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Abstract

The threshold voltage distribution after ideal programming in NAND flash

memory cells is usually distorted by a combination of the random telegraph

noise (RTN), cell-to-cell Interference (CCI), and the retention process. To de-

cide the original bits more accurately in this scenario, a precise channel model

shall be utilized on the basis of the measured threshold voltages. This paper

aims to characterize these various distortions occurring in multi-level cell (MLC)

flash memories. A mathematical description of the overall distribution for the

total flash channel distortion is presented. The final threshold voltage distribu-

tion for each symbol of MLC flash is also characterized, which is important for

calculating the exact soft decisions of cell bits and the application of advanced

flash error correction. The results of the theoretical analysis have been validated

through Monte Carlo simulations of the flash channel.

Keywords: NAND flash, error correction codes, flash channel, soft decisions

1. Introduction

NAND flash memory is becoming essential as the storage media to a range

of applications today, such as flash drive, solid state disks, mobile phone, etc.
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Generally speaking, the original information is firstly encoded with an error

correction code, and the resulted bit sequence is stored to flash memories by5

programming the cell threshold voltages to di↵erent levels. Measurement over

the flash memory channel is then used for the decoding and decision-making of

the original bits.

As program-erase (P/E) cycles and the data retention time increase, the

threshold voltage distribution of sub-20 nm NAND flash memory is commonly10

distorted severely, making the measured channel outputs extremely unreliable.

On the other hand, advanced soft decision-based error correction codes (ECC)

such as low density parity check codes (LDPC) [1, 2, 3] are gradually replacing

traditional ECC using hard decisions in the current flash memory design practice

in order to compensate for the high raw bit error probability. Decoding of these15

soft decision-based algorithms depends heavily on the accuracy of the reliability

information obtained by multiple memory measurements, or a channel model

with exactly characterized threshold voltage distribution.

Generally, Gaussian-based channel models are widely used in the study of

flash coding. For instance, pulse amplitude modulation (PAM) with Gaussian20

noise of same variances is used by Wang et al. to model flash cell threshold volt-

age levels [4]. Sun et al. approximated the flash channel with a similar model

except with di↵erent variances for each level [5]. A similar model was used by

Zhou et al. to explore the advantages of dynamic thresholds in flash reading

[6]. All of these Gaussian-based channel models are relatively simple allowing25

researchers to focus more on the coding aspects. However, the fact that the real

distribution is far di↵erent from the approximate model degrades the correctness

of reliability information. Therefore, other researchers have sought to character-

ize the final voltage distribution more accurately based on these noise sources.

Lee and Sung developed parameter estimation algorithms to find the means and30

variances of the threshold voltage, which is more exact because the parameters

are estimated separately for each symbol. However, the final distributions are

still approximated as Gaussian mixtures [7]. Dong et al. treated the cell-to-cell

interference as the dominant distortion and mathematically derived the final
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voltage distribution, but the results were approximate due to the neglect of the35

other noises [8]. Another idea is to observe the channel from the statistical view

and ignore the probability forms of distortions. The channel model based on

this idea has been proposed recently by Moon et al. and successfully used to

instruct the error correction coding [9, 10]. However, such statistical way is not

capable to provide clear mathematical descriptions of the channel noises and40

final threshold voltage distribution.

This paper derives exact probability density functions for the combined chan-

nel noises and the final cell threshold voltage that used in calculating the soft

channel information. The approach here uses the characteristic function of each

noise distribution to determine the cumulative influence caused by all noises.45

For the case of 4-level MLC flash memory, the noise distribution is calculated

and compared to simulation results. The final distributions of each symbol are

determined in explicit formulas providing a way to calculate the soft informa-

tion. Simulation results over the channel with specified P/E cycling number

and retention time demonstrate the theoretical deductions are consistent with50

the practical channel outputs.

This paper is organized as follows. Section 2 explains the basic operations

and noise sources of NAND flash memory. In Section 3, the various noises

are explained, and characteristic functions are used to investigate the channel

distribution. The final distributions for each symbol in 4-level MLC are given55

as a case study. Simulation results are also presented in this section.

2. Noises in NAND Flash Memory

The information stored in NAND flash memory is physically expressed in

the cell threshold voltages that are programmed by injecting a certain amount

of electrical charge into the memory cells. An erase operation involves removing60

the charges before programming a memory cell, which sets its threshold voltage

to the lowest voltage window. Due to operation variability, the threshold voltage

distribution of erased cells tends to have a wide Gaussian-like distribution, which
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can be approximately modelled as

p

e

(x) =
1

�

e

p
2⇡

e

�(x�µ

e

)2/2�2
e (1)

where µ

e

and �

e

are the mean and standard deviation of the erased state.65

For programming, a scheme called incremental stair pulse programming

(ISPP) is used to achieve a tight threshold voltage bound for the represen-

tation of each symbol (or level) of the MLC. Let V
p

denote the verify voltage of

the target programmed level, and �V

pp

the program step voltage. Ideally, the

ISPP results in an uniform distribution over [V
p

, V

p

+�V

pp

] which has width of70

�V

pp

. Suppose V

p

and V

p

+ �V

pp

for the k-th programmed level are denoted

as V

(k)
l

and V

(k)
r

, respectively. The threshold voltage distribution of the kth

programmed level after ideal programming can be modelled as

p

(k)
p

(x) =

8
<

:

1
�V

pp

, V

(k)
l

 x  V

(k)
r

0, else

(2)

Thus, the initial cell threshold voltages of K-level MLC flash memory, de-

noted as V (k)
i

(0  k  K � 1) have the following distributions75

V

(k)
i

s p

(k)
i

(x) =

8
<

:
p

e

(x), k = 0

p

(k)
p

(x), 1  k  K � 1
(3)

Nevertheless, the above ideal distribution can be significantly distorted in

practice by three types of noises: RTN, CCI, and charge loss in retention. These

noises are shown in the MLC flash channel model in Fig. 1. In the model,

V

(k)
f

(0  k  K � 1) is the final cell threshold voltage, and �V

RTN

, �V

CCI

and �V

ret

are the threshold voltage shifts caused by RTN, CCI and retention80

noise, respectively.

RTN is caused by the electrons capture and emission developed over P/E

cycling, and it directly results in the threshold voltage shift and fluctuation.

The probability density function of �V

RTN

can be modeled as a symmetric
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RTN CCI Rentention

Figure 1: Noise and Interferences of the MLC flash memory

exponential function85

�V

RTN

s p

r

(x) =
1

2�
r

e

�|x|/�
r (4)

where the parameter �

r

scales with the P/E cycling number N in an approxi-

mate power-law fashion, i.e., �
r

is approximately proportional to N

↵.

Due to the parasitic capacitor-coupling e↵ect, the threshold voltage shift of

one cell a↵ects the neighboring cells, resulting in CCI. The threshold voltage

shift of a victim cell caused by CCI, denoted �V

CCI

, can be estimated as90

�V

CCI

=
X

l

�V

(l)
�

(l) (5)

where �V

(l) represents the threshold voltage shift of one interfering cell which

is programmed after the victim cell, and �

l is the coupling ratio subject to the

parasitic capacitance between the interfering cell and the victim cell.

In the NAND all-bit-line structure, a victim cell is a↵ected by three sur-

rounding cells that are programmed after it, one along the vertical direction95

with �

y

while two along the two diagonal directions with �

xy

. Here we ignore

the CCI from the two diagonal directions and treat �
y

as a constant to simplify

the mathematical derivations in Section 3.

In addition to RTN and CCI, the cell threshold voltage may be reduced by

interface trap recovery and electron detrapping. This is referred to as the data100

retention limitation. It has been demonstrated that �V

ret

can be approximately

modelled as a Gaussian distribution N (µ
d

,�

2
d

), where both µ

d

and �

2
d

scale to

N in an approximate power-law fashion, and scale to the retention time t in a

logarithmic fashion. Besides, the significance of µ
d

and �

2
d

is also proportional
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to the initial threshold voltage V

(k)
i

.105

3. Characterization of Flash Memory Channel

As mentioned earlier, the goal of this work is to characterize the flash channel

exactly in terms of the probability density functions of noises and cell threshold

voltages. A mathematical formulation for the overall distributions of the noises

shown in the channel model presented in Section 2 will be derived. Then the110

final threshold voltage distribution of each level of the memory will be found.

3.1. Distributions of Flash Channel Noises

Let �V denote the threshold voltage shift induced by noises, and ep(x) the

probability density function of �V . In the channel model shown in Fig. 1, �V

is the sum of the three shifts:115

�V = �V

RTN

+�V

CCI

��V

ret

= �V

RTN

+ �

y

· �V ��V

ret

(6)

Let �V(n) represent the threshold voltage shift when the interfering cell in

the vertical direction is being programmed to the nth state, and let ep(n)(x)

represent the probability density function of �V(n). We have

�V(n) = �V

RTN

+ �

y

(V(n) � V(0))��V

ret

(7)

Assuming that the interfering cells have the same probability to be pro-

grammed to each symbol, the overall distribution of total noises induced thresh-120

old voltage shifts can be approximated as

�V s ep(x) = 1

K

K�1X

n=0

ep(n)(x) (8)

Next, we first derive ep(n)(x) and use it to find ep(x) for the overall distribution

according to (8). Considering all K possible levels for n, (7) can be rewritten

6



as

�V(n) =
8
<

:
�V

RTN

��V

ret

, n = 0

�V

RTN

+ �

y

V

(n)
i

� �

y

V

(0)
i

��V

ret

, 1  n  K � 1

(9)

In order to obtain ep(n)(x), we need to calculate the convolution of proba-125

bility density functions of all components in the equation above, but multiple

convolutions is computationally di�cult. As a simpler alternative, we use char-

acteristic functions instead of convolutions. The characteristic functions of the

major components in (9) are the following:

�V

RTN

! c

RTN

(⇠) =
1

1 + �

2
r

⇠

2
(10)

��V

ret

! c

ret

(⇠) = e

� 1
2�

2
d

⇠

2

· e�i⇠µ

d (11)

��

y

V

(0)
i

! c

e

(⇠) = e

� 1
2�

2
e

�

2
y

⇠

2

· e�i⇠µ

e

�

y (12)

�

y

V

(n)
i

! c

n

(⇠) =
1

i⇠�

y

�V

pp

⇣
e

i⇠�

y

V

(n)
r � e

i⇠�

y

V

(n)
l

⌘
,

1  n  K � 1

(13)

For 1  n  K � 1, we split the right side of (9) into two parts: �V(n) =130

V1+V2 with V1 = �V

RTN

+�

y

V(n) and V2 = ��

y

V(0)��V

ret

. Next consider the

probability density function of V1. The characteristic function of V1, represented

as c1(⇠), is given by

c1(⇠) = c

RTN

(⇠) · c
n

(⇠)

=
1

i�

y

�V

pp

· 1

(1 + �

2
r

⇠

2)⇠

h
e

i�

y

V

(n)
r

⇠ � e

i�

y

V

(n)
l

⇠

i (14)
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Therefore, the probability density function of V1, denoted as f1(x), can be

calculated as135

f1(x) =
1

2⇡

Z +1

�1
e

�i⇠x

c1(⇠)d⇠

=
1

2�
y

�V

pp

[q(t1(x))� q(t2(x))]

(15)

where

q(t) =
1

⇡i

Z +1

�1

1

(1 + �

2
r

⇠

2)⇠
e

i⇠t

d⇠ (16)

and

2

4
t1(x)

t2(x)

3

5 =

2

4
�

y

V

(n)
r

� x

�

y

V

(n)
l

� x

3

5 (17)

Define

Q(z) =
1

�

2
r

((1/�2
r

) + z

2)z
e

izt (18)

which have three simple poles in the real axis: z0 = 0, z1 = i/�

r

and z2 = �i/�

r

.

Based on residue theory, we get the result below for the integral in (16):140

q(t) =

8
<

:
1� e

� 1
�

r

t

t � 0

�1 + e

1
�

r

t

t < 0
(19)

Next we consider the probability density function of V2. The characteristic

function of V2, represented as c2(⇠), is given by

c2(⇠) = c

e

(⇠) · c
ret

(⇠)

= e

� 1
2 (�

2
e

�

2
y

+�

2
d

)⇠2 · ei(�µ

d

�µ

e

�

y

)⇠
(20)
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The probability density function of V2, denoted as f2(x), can be further obtained

by

f2(x) =
1

2⇡

Z +1

�1
e

�i⇠x

c2(⇠)d⇠

=
1q

2⇡(�2
e

�

2
y

+ �

2
d

)
e

�(x+µ

d

+µ

e

�

y

)2

2(�2
e

�

2
y

+�

2
d

)

(21)

With the results above, ep(n)(x) (1  n  K � 1 ) can be determined by145

convolving f1(x) and f2(x):

ep(n)(x) = f1(x)⌦ f2(x)

=

Z +1

�1
f1(⌧)f2(x� ⌧)d⌧

(22)

Let B = �µ

d

� µ

e

�

y

, C =
q
�

2
e

�

2
y

+ �

2
d

, and define

⇣(x,!, �) = erf

✓
�x+ !p

2�

◆
(23)

The final expression of ep(n)(x) (1  n  K � 1 ) is given in (24).

ep(n)(x) =
1

2�
y

�V

pp

[q(t1(x))⌦ f2(x)� q(t2(x))⌦ f2(x)]
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r
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V
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l
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C
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r
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y

�V

pp

·
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1
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r
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y

V
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r

)
✓
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y

V
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r
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C

2

�

r
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◆

+ e

� 1
�

r

⇣
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y

V
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l
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y
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2

�

r
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1 + ⇣(x,B + �
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� C
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, C)
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1
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, (1  n  K � 1)

(24)
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For n = 0, the probability density function ep(n)(x) can be calculated by

convolving p

r

(x) and p

ret

(x) as below:150

ep(0)(x) =
Z +1

�1
p

r

(x+ ⌧)p
ret

(⌧)d⌧

=
1

2�
r

· 1p
2⇡�

d

Z +1

�1
e

� |⌧|
�

r · e
� (x�⌧+µ

d

)2

2�2
d

d⌧

(25)

The final expression of ep(0)(x) is given in (26).
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1

4�
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· e
�

2
d
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r ·
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e

1
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,�

d

)

◆� (26)

According to (8), the overall distribution of total noises-induced threshold

voltage shifts, i.e., ep(x) is given in (27).
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Since channel parameters (specifically B, C, �
d

, and µ

d

) vary for di↵erent

levels in the flash channel, the overall noise density functions in respect to155

all K levels (denoted as L0 ! L

K�1) are not exactly the same. Denote the

probability density functions of noise-induced threshold voltage shifts for L0 !

L

K�1 as ep(k)(x), (0  k  K�1). Based on 2 bits/cell NAND flash memory and

the parameters presented in the literature [8], we simulated the distributions

of noise-induced threshold voltage shifts and compared the results with the160

theoretical counterparts found in (27).

Simulations : The normalized �

e

and µ

e

of the erased state are set as 0.35

and 1.4, respectively. For the three programmed states, we set the normalized

program step voltage �V

pp

as 0.2, and the normalized verify voltages V

p

as

2.6, 3.2, and 3.93, respectively. For the RTN distribution function p

r

(x), we165

set the parameter �

r

= K

�

· N0.5, where K

�

equals to 0.00025. Regarding

CCI, we ignore the CCI from the two diagonal directions and also fix �

y

to a

constant 0.08. For the function N (µ
d

,�

2
d

) to capture trap recovery and electron

detrapping during retention, we assume that µ
d

scales with N

0.5 and �

2
d

scales

withN

0.6, and both scale with ln(1+t/t0), where t denotes the memory retention170

time and t0 is an initial time set as 1 hour. In addition, both µ

d

and �

2
d

also

depend on the initial threshold voltage. Hence we set that both approximately

scale K

s

(x � x0), where x is the initial threshold voltage, and x0 and K

s

are

constants. Therefore, we have

8
<

:
µ

d

= K

s

(x� x0)Kd

N

0.5 ln(1 + t

t0
)

�

2
d

= K

s

(x� x0)Km

N

0.6 ln(1 + t

t0
)

(28)

where we set K
s

= 0.38, x0 = 1.4, K
d

= 4⇥ 10�4 and K

m

= 4⇥ 10�6 [8].175

Setting the P/E cycling number N as 1000, and the retention time as 1 year,

we found the probability density based on (27) for channel noises occurring in

all four levels, respectively, as illustrated in Fig. 2.

Accordingly, we carry out Monte Carlo simulations to obtain the cell thresh-

old voltage distribution at di↵erent levels under 1000 P/E cycling and 1 year180

retention limit, as shown in Fig. 3, which gives nearly the same results as in
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Figure 2: Theoretical curves to show the e↵ects of RTN, CCI, and retention noises on memory

cell threshold voltage distribution after 1K P/E cycling and 1 year retention.

Fig. 2. A close resemblance supports the correctness of the above theoretical

derivations on the noises-induced threshold voltage shifts.

3.2. Cell Threshold Voltage Distribution

In this section, the threshold voltage distribution of each level is determined,185

which can be used to calculate the log-likelihood ratio (LLR) of each bit stored

in the memory, and further used for flash coding [11].

As shown in Fig. 2, the curves for L1 ! L3 are bell-shaped, which is due to

the fact that retention noise becomes dominant as the P/E cycling number and

the retention time increase. Therefore, we intuitively expect a Gaussian distri-190

bution will be a good fit for these probability density functions. The formulas

below give the curve-fitting parameters of the proposed normal distribution

(1  k  K � 1).

µ(k) =

Z +1

�1
x · ep(k)(x)dx. (29)

�

2
(k) =

Z +1

�1
(x� µ(k))

2 · ep(k)(x)dx. (30)
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Figure 3: Simulated curves to show the e↵ects of RTN, CCI, and retention noises on memory

cell threshold voltage distribution after 1K P/E cycling and 1 year retention.

p

(k)(x) = g

(k)(x)⌦ p

(k)
i

(x) = g

(k)(x)⌦ p

(k)
p

(x) =

Z +1

�1
p

(k)
p

(⌧)g(k)(x� ⌧)d⌧

=

Z
V

(k)
r

V

(k)
l

1

�V

pp

· 1p
2⇡�(k)

e

� (x�⌧�µ(k))
2

2�2
(k)

d⌧

=
1

2�V

pp

h
⇣(x, V (k)

r

+ µ(k),�(k))� ⇣(x, V (k)
l

+ µ(k),�(k))
i
, 1  k  K � 1

(32)

Therefore, the probability density function of the curve-fitted normal distri-

butions for L1 ! L

K�1 are given by195

g

(k)(x) =
1p

2⇡�(k)

e

(x�µ(k))
2

2�2
(k)

, 1  k  K � 1. (31)

Recall the initial distributions of L1 ! L

K�1 after ideal programming in Eq.

(3), we can obtain the final probability density functions, denoted as p(k)(x), by

convoluting g

(k)(x) and p

(k)
i

(x). The results are given in (32).

Since the retention noise has minor influence on the threshold voltage of L0,

the probability density function of L0 shown in Fig. 2 is not bell-shaped, thus it200
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would not be correct to use a normal distribution for curve fitting in this case.

However, the final distribution of L0 can be easily determined with the results

in (27) as the distribution of L0 after ideal programming is Gaussian. To this

end, the two parameters: µ
d

and �

d

in (27), should be revised as follows.

8
<

:
µ

0
d

= µ

d

� µ

e

�

0
d

=
p
�

2
e

+ �

2
d

(33)

Accordingly, B and C, should be revised as well as follows.205

8
><

>:

B

0 = �µ

0
d

� µ

e

�

y

= �µ

d

� µ

e

�

y

+ µ

e

C

0 =
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�

2
e

�

2
y

+ �

02
d
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q

�

2
e

�

2
y

+ �

2
d

+ �

2
e

(34)

Consequently, the final threshold voltage distribution of L0, i.e. p(0)(x), can

be calculated in (35).

p

(0)(x) =ep(0)(x)⌦ p

e

(x)
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y
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(35)

The aforementioned 4-level MLC flash and the related channel parameters

have been used as well in this section to show the probability density functions
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derived above. The P/E cycling number is set as 1000 and retention time as 1210

year. Fig. 4 illustrates the final threshold voltage distributions of all four levels

according to (32) and (34). As shown, the channel modeled in this work is quite

similar to the models used in the literatures [5, 4, 7, 8]. Nonetheless, as only

reasonable Gaussian approximation is used and all the channel noises have been

considered in the derivations above, the model proposed here is more precise215

to the real flash channel. Moreover, the exact formula of cell threshold voltage

distribution, i.e., the results given in (34), makes the soft decisions calculated

based on our work more accurate for the flash decoding.
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Figure 4: Cell threshold voltage distributions 4-level MLC flash memory

3.3. Calculation of Soft Decisions

Soft decisions, or in other words, the log-likelihood-ratios (LLRs) information220

are critical in decoding the advanced flash error correction codes. This section

proposes the mathematical formulation for calculating LLRs based upon the

threshold-voltage distributions presented above, and the results are used to

instruct the implementation of decoding schemes in the design practice.

Assume each bit is programmed to a flash cell with equal probability, i.e.,225

all the storage levels in one memory cell have equal a priori probability, and let
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V

th

represents the sensed threshold voltage of one memory cell, we can calculate

the LLR of the ith bit stored in one cell as

L(b
i

) = log
p(b

i

= 1|V
th

)

p(b
i

= 0|V
th

)
= log

p(V
th

|b
i

= 1)

p(V
th

|b
i

= 0)
(36)

For K levels MLC flash memory, there are N

b

= log2(K) bits stored in each

cell, and the probability density function of the threshold voltage of kth storage230

level, p(k)(x), 0  k  K � 1, is known from (32) and (35). Let S
i

denote the

set of levels whose ith bit is 1. Hence, given the threshold voltage V

th

of a cell,

the LLR of each bit would be calculated as

L(b
i

) = log

P
k2S

i

p

k(V
th

)
P

k

p

k(V
th

)�
P

k2S
i

p

k(V
th

)
(37)

In respect to practical NAND flash memories, the cell threshold voltages

cannot be precisely obtained while being sensed by the comparison with a series235

of reference voltages. Assume that the threshold voltage V
th

falls into the range

(R
l

, R

r

] (where R
l

and R

r

are two adjacent reference voltages), we can estimate

the corresponding LLR of the ith bit as

L(b
i

) = log

R

rR

R

l

P
k2S

i

p

(k)
V

th

R

rR

R

l

P
k

p

(k)
V

th

�
R

rR

R

l

P
k2S

i

p

(k)
V

th

(38)

We assume the parameters �

e

, µ
e

, �
d

, µ
d

in (32) and (35) are known and

treat the coupling ratio �

y

as a known constant. As the number of reference240

voltages in memory sensing is fixed, all possible LLRs can be calculated before

the decoding starts. Therefore, only a lookup table is required in the run time to

obtain the LLRs, which reduces the system complexity and improves the speed

and throughput. Let K

s

denote the number of reference voltages being used

in memory sensing, the LLR lookup table only contains N
b

(K
s

+ 1) entries for245

N

b

-bit/cell NAND flash memory [12].
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4. Conclusions

We have derived the probability density function for the channel noises in the

MLC NAND flash memories, and formulated the threshold voltage distribution

of each symbol. This was possible by using characteristic functions for the250

various noises. The results presented here are novel in a theoretical way as

the first time the flash channel has been characterized by incorporating the

distributions of all the interferences and noises. Using the 4-level MLC flash as

a case study, the derived threshold voltage distributions were demonstrated to

be consistent with simulated channel outputs.255
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