converge to the saturation points. It should be noted here 

that ratio (RTE-TM) with the mesh division, for the height of 220 nm, W = 400 nm, and S = 100 

nm is consistently higher than the height of 280 nm, W = 300 nm, and S = 150 nm. 

   Following this all the numerical simulations are carried out using equivalent to or better 

than 800 * 800 mesh divisions in the two transverse directions, where more than 1.2 million 

first-order triangular elements have been employed to represent the half of the waveguide 

structures. 

5.5 Analysis of the optimal design parameters: 

   Here, design optimization of a compact optical polarizer is presented in order to study the 

effect of key fabrication parameters, such as the guide width, guide height and guide 

separation on the coupling lengths and  power transfer characteristics. 

   Variations of the device coupling lengths, Lc
TE

, and Lc
TM

 of the quasi-TE (H
y
11) and quasi-

TM (H
x
11) supermodes for H = 280 nm, and S = 150 nm with the waveguide width used in 

both the transverse directions are shown in Fig. 5.11. 

   It can be observed that when the width of the waveguides decreases from 380 nm to 230 

nm, coupling length of the quasi-TM (H
x
11) mode, Lc

TM 
also decreases as almost linear curve, 

from 4.643 µm to 1.80 µm, respectively.  

   On the other hand, as width of the waveguides increases, the device length, Lc
TE

 initially 

reduces and reaches its minimum value before it starts to rise (the left-hand Y-axis scale). 

The minimum length is achieved when W = 265 nm, where the Lc
TE

 (min) value is 2.77 µm. 

This also shows coupling length for the quasi-TE mode is more sensitive compare to the 

quasi-TM mode. 
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Fig. 5.11 Variation of the coupling lengths with the 

waveguide width, W. 
Fig. 5.12 Variations of the quasi-TE (H

y
11) 

coupling length with the waveguide width, for the 

different heights, H. 
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   Figure 5.12 shows the evolutions of the device lengths with the waveguide width for 

different height, H. It was observed that as W decreases, its Lc
TE

 decreases until it reaches its 

minimum value and then starts to increase as it approaches its cut-off region. In this case 

when  H = 260 nm, 280nm and 300 nm, the waveguide width, W, to be 265 nm to get the 

common value of Lc
TE

 = 2.77 µm. It can be clearly seen that for H = 300 nm, the device 

length is higher than that of 260 nm height. 
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Fig. 5.13 Variations of the coupling length ratios of 

the quasi-TE (H
y

11) and quasi-TM (H
x

11) 

supermodes with the waveguide width for different 

heights. 

Fig. 5.14 Variations of the coupling lengths with 

the waveguides heights, H. 

 

 

   Variations of the RTE-TM, with the waveguide width for three different heights, 260 nm,   

280 nm and 300 nm, are shown in Fig. 5.13 by a solid blue line, a red dashed line and a black 

dash-dotted line, respectively with the same separation S = 150 nm. It can be noticed that as 

the waveguide width increases, the RTE-TM, also increases. It can be noted that it is possible to 

obtain an ideal RTE-TM  = 2.00, when quasi-TE (H
y
11) and quasi-TM (H

x
11) modes can emerge 

from two different ports. However, care must be taken to make sure that the numerically 

simulated results are accurate. For H = 260 nm, 280 nm and  300 nm, when RTE-TM = 2.00 is 

achieved then the corresponding waveguides widths would be 315 nm, 311 nm and 314 nm, 

respectively and for these three cases the device lengths would be equal to 4.940 µm,      

5.235 µm and 6.180 µm, respectively. It can be noted that for H =260 nm, there is a small 

discontinuity in the RTE-TM curve, which was identified as the point where quasi-(H
x
11) and 

quasi-H
y
21 modes are degenerate. 

   Variations of the coupling lengths as a function of the waveguide heights for the quasi-TE 

(H
y
11) and quasi-TM (H

x
11) polarizations are shown in Fig. 5.14 by a solid blue line and a red 

dash-dotted- dotted line, respectively. The quasi-TE and TM coupling lengths are shown with 

two different scales. The coupling length for quasi-TE, Lc
TE

 polarization shown by using the 

left-hand Y–axis shows a usual near linear variation of the coupling length. This is because, 

the reduction in height increases evanescent field outside waveguide core and coupling length 

reduces.  

   Variation of the quasi-TM coupling length is shown by using its right-hand Y-axis. Here, it 

can be observed that as the waveguide height is reduced, initially Lc reduces slowly with the 
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height and then increases slowly. The non-monotonic change of the Lc
TM

 has been identified 

to the modes approaching its cut-off condition when the Height, H, was considerably lower. 
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Fig. 5.15 Variations of the coupling length of the 

quasi-TE (H
y
11) supermodes with the waveguide 

heights, for the different widths. 

Fig. 5.16 Variations of the quasi-TM (H
x

11) 

coupling length with the waveguide height, for the 

different widths, W. 

 

   Variations of the quasi-TE (H
y
11) coupling lengths, Lc

TE
, with the waveguide height for 

three different waveguide widths, 311 nm, 314 nm, and 315 nm, are shown in Fig. 5.15 by 

black dashed-dotted-dotted line, red dashed-dotted line, and solid blue line, respectively. 

   It can be noticed that as the height of waveguides decrease, initially Lc
TE

 decreases with the 

height and then reach their cut-off points, and near the 250 nm mixed up. 

   The variations of the quasi-TM (H
y
11), Lc

TM
 coupling length with H are shown in Fig. 5.16. 

It can be observed that as H reduces to a minimum value and any further reduction of the 

height of waveguide, results rise in the Lc
TM

 as the modes approach their cut-off points. It can 

be noticed that for W = 311 nm, its minimum Lc
TM

 is at 2.4256 µm at H around 260 nm. It 

was recorded that for both W = 314 nm and 315 nm the minimum coupling length was at H = 

255 nm at Lc
TM

 = 2.444 µm. It can be noted that all the Lc
TM

 values are very similar when W 

is large but it is only slightly lower for the W = 311 nm. 

   Variations of the RTE-TM with the waveguide height are shown in Fig. 5.17 by a blue solid 

line for W = 315 nm, a dash-dotted red line for W = 314 nm and a dashed black line for        

W = 311 nm (but for the same S = 150 nm), respectively. 

    From Fig. 5.17, a design relationship can also be achieved such that the coupling length for 

the quasi-TE polarization is exactly twice that of the quasi-TM polarization. The non-

monotonic change of the Lc ratio has been identified to the modes approaching their cut-off 

conditions when the height, H, was considerably lower. 

   Variations of the coupling lengths in quasi-TE (H
y
11) mode in terms of the separation 

between the waveguides are shown in Fig. 5. 18 for three waveguide heights, 260 nm, 280 

nm, and 300 nm, with corresponding waveguides widths, 315 nm, 311 nm, and 314 nm, 

respectively. 
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Fig. 5.17 Variations of the coupling length Ratio, 

RTE-TM, with the waveguide height for the different 

widths. 

Fig. 5.18 Variations of the coupling length for the  

quasi-TE (H
y

11) supermodes with the waveguide 

separation, for the different widths. 

 

   It can be observed that as the separation between the waveguides is increased from 40 nm 

to 220 nm, the device length increases. For a smaller S, the Lc
TE

 of both the H = 260 nm and     

H = 280 nm can be noticed very close together. The height of the 300 nm, with W = 314 nm 

was observed to be higher than the other heights (H = 260 nm, and H = 280 nm). 

   Variations of the quasi-TE (H
y
11) and quasi-TM (H

x
11) supermodes of the coupling lengths 

as a function of the waveguide separation for a couple of identical Si nano-wire waveguides, 

when, H = 280 nm, and W = 311 nm, are shown in Fig. 5.19, by solid blue and red dash-

dotted lines, respectively. The quasi-TE device length and quasi-TM coupling length are 

shown in this figure, are used vertical axis in right and left hands, respectively, with using the 

different scales. It can be seen that, for the both coupling lengths increases exponentially with 

the waveguides separation, S, but asymptotically reach their maximum value with the further 

increases of the separation. 
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Fig. 5.19 Variations of the quasi-TM (H
x

11) and 

quasi-TE (H
y
11) coupling lengths with the 

waveguide separation, S. 

Fig. 5.20 Variations of the coupling length Ratio, 

RTE-TM, with the waveguide separation, S.  
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   At higher separations the guides are isolated and with the waveguides being nonidentical 

the birefringence does not change with increasing separation. Thus the coupling length 

remains constant.  From Fig. 5.19, a relationship can be derived such that two times the 

coupling length for the quasi-TM (H
x
11) polarization mode equals the coupling length of the 

quasi-TE (H
y
11) polarization mode. In this case, when the separation between the waveguides 

was 150 nm, the Lc
TM

 was 2.604 µm and that for the quasi-TE polarized mode the device 

length, Lc
TE

 was 5.235 µm. Therefore by choosing a device section an effective TE/TM 

polarizer can be designed. 

   Variations of the coupling lengths ratio, RTE-TM, with the waveguide separation for the 

quasi-TE and quasi-TM polarizations are shown in Fig. 5.20. The black short dashed, blue 

solid and long dashed red lines represent the H = 260 nm,  280 nm and 300 nm, with 

corresponding waveguide widths are 315 nm, 311 nm, and 314 nm, respectively. It can be 

observed from this figure that, as the separation between the waveguides is increased from 50 

nm to 150 nm, the coupling lengths ratio, RTE-TM increases. At higher separations, as the 

guides are nearly isolated, the modal birefringence does not change any more with the 

waveguide separation. From Fig. 5.20, again a design relationship can be achieved such that 

RTE-TM = 2.00. It can be noticed from this figure that for the waveguide heights, H = 260 nm, 

280 nm and 300 nm, the separation between the guides, S, should be 150 nm to get the ideal 

value, RTE-TM = 2.00. In these cases, the polarization splitter length should be equal to     

4.940 m, 5.235 m and 6.180 m, respectively. 

5.6 Calculation effect of fabrication tolerance on the power transfer: 

   Although the short device length can yield a compact polarizer, but it is also necessary to 

study their fabrication tolerances in order to understand their suitability for practical 

applications. However, like all other photonic devices, its performance will also depend on 

the accuracy of fabrication. A small change of the width (or its height or their separation) 

would not only change their TE and TM polarization coupling lengths but also change the Lc 

ratio (RTE-TM) from its desired value of 2.00. 
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Fig. 5.21 Variations of the power coupling 

efficiency with the waveguides height, for W = 311 

nm, and S = 150 nm. 

Fig. 5.22 Variation of the power coupling 

efficiency with the width changes for the H = 280 

nm, and S = 150 nm. 
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   In Figure 5.21 the performances of such polarization splitter (PS) have evaluated against 

the fabrication tolerances related to its height. A possible design was identified, when                 

W = 311 nm, and S = 150 nm, resulting, Lc
TE

 = 5.235 µm and Lc
TM

 = 2.605 µm, giving      

RTE-TM =2.00. So, following an accurate fabrication if the device length is equal to 5.235 µm, 

then, it is expected that quasi-TE (H
y
11) mode will emerge from the Cross-port (Port 4) and 

quasi-TM (H
x
11) mode in the Bar-port (Port 3), as a solid blue and red dashed-dotted lines, 

and zero power remained as a cross-talk (C.T) in short dashed black, and dashed-dotted dark 

green lines, respectively.  

   It can be also noticed from the figure that when the waveguide heights is varied from the 

270 nm to 360 nm, most of the power coupling efficiency and cross-talk for the quasi-TE 

(H
y
11) polarized mode are collected in Port 4, and Port 3, respectively, due to linear variation 

of the quasi TE-coupling length with the waveguide height (refer to Fig. 5.18). 

   On the other hand as a comparison, it is observed that variations of the power coupling 

efficiency for the quasi-TM (H
x
11) mode are very sensitive with the waveguide height. It is 

shown that, a small change in device height can be deteriorated from the characteristics of the 

quasi-TM polarized power transfer in Bar- and cross-ports. This circumstance again can be 

explained from the Fig. 5.18, as a non-monotonic variation of the coupling length Lc
TM 

with 

the waveguide height, which is explained in details before.  

   Now, it has tested its performance with the fabrication tolerances in the separation, W. 

Variation of the TE power output in the Cross-port (P4-y) and TM output in the Bar-port (P3-x) 

with the waveguide width are shown in Fig.5.22 by using a simple semi-analytical approach 

by using their changes in the coupling lengths only. 

   The red dashed-dotted line shows the TE power transfer characteristic in Port 4 (P4-y) and 

the blue solid line shows the TM power transfer characteristics in Port 3 (P3-x). The dark 

green dashed-dotted shows the TM power transfer characteristics in Port 4 (P4-x) and the dark 

dashed line shows the TE power transfer characteristics in Port 3 (P3-y). As can be seen from 

this figure, when H = 280 nm, and S = 150 nm, as desired, at the end of the device length,      

L = Lc
TE 

= 5.236 µm, for both the TE and TM polarization, most of the polarized powers 

emerge from Ports 4 and 3, respectively.  

   Similarly at the end of the device length, L, for both TE and TM polarizations, almost zero 

power remained in Ports 3 and 4, respectively. Therefore, by selecting the device parameters 

suggested, a passive TE/TM polarizer can be designed.  

   It can be noticed from the Fig. 5.22 that small change in waveguide width can deteriorate 

the power transfer characteristics as this would destroy the ideal RTE-TM = 2.00 relationship 

and hence will contribute to deterioration of the power transfer characteristics. This also 

shows, as the non-monotonic nature of the quasi-TM coupling length, Lc
TM

, power output for 

the quasi-TM mode is more sensitive compare to the quasi-TE polarization power mode. 
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Fig. 5.23 Variations of the power coupling 

efficiency with the separation. 

Fig. 5.24 Variations of the power coupling 

efficiency with the separation. 

 

  

   Figure 5.23 shows the variations of the power transfer as a function of the separation 

between the waveguides, when H = 280 nm and W = 311 nm, and the device length is kept 

fixed at L = 5.235 µm, as designed. As can be observed from this figure, when, S = 150 nm, 

as planned, at device length is equal to L = Lc
TE

 ≈ 2 * Lc
TM

 = 5.235 µm, for both quasi-TM 

polarization for quasi-TE polarization, most of the power will emerge from the Bar-port (P3-x) 

and in the Cross-port (P4-y), shown by red dashed-dotted and blue solid lines, respectively. 

 

   Also, the black dashed-dotted and the green dashed lines show the quasi-TE power transfer 

characteristics in Port 3 (P3-y) and the quasi-TM power transfer characteristics in port 4 (P4-x), 

respectively. As can be seen from the figure, at the end of the coupling length, for both the 

quasi-TM (H
x
11) and quasi-TE (H

y
11) polarized modes, almost zero power remained in        

Bar-port (P4-x) and Cross-port (P3-y).  

   Therefore, by careful selection of the device parameters, a desired design for the 

polarization splitter is obtained. It can be noticed from these curves that a small change in 

waveguide separation can deteriorate the device performances. 

 

   This phenomenon can be explained with the help of Fig. 5.19. It can be noticed that as the 

waveguides separation is deviated from the design value of the RTE-TM value of 2.00, not only 

the ratio will increases, but also the resulting coupling length would not match with the 

device length and hence deteriorate of the power transfer characteristics. This also shows 

power output for the quasi-TM mode is more sensitive compare to the quasi-TE polarization 

power mode, as here n being twice of m, the phase error for quasi-TM mode mismatch would 

be double that of the quasi-TE mode. It should be noted that for such typical nanowires, as 

often height is smaller than its width, the effective index of the fundamental quasi-TM (H
x
11) 

mode is much lower than that of the fundamental quasi-TE (H
y
11) mode. This had contributed 

to a smaller coupling length for quasi-TM polarization, but this has also resulted in stronger 

coupling between the guides. 

 

   It is well known that for a strong coupled directional coupler cross-talk increases due to 
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incomplete cancellation of modal fields in the two waveguides, and similarly in this case 

power loss for the quasi-TM (Hx
11

) polarization has been higher. Therefore, it is expected that 

by reducing the coupling for both quasi-TE and quasi-TM polarized modes, it may be 

possible to reduce the power loss for both the polarizations. However, coupling lengths for 

both the quasi-TE and quasi-TM modes will increase which will make the device length a bit 

longer. Besides that Lc ratio will also change, however, it is still possible to achieve the 

desired device length, L, by adjusting other waveguide parameters, such as, its width and 

height. It was identify a possible design, when H = 300 nm, when W = 317 nm and S = 150 

nm, when Lc
TE

 = 17.90 µm and Lc
TM

 = 8.90 µm, giving RTE-TM = 2.00, in Fig.5.24. So if the 

device length is equal to 17.90 µm, then it is expected that quasi-TE mode will emerge from 

the Cross-port (Port 4) and quasi-TM mode in the Bar-port (Port 3). In this case, with              

± 10 nm, tolerance from the maximum power coupling efficiency for the quasi-TE (H
y
11) and 

quasi-TM (H
x
11) modes at the optimum point in the separation, the power are found to be 

0.9876, and 0.9465, respectively, which shows that the power coupling only decrease about 

1.3 % and 5.5 % for polarized quasi-TE and quasi-TM modes, in a deviation of ± 10 nm from 

the desired optimum separation. 

5.7 The FEM simulation used and results analysing obtained from LSBR: 

  The power output not only depends on the coupling length or the coupling length ratio, but 

also on the modal coefficients of the supermodes excited at the start of the directional 

coupler. To satisfy the continuity of the tangential electric and magnetic fields, Et and Ht, an 

incident mode generates two supermodes and may also excite other guided or radiating 

modes. In this study a rigorous full-vectorial least squares boundary residual method [184] is 

used to find the modal coefficient of the two supermodes. A rigorous LSBR method is used 

to calculate the polarized power transfer in both the output ports. In this case, besides the 

excitation coefficients of the supermodes at the junctions, the effect of coupling length 

change, and the effects of coupling strength are also considered. 
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Fig. 5. 25 Variation of the excited quasi-TE (H
y

11) 

and (H
x
11) TM coefficients with the changes in the 

separation, S. 

Fig. 5.26 Variation of the power coupling 

efficiency with the changes in the separation, S. 
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   The variations of the transmitted coefficients from the LSBR results, for both quasi-TE 

(H
y
11) and quasi-TM (H

x
11), even and odd supermodes, in terms of the waveguide separation 

are shown in Fig. 5.25. Transmitted modes of the quasi-TE (H
y
11) and quasi-TM (H

x
11) in 

even supermodes are shown in solid blue and dash-dotted red lines, respectively. It is shown 

here that as the separation between the waveguides increases, the even transmitted coefficient 

reduces for both quasi-TE (H
y
11) and quasi-TM (H

x
11) modes, respectively.  It can be noticed 

that, variations of the transmitted coefficients, C
e
y, and C

e
x with the separation are nearly 

close together, and almost stable. 

   Variation of the quasi-TE (H
y
11) and quasi-TM (H

x
11) odd modes, in terms of waveguide 

separation are shown in black dashed-dotted and dark green short-dashed lines. It can be 

observed that as the separation increases, the odd transmitted coefficients for both quasi-TE 

(H
y
11) and TM (H

x
11) modes. It is also shown that, the odd mode for both polarized modes are 

significantly lower than its even supermodes transmitted coefficient, and also very much 

separation between the waveguides dependence. The transmitted coefficients, C
e
y and C

o
y for 

the quasi-TE (H
y
11) even and odd supermodes are calculated as 0.83536 and 0.67721, 

respectively, and transmitted coefficients of the even and odd quasi-TM (H
x
11) supermodes, 

C
e
x and C

e
o are obtained 0.81770 and 0.58613, respectively, when S = 150 nm.  

   Figure. 5.26 shows the variation of the power transfer for different separations between the 

waveguides for H = 280 nm, and W = 311 nm. The solid blue line P4-y and the red dashed-

dotted-dotted line P3-x show the power transfer characteristics for the quasi-TE (H
y
11) and 

polarized modes in the Cross-port (Port 4) and quasi-TM (H
x
11) mode in the Bar-port (Port 3), 

respectively. The dark short-dashed shows the quai-TM power transfer characteristic in Port 

4 (P4-x) and the dark green dashed-dotted line shows the TE power transfer characteristics in 

port 3 (P3-y). In this case, it can be noticed that transfer of the quasi-TM power (P3-x) in port 3 

with the cross talk (P4-x) in port 4 have deteriorated significantly compared to the transfer of 

quasi-TE power (P4-y) in Port 4, and its cross-talk (P3-y) state in the port 3. For the quasi-TE 

mode power transfer to Cross-Port (P4-y) was 92 %, represent only 0.40 dB loss, when           

S = 150 nm, and 77 % power transferred to Bar-Port (P3-x) with a loss value of 1.10 dB. It is 

shown here that for separation S = 150 nm, P3-y and P4-x, to the Cross-Port and the Bar-Port, 

demonstrate those C.T are – 18 dB, and – 12 dB, respectively.  

 

   Weak coupling can also make the device sensitive with the fabrication tolerances. 

Therefore, it may be necessary to control the separation of these waveguides within a few 

nanometers, and sensitivity of this parameters, must be studied.  

   Figure 5.27 shows the variation of the waveguide width for both quasi-TE (H
y
11) and quasi-

TM (H
x
11) modes with the separation between the waveguides. The W is clearly increased as 

the S is increased from 140 nm to 300 nm, giving a 317 nm at the optimum position at           

S = 300 nm. This is anticipated, since increased simultaneously, the separations and widths is 

equivalent to the increase in device length. 
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Fig. 5.27 Variation of the waveguides width of the 

supermodes with the changes in the separation, S. 

 

 

Fig.5.28 Variation of the power transfer for the 

quasi-TM and quasi-TE modes, and coupling 

length of the quasi-TE mode with the waveguide 

separation, S. 

 

    

   Figure 5.28 shows the variation of the power transfer for the quasi-TE and quasi-TM 

polarized modes as a function of the waveguide separation by using the LSBR method. In this 

case, its height was kept fixed at 300 nm, and width was adjusted to achieve RTE-TM = 2.00 for 

a given separation. It can be noticed that, by increasing the separation between the 

waveguides width, transferred power of quasi-TE polarized mode to the Port-4 and quasi-TM 

polarized mode into the Port-3 are increased. It can be noticed from this figure that when the 

separation between the guides change from the 140 nm to the 300 nm, the power transfer 

increased from the 0.9415 to 0.9543 for the quasi-TE input in Port-4 and from  0.8055 to 

0.8429 for the quasi-TM polarized modes in Port-3, respectively. At the same time, the cross-

talk improved from -18.6 dB to -26 dB for the quasi-TE input and from -13 dB to the -20 dB 

for the quasi-TM polarized modes, respectively (but not shown here). The black dashed curve 

in Fig. 5.28 shows the coupling length for the quasi-TE mode (the right-hand Y –axis scale) 

as a function of the waveguide separation. It can be seen from this figure that, as the 

separation between the guides is increased from 140 to 300 nm, the coupling length (L = Lc
y
) 

increases linearly from 5.0 µm to 17.9 µm.  

   Variation of the power transfer for the different separation between the waveguides for      

H = 300 nm, W = 317 nm and L = 17.9 µm are studied next, and shown in Fig. 5.29. The 

solid blue shows the quasi-TE power transfer characteristics in   Port 4 (P4-y) by using the 

LSBR result. The dashed red line shows that the quasi-TM power transfer characteristics in   

Port 3 (P3-x). In this case most of the quasi-TE polarized power transferred to Cross-Port (P4-

y) with only 0.21 dB loss and quasi-TM power into Bar-Port (P3-x) with 0.74 dB loss. It can 

be noticed that from this curve that the deterioration of the quasi-TM power transfer 

characteristics (P3-x) is more severe than the quasi-TE case. It can be noted that quasi-TE 

output power in Cross-Port is better than 50 % of its maximum value, when separation is in 

the range of 240 nm to 400 nm. On the other hand quasi-TM output in the Bar-Port is better 

than 50 % of its maximum value, when separation is between 275 nm to 340 nm. This 
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narrower quasi-TM range is due to n being double of m. In Fig. 5.29, the green dashed-dotted 

line shows the cross-talk in the Bar-port (P3-y) for the quasi-TE case and the dashed-dotted 

black line shows the cross-talk in the Cross-port (P4-x), for the quasi-TM polarization mode, 

calculated by the LSBR method. It can be noticed that change in separation can deteriorate 

the cross-talk for the both cases, but this also shows cross-talk for quasi-TM mode is more 

sensitive compare to the quasi-TE mode. As can be seen from this figure, when  S = 300 nm, 

at the end of the device length, for both the quasi-TE and quasi-TM modes, almost zero 

power remained in Port 3 and Port 4, respectively. 
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Fig.5. 29 Variation of the power transfer for the different separations 

                                  between the waveguides, for H = 300 nm and W = 317 nm. 

 

 

   5.8 Fabrication tolerance analysis of the operating wavelength: 

 

   In this section, the effect of the operating wavelength on the polarization splitter behavior is 

considered and also a study of the fabrication tolerances on the wavelength has been carried 

out. The operating length, λ is varied from 1460 nm to 1600 nm. This structure has been 

optimized for the operating wavelength of  = 1550 nm. Any changes in the operating 

wavelength will change the coupling length, coupling length ratio and also the supermode 

coefficients. 
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Fig. 5. 30 Variation of the coupling lengths for      

H = 300 nm, W = 317 nm, and S = 150 nm with the 

operating wavelength, λ. 

Fig. 5. 31 Variation of the power transfer with the 

wavelength for H = 300 nm, S = 150 nm and         

W = 317 nm. 
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   Figure 5.30 shows the variation of the coupling lengths, Lc
TE

 and Lc
TM

 with the operating 

the wavelength, λ. It is clearly seen that the device lengths are maximum at λ = 1460 nm and 

reduced as the wavelength, λ is increased. Device length, Lc
TE

 variation is about  + 100 % and  

– 30 % with respect to the corresponding device length value for the optimum operating 

wavelength of  = 1550 nm. 

   We have identified a possible design in Figure 5.31, when H = 300 nm, when W = 317 nm 

and, S = 300 nm, when Lc
TE

 = 17.90 µm, and Lc
TM

 = 8.877 µm. So if the device length is 

equal to 17.90 µm, then it is expected that TE mode will emerge from the Cross-port (Port 4) 

and TM mode in the Bar-port (Port 3). 

   The structure has been optimized for the operating wavelength of  = 1550 nm. Any 

changes in the operating wavelength will change the coupling length, coupling length ratio, 

RTE-TM, and also the supermode coefficients. 

   However, like all other photonic devices, its performance will also depend on the accuracy 

of fabrication. As can be seen from this figure, when S = 300 nm, as desired, at the end of the 

device length,  L = Lc
TE 

= 17.90 µm, for both the quasi-TE and quasi-TM for both the TE and 

TM polarization, most of the polarized powers emerge from Ports 4 and 3, respectively. It can 

be noticed that, transfer power are 0.96 and 0.85 for the quasi-TE (H
y
11) and the quasi-TM 

(H
x
11) polarized modes, respectively. 

   Similarly at the end of the device length, L, for both TE and TM polarizations, almost zero 

power remained in Ports 3 and 4, respectively. This shows power output for TM mode is 

more sensitive. However, in this design, as the effect of small change in the wavelength on 

the power coupling is almost negligible.  

   This indicates that for many practical applications the device will have a larger operating 

bandwidth. The effect of temperature variation has also been studied for this device but this is 

not presented here.  

   It was identified that a small amount of temperature tuning may be possible, which can be 

used to compensate fabrication tolerances, but the tuning range is rather very limited. 

Similarly, as Fig.5.21 indicates a small amount of wavelength tuning can also be used to 

compensate the fabrication tolerances. 

5.9 Summary: 

   The design presented in this work uses two identical silicon nanowires, which would be 

simpler than the design approaches reported earlier by using slot waveguides [213-216]. As 

the proposed structure does not consider any bent section or slanted side wall [211], and 

[226], or trench with different etch depth [190, 198, 192] so, it would be easier to fabricate. 

    No metal clad has been used which avoids plasmonic modal loss. Two identical 

waveguides are used which shows better fabrication tolerances. This design approach is 

optimized by using rigorous numerical approaches. The above results suggest that an 

appreciable short 17.90 µm long PS can be designed at the 1.55 µm wavelength by adjusting 
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the coupling lengths ratio of the quasi-TE and quasi-TM polarized modes. Device parameters 

are optimized in such a way that the PS length is equal to odd and even multiples of the 

coupling length for two different polarizations. 

    Important fabrication parameters such as the height, width, separation, birefringence and 

wavelength sensitivity have been rigorously verified and their operating characteristics are 

shown. Maximum power transfer of 96 % for the quasi-TE polarized and 85 % for the quasi-

TM polarized modes from input TE/TM mode, with crosstalk better than – 26 dB and loss 

value lower than 0.2 dB.  

   It is shown here that, it is necessary for all the numerical methods; the stability of the 

numerical parameters should be established before the design process. Thus this high 

conversion efficiency, low footprint, simpler design, along with the use of well-matured 

fabrication technologies for SOI structures, should make the proposed design attractive for 

making an on-chip polarization splitter for their potential deployment. This design should be 

relatively easy to implement for fabrication and can be made with a single mask. It is also 

shown here that operating bandwidth of these PS is considerable wider and suitable for WDM 

application. 
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6.0 Conclusions:  

 

   The aim of this PhD research concentrated on the design characterisation, and optimization 

of the polarization diversity based silicon photonic devices. The outline arranged in the 

starting of the specific field of the research and the study has been successfully completed 

and its performance analysis of the results through the academic course is presented. 

 

   Accurate and rigorous numerical method, with high accuracy for analysing of optical 

waveguides utilized in optimal silicon photonic devices has been considered in this research. 

This fundamental strategy was used to study of modal solution in the dimensional range of 

submicron scale for such diversity polarization dependence devices. Following the literature 

review, correspondence to the study of system polarization diversity in nano-photonic 

devices, the basic and important of the numerical methods, which employed in this research 

was presented in chapter two. 

  

   The most important and versatile method, Finite Element Method according to the H- 

vector field modal solution (VFEM) and the Least Squares Boundary Method (LSBR) are 

explained in detail. For finding the modal field profile in terms of hybridness and also to 

obtain the propagation constants for the fundamental and higher order of the quasi-TE and 

quasi-TM modes as a most accurate and effective numerically approach has been introduced 

in along the research. 

   Important section of the second chapter was dedicated to the fundamental mathematical 

feature for the finite element technique, which employed for the optical waveguide devices. 

Many practical waveguide photonic devices utilized from the magnetic H-field vector 

formulation, due to field being naturally continuous across the dielectric interfaces and the 

natural boundary condition being equivalent to that of an electric wall. In this formulation, 

basic impression such as domain discretization, element matrices and also the shape functions 

as a approximate representation of the real fields in order to expand the number of elements 

to reduce the resulting error. The H-field vectorial formulation may generate spurious 

solutions, along with real and physical solutions, which cannot be ignored, and to resolve that 

modified for this non-physical solution, penalty function method by imposing the constraint 

(div.H = 0)  was employed in to that. In most of the polarization diversity system, finding the 

characteristics of the modal field profile, and also propagation constant of the supermodes in 

the waveguides are seems to be very necessary. The Finite element technique is the one of the 

most powerful and accurate method which can be applied to obtain the modal birefringence 

solution in such nano-photonic devices.  

   On the other hand, it would be considered to calculate the initial modal field profile, and 

supermodes field distribution data at the discontinuities in the waveguide junctions for the 

analysis by using the Least Squares Boundary Residual (LSBR) method. It is presented in 

Chapter 2, by using the transmission and reflection coefficients of all the polarized modes, 

without ignoring the guided and radiation modes, to calculate the power transfer efficiency 



Chapter 6  Conclusion and Future Work 

112 
 

between two waveguides and also the insertion power loss of discontinuities in butt-junction 

nano-diversity devices. 

   Monolithic integration an appropriate of optical and electronic potential on unique substrate 

is the prospective of an integrated nano-photonic system. Employing silicon would be able to 

develop a platform for a such monolithic integration, for interconnecting of optics and 

microelectronic devices. Therefore, in order to design of optical system, the cross-section of 

the waveguide devices must be considered in the submicron dimensions. The small 

dimensions of the silicon waveguides enable ultra-compact devices to be integrated on-chip. 

Their high-confinement nature offers the potential of the light enhancing in the small region. 

   Chapter 3 reported a Si nano-wire waveguide based on the silicon-on-insulator (SOI) 

platform. Silicon nano-wire waveguide is the fundamental device and very most prominent in 

several Photonic Integrated Circuit (PIC) fabrication technology. In this chapter, the Si nano-

scale waveguide were presented with critical dimension and effect of its specific 

characterization from the modal solution. The spatial variations of the H-field vectorial 

formulation were shown for any practical devices. The range of  waveguide width for a single 

and second higher modes of the different heights for a Si core with the air clad has been 

shown in wavelength of 1550 nm and, also, the important results come out from the modal 

solution, such as modal hybridness, power confinement, modal birefringence were discussed 

in detail. It was found from the simulation data generated for the standard and practical nano-

wire waveguide, that H = 220 nm, amplitude of the dominant field profile and effective area 

are 6.13 and 0.186 µm
2
, respectively, when waveguide width is 350 nm, and also, the single 

mode operation occurs when widths around between 280 nm to 360 nm.  

   A novel compact polarization rotator using with two simple silicon nanowires was shown 

which unequal waveguide widths. The Si polarization rotator proposed here, illustrates an 

ultra-compact design without slanted side wall or bent. Optimize design of a Si polarization 

rotator based on SOI technology was presented which requires less complex fabrication 

process with single mask only and is compatible with mature CMOS technology, which is 

backed by a well-established semiconductor industry. Accurate calculation of the magnitudes 

of the non-dominant field components and their profiles for the fundamental quasi-TE and 

quasi-TM polarized modes are of great importance when designing a PR. It has been shown 

that, this modal hybridness becomes more prominent as the index contrast increases, as in 

silicon nano-wires devices.  

   In the design process, it is necessary not only to increase the magnitude of the non-

dominant field components but also its profile, which also can be optimized to enhance its 

overlap with the dominant field components to achieve maximum polarization rotation. A 

full-vectorial finite element method is needed and used here to obtain the modal field profiles 

of the constituent WGs. A junction analysis approach also can be used, as the proposed PR 

structure is composed of only two butt-coupled uniform WG sections with only two discrete 

interfaces between them. Therefore, powerful numerical approach, the least-squares boundary 

residual (LSBR) method also can be used, which rigorously satisfies the continuity of the 

tangential electric and magnetic fields at the junction interface in a least-squares sense and 
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obtains the modal coefficients of the transmitted and reflected fully hybrid modes at the 

discontinuity interface. It has been shown that, it was important to design a polarization 

rotator waveguide that can rotate an incoming TE input wave to the converted to TM 

polarized wave mode. It was found that more than 99% of polarized power conversion 

obtained with a compact device length of 52.8 µm long. The mentioned polarization rotator 

can be achieved with a low-loss, wide bandwidth and polarization cross-talk – 20 dB.  

   In chapter 5, polarization splitter based on silicon-on-insulator (SOI) platform has been 

presented incorporates with two simply coupled silicon nanowires. This design can be easily 

fabricated by using standard Complementary Metal-Oxide-semiconductor (CMOS) 

technology and fully compatible with standard active silicon photonics platform. Polarization 

splitters generally are increasingly being considered for the realization of integrated-optical 

circuits for optical sensors and communication applications, where polarization plays an 

essential role.  

    In polarization splitter, the input wave to the device, separated to the couple orthogonal 

TE/TM polarized waveguides, and emerges from the two different ports. Device performance 

has been achieved by considering these two ports, called Cross-port, and Bar-port. Here, the 

modal characteristics presented are strongly polarization independent due to the high 

birefringence in the optical waveguides. The numerical simulation carried out for the device 

using the versatile and accurate vectorial finite element technique; indicate to the dependence 

of the quasi-TE, and quasi-TM polarization modes. This two polarized in terms on even and 

odd modes would be exploited to find the polarization splitting ratio to the design of a 

compact polarization splitter.  

   Accuracy of the design parameters obtained will critically depend on the using a given 

numerical methods. The accuracy of these design parameters are depend on the number of 

elements used in the FEM method. In this chapter calculation of the critical numerical 

parameters with the mesh divisions used are studied accurately. A powerful, full-vectroial 

numerical approach, the Least Squares Boundary Residual (LSBR) can be used to analyse 

discontinuity along a waveguide devices, which consists of two discrete interfaces. By 

employing the FEM propagation constant for the even and odd for the quasi-TE and quasi-

TM fundamental modes are calculated and employed as the input data to the LSBR method. 

This method would be more efficient to use to find the exited modal coefficients followed by 

calculate the power conversion between the two polarization states at the butt-coupled 

junctions in the device.  

   The polarization splitter proposed based on silicon-on-insulator (SOI) is very compact 

design without a metal clad section or bent and less complex fabrication, and compatible with 

the mature CMOS technology, by using two simple coupled identical nanowires. This design 

approach is optimized by using rigorous numerical approaches. The above results suggest 

that an appreciable short 17.90 µm long PS can be designed at the 1.55 µm wavelength by 

adjusting the coupling lengths ratio of the quasi-TE and quasi-TM polarized modes. Device 

parameters are optimized in such a way that the PS length is equal to odd and even multiples 

of the coupling length for two different polarizations. 
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   Important fabrication parameters such as the height, width, separation, birefringence and 

wavelength sensitivity have been rigorously verified and their operating characteristics are 

shown. Maximum power transfer of 96 % for the quasi-TE polarized and 85 % for the quasi-

TM polarized modes from input TE/TM mode, with crosstalk better than – 26 dB and loss 

value lower than 0.2 dB. 

6.1 Suggestion for future work: 

   A 2-dimensional Bragg grating can be considered to couple both TE and TM modes. The 

beam profile generated by Bragg grating coupler is not exactly a Guassian mode therefore it 

is necessary to improve the beam shape. Apodized grating can be considered to improve the 

beam profile for better coupling but this requires multiple masking steps in the fabrication 

process. 

Design of a PIC with a polarization diversity system that consists of polarization rotator and 

polarization splitter can be considered.  

   The polarization rotator can be presented with Si asymmetric structure, and also use the 

directional coupler based on Si nanaowires, with using the mask between them. 

   Design of the polarization rotator, and also polarization splitter with two simple nanowires 

waveguide, employing the SiO2 cladding. 

    Design of polarization rotator with propose the phase-matching condition to the 

fundamental mode of the quasi-TE (H
y
11) with the second mode of the quasi-TM (H

x
12) 

mode, for the different design consist of symmetric and asymmetric cross-section Si NWs, 

with surrounded with several material such as SiO2. 

    Design and study of an active polarization controller can be carried out in silicon 

nanowirer structure by using twin electrodes with both biasing and controlling signals. The 

asymmetry is introduced by incorporating a non-symmetric modulating electric field in order 

to control polarization conversion. In this case both the phase matching and polarization 

conversion can be achieved simultaneously. 

    Cascaded polarization rotator and splitter designs using slanted silicon nanowire 

waveguides. 

   Functional device operates with only TE or TM polarized optical signals. In a polarization 

diversity photonic circuit as Figure shown in 1.1, a single polarization is obtained and two 

sections may work together in parallel with unique structure. This could be a polarization 

sensitive microring resonator employed for optical signal processing such as modulating, 

filtering, switching or multiplexing.  
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Calculation of Element Matrices: 
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