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A v-ANALOGUE OF PEEL’S THEOREM

JOSEPH CHUANG, HYOHE MIYACHI, AND KAI MENG TAN

Abstract. We compute the v-decomposition numbers dλµ(v) for λ be-
ing a hook partition, and µ e-regular.

1. Introduction

Throughout we fix an integer e ≥ 2. Lascoux, Leclerc, and Thibon [8] used

the representation theory of the quantum affine algebra Uv(ŝle) to introduce
for every pair of partitions λ and σ, with σ e-regular, a polynomial dλσ(v)
with integer coefficients (which depends on e). They conjectured these poly-
nomials to be v-analogues of decomposition numbers for Hecke algebras at
complex e-th root of unity (hence the term ‘v-decomposition numbers’); this
conjecture was proved later by Ariki [1]. These v-decomposition numbers
are also known to be parabolic affine Kazhdan-Lusztig polynomials.

Leclerc’s lectures [9] are a good introduction to this subject as well as a
convenient reference for the results we need here.

The purpose of this note is to prove the following theorem, which describes
the v-decomposition numbers corresponding to rows labelled by hook parti-
tions:

Theorem 1. For 0 ≤ i ≤ n − 1, let αn
i = (n − i, 1i) and denote its ‘e-

regularised’ partition by (αn
i )

R (see §2.1).

(1) If e ≥ 3, then

dαn
i (α

n
i )

R(v) =

{
v⌊i/e⌋, if e ∤ n, or both e | n and i < n− n

e ,

v⌊i/e⌋+1, if e | n and i ≥ n− n
e ;

dαn
i (α

n
i−1

)R(v) = v⌊i/e⌋+1, if e | n and 1 ≤ i < n− n
e ;

dαn
i (α

n
i+1

)R(v) = v⌊i/e⌋, if e | n and n− n
e ≤ i < n;

dαn
i σ
(v) = 0, for all other e-regular σ’s.

(2) If e = 2, then

dαn
i (α

n
j )

R(v) =





v⌊i/2⌋, if j ≤ i < n− j and i− j even,

v(i+1)/2, if 2 | n, j < i < n− j, i odd and j even,

vi/2+1, if 2 | n, j < i < n− j, i even and j odd;

dαn
i σ
(v) = 0, for all other e-regular σ’s.
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Peel [13] initiated the study of the corresponding decomposition numbers
of symmetric group algebras in odd characteristic, and this is continued by
James [4, Theorem 6.22] and James-Mathas [6, Theorem 7.6] for Hecke alge-
bras at complex e-th root of unity with e ≥ 2. When we use these theorems
of James and James-Mathas together with Ariki’s theorem [1], we can then
conclude that these v-decomposition numbers, when non-zero, are monic
monomials. However, we do not make use of this fact here and work en-

tirely in the context of the basic Uv(ŝle)-module (or the Fock space), thereby
providing another proof of these corresponding decomposition numbers of
Hecke algebras when we evaluate these v-decomposition numbers at v = 1
and use Ariki’s theorem.

This paper is organised as follows: in section 2, we introduce the back-
ground theory and obtain some useful preliminary results. We then prove
part (1) and (2) of Theorem 1 in sections 3 and 4 respectively.

2. Background

2.1. Partitions. A partition is a nonincreasing sequence λ = (λ1, λ2, . . . )
of nonnegative integers. We write |λ| =

∑
i λi. If |λ| = n, we say that λ

is a partition of n. We denote the set of partitions of n by Pn, and write
P =

⋃
n Pn for the set of all partitions. A partition λ is e-regular if and

only if there is no i such that λi = λi+1 = · · · = λi+e−1 6= 0. We identify a
partition λ = (λ1, λ2, . . .) with its Young diagram

{
(j, k) ∈ Z+ × Z+ | 1 ≤ k ≤ λj

}
.

The standard lexicographic and dominance ordering on Pn are denoted by
> and ⊲ respectively, and we introduce a total ordering ≻ on P as follows:
λ ≻ µ if, and only if, either |λ| > |µ| or both |λ| = |µ| and λ > µ.

Given any integer j, we write j for its residue class modulo e. The residue
of a node (j, k) in a Young diagram µ is k − j. If (j, k) has residue i, we
say that (j, k) is an i-node. If in removing (j, k) from µ, we obtain a Young
diagram λ then we call (j, k) a removable i-node of µ or an indent i-node of
λ.

A ladder ℓ = ℓr is a set of nodes of the form

{(j, k) ∈ Z+ × Z+ | k = (1− e)j + r}.

All nodes in ℓr have residue r. The intersection of a ladder with the Young
diagram λ is a ladder of λ. If we replace each ladder of λ by the same
number of nodes as high up as possible in the same ladder, then we obtain
an e-regular partition which is labelled λR [5, 6.3.48].

2.2. The algebra Uv(ŝle) and its basic module. The algebra U = Uv(ŝle)
is the associative algebra over C(v) with generators ei, fi, ki, k

−1
i (0 ≤ i ≤

e − 1), d, d−1 subject to certain relations for which the interested reader
may refer to, for example, [9, §4]. An important U -module is the Fock space
representation F [3, 12], which as a C(v)-vector space has a basis {s(λ)}λ∈P .
For our purposes an explicit description of the action of just the fi’s on F
will suffice.

Let λ be a partition with m indent i-nodes (j1, k1), (j2, k2), . . . , (jm, km),
and write µ for the partition obtained by adding these m indent nodes to λ.
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Let Nr be the number of indent i-nodes of λ not equal to (js, ks) for all s
that are situated to the right of (jr, kr) minus the the number of removable
i-nodes of λ situated to the right of (jr, kr). Let N(λ, µ) =

∑m
r=1Nr. We

have

f
(m)
i s(λ) =

∑

µ

vN(λ,µ)s(µ),

where f
(m)
i = fm

i /(
∏m

r=1
vr−v−r

v−v−1 ), and the sum is over all Young diagrams µ
obtained from λ by adding m indent i-nodes.

We identify the basic U -module M(Λ0) with the U -submodule of F gen-
erated by s(∅). This is an irreducible highest weight module for U , and has
a distinguish basis {G(σ)}, called the canonical basis or lower global crystal
basis, which is indexed by e-regular partitions σ [7]. Let 〈−,−〉 denote the
inner product on F for which {s(λ) | λ ∈ F} is orthonormal. Then the
v-decomposition number dλσ(v) is defined as 〈G(σ), s(λ)〉, the coefficient
of s(λ) in G(σ). These v-decomposition numbers are shown to have the
following properties:

Theorem 2 ([8, Theorem 6.8], [14]; see also [11, Theorem 6.28]). We have

dσσ(v) = 1,

dλσ(v) ∈ vN[v] for all λ 6= σ.

Furthermore, dλσ(v) 6= 0 only if λ E σ, and λ and σ have the same e-core.

Lascoux, Leclerc and Thibon provided a recursive combinatorial algo-
rithm to calculate G(σ)’s. Now commonly known as the LLT algorithm, it
is based on the following principle:

Theorem 3. Let σ be an e-regular partition, and let σ̃ be the partition
obtained by removing the rightmost ladder of σ, which has residue r and
size k. Then

f (k)
r (G(σ̃)) = G(σ) +

∑

µ⊳σ
µ e-regular

Lµ(v)G(µ),

with Lµ(v) = Lµ(v
−1) ∈ N[v, v−1].

2.3. Notations. We adopt the following notations in this paper:

(1) If x, y, x− y ∈
⊕

λ∈P N[v, v−1]s(λ), then we write y | x.
For example, dλµ(v)s(λ) | G(µ) by Theorem 2, and, keeping the

notation of Theorem 3, G(σ), Lλ(v)G(λ) | fr(G(σ̃)).

(2) If x ∈ F , then [x]hook =
∑

n

∑n−1
i=0 〈x, s(αn

i )〉 s(α
n
i ), the ‘hook-part’

of x.
(3) If k ∈ Z, then k denotes the residue class of k modulo e, and

δk =

{
1, if e | k;

0, otherwise.

(4) We denote the hook partition (n− i, 1i) (for 0 ≤ i < n) by αn
i .
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2.4. Some useful results. We collate together some results which we shall
require.

Proposition 4. Keep the notations of Theorem 3, and let
〈
f
(k)
r (G(σ̃)), s(λ)

〉
=

p(v) (λ ⊳ σ).

(1) If p(v) = 1, then λ is e-regular, Lλ(v) = 1 and dλσ(v) = 0.
(2) If p(v) = vm with m > 0, and dλµ(v) 6= vm for all e-regular µ with

λ ⊳ µ ⊳ σ, then dλσ(v) = vm.

(3) If p(v) ∈ N[v], and
〈
f
(k)
r (G(σ̃)), s(µ)

〉
∈ vN[v] for all e-regular µ

with λ ⊳ µ ⊳ σ, then Lλ(v) = p(0) and dλσ(v) = p(v)− p(0).

Proof. By Theorem 3, p(v) = dλσ(v)+
∑

µ Lµ(v)dλµ(v), where the sum runs
over e-regular partitions µ ⊳ σ.

If p(v) = vm with m ≥ 0, then since Lµ(v) ∈ N[v, v−1], dλµ(v), dλσ(v) ∈
N[v], we have either

• dλσ(v) = vm, or
• dλσ(v) = 0, and Lµ0

(v) = 1, dλµ0
(v) = vm for some e-regular µ0 ⊳ σ

while Lµ(v)dλµ(v) = 0 for all other e-regular µ ⊳ σ.

Thus, (2) follows since dλµ0
(v) 6= vm with m > 0 implies λ ⊳ µ0 by Theorem

2, while (1) follows since dλν(v) 6= 1 unless λ = ν by Theorem 2.
For (3), if Lµ(v) 6= 0 for some λ ⊳ µ ⊳ σ, let µ0 be maximal in the domi-

nance order among these. Then
〈
f
(k)
r (G(σ̃)), s(µ0)

〉
= dµ0σ(v) + Lµ0

(v) by

Theorems 2 and 3. Thus,

Lµ0
(v) =

〈
f (k)
r (G(σ̃)), s(µ0)

〉
− dµ0σ(v) ∈ vN[v]

by our hypothesis and Theorem 2. But this contradicts Lµ(v) = Lµ(v
−1).

Thus, Lµ(v) = 0 for all λ ⊳ µ ⊳ σ, so that p(v) = dλσ(v) + Lλ(v). If p(v) =
a0+a1v+· · ·+amvm, then the fact that Lλ(v) = Lλ(v

−1) ∈ N[v, v−1], as well
as dλσ(v) ∈ vN[v], forces Lλ(v) = a0 = p(0) and dλσ(v) = a1v+· · ·+amvm =
p(v)− p(0). �

The following lemma follows immediately from the Young diagram of a
hook partition.

Lemma 5. We have [fr(s(λ))]hook = 0 unless λ = αn
i for some i, n ∈ N

with i < n, and

[fr(s(α
n
i ))]hook = δn−i−rs(α

n+1
i ) + δr+i+1v

δn+1−δn+δrs(αn+1
i+1 ).

In particular, if x ∈ F , then [fr(x)]hook = [fr([x]hook)]hook.

The following v-decomposition numbers are computed by Lyle in her
Ph.D. thesis.

Proposition 6 ([10, Theorem 2.2.3]).

(1) If e ≥ 3 and e | n, then d(n−1,1),(n)(v) = v = d(n−1,2),(n+1)(v).
(2) If e = 2 and 0 ≤ i < n/2, then

d(n−i,i)σ(v) =





1, if σ = (n− i, i);

v, if σ = (n− i+ 1, i− 1) and 2 | n;

0, otherwise.
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3. Part (1) of Theorem 1

Throughout this section, we assume e ≥ 3. For each i ∈ Z, we denote its
quotient and remainder, when i is divided by e−1, by qi and si respectively.
If 0 ≤ i < n, let

βn
i =

{
(n − i, (qi + 1)s, qe−1−si

i ), if n− i > qi + 1;

((qi + 1)si+1, qe−2−si
i , n− i− 1), if n− i ≤ qi + 1.

Then βn
i = (αn

i )
R. It is not difficult to check that the condition n−i > qi+1

is equivalent to i ≤ (n − 1)(1 − 1
e ). Furthermore, if j = ⌊(n − 1)(1 − 1

e )⌋,
then

βn
0 > βn

1 > · · · > βj , βj+1 < βj+2 < · · · < βn−1,

and βj ≥ βj+1 with equality if and only if e | n.
Before we state the main theorem of this section, we prove the following

proposition, which helps to take care of a special case later:

Proposition 7. Suppose i, n ∈ Z+ satisfy e | n, (e− 1) | i and 0 < n− i <
i/(e − 1). Then dβn

i−1
βn
i
(v) = v and dβn

i−2
βn
i
(v) = 0.

Proof. The rightmost ladder of βn
i = (qi + 1, qe−2

i , n − i − 1) has size 1

and residue qi, and removing it produces βn−1
i−1 = (qe−1

i , n − i − 1). Since

βn
i−1 = (qe−1

i , n − i) has a unique removable qi-node (removal of this node

produces βn−1
i−1 ), so that

〈
fqi(s(µ)), s(β

n
i−1)

〉
= 0 for all µ 6= βn−1

i−1 , we have
〈
fqi(G(βn−1

i−1 )), s(β
n
i−1)

〉
=

〈
fqi(s(β

n−1
i−1 )), s(β

n
i−1)

〉
= v.

Now if βn
i−1 ⊳ λ ⊳ βn

i , then λ = (qi + 1, qe−3
i , qi − 1, n− i), so that λ has a

unique removable qi-node, and its removal produces λ̃ = (qe−2
i , qi− 1, n− i).

Thus,
〈
fqi(G(βn−1

i−1 )), s(λ)
〉
=

〈
fqi(dλ̃βn−1

i−1

(v)s(λ̃)), s(λ)
〉
= d

λ̃βn−1

i−1

(v),

so that dβn
i−1

βn
i
(v) = v by Theorem 2 and Proposition 4(3) .

For dβn
i−2

βn
i
(v), note that βn

i−2 = (qe−2
i , qi − 1, n − i + 1) has a unique

removable qi-node, and removing it produces ν = (qe−2
i , qi − 2, n − i + 1).

We have dνβn−1

i−1

(v) = d(m−2,2),(m)(v) wherem = qi−n−i+1, by [2, Theorem

1], which in turn equals v by Proposition 6(1). Hence
〈
fqi(G(βn−1

i−1 )), s(β
n
i−2)

〉
=

〈
fqi(vs(ν), s(β

n
i−2)

〉
= 1.

Thus, by Proposition 4(1), dβn
i−2

βn
i
(v) = 0. �

The following is a reformulation of Part (1) of Theorem 1.

Theorem 8. Suppose e ≥ 3. Then

[G(βn
i )]hook =

{
v⌊i/e⌋s(αn

i ) + δnv
⌊(i+1)/e⌋+1s(αn

i+1), if i ≤ (n− 1)(1 − 1
e );

v⌊i/e⌋+δns(αn
i ) + δnv

⌊(i−1)/e⌋s(αn
i−1), if i > (n− 1)(1 − 1

e ).

Furthermore, [G(σ)]hook = 0 for all other e-regular σ’s.

Note. When e | n and i = ⌊(n−1)(1− 1
e )⌋, then the formulas for [G(βn

i )]hook
and [G(βn

i+1)]hook as stated in Theorem 8 coincide as expected, sinceG(βn
i ) =

G(βn
i+1).
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Proof. We prove by induction. For n = 0, 1, the theorem is trivially true.
Let σ be an e-regular partition of n such that [G(σ)]hook 6= 0, and assume
the theorem holds for all e-regular partitions λ ≺ σ. Suppose the rightmost
ladder of σ has residue r and size k, and removing this ladder produces
σ̃. By Theorem 3 and Lemma 5, [G(σ̃)]hook 6= 0, so that by induction

hypothesis, σ̃ = βn−k
i for some i. Let q, s ∈ Z such that i = q(e − 1) + s,

with 0 ≤ s < e− 1.
We have the following two cases to consider:

Case 1. i ≤ (n− k − 1)(1 − 1
e ):

σ̃ = βn−k
i = (n− k − i, (q + 1)s, qe−1−s)

From the above Young diagram of σ̃, we see that the rightmost
ladder of σ has size 1 (i.e. k = 1), containing either the indent node
in the first or second row of σ̃, the latter only if n − 1 − i = q + 2
and s ≥ 1. These two sub-cases correspond to r = n− 1− i and
r = q respectively, and will be considered separately. We note that
by induction hypothesis, we have

(∗) [G(σ̃)]hook = v⌊i/e⌋s(αn−1
i ) + δn−1v

⌊(i+1)/e⌋+1s(αn−1
i+1 ).

Case 1a. r = n− 1− i: In this subcase, σ = βn
i . From (∗), The-

orem 3 and Lemma 5, we see that

[fr(G(σ̃))]hook = [v⌊i/e⌋fr(s(α
n−1
i )) + δn−1v

⌊(i+1)/e⌋+1fr(s(α
n−1
i+1 ))]hook

= v⌊i/e⌋s(αn
i ) + δnv

⌊i/e⌋+δi+1+1s(αn
i+1)

= v⌊i/e⌋s(αn
i ) + δnv

⌊(i+1)/e⌋+1s(αn
i+1).

By induction hypothesis, if λ < σ, dαn
i λ
(v) = 0, and dαn

i+1
λ(v) =

0 unless λ = βn
i+1, in which case dαn

i+1
λ(v) = v⌊(i+1)/e⌋. Thus,

by Proposition 4(2),

[G(σ)]hook = v⌊i/e⌋s(αn
i ) + δnv

⌊(i+1)/e⌋+1s(αn
i+1)

as required.
Case 1b. r = q: Here, s ≥ 1 and n − 1 − i = q + 2. By Lemma

5, fr(s(α
n−1
i )) = 0. Since [G(σ)]hook 6= 0, we see from (∗),

Theorem 3 and Lemma 5 that [fr(δn−1s(α
n−1
i+1 ))]hook 6= 0. This

forces e | (n− 1) and s = e− 2. Thus σ̃ = (q + 2, (q + 1)e−2, q)
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and σ = ((q + 2)2, (q + 1)e−3, q) = βn
i+2 and

[fr(G(σ̃))]hook = [fr(v
⌊(i+1)/e⌋+1s(αn−1

i+1 ))]hook

= v⌊(i+1)/e⌋+δrs(αn
i+2)

= v⌊(i+2)/e⌋s(αn
i+2)

By induction hypothesis and Proposition 4(2),

[G(σ)]hook = [fr(G(σ̃))]hook = v⌊(i+2)/e⌋s(αn
i+2)

as required.
Case 2. i > ⌊(n− k − 1)(1 − 1

e )⌋: By induction hypothesis, we have

(∗∗) [G(σ̃)]hook = v⌊i/e⌋+δn−ks(αn−k
i ) + δn−kv

⌊(i−1)/e⌋s(αn−k
i−1 ).

σ̃ = βn−k
i = ((q + 1)s+1, qe−2−s, n− k − i− 1)

From the above Young diagram of σ̃, we see that the rightmost
ladder of σ contains either of the first two indent nodes of σ̃, or
both. These three sub-cases correspond to (a) k = 1, r = q + 1, (b)
k = 1, r = −i− 1 and (c) k = 2, r = q + 1 = −i− 1 respectively:
Case 2a. k = 1, r = q + 1: Since [G(σ)]hook 6= 0, we see from

(∗∗), Theorem 3 and Lemma 5(1) that either [fr(s(α
n−1
i ))]hook

or [fr(δn−1s(α
n−1
i−1 ))]hook 6= 0. Suppose that [fr(δn−1s(α

n−1
i−1 ))]hook 6=

0. Then e | (n− 1), and s = 0 by Lemma 5(1). If n− i− 1 = q,
then σ̃ = βn

i−1, and we have dealt with this in subcase 1b. If
n − i − 1 < q, then by Proposition 7, we have dβn−1

i−1
σ̃(v) = v

and dβn−1

i−2
σ̃(v) = 0. As the two removable nodes of βn

i−1 =

(qe−1, n−i) have residue r, and removing them in turn produces
βn−1
i−1 (= (qe−1, n− i− 1)) and βn−1

i−2 (= (qe−2, q − 1, n− i)), we
see that

〈
fr(G(σ̃)), s(βn

i−1)
〉
=

〈
fr(vs(β

n−1
i−1 )), s(β

n
i−1)

〉

= 1.

Thus G(βn
i−1) | fr(G(σ̃)) by Proposition 4(1). Since

[fr(v
⌊(i−1)/e⌋s(αn−1

i−1 ))]hook = v⌊(i−1)/e⌋s(αn
i−1)

= dαn
i−1

βn
i−1

(v)s(αn
i−1)

from induction hypothesis, we see that [fr(v
⌊(i−1)/e⌋s(αn−1

i−1 ))]hook
gives zero contribution to [G(σ)]hook.
We thus conclude that [fr(s(α

n−1
i ))]hook 6= 0. Consequently,

s = n− 2 (equivalently, r = n− i− 1) or s = e − 2. If s =
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n− 2 6= e−2, then since βn
i = ((q+1)s+1, qe−2−s, n− i−1) has

two removable r-nodes, and removing them in turn produces σ̃
and µ = ((q + 1)s+1, qe−3−s, q − 1, n − i− 1), we have

〈fr(G(σ̃)), s(βn
i )〉 =

〈
fr(s(σ) + dµσ̃(v)s(µ)), s(β

n
i )
〉

= 1 + vdµσ̃(v)

Note that by [2, Theorem 1], dµσ̃(v) = d(m−1,1),(m)(v), where
m = q − (n − i − 2), which in turn equals v by Lemma 5(2).
Thus 〈fr(G(σ̃)), s(βn

i )〉 = 1 + v2. Now, if βn
i ⊳ λ ⊳ σ, then

λ = ((q + 1)s+2, qe−3−s, n− i− 2),

which has a unique removable r-node that upon removal pro-

duces λ̃ = ((q + 1)s+2, qe−4−s, q − 1, n − i− 2) ⋪ σ̃. Thus,

〈fr(G(σ̃)), s(λ)〉 = d
λ̃σ̃
(v)

〈
fr(s(λ̃)), s(λ)

〉
= 0

by Theorem 2, so that G(βn
i ) | fr(G(σ̃)) (and dβn

i σ
(v) = v2) by

Proposition 4(3). But

〈fr(G(σ̃)), s(αn
i )〉 =

〈
fr(v

⌊i/e⌋+δn−1s(αn−1
i ), s(αn

i )
〉

= v⌊i/e⌋+δn−1

= dαn
i β

n
i
(v),

so that [fr(v
⌊i/e⌋+δn−1s(αn−1

i ))]hook gives zero contribution to
[G(σ)]hook, a contradiction. Thus, s = e−2, and hence σ = βn

i+1
and

[fr(G(σ̃))]hook = [fr(v
⌊i/e⌋+δn−1s(αn−1

i ))]hook

= δnv
⌊i/e⌋+δn−1s(αn

i ) + v⌊i/e⌋+δr+δns(αn
i+1)

= δnv
⌊i/e⌋s(αn

i ) + v⌊(i+1)/e⌋+δns(αn
i+1)

By induction hypothesis and Proposition 4(2) (similar to that
used in Case 1a), we have [G(σ)]hook = [fr(G(σ̃))]hook as re-
quired.

Case 2b. k = 1, r = −i− 1: Here, σ = βn
i+1, and

[fr(G(σ̃)]hook = [fr(v
⌊i/e⌋+δn−1s(αn−1

i ) + δn−1v
⌊(i−1)/e⌋s(αn−1

i−1 ))]hook

= δnv
⌊i/e⌋s(αn

i ) + v⌊i/e⌋+δn+δrs(αn−1
i+1 )

= δnv
⌊i/e⌋s(αn

i ) + v⌊(i+1)/e⌋+δns(αn−1
i+1 ).

By induction hypothesis and Proposition 4(2) (similar to that
used in Case 1a), we have [G(σ)]hook = [fr(G(σ̃))]hook as re-
quired.

Case 2c. k = 2, r = q + 1: Here, σ̃ = ((q + 1)e−1, q), σ = (q +
2, (q + 1)e−1) = βn

i , and

[f (2)
r (G(σ̃))]hook = [f (2)

r (v⌊i/e⌋s(αn−2
i ))]hook

= v⌊i/e⌋+δrs(αn
i+1)

= v⌊(i+1)/e⌋s(αn
i+1)
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By induction hypothesis and Proposition 4(2), we have [G(σ)]hook =

[f
(2)
r (G(σ̃))]hook as required.

�

4. Part (2) of Theorem 1

In this section, we deal with the case of e = 2. Let βn
i = (n − i, i) for

i < n/2. Then βn
i = (αn

i )
R = (αn

n−1−i)
R.

The following is just a reformulation of part (2) of Theorem 1.

Theorem 9. For 0 ≤ i < n/2,

[G(βn
i )]hook =

∑

i≤j<n−i
j≡i (mod 2)

(
v⌊j/2⌋s(αn

j ) + δnv
⌊j/2⌋+1+δi+1s(αn

j+1)
)
.

Furthermore, [G(σ)]hook = 0 for all other 2-regular σ’s.

Proof. We prove by induction on n. The theorem is trivially true for n = 0, 1.
Now suppose that [G(σ)]hook 6= 0, and that the theorem holds for all 2-
regular µ ≺ σ. Let σ̃ be the partition obtained by removing the last ladder
of σ, which has size k and residue r. Then [G(σ̃))]hook 6= 0 by Theorem 3

and Lemma 5. By inductive hypothesis, σ̃ = βn−k
i = (n− k − i, i) for some

i < (n − k)/2. Thus, 1 ≤ k ≤ 3.

Case 1: k = 1: In this case, σ = βi = (n − i, i) with i < (n − 1)/2,
and r = n− i− 1. By inductive hypothesis,

[G(σ̃))]hook =
∑

i≤j<n−1−i
j≡i (mod 2)

(
v⌊j/2⌋s(αn−1

j ) + δn−1v
⌊j/2⌋+1+δi+1s(αn−1

j+1 )
)
.

Thus, by Lemma 5, we have

[fr(G(σ̃))]hook =
∑

i≤j<n−1−i
j≡i (mod 2)

(
v⌊j/2⌋[fr(s(α

n−1
j ))]hook + δn−1v

⌊j/2⌋+1+δi+1 [fr(s(α
n−1
j+1 ))]hook

)

=
∑

i≤j<n−1−i
j≡i (mod 2)

(
v⌊j/2⌋s(αn

j ) + δnv
⌊j/2⌋+1+δi+1s(αn

j+1) + δn−1v
⌊j/2⌋+1s(αn

j+2)
)

=
∑

i≤j<n−1−i
j≡i (mod 2)

(
v⌊j/2⌋s(αn

j ) + δnv
⌊j/2⌋+1+δi+1s(αn

j+1)
)
+ δn−1[G(βn

i+2)]hook,

by inductive hypothesis. Now by Proposition 6(2),

dβn−1

j σ̃(v) =





1, if j = i;

v, if j = i+ 1 and 2 | (n− 1);

0, otherwise.
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Furthermore,
〈
fr(s(λ)), s(β

n
j )
〉
= 0 unless λ = βn−1

j−1 (when r = j)

or βn−1
j (when r = n− j − 1). As such, we have

〈
fr(G(σ̃)), s(βn

j )
〉
=

∑

λ

dλσ̃(v)
〈
fr(s(λ)), s(β

n
j )
〉

= δr−jv
δn−δn−1dβn−1

j−1
σ̃(v) + δr−n+j+1dβn−1

j σ̃(v)

=





1, if j = i;

1, if j = i+ 2 and 2 | (n− 1);

0, otherwise.

Thus, keeping the notations of Theorem 3, we have in fact Lβn
i+2

(v) =

δn−1, and Lβn
j
(v) = 0 for all j 6= i, i+2 by Proposition 4(3). Hence,

together with induction hypothesis, we have

[G(σ)]hook =
∑

i≤j<n−i
j≡i (mod 2)

(
v⌊j/2⌋s(αn

j ) + δnv
⌊j/2⌋+1+δi+1s(αn

j+1)
)

as claimed.
Case 2: k = 2: In this case, σ = (a+ 1, a) = βn

a and σ̃ = (a, a − 1) =
βn−2
a−1 , where n = 2a + 1, and r = a. By induction hypothesis,

[G(σ̃)]hook = v⌊(a−1)/2⌋s(αn−2
a−1), so that by Lemma 5, we have

[f (2)
r (G(σ̃))]hook = v⌊(a−1)/2⌋+δas(αn

a)

= v⌊a/2⌋s(αn
a).

Since dαn
aµ(v) = 0 for all µ ⊳ σ by induction hypothesis, we have

[G(σ)]hook = v⌊a/2⌋s(αn
a) by Proposition 4(2) as claimed.

Case 3: k = 3: In this case, σ = (3, 2, 1). As σ is a 2-core partition,
we have G(σ) = σ by Theorem 2, contradicting [G(σ)]hook 6= 0.

�
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