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SUMMARY

The vascular endothelium operates in a highly po-
larized environment, but to date there has been
little exploration of apicobasal polarization of its
signaling. We show that VEGF-A, histamine, IGFBP3,
and LPA trigger unequal endothelial responses when
acting from the circulation or the parenchymal side at
blood-neural barriers. For VEGF-A, highly polarized
receptor distribution contributed to distinct signaling
patterns: VEGFR2, which was found to be predomi-
nantly abluminal, mediated increased permeability
via p38; in contrast, luminal VEGFR1 led to Akt acti-
vation and facilitated cytoprotection. Importantly,
such differential apicobasal signaling and VEGFR
distribution were found in the microvasculature of
brain and retina but not lung, indicating that endothe-
lial cells at blood-neural barriers possess specialized
signaling compartments that assign different func-
tions depending on whether an agonist is tissue or
blood borne.

INTRODUCTION

Endothelial polarity is assumed to be mechanistically similar to

that of epithelial cells, where it is well studied. Undoubtedly,

the morphological and molecular organization of the vascular

endothelial cells (ECs) at any of the diverse blood-tissue inter-

phases must reflect the highly polarized environment in which

they operate. For instance, vascular lumen formation is entirely

dependent on segregation of apical and basal membrane com-

partments and subsequent EC polarization (Lizama and Zovein,

2013). A huge body of work has also demonstrated that at

vascular blood-brain or blood-retinal barriers, neuronal homeo-
Developme
stasis is maintained by highly polarized localization of trans-

porters and channels, which regulate the directional movement

of ions, drugs, metabolites, and toxins (Abbott et al., 2010).

Thus, it is assumed that, in their naturally highly polarized envi-

ronment, ECs have adopted differential apicobasal signaling.

However, experimental proof of such polarized signaling pro-

cesses is still missing.

Vascular endothelial growth factor (VEGF) family members,

and in particular its most studied representative VEGF-A, are

central to the creation of new blood vessels during normal devel-

opment and growth but also in pathological situations such as

tumorigenesis and ocular neovascular disease (Koch et al.,

2011; Takahashi and Shibuya, 2005). Besides its angiogenic

role, VEGF-A has additional effects on the vascular endothelium.

It was originally discovered for its ability to trigger vascular

permeability, and this permeability-enhancing property of

VEGF-A is linked to interstitial fluid accumulation in tumors and

psoriatic lesions, aswell as tissue edema and concomitant vision

loss in neovascular eye disease (Ferrara et al., 2007). VEGF-A

also has beneficial roles in the systemic vasculature, regulating

normal vascular tone and acting as a trophic factor for the

vascular endothelium (Maharaj and D’Amore, 2007).

VEGF-Amediates its diverse functions through the use of mul-

tiple receptors, mainly the receptor tyrosine kinases VEGFR1

(Flt-1) and VEGFR2 (Flk-1/KDR) (Koch et al., 2011). The most

common splice isoform VEGF-A(165), subject of the present

study, additionally interacts with neuropilin 1 and various cell-

surface heparan sulfate proteoglycans to modulate the intra-

cellular response. VEGF-A belongs to a family of growth factors

with five genes encoding VEGF-A, -B, -C, and -D and placental

growth factors (PlGFs), each binding VEGFRswith different affin-

ities. For instance, PlGF-1 and the viral gene product VEGF-E

specifically bind and activate VEGFR1 and VEGFR2, respec-

tively (Takahashi and Shibuya, 2005).

VEGF-A triggers a plethora of intracellular signaling steps in

ECs (Koch et al., 2011). Standout mediators associated with

the VEGF-A-induced endothelial permeability response are the
ntal Cell 30, 541–552, September 8, 2014 ª2014 The Authors 541
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mitogen-activated protein kinases Erk and p38, phospholipases,

protein kinase C, phosphatidylinositol 3-kinase (PI3K)-activated

Akt, and endothelial nitric oxide synthase (eNOS) (Weis and

Cheresh, 2005). However, given the complexity of VEGF-A

signaling and the permeability response, as well as the morpho-

logical and cytological differences of various endothelia, it is not

surprising that these signaling components remain under intense

scrutiny, in particular with respect to their specific role in partic-

ular experimental models and their interaction with each other in

controlling various effector mechanisms.

Because of VEGF-A’s central role in the regulation of endothe-

lial functions in health and disease, anti-VEGFs have become

irreplaceable tools in treating pathological angiogenesis and

permeability (Ferrara et al., 2007). However, systemic anti-

VEGF-A therapies are associated with endothelial dysfunction

leading to bleeding, inflammation, hypertension, proteinuria,

and even lethality (Chen and Cleck, 2009). Consistent with these

observations in patients, animal models demonstrate that VEGF-

A is constitutively required to maintain vascular tone and

vascular EC survival and that reductions in plasma VEGF-A

levels cause vascular attrition and functional abnormalities (Su-

gimoto et al., 2003).

We therefore hypothesized that circulating and tissue-pro-

duced VEGF-A induce distinct responses in ECs. In light of the

central role of VEGF-A as a permeability-inducing factor in brain

(Merrill and Oldfield, 2005; Argaw et al., 2012) and eye pathol-

ogies (Miller et al., 2013), our study focused on vascular ECs at

blood-neural barriers and on acute endothelial permeability (as

opposed to chronic interstitial fluid accumulation during inflam-

mation, cancer, and wound healing, which may involve cells

other than ECs) (Nagy et al., 2008). Our study is also restricted

to the in vitro and in vivo analysis of the microvasculature as

opposed to the macrovasculature, because this is where physi-

ological and pathological vascular permeability occurs. Here we

report that VEGF-A induces unequal responses depending on

whether it acts on the luminal or abluminal side of neural micro-

vascular ECs (MVECs). Mechanistically, this differential EC

response is predicated on polarized VEGFR expression and

distinct downstream signaling.

RESULTS

Using contrast-enhanced magnetic resonance imaging (MRI) in

the mouse, we determined tissue extravasation of intravenous

(i.v.) injected gadolinium (gadolinium diethylenetriamine penta-

acetic acid [Gd-DTPA], 742 Da). Basal leakage of Gd-DTPA

was significantly higher in peripheral tissues such as the lung

than the brain or the eye, reflecting the significant difference in

baseline permeability between neural and nonneural vascular

beds. Intravenous injection of VEGF-A (3 mg/mouse) significantly

enhanced leakage of Gd-DTPA into lungs within 10 min (Fig-

ure 1A), in agreement with previous reports of VEGF-A-induced

permeability in nonneural vasculature, such as that of the tra-

chea or the mesentery (Sun et al., 2012; Bates and Curry,

1996). Significantly, no leakage was observed in the brain or

the eye over a 30 min observation period. However, when

VEGF-A was directly injected into the brain cortex or the vitreous

of the eye, rapid and significant accumulation of Gd-DTPA in the

vicinity of the injection site was observed (Figures 1B and 1C),
542 Developmental Cell 30, 541–552, September 8, 2014 ª2014 The
indicating that only tissue-borne but not circulating VEGF-A

induced vascular hyperpermeability in the neural tissues.

This was further studied in single pial microvessels, which

exhibit barrier properties closely resembling those found at the

intact blood-brain barrier (BBB) and allow permeability measure-

ments that are tightly controlled with respect to kinetics and

dose (Butt et al., 1990; Easton et al., 1997). Increasing VEGF-A

levels up to 2 mg/ml within the lumen of tight pial microvessels

did not affect baseline permeability (Figures 1D and 1F), even

when bradykinin triggered strong vascular permeability (Figures

1E and 1F). In contrast, exposure to VEGF-A from the tissue side

led to a rapid increase of permeability (Figures 1G and 1H), which

was maximal at a concentration of ca. 50 ng/ml. Taken together,

these data demonstrated that cerebral microvascular per-

meability is strongly induced by VEGF-A, albeit only when pre-

sented to the abluminal face of microvessels.

The microvasculature in the brain and retina constitutes a

network of ECs tightly interacting with mural cells such as peri-

cytes and glial cells including astrocytes andMüller cells (Abbott

et al., 2010). Because microvascular permeability operates pri-

marily on the level of endothelium, we tested whether the ECs

themselves responded to VEGF in a polarized fashion. For this,

we used highly purified nonpassaged, primary MVECs isolated

from brain or retina, which were characterized by preservation

of interendothelial junctions, apicobasal polarity, and very

good in vitro barrier properties (Figure S1 available online).

Macromolecular apical-to-basal flux was enhanced nearly 2-

fold when 50 ng/ml VEGF-A was added to the basal side of rat

brainMVECmonolayers, whereas doses of up to 1 mg/ml applied

to the apical side did not change flux (Figures 2A–2D). A similar,

polarized response to VEGF-A was also observed in cultures of

murine brain (data not shown) and rat or porcine retinal MVECs

(Figures 2E and 2F), suggesting that functional polarity operates

at all vascular blood-brain and -retinal barriers and across spe-

cies. Importantly, both barrier properties and the sided response

to VEGF-A were lost following repeated subculturing of MVECs

(Figures S1D–S1F), offering a plausible explanation as to why

this phenomenon has not yet been universally observed.

VEGF-A also induced changes in transendothelial electrical

resistance (TEER) and significant reduction in junctional claudin

5 (Cldn5) (Figures 2G and 2H), a reliable molecular indicator of

MVEC barrier and BBB integrity (Nitta et al., 2003), indicating

that paracellular rather than transcellular permeability was oper-

ational (Steed et al., 2010). VEGF-A provoked flux and TEER

changes within minutes (Figures 2B and 2I), thus resembling

the acute response observed in vivo. A sided permeability

response similar to that with VEGF-Awas also observedwith his-

tamine and insulin-like growth factor-binding protein 3 (IGFBP3)

(Figure 2J), whereas opposite responsiveness was observed

with lysophosphatidic acid (LPA). Thrombin and bradykinin

induced significant flux in brain MVECs but without predilection

for either endothelial face. Significantly, the sided response to

histamine and LPA was consistent with previous results from

pial microvessels in vivo (Sarker et al., 1998, 2010).

One explanation for the polarized responses to VEGF-A is that

distinct signaling pathways, and in particular different VEGF-A

receptors, operate on the apical and basal sides of brain or

retinal MVECs. To test this hypothesis, we studied the distribu-

tion of VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1) (Koch et al.,
Authors
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Figure 1. Abluminal but Not Luminal VEGF-A Induces Permeability In Vivo

(A–C) T-1-weighted MRI in mice showed increased extravasation of Gd-DTPA (742 Da) in the lungs (circled) but not the brain or eyes in response to i.v. VEGF-A

(3 mg/animal) (A). In contrast, direct injection of VEGF-A (ca. 8 ng) into the brain cortex (B; arrows indicate injection sites) or the vitreous of the eye (C) led to

increased extravasation. Shown are representative contrast-enhanced and 16-color pseudocolored images taken 8 min after VEGF-A injection, with densito-

metric quantification of each experimental group shown beneath. a.u., arbitrary units.

(D and E) Time-dependent recording of sulforhodamine B (580 Da) loss from single occluded rat pial microvessels in vivo showed no change of permeability in

response to an intracarotid (i.e., luminal) bolus injection of VEGF-A (100 ng/ml) (D). In contrast, luminal bradykinin (BK) at 10 mM induced a rapid loss of dye (E).

Shown are micrographs of pseudocolored microvessels at indicated times (min:s) after either saline or VEGF-A or bradykinin injection. The dotted outline in the

first image in each series indicates the position of the occluding probe. Densitometric fluorescence intensities were plotted against time, and permeability values

P (10�6 cm/s) were calculated by fitting data to the equation Ct = C0 e
�kt, where k = 4P/d and d is the diameter of the vessel.

(F) Mean permeability changes determined as described in (D) and (E) in response to either 10 mM bradykinin or 100 or 2,000 ng/ml VEGF-A.

(G) Application of VEGF-A (100 ng/ml) to the abluminal, extravascular space of single pial microvessels in vivo produced a strong increase of permeability to

sulforhodamine B (580 Da). The scale bar represents 50 mm.

(H) Mean permeability changes in response to increasing concentration of VEGF-A.

Data are means ± SEM of at least three independent experiments. **p < 0.01, ***p < 0.001 [Student’s t test (A–C) and ANOVA and Dunnett’s post hoc test (F

and H)].
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Figure 2. Basal, but Not Apical, VEGF-A Induces Permeability in Cultured Cerebral or Retinal MVECs

(A–C) Rat cerebral MVECs were grown on permeable Transwell inserts until they reached a TEER of greater than 200 U/cm2. FITC dextran (4 kDa) was added to

the apical chamber and flux was measured as the time-dependent accumulation of fluorescence in the basal chamber. VEGF-A (50 ng/ml) addition to the apical

side of the cells (at time 0) did not change flux rates (A). In contrast, a rapid change in flux was observed when it was added to the basal side of the cells (B). Dotted

lines are linear regressions of data points before and after the addition of VEGF-A. Mean fold changes of flux following apical or basal application are shown in (C).

(D) Flux was measured as in (A)–(C) in the presence of apical VEGF-A at the indicated concentrations, none of which led to significant flux changes.

(E and F) Basal but not apical VEGF-A (50 ng/ml) also induced significant 4 kDa FITC dextran flux changes in postconfluent rat (E) or porcine (F) retinal MVECs.

(legend continued on next page)
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2011). Cryoimmunogold electron microscopy (EM) showed that

ca. 75% of VEGFR1 was found apically in rat brain MVECs,

whereas ca. 70% of VEGFR2 was found at basal membranes

(Figure 3A; Table S1). Analysis by domain-specific biotinylation

(Figure 3C) or analysis by confocal microscopy (Figures S2A

and S2B) confirmed this highly polarized distribution pattern.

Importantly, distribution of VEGFR1 and VEGFR2 was also pre-

dominantly luminal and abluminal, respectively, in the microvas-

cular endothelium of the mouse hippocampus (Figure 3B; Table

S1). VEGF receptor distribution was also interrogated in vivo: the

luminal side of the mouse vasculature was exposed for 5 min to

anti-VEGFR1 or -R2 antibodies by cardiac injection. Following

perfusion, VEGFR antibody binding was studied by fluorescent

secondary antibody labeling of retinae and lungs (Figure 3D; Fig-

ure S2C). VEGFR1 antibodies bound to retinal and lung micro-

vessels, whereas VEGFR2 antibodies strongly labeled lung but

not retinal microvessels. In contrast, when the same antibodies

were applied abluminally for 5 min to unfixed and nonpermeabi-

lized retinae, VEGFR2 but not -R1 was detectable in retinal ves-

sels. In addition, both antibodies strongly reactedwith other cells

in the retinal ganglion cell layer, consistent with the reported

expression of VEGF receptors in ganglion and Müller cells

(Saint-Geniez et al., 2008; Foxton et al., 2013). Taken together,

the majority of VEGFR1 and -R2 was found to be inversely

located to the luminal and abluminal sides, respectively, of

MVECs in the brain and the retina but not the lung.

These data strongly suggested that different downstream sig-

nals operate in response to apical or basal VEGF. Indeed, we

found that the time-dependent activation of p38 and Akt was

significantly different following apical or basal exposure of brain

MVECs to VEGF-A. Phosphorylation of p38, increasing over

time, was observed in response to basal but not apical VEGF-

A (Figure 4A). In contrast, Akt activation was only seen following

apical exposure to VEGF-A. Apical but not basal exposure to

PlGF-1, which selectively binds to VEGFR1 (Takahashi and Shi-

buya, 2005), also induced Akt phosphorylation, with a peak at ca.

30 min (Figure 4B). In contrast, stimulation with the VEGFR2-se-

lective ligand VEGF-E (Takahashi and Shibuya, 2005) did not

lead to Akt activation from any side of the ECs. Instead, strong

phosphorylation of p38 was observed within 5 min of basal but

not apical exposure.

The hallmarks of this differential p38 and Akt activation pattern

could be recapitulated by VEGF treatment in vivo. In rats, intrave-

nous injection of neither VEGF-A, PlGF-1, nor VEGF-E (120 mg/kg)

led to any activation of p38 in pial microvessels (Figure 4C).

Nevertheless, in alveolar lung vessels of the same animals, p38

was strongly and rapidly activated in response to i.v. VEGF-A or

VEGF-E but not PlGF-1 (Figure S3). In pial microvessels, VEGF-
(G) Postconfluent rat cerebral MVECs grown on permeable Transwell inserts wer

changes in electrical resistance were monitored by impedance spectroscopy.

(H) Changes in the distribution of Cldn5 and VE-cadherin in response to either ap

postconfluent rat cerebral MVECs. Shown are representative projections spanni

(I) As in (G), except that direct TEER changes were measured every ca. 30 s using

(J) Transendothelial flux was measured in postconfluent primary rat brain MVECs

(10 mM), thrombin (1 U/ml; THR), or bradykinin (10 mM; BK).

Data aremeans ± SEMof at least three independent experiments. *p < 0.05, **p < 0

or two-factor analysis of variance (location of VEGF application by time) with one r

treatments are shown.

See also Figure S1.

Developme
A and VEGF-E led to rapid p38 activation, but only when growth

factors were administered from the tissue side through a cranial

window (Figure 4C). We also attempted to study Akt activation

in a similar manner. However, none of six different commercial

anti-phospho-Akt antibodies produced significantly altered stain-

ing patterns in brain, lung, or retinal tissues of rats treated with

time courses of luminal or abluminal VEGFsor indeed insulin, sug-

gesting that reliable phospho-Akt detection was not possible by

immunohistochemistry (data not shown). We therefore opted to

study Akt activation in whole-cell lysates of retinal tissue. Intrave-

nous injection of VEGF-A or PlGF-1 but not VEGF-E led to strong

Akt activation after 25 min (Figure 4D). Some weak activation of

p38 was also observed under these conditions. Direct injection

of VEGFs into the retina (i.e., abluminal application) did not lead

to any significant Akt phosphorylation. Taken together, these

data demonstrated that in cerebral or retinal MVECs, rapid p38

activation occurred downstream of abluminal VEGFR2. In con-

trast, Akt activation occurred more slowly and downstream of

luminal VEGFR1.

This polarized signaling pattern was not only in full agreement

with the VEGFR1 and -R2 localization described in Figure 3 but

also with the endothelial permeability response. Enhanced

macromolecular flux across brain MVECs was seen following

basal (but not apical) VEGF-E stimulation, whereas PlGF-1 had

no effect on barrier function, neither in vitro nor in vivo (Figures

5A and 5B). Furthermore, we found that SB202190, but not wort-

mannin or LY294002, which inhibited VEGF-induced p38 or Akt

activation, respectively (Figures S4A and S4B), abrogated

VEGF-induced hyperpermeability in vitro and in vivo (Figures

5C and 5D; Figure S4C). Taken together, this clearly indicated

that the permeability response to VEGF at blood-neural barriers

is mediated by abluminal VEGFR2. In agreement, the VEGFR2

inhibitor SU1498 completely abolished VEGF-A-induced flux in

brain MVECs (Figure S4C).

Abundant data suggest that systemic (hence, luminal) VEGF-A

is a trophic factor for the vasculature (Maharaj and D’Amore,

2007; Gerber et al., 1998). In light of the specific activation of

Akt following luminal VEGFR1 stimulation, we investigated a po-

tential role in endothelial cytoprotection. Rat brain MVECs were

stimulated with themicrobial alkaloid staurosporine, widely used

to induce apoptosis inmost cell types, including ECs (Kabir et al.,

2002). Apoptosis, measured as an increase in caspase 3/7 activ-

ity, was significantly reduced by apical VEGF-A or PlGF-1 but not

VEGF-E (Figure 6A). This VEGF-mediated cytoprotection was

sensitive to wortmannin but not to SB202190 (Figure 6B). To

this end, a potential role of VEGF in cytoprotection of retinal

ECs could not be interrogated in vivo, because staurosporine

was ineffective in inducing EC death. Staurosporine was applied
e subjected either apically or basally to 50 ng/ml VEGF-A, and time-dependent

ical or basal VEGF-A (50 ng/ml, 1 hr) were analyzed by confocal microscopy in

ng the entire thickness of the monolayers. The scale bar represents 10 mm.

chopstick electrodes. VEGF-A (50 ng/ml) was added to the basal side at time 0.

in response to apical or basal histamine (100 mM; HIS), IGFBP3 (50 ng/ml), LPA

.01, ***p < 0.001; ns, not significant [Student’s t test (C, E, F, and J), ANOVA (D),

epeatedmeasure (time) (G)]. Note that in (J), only p values of apical versus basal
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Figure 3. Differential VEGF Receptor Localization in Microvascular ECs in Brain and Retina

(A and B) Cryoimmunogold EM analysis of VEGFR1 and -R2 in primary rat brain MVECs (A) or mouse hippocampal microvessels (B) showed predominant apical/

luminal (black) and basal/abluminal (brown) localization, respectively. Mean distribution of each VEGF receptor (±SEM) was determined by quantifying gold

(legend continued on next page)
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to mouse or rat retinae both intravitreally and through the carotid

artery at up to 40 mM for up to 12 hr. This treatment induced se-

vere retinal ganglion cell death but did not affect ECs at all (data

not shown). Even when additionally circulating VEGF-A was

reduced by coadministration of anti-VEGF antibodies, we could

not measure any annexin V binding or activated caspase 3 stain-

ing in retinal ECs (data not shown). Thus, VEGF mediates a cyto-

protective response in rat brain MVECs in culture, with signaling

via VEGFR1 and Akt but not VEGFR2 and p38. In the neuronal

vasculature in vivo, VEGF-A is likely to be only part of a complex

network of environmental cytoprotective factors (see below).

DISCUSSION

The vascular endothelium operates in a highly polarized environ-

ment, but to date there has been little exploration of polarized

endothelial signaling. Here we demonstrate that luminal and

abluminal EC surfaces of blood-neural barriers display different

functionality during acute responses to VEGF-A as well as hista-

mine, IGFBP3, and LPA. In particular, we found that cerebral and

retinal vascular permeability was completely refractory to circu-

lating VEGF-A. In contrast, the lung vasculature responded to

circulating VEGF-A and VEGF-E with enhanced permeability

and p38 activation. Because mesenteric and tracheal microves-

sels also induce permeability in response to luminal VEGF-A

(Sun et al., 2012; Bates and Curry, 1996), our findings appear

to have revealed a clear specialization of the blood-neural barrier

endothelium. Importantly, our data are consistent with VEGF-A’s

well-established role as a paracrine factor produced by hypoxic/

ischemic tissue (see also Figure 7), for instance by astrocytes

during central nervous system inflammatory disease (Argaw

et al., 2012) and pathological retinal angiogenesis (Weidemann

et al., 2010) or by Müller cells during diabetes-induced retinal

ischemia (Wang et al., 2010). The sided responsiveness of these

MVECs to VEGF-A was attributable to highly polarized expres-

sion of the receptor tyrosine kinases VEGFR1 and -R2 and

distinct downstream activation of key signaling pathways.

VEGF receptor localization was polarized strongly but not in an

absolute manner. Nevertheless, the permeability response and

the signaling response of the microvascular endothelium was

completely polarized. General computational modeling of

VEGF receptor surface distribution (Mac Gabhann and Popel,

2007) suggests that the distribution pattern we observed in cere-

bral and retinal ECs would result in luminal VEGFR1 homodimers

and some VEGFR1-R2 heterodimers but no VEGFR2 homo-

dimers. In contrast, basal membranes would be rich in VEGFR2

homodimers (and heterodimers) but devoid of VEGFR1 homo-

dimers (see also Figure 7). We speculate that this absence of
particles located within ca. 20 nm of the plasma membrane (as indicated by a

continuous plasma membrane. The scale bars represent 100 nm.

(C) VEGF receptor distribution was also analyzed in postconfluent rat cerebral MV

and basal membranes (ap+bl). Biotinylated proteins were isolated and analyzed by

and quantitative distribution analysis from three experiments (means ± SEM).

(D) VEGFR1 but not -R2 antibodies bound to the retinal vasculature of mice wit

animals, both VEGFR1 and -R2 antibodies were found bound to alveolar micro

incubated with VEGFR antibodies (abluminal), only VEGFR2 was found to stain m

with the vessel marker isolectin B4 and analyzed by confocal microcopy. Shown a

center of the lung. The scale bars represent 20 mm.

See also Figure S2 and Table S1.

Developme
VEGFR2 and VEGFR1 homodimers on the luminal and abluminal

surface of neural ECs produces exclusivity with regard to loca-

tion and receptor specificity of ligands. In particular, in this

model, p38 and Akt activation would be exclusively associated

with VEGFR2 and VEGFR1 homodimer signaling, respectively.

Indeed, Cudmore et al. have recently shown that VEGFR2 yields

different cellular responses depending on whether it is engaged

in homo- or heterodimers (Cudmore et al., 2012). In addition, co-

receptors such as neuropilin 1 may also play a role (Becker et al.,

2005). Future experiments using heterodimeric ligands such as

PlGF-1-VEGF-E (Cudmore et al., 2012) could establish the role

of VEGFR1-R2 heterodimers in the differential signaling res-

ponse of brain and retinal ECs.

In line with generally accepted views (Takahashi and Shibuya,

2005; Issbrücker et al., 2003), VEGFR2 and p38 activities were

associated with the permeability-enhancing response of VEGF-

A. In contrast, and judging by activation profiles and PI3K inhibi-

tion, we did not detect any involvement of Akt in VEGF-induced

permeability in the brain. Indeed, conflicting results have been

reported regarding a direct role of Akt in vascular permeability

(Six et al., 2002; Chen et al., 2005), and its involvement has

frequently been inferred by the need for activation of the Akt sub-

strate eNOSduring VEGF-mediated permeability (Takahashi and

Shibuya, 2005). However, in cerebral MVECs, eNOS activation

can also occur in an Akt-independent manner, in particular dur-

ing inflammation (Martinelli et al., 2009). We did not find a role for

VEGFR1 inmediating acute brain permeability either. This recep-

tor has been proposed tomediate permeability in a more chronic

and auxiliary way (Takahashi and Shibuya, 2005; Koch et al.,

2011), which would not likely be captured in our model systems.

In addition, a direct role of VEGFR1 in permeability may be

restricted to nonneural vascular beds (Odorisio et al., 2002).

Instead, and in line with it activating Akt, a kinase regarded as

synonymous to the cell-survival response (Datta et al., 1999), we

found a clear role of VEGFR1 in cytoprotection. A cytoprotective

role of VEGF-A for ECs is well documented (Gerber et al., 1999),

with most mechanistic evidence derived from in vitro culture

models. For instance, in umbilical vein ECs, the main VEGF re-

ceptor mediating survival appears to be VEGFR2 (Gerber et al.,

1998; dela Paz et al., 2012), whereas in microvascular retinal or

dermal ECs there is evidence that VEGFR1 is involved (Cai

et al., 2003; Zhang et al., 2010), suggesting that receptor usage

may differ between vascular beds. Whereas we were able to find

clear experimental support for VEGFR2-mediated permeability

in vitro and in vivo, the cytoprotective function of VEGFR1 has

so far only been observed in cultured cerebral MVECs. Our fail-

ure to inducemeasurable apoptosis in retinal ECs in vivo through

staurosporine and VEGF-A withdrawal suggests that additional
rrowheads) in five independent sections, each comprising at least 10 mm of

ECs by biotinylation of either the apical or, in the presence of EDTA, the apical

western blot. Shown are representative immunoblots of VEGFR1 and VEGFR2

hin 5 min of luminal delivery through cardiac injection. However, in the same

vessels in the lung. Inversely, when unfixed, nonpermeabilized retinae were

icrovessels significantly. All whole mounts and sections were counterstained

re optical sections of ca. 8 mm thickness of the retinal ganglion cell layer or the
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Figure 4. Differential VEGF Receptor Signaling in Brain MVECs and Neural Microvessels

(A) Basal but not apical VEGF-A (50 ng/ml) induced significant activation of p38 but not Akt in postconfluent primary rat brain MVECs. In contrast, Akt but not p38

was activated in response to apical VEGF-A. At the indicated times of VEGF-A stimulation, whole-cell lysates were prepared and levels of phosphorylated p38

(pT180/Y182) and Akt (pS473) were determined by western blotting. Shown are representative blots and normalized densitometric quantifications.

(B) Kinase response to PlGF-1 or VEGF-E analyzed as in (A). p38 was activated within 5 min of basal but not apical VEGF-E (50 ng/ml) treatment, whereas slower

Akt activation was seen in response to apical but not basal PlGF-1 (50 ng/ml).

(C) Intravenously injected VEGF-A, PlGF-1, or VEGF-E (at 120 mg/kg) (luminal) did not induce activation of p38 in the pial vasculature of P23 rats. When applied

abluminally to the pial microvasculature (at 100 ng/ml) (abluminal), VEGF-A and VEGF-E but not PlGF-1 led to rapid activation of p38. Pial tissues were fixedwithin

5min of treatment and then stained for phosphorylated p38 (pT180/Y182). All sections were counterstained with the vessel marker isolectin B4 (IB4) and analyzed

by confocal microscopy. Shown are projections spanning a thickness of ca. 11 mm. The scale bar represents 20 mm.

(D) VEGF-A, PlGF-1, or VEGF-E was either injected into the tail vein of P23 rats (at 120 mg/kg) or into the vitreous (i.o.; 100 ng/eye). After ca. 20 min, retinae were

isolated and subjected to quantitative immunoblot analysis as described for (A) and (B). Akt was robustly activated in response to i.v. but not i.o. injected VEGF-A

and PlGF-1. p38 was weakly activated as well. VEGF-E did not induce any significant effects.

Shown are means ± SEM from at least three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001 [ANOVA and Dunnett’s post hoc test (A, B, and D)]. See

also Figure S3.
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Figure 5. VEGFR2 and p38 Mediate the Brain

Microvascular Permeability Response

(A) Transendothelial flux of 4 kDa dextran

across confluent primary rat brain MVECs was

increased in response to basal but not apical VEGF-E

(50 ng/ml). PlGF-1 (50 ng/ml) did not affect flux.

(B) Application of VEGF-E but not PlGF-1 to

the abluminal, extravascular space of single

pial microvessels in vivo produced a dose-dependent

increase of permeability to sulforhodamine B (580

Da). Intracarotid (i.e., luminal) bolus injection of PlGF-

1 or VEGF-E did not affect permeability.

(C) Flux measurements in primary brain MVECs

showed that pretreatment with 10 mM p38 inhibitor

SB202190 (SB) but not the PI3K inhibitor wortmannin

(WN) inhibited the permeability response to 50 ng/ml

VEGF-A.

(D) VEGF-A-induced permeability changes in pial

microvessels were abolished by pretreatment with

10 mM SB202190 but not wortmannin.

Shown are means ± SEM from at least three inde-

pendent experiments. *p < 0.05, **p < 0.01; ns, not

significant [Student’s t test (A), ANOVA and Dunnett’s

post hoc test (B and D), and two-way ANOVA and

Bonferroni’s post hoc test (C)].

See also Figure S4.
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growth (Walshe et al., 2009) or environmental factors such as

flow (dela Paz et al., 2012; Dimmeler and Zeiher, 2000) contribute

to EC survival, in particular in the brain and the eye (Ueno et al.,

2008). Numerous experiments also show that the apoptotic

response of ECs in vivo is relatively slow and only measurable af-

ter several days (Meeson et al., 1999; Sugimoto et al., 2003), and

thus not within the time frame of our current experimental setup.

Overall, our findings are compatible with previous reports but

clearly identify a high degree of specialization of VEGF signal

transduction at blood-neural barriers. Specification of VEGF-A

action occurs through many mechanisms, including the creation

of functionally distinct protein isoforms, the presence of multiple

surface, soluble, and coreceptors, and the sequestration of the

ligand in the extracellular matrix (Koch et al., 2011). In addition,

our data suggest that ECs are able to control the response to

VEGF-A through compartmentalizing cellular signaling, and pro-

vide an intriguing explanation of how blood-neural barriers can

be maintained despite constant exposure to circulating VEGF-

A. Finally, the ability to map the vascular permeability response

to a distinct topological signaling domain within the EC provides

a new opportunity to specifically target pathological aspects of

VEGF-A while preserving essential cardiovascular functions.

EXPERIMENTAL PROCEDURES

Animals

Wistar and Lewis rats and C75BL/6J mice were purchased from Harlan Labo-

ratories. All procedures were performed in accordance with UK and Ireland

Animal Welfare Acts and with the Association for Research in Vision and

Ophthalmology Statement for the Use of Animals in Ophthalmic and Vision

Research and the Animal Welfare and the Ethical Review Bodies of the UCL

Institute of Ophthalmology, King’s College London, and Trinity College Dublin.

Recombinant VEGFs

Recombinant rat VEGF-A(165) was purchased from R&D Systems, VEGF-E

was from Cell Sciences (or a kind gift from Kurt Ballmer-Hofer), and human

PlGF-1 was from PeproTech.
Developme
Magnetic Resonance Imaging

Vascular permeability in lungs, brain, and eyes was assessed in vivo via MRI

(Campbell et al., 2012) using a dedicated small rodent 7 T MRI system

(http://www.tcd.ie/neuroscience/infrastructure/neuroimaging/index.

php#7tesla).

In Vivo Permeability Measurements

The pial microvasculature ofWistar rats (age 25–30 days) was exposed and the

permeability wasmeasured as described previously (Easton and Fraser, 1994;

Easton et al., 1997).

MVEC Isolation

Microvessels were isolated from rat or mouse cortical gray matter or rat or

porcine retinae by collagenase dispase digestion and BSA and Percoll density

gradient centrifugation (Abbott et al., 1992). Purified vessels were seeded onto

collagen IV/fibronectin-coated tissue-culture ware or Costar Transwells (3460)

at high density (vessels from 6 rat brains or 12 retinae per 40 cm2 or 3 cm2,

respectively). Cells were grown in EGM2-MV (Lonza) (with 5 mg/ml puromycin

during the first 5 days; Perrière et al., 2007) for 2–3 weeks until their TEER

plateaued at values above 200 U/cm2.

Immunocytochemistry

MVECs were grown on collagen IV/fibronectin-coated tissue-culture ware or

12 mm Costar Transwell filters. Cells were fixed using 3.7% formaldehyde

and extracted in acetone (�20�C). Alternatively, they were fixed and permea-

bilized simultaneously in 80%MeOH, 3.2% formaldehyde, 50 mMHEPES (pH

7.4) (Martins et al., 2013). Staining was performed as previously described

(Turowski et al., 2004) using antibodies against von Willebrand factor (Dako),

VE-cadherin (Martins et al., 2013), occludin and Cldn5 (Invitrogen), VEGFR1

(sc-31173; Santa Cruz Biotechnology), VEGFR2 (ab11939; Abcam), and

P-glycoprotein (clone C219).

Immunogold Electron Microscopy

Paraformaldehyde (PFA)-fixed brains from 10-month-old mice were isolated

and 50 mm hippocampal slices were dissected out and postfixed for 2 hr in

4% PFA. MVECs on Transwell filter inserts were fixed in 4% PFA and 0.1%

glutaraldehyde. Fixed samples were processed as previously described

(Eden et al., 2010). Briefly, samples were embedded in 12% gelatin in 0.1 M

phosphate buffer (pH 7.4). After infusion with 2.3 M sucrose at 4�C overnight,

80 nm sections were cut at �120�C using a cryoultramicrotome and collected
ntal Cell 30, 541–552, September 8, 2014 ª2014 The Authors 549
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Figure 6. VEGFR1 and Akt-Mediated Cyto-

protection in Brain Microvascular ECs

(A) Staurosporine (SSP; 1 mM, 60 min) more than

doubled caspase 3/7 activity in primary rat brain

MVECs when compared to untreated control cells

(NT). The staurosporine-induced caspase 3/7 ac-

tivity was significantly reduced by pretreatment

with VEGF-A and PlGF-1 but not VEGF-E (all at

50 ng/ml for 30 min).

(B) The VEGF-A-mediated reduction of staur-

osporine-induced caspase 3/7 activity was sensi-

tive to 10 mMPI3K inhibitor wortmannin but not the

p38 inhibitor SB202190.

Shown are means ± SEM (nR 15). ***p < 0.001; ns,

not significant (Student’s t test).
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in a 1:1 mixture of 2.3 M sucrose and 2% methylcellulose. The sections were

then stained as previously described (Slot et al., 1991) using antibodies against

VEGFR1 (sc-31173) (AF471; R&D Systems) and VEGFR2 (ab11939) (DC101).

Samples were viewed with a JEOL 1010 transmission electron microscope,

and images were gathered using a Gatan Orius SC100B charge-coupled de-

vice camera. Image manipulation was performed in Gatan Digital Micrograph

and Adobe Photoshop. VEGFR distribution was determined by visual inspec-

tion of electronmicrographs. Gold particles were considered luminal (apical) or

abluminal (basal) when found within 20 nm of the respective plasma mem-

brane (Ottersen, 1989).

Transendothelial Flux

Fluorescein isothiocyanate (FITC) dextran (4 kDa) flux across MVECs was

measured as previously described (Martins et al., 2013).

Transendothelial Electrical Resistance

TEER was measured directly with chopstick electrodes (Turowski et al.,

2004) and an EVOM voltohmmeter (World Precision Instruments). Alter-

natively, TEER was assessed by impedance spectroscopy using cells

grown either on 12 mm Transwells and a cellZscope (nanoAnalytics) or

on gold electrodes (eight-well 8W1E) and an ECIS (4,000 Hz) (Applied

BioPhysics).

Cytoprotection Assays

Caspase activity of MVECs grown in 96-well plates was measured using the

Apo-ONE Homogeneous Caspase-3/7 assay kit (Promega).

Cell-Surface Biotinylation

Apical and basal biotinylation was performed using a method adapted from

Gottardi et al. (1995). Basal biotinylation was very weak, presumably because

of reduced access through the filter and the basement membrane (Gottardi

et al., 1995). Therefore, apical and basal domains were labeled simultaneously

in the presence of EDTA. Biotinylated proteins were isolated on streptavidin

beads and, following immunoblotting for VEGF receptors, apical and basal sig-

nals were quantified by densitometry and normalized against input signals.

Basal signal was calculated from the combined apical and basal labeling

minus the apical signal.

Western Blots

For immunoblot analyses, samples were lysed in 50 mM Tris/Cl (pH 6.8),

2% SDS, 10% glycerol, 100 mM dithiothreitol (DTT), 100 nM calyculin A

(50 ml/cm2 of cells), separated by SDS-PAGE, electrotransferred to nitrocellu-

lose or polyvinylidene fluoride, and immunodecorated with phospho-specific

and total antibodies as previously described (Martinelli et al., 2009). Akt (phos-

pho-S473 and total), p38 (phospho-T180/Y182 and total), and anti-VEGFR2

antibodies were from Cell Signaling (55B11), and anti-VEGFR1 was from Ab-

cam (Y103).

VEGF Receptor Localization in Retinal and Pulmonary Vessels

Anti-VEGFR1 (sc-31173) and -VEGFR2 (DC101) antibodies (each at 6 mg/kg)

were injected into the left ventricle of anesthetized p20 mice (C57 BL/6J). After
550 Developmental Cell 30, 541–552, September 8, 2014 ª2014 The
5 min, the animals were perfused with PBS followed by 4% PFA. Retinae were

dissected out and processed for whole-mount staining (West et al., 2005). For

abluminal detection, dissected unfixed retinae of PBS-perfused mice were

overlaid with anti-VEGFR1 and -VEGFR2 antibodies (20 mg/ml) for 5 min,

washed three times briefly with PBS, and then fixed in 4% PFA for 1 hr. All

retinae were stained using anti-F4/80 (MCA497EL; AbD Serotec) and/or bio-

tinylated isolectin B4 (B1205; Vector Labs) and secondary antibodies to detect

bound VEGFR1 and -R2 antibodies.

Transversal (1 mm) sections of lungs from animals having undergone car-

diac injections were analyzed in a similar manner. All samples were analyzed

by confocal microscopy on a Zeiss LSM 700. Retinal flat mounts were imaged

with a pinhole aperture allowing capture of the entire primary plexus depth in a

single scan, whereas sections of lung were analyzed from projections of

sequential image stacks.

p38 and Akt Signaling In Vivo

For luminal stimulation, 120 mg/kg of VEGF-A, VEGF-E, or PlGF-1 or an equal

volume (100 ml) of saline was injected into the tail vein of anesthetized P23Wis-

tar rats. For abluminal stimulation, cranial windows were surgically introduced

and VEGFs were added at 100 ng/ml (final concentration) to the liquid pool

superfusing the pial microvasculature. Fiveminutes after injection/VEGF appli-

cation, animals were perfused and fixed and pial or lung sections were

processed for immunohistochemistry (Powner et al., 2010). For Akt analysis,

animals were injectedwith VEGFs in the tail vein as above or in the vitreous (us-

ing 100 ng of VEGF-A, VEGF-E, or PlGF-1 or an equal volume [5 ml] of saline).

After ca. 25 min, retinae were isolated and lysed in 50 mM Tris/Cl (pH 6.8), 2%

SDS, 10% glycerol, 100 mM DTT, 100 nM calyculin A and subjected to immu-

noblot analysis.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, and one table and can be found with this article online at http://
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Figure 7. Model of VEGF Action on MVECs

of Blood-Neural Barriers

The majority of VEGFR1 and VEGFR2 is found on

the apical (luminal) and basal (abluminal) side,

respectively, of brain or retinal MVECs. Based on

computer simulation (Mac Gabhann and Popel,

2007), such a receptor distribution is predicted to

result primarily in VEGFR1 and VEGFR2 homo-

dimers at the apical and basal surface, respec-

tively. Residual apical VEGFR2 or basal VEGFR1

would not be found in homodimers but rather in

heterodimers with the more abundant receptor.

Signaling from VEGFR1, mainly triggered by

circulating VEGF, activates a PI3K/Akt pathway,

which plays a role in endothelial cytoprotection.

Signaling from VEGFR2, triggered by tissue-borne

VEGF, activates p38 and mediates paracellular

permeability, hallmarked by macromolecular flux,

electrical conductance, and a loss of Cldn5.
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