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Abstract 
Mobility diaries of a large number of people are needed for assessing transportation 
infrastructure and for spatial development planning. Acquisition of personal mobility diaries 
through population surveys is a costly and error-prone endeavour. We examine an alternative 
approach to obtaining similar information from episodic digital traces of people’s presence in 
various locations, which appear when people use their mobile devices for making phone calls, 
accessing the internet, or posting georeferenced contents (texts, photos, or videos) in social 
media. Having episodic traces of a person over a long time period, it is possible to detect 
significant (repeatedly visited) personal places and identify them as home, work, or place of 
social activities based on temporal patterns of a person’s presence in these places. Such analysis, 
however, can lead to compromising personal privacy. We have investigated the feasibility of 
deriving place meanings and reconstructing personal mobility diaries while preserving the 
privacy of individuals whose data are analysed. We have devised a visual analytics approach and 
a set of supporting tools making such privacy-preserving analysis possible. The approach was 
tested in two case studies with publicly available data: simulated tracks from the VAST 
Challenge 2014 and real traces built from georeferenced Twitter posts. 

INTRODUCTION 
Information about human daily mobility, i.e., where people travel, when, and why, is necessary 
for transportation management, urban planning, and public health studies. This kind of 
information can be obtained from daily mobility diaries of a large sample of people. The way of 
using mobility diaries is briefly described below. 

The use of daily mobility diaries 
In planning any changes in transportation infrastructure, public transportation, or land use in 
populated areas, it is necessary to obtain realistic predictions of how the changes may affect the 
daily lives of the population, in particular, their daily mobility behaviors, and how well the 
changed environment will suit the daily needs of the people. For this purpose, it is necessary to 
estimate how many people at different times of the day need to get to the places of their work or 
study, to schools or kindergartens of their children, to places for shopping, health care, services, 
entertainment and recreation, and back to their home places. This is done in the following way. 



A large set of personal mobility diaries from a sample of the population is obtained through a 
survey campaign. In the diaries, the responders describe at what times of the day they typically 
go to what kinds of places and for what purposes. A planner generates a so called synthetic 
population where each virtual individual represents one person from the real population currently 
living or expected to live in the area to be affected by the planned changes. The collected diaries 
are randomly distributed among the virtual individuals and treated as their personal plans for a 
day. The place types referred to in the diaries are substituted by concrete locations in the area 
based on the current or planned land use distribution. Then agent-based simulation methods [1] 
are used to simulate movements of the virtual individuals through the planned environment for 
implementing their personal plans. The individual movements are aggregated into collective 
flows. The simulation may uncover bottlenecks in the transportation infrastructure, show where 
people’s time may be lost, reveal unused facilities, etc. Based on such findings, the planner can 
understand what needs to be improved and in what way. Similar studies are undertaken to 
forecast the impacts of possible changes in the population number or structure. 

The data acquisition problem 
Personal mobility diaries are traditionally acquired through population surveys, which is a costly 
and error-prone endeavour. Therefore, researchers have been seeking alternative ways to obtain 
similar information, preferably, from already existing data containing traces of people’s presence 
and activities in different places at different times, such as mobile phone use records. Given that 
mobile phones are actively used throughout a day, the daily mobility can be reasonably well 
reflected in the data. Since the mobile phone data are not widely accessible, other publicly 
available data with similar properties, in particular, georeferenced posts in Twitter and other 
social media, have also been investigated. Such posts are most often sent from mobile devices; 
hence, their coordinates and time stamps can be used to trace the users’ mobility. 

There is a large content gap between daily mobility diaries and automatically collected data with 
time-stamped positions of people. The latter lack semantics, which makes it difficult to ascertain 
whether a phone call or Twitter post has been made from home, work place, public transport, 
grocery store, or other type of location. Hence, to be able to reconstruct diary-like information 
from mobility data, it is necessary to extract significant locations and determine their person-
specific meaning or purpose, such as home, work, shopping, sports, social activities, etc. 

An earlier work [2] demonstrated a possibility of extracting frequently visited places from raw 
position data of a person (specifically, GPS tracks) covering a long time period, and identifying 
the meanings of these places by analysing temporal patterns of the person’s presence. However, 
what is easy to do with data from a few people becomes very problematic for hundreds or 
thousands of people. Moreover, analysing such data at the individual level can reveal sensitive 
personal information, thus compromising personal privacy. Hence, the challenge is to find 
approaches to deriving place semantics for a large number of people by analysing entire 
population and groups (overall and intermediate levels [3]) instead of individuals. 

A further difficulty is posed by the episodic character of mobile phone use records, 
georeferenced tweets, and similar data [4][5]. Persons’ positions are recorded only when specific 
events occur: starting a call, sending an SMS, accessing a web page, or sending a tweet. For the 
times between the events, the whereabouts of the people are unknown. This means, in particular, 
that the time stamps of entering and leaving places and the duration of staying are not known and 
cannot be used in the analysis, which is different from analysing GPS tracks with fine temporal 



resolution [2]. With such episodic mobility data, the place semantics need to be derived from 
temporal distributions of events recorded at those places. The feasibility of this concept has been 
demonstrated on the example of a few individuals considered separately [6]. The challenge is to 
extend it to many individuals analysed simultaneously. 

To summarize, there is a need for methods and tools for extracting repeatedly visited personal 
places and deriving the place semantics (i.e., meanings or purposes) from episodic mobility data 
of a large number of people. To fulfil this need, several problems must be solved: 

• Work effectively with massive, long-term data from a large number of people. 
• Be able to deal with the episodic character of the data. 
• Respect personal privacy by using only aggregated data for the whole population or large 

groups of people and avoiding access to individual data, in particular, people’s locations. 

Finding efficient and privacy-preserving approaches to deriving information equivalent to daily 
mobility diaries from semantically poor episodic movement data was one of the objectives of an 
EU-funded research project DataSim (http://www.uhasselt.be/UH/About-DATASIM/Problems-
addressed.html). Our research on determining place semantics with the help of visual analytics 
techniques was a part of this project. The goal was not to develop ready-to-use tools for city 
planners and transportation managers but to devise a suitable methodology and test its feasibility. 

This paper describes the methodology we have devised and demonstrates its feasibility using two 
case studies with simulated tracks from the VAST Challenge 2014, for which ground truth is 
available, and real traces built from georeferenced tweets posted during one year within a 
metropolitan area encompassing San Diego (USA) and the surrounding communities. 

The Web site geoanalytics.net/and/papers/placeSemantics contains supplementary materials, 
which include texts providing additional details and explanations concerning the analytical 
procedure, a video demonstrating the process of inferring place semantics and the interactive 
visual techniques employed, and a link to the data we used in this paper. 

1 RELATED WORKS 

1.1 Obtaining significant places from movement data 
The term ‘significant places’ is henceforth used to refer to places repeatedly and purposefully 
visited by individuals and therefore having certain meanings (semantics) for the individuals, such 
as home, work, place for shopping, recreation, social activities, etc. 

Potentially interesting places have been extracted from mobility data using different variants of 
clustering [7][8][9]. Semantic information can be attached to these places by matching them with 
locations of predefined places of interest (POI) [10][11]. This approach, however, does not 
uncover personal POIs such as home, work, child's school, and place of regular shopping. 
Mobile phone data have been used for inferring land use categories based on an observation that 
residential, commercial, industrial, and green areas significantly differ in temporal profiles of 
mobile phone activities [12]. A few works describe ad hoc approaches to finding and interpreting 
personal places. Ahas et al. [13] use mobile phone data to identify home and work places based 
on the frequency of the person’s calls from each place, their average time of the day, and the 
standard deviation of the time of the day using a set of classification rules that are based on the 
researchers’ background knowledge. Isaacman et al. [14] derived place classification rules by 
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analysing labelled data of volunteers. The distinguishing attributes were the visit frequency, 
duration, and the counts of phone use events during work hours (13:00-17:00) and during home 
hours (19:00-7:00). So far, no systematic approaches to identification of different types of 
personal POI have been reported. 

Mobile phone data have also been used for analysing personal daily mobility behaviours without 
trying to establish place meanings. Daily sequences of persons’ positions can be transformed into 
graphs with nodes corresponding to visited places and directed links representing trips between 
the places. Surprisingly, out of millions of possible graph structures, only 17 are of statistical 
significance. These 17 graphs are called human mobility motifs [15]. Based on this work, it was 
shown that daily travel behaviours are strikingly similar for different cities and countries while 
there are also differences explainable by demographic differences between cities [16].  

Twitter data, specifically, Foursquare check-in posts extracted from Twitter, were also analysed 
for deriving location types. It was found that different types of public places (coffee shops, sub 
shops, book stores, etc.) have characteristic daily and weekly temporal patterns of visits, which 
can be used for place type classification [17][18]. Better results can be achieved through 
additional analysis of term occurrences in the text content of the check-in tweets [19]. 

1.2 Related works in visual analytics 
In visual analytics, no specific methods for extraction of semantic information from mobility 
data have been proposed so far. There are works in which semantic information is derived from 
contents of georeferenced Twitter or Twitter-like messages and used in spatio-temporal analysis. 
In VAST Challenge 2011 [20], synthetic Twitter-like data were analysed for understanding the 
cause, character, and spatio-temporal evolution of a simulated epidemic outbreak; however, these 
works were not related to place semantics.   

Scatterblogs 2 [21] is a real-time monitoring visual analysis tool for Twitter streams using visual 
composition of content filters to detect and visualize the spatio-temporal distributions of thematic 
events but not their association with specific places. 

Krüger et al. [22] propose to semantically enrich vehicle GPS trajectories with data about public 
POI obtained from Foursquare by associating POI categories with spatial clusters of trajectory 
endpoints, i.e., frequent destinations. Their work focuses on visual exploration of trip purposes 
while accounting for POI categorization uncertainties at multiple spatial scales in space and time. 

1.3 Protection of personal privacy 
Application of visual analytics methods to data including people's geographic positions is 
associated with privacy issues [23][24][25]. Aggregation of mobility data of multiple individuals 
based on spatial and spatio-temporal generalization helps protect personal privacy [26], but this 
approach is suited for analysis of mass movements rather than personal mobility. Another 
approach is obfuscation of individuals’ real positions, i.e., replacing points by regions; however, 
obfuscation-based techniques fail to hide repeatedly visited locations and regularly followed 
routes [23]. The inherent problems of location privacy disappear when mobility data are 
transformed from geographic space to abstract spaces [5] (section 9.6). There is an example of 
applying such a transformation to data with previously attached semantic labels [27], but it is not 
discussed how the required semantic information can be obtained without compromising 
personal privacy. 



Dasgupta and Kosara [28] discuss privacy issues associated with non-geographic data and 
propose privacy-preserving visualization with parallel coordinates incorporating the formal 
concepts of k-anonymity and l-diversity developed in the field of data mining. Our work does not 
aim at developing a mechanism that formally guarantees chosen levels of privacy protection. The 
goal is to investigate the principal possibility of extracting personal places and attaching 
semantic labels to them without accessing geographical positions of individuals.  

2 INPUT DATA, PROBLEM STATEMENT, AND METHODOLOGY OVERVIEW 

2.1 Format and general characteristics of input data 
Our methodology is intended for analysis of episodic human mobility traces, such as records 
about the use of mobile phones or other mobile devices at various locations. The main 
components of such data are person’s (user’s) identifier, location specification, and time stamp. 
The location specification may be available in the form of geographic coordinates (longitude and 
latitude) or as a reference to some spatial object with known coordinates, such as mobile network 
antennas. An example of episodic mobility data we deal with is given in Fig.1, which 
demonstrates the typical temporal sparseness and irregularity of such data. 

 
Fig. 1. An example of episodic mobility data. 

Mobility data may also have other components, for example, the type of activity, such as phone 
calling, sending SMS, accessing a web site, etc. Geolocated social media posts include some 
content (text, photo, or video), which may be supplied with a title and/or hashtags, and media-
specific attributes. Although some of components may contain useful location-related 
information, such as venue types in Foursquare check-in records [17][18][19][22], we 
intentionally limit the core of our methodology to using only the main components (i.e., person 
identifier, location, and time), which are present in all kinds of mobility data. This means that the 
approach does not require any additional components to be present in the data, but it also does 
not prohibit the use of additional components when available. 

The extraction of significant personal places and derivation of the place meanings requires the 
data to cover a sufficiently long time period and include a sufficient number of presence records 
for these places. We estimate the shortest meaningful time period to be at least one week for 
identifying the home and work places and at least two weeks for identifying other types of 



places, which are not expected to be visited every day. However, this only applies to data with 
high temporal frequency, which can come from active mobile phone users or active bloggers. 
When data are temporally sparse, it is necessary to have records from a much longer time period. 

Besides mobility data, the methodology requires additional data that can be used for validating 
the plausibility of the assignment of semantic labels to places. One possibility is land use (LU) 
data. For example, when a set of places is going to be labelled as ‘home’, it should be checked 
whether most of them are in residential areas. Another possibility is to utilise data about relevant 
geographical objects, such as public transportation stops, schools, shops, and restaurants. Such 
objects are commonly called “points of interest” (POI). POI data can be obtained from map 
feature services, such as OpenStreetMap (www.openstreetmap.org), or retrieved from 
geographic databases. It is then possible to derive counts of different types of POIs inside places 
or within a specified distance threshold. Before assigning some meaning to a set of places, the 
compatibility of this meaning with the POI types occurring in these places should be checked. 

Hence, the proposed methodology for acquisition of place semantics requires two datasets: (1) 
time-stamped positions of people and (2) LU or POI data that can be used for validation of the 
place meaning assignments. 

2.2 Data examples  
One of the types of mobility data addressed by our approach is mobile phone use records; 
however, we have no possibility of using a dataset of this type for published work due to privacy 
restrictions. Instead, we demonstrate our approach using two openly accessible examples of 
mobility data, which have properties similar to those of mobile phone use data. 

2.2.1 VAST Challenge 2014 Mini-Challenge 2 
The original dataset provided for the VAST Challenge 2014 Mini-Challenge 2 [29] consists of 
simulated tracks of cars with duration of two weeks. The records include timestamps, car 
identifiers, and coordinates. We used the tracks of 35 personal cars and ignored the tracks of 5 
remaining vehicles utilized only for business purposes. The full tracks cannot be classified as 
episodic mobility data because of high temporal resolution (1 second), which allows determining 
the exact times of arriving at each visited place and leaving it. To have a suitable example of 
episodic data, we extracted a subset of the car position records by selecting the positions of stops 
and taking a 25% sample of these positions. This gave us 1,469 records imitating the properties 
of episodic mobility data, as depicted in Fig.1.  

No data similar to land use or POI data were provided for the challenge. As the underlying 
territory for the car tacks is fictitious, existing databases or map feature services cannot give us 
suitable information about places. To create a substitute for POI data, we utilized simulated 
credit card transaction records, also available for the challenge. The details of pre-processing the 
VAST Challenge data are given in Appendix I at geoanalytics.net/and/papers/placeSemantics. 

We would like to stress that, although the conditions of the challenge did not require it, we 
analysed the data in a privacy-preserving way, i.e., without looking at any personal data. 

2.2.2 San Diego tweets 
Georeferenced Twitter messages posted in the metropolitan area of San Diego (USA) were 
collected over a period of 302 days from the end of September 2012 until the end of July 2013. 



In the context of our task, we are only interested in data from residents of the area. To separate 
residents from visitors, we used a simple filter: there must be at least 100 tweets from a person, 
and the time span between the first and the last tweets must be at least 100 days. This rather 
arbitrary filter was nevertheless adequate for obtaining a test dataset; it was not our goal to 
precisely determine all residents of the area. The selected subset consists of about 2.5 million 
records of 4,286 individuals. The geographical extent of the area is 112 ×103 km.  

To validate place meaning assignments, we obtained land use data for the San Diego area in the 
form of polygons with labels specifying the land use classes within the polygon boundaries. 

Please note that the texts of the tweets were not used as sources of place-related semantic 
information in this case study. We intentionally used only the minimum subset of fields shared 
by all kinds of mobility data, i.e., person’s identifier, geographic coordinates, and time, to insure 
the general applicability of the methodology. Still, our approach as such does not preclude the 
use of information derived from Twitter texts. In our earlier work [30], we analysed the temporal 
and spatial distributions of occurrences of different topics (subjects) people tweeted about, such 
as “family”, “home”, “work”, “education”, “friends”, “food”, etc. High frequencies of certain 
topic(s) in a place may be related to the place meaning; however, it should be taken into account 
that people may tweet about any topic from any kind of place. For example, one may tweet about 
work-related topics while being at home or at a beach and tweet about food and drinks while 
being at work. Hence, the topics occurring in a place cannot be used as absolute indicators of the 
place meanings but rather as supporting evidence. Our methodology allows the analyst to utilise 
topic frequencies extracted from message texts in a way similar to the utilisation of land use or 
POI information. In particular, the multi-attribute bar chart display described in section 4 can be 
used to visualise and analyse aggregated topic frequencies for sets of places. 

2.3 Problem statement 
Having episodic mobility data as shown in Fig.1, we aim at obtaining so called “semantic 
trajectories”, which may look as shown in Fig.2. In semantic trajectories, the geographic 
locations are substituted by semantic labels denoting the meanings of the visited places or types 
of activities performed. The transformation of the original mobility data into semantic 
trajectories needs to be done for a large set of individuals in such a way that the geographic 
positions of the individuals are hidden from the analyst. Please note that the resulting semantic 
trajectories are devoid of geographic positions and thus can be viewed and further analysed 
without compromising individual’s location privacy. 

 



Fig. 2. An example of “semantic trajectories” obtained from episodic mobility data. 

To obtain semantic trajectories from mobility data, the following tasks need to be fulfilled: 

1. Extract personal places repeatedly visited by each individual. 
2. Identify the most likely individual-specific meanings of the extracted personal places and 

attach semantic labels denoting these meanings to the places. 
3. For the entire set of individuals, extract public places visited by multiple individuals. 
4. Identify the most likely meanings of the public places and attach corresponding semantic 

labels to the places. 
5. For each point in the original data, find a personal or public place containing it and replace 

the geographic reference of the point by the semantic label of the place. 

The resulting semantic trajectories do not yet adequately approximate personal mobility diaries 
because they are episodic, like the original mobility data. That is, the trajectories include only a 
subset of places that were actually visited on each day. For example, trip 1 in Fig. 2 begins with 
‘shopping’ at 11:43, although the person was, most probably, at home in the morning and could 
have also visited other places before appearing in the shopping place. It can also be guessed that 
the person returned home after ‘outdoor recreation’, but this is not reflected in the data. Hence, in 
the next stage of analysis, more complete daily semantic trajectories should be reconstructed 
from partial semantic trajectories. This next stage is, however, beyond the scope of this paper. 

2.4 Methodology overview 
To support tasks 1-5 and following analysis of semantic trajectories, we have devised an 
analytical workflow shown schematically in Fig. 3. On the left, the workflow is represented by a 
flow chart. In the centre, there are brief comments to the steps of the procedure. On the right, 
there are references to the paper sections and Appendix II where these steps are described. 

For extracting personal and public places, we developed an automated tool involving clustering 
of points from episodic mobility data by spatial proximity. To extract personal places, the points 
of each individual are clustered separately; to extract public places, the points of all people are 
clustered together. Places are defined by constructing boundaries (spatial convex hulls or 
buffers) around the point clusters. The tool works automatically. It takes input data from the 
database, processes them, and puts the resulting place boundaries back in the database. Personal 
places are associated with the identifiers of the individuals they belong to; however, the places 
and the identifiers of their owners are not shown to the analyst. The place extraction algorithm is 
described in detail in section 3. 

A suite of interactive visual techniques supports the process of determining place meanings. To 
avoid disclosing possibly sensitive personal information, we have chosen such visualization 
methods that only show data aggregated over the whole set or groups (clusters) of places and 
allow no access to individual data: 

• multi-attribute summary bar chart showing value summaries of multiple numeric attributes 
(section 4);  

• qualitative histogram showing aggregated counts of qualitative values (section 4); 
• two-dimensional (2d) time histogram showing aggregated two-dimensional time series of 

place visits (section 5).  



Identifying the most probable home and work places is supported by a place ranking tool 
described in section 6.1. The places of each person are ranked based on several relevant 
attributes, such as the total number of visit-days and the proportions of visits in the typical work 
and home hours. The places with the best ranks are considered as candidates for receiving the 
target meaning, i.e., ‘home’ or ‘work’. To check if these places are sufficiently good candidates, 
the analyst looks at the associated LU or POI classes, as described in section 6.2. The analyst 
investigates how modifications of the criteria weights affect the selection of the candidate places 
and the corresponding statistics of the LU or POI classes. Finally, the analyst selects the best set 
of candidates and assigns the target meaning to them. For target meanings other than ‘home’ and 
‘work’, candidate places are selected by means of interactive filtering based on relevant temporal 
attributes and land use or POI classes. A detailed illustrated example of inferring place meanings 
from the VAST Challenge data is given in Appendix III and in an accompanying video, and 
Section 7 contains general guidelines for place semantics acquisition. 

After assigning semantic labels to personal and public places, the derivation of semantic 
trajectories is performed in a straightforward way (see section 2.3, task 5). The resulting 
semantic trajectories can be explored using a map of an abstract semantic space, as described in 
section 8. In particular, the plausibility of the place meaning assignments can be checked by 
analysing the emerging patterns of flows (aggregate movements) in the semantic space. 



 

Fig. 3. The analytical workflow for extracting semantic information from mobility data and 
subsequent semantic analysis. 

3 EXTRACTION OF PERSONAL AND PUBLIC PLACES 
In mobility data, the positions of moving objects are often specified as points in the geographic 
space. Starting from these points, it is necessary to find and delineate repeatedly visited places of 
each person. Places of interest can be obtained from point data by clustering points in space and 
building spatial buffers or convex hulls around the clusters [31]. In our case, clustering of points 
and place delineation needed to be done separately for each person. Density-based clustering 
used in previous research [31] is not fully suitable for the task of extracting personal places. A 
property of density-based clustering algorithms is that they can build clusters of arbitrary shapes 
and sizes; thus, they can easily construct a huge cluster covering the whole city centre if the point 
density is sufficiently high throughout the area. Such a cluster would represent not a single place 
but multiple places, which is not desirable. Smaller density-based clusters can be obtained by 
increasing the density threshold. The problem is that the same threshold is applied throughout the 
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whole study space. Since point concentrations are usually not equally dense in different parts of 
the study area, clustering with high density threshold will miss many point concentrations with 
lower densities while clustering with low density threshold will merge together multiple point 
concentrations located close to one another.  Moreover, the density of point concentrations varies 
not only across space but also across the population: it depends on how actively a person tweets 
or uses a mobile phone. It is both infeasible and violating personal privacy to look at the point 
distribution of each person in order to select an individual-based density threshold. The 
clustering and place delineation must be done in batch mode for all persons; hence, the same 
parameters have to be used. 

We have established thus far that the task of personal place extraction requires a point clustering 
algorithm that is insensitive to the density variation and allows limiting the spatial extents of the 
resulting clusters. A spatially bounded point clustering algorithm, used earlier for generating 
space tessellations [32], can be adapted for this purpose. In short, the algorithm places points in 
circles with a user-specified maximal radius Rmax. When a point is added to a circle, the circle 
centre is re-computed by averaging the x- and y-coordinates of all its points. When there is no 
suitable circle for a point, a new circle with the centre at this point is created. After processing all 
points, the circles containing fewer points than the user-chosen minimal number are discarded, 
and spatial clusters are formed from the points of the remaining circles. The algorithm allows 
different point densities in different circles and does not allow the clusters to grow beyond the 
specified limit Rmax. Please note that the resulting clusters only consist of the points and do not 
include the enclosing circles; hence, the clusters may have smaller radii than Rmax and may have 
arbitrary shapes. 

The same algorithm may be used for extracting public places, i.e., places visited by many 
individuals. The difference from extracting personal places is that the algorithm is applied to 
points representing locations of all persons at once. After the algorithm finishes, only clusters 
containing points of at least a given minimum number of different persons are retained as the 
result. 

 
Fig. 4. A group of points where the maximal density is not attained near the geometric centre is 
subdivided into smaller point groups. 

Rmax



 
Fig. 5. Neighbouring point clusters may be united into larger clusters. 

A drawback of this algorithm is that some point groupings may not look like “true” spatial 
clusters. Thus, two or three spatially compact concentrations of points may be grouped together 
if they fit in one circle, or a concentration of points may be united with one or a few isolated 
points scattered around. An illustration of this case is given in Fig. 4, left. In such artificial 
groupings, the maximal point density is not attained at the geometric cluster centre but close to 
the periphery. This can be used as an indication of poor grouping. Unnatural groupings may be 
not a problem for generating spatial tessellations, which has been the original goal of the 
algorithm. However, for the purpose of extracting significant personal or public places, such 
groupings should be avoided. To alleviate this problem, we have modified the algorithm in the 
following way. 

Input: set of points P = {(x,y)}.  

Parameters: maximal and minimal radii Rmax and Rmin; minimal number of points in a group 
Nmin. 

Algorithm

1. Apply the base point clustering algorithm to P with the parameter value Rmax. Let Γ be the 
list of resulting groups of points. 

: 

2. Go through Γ. For each group of points G ∈ Γ do the following: 
2.1 Let R be the group radius. If R<Rmin, go to the next group. 
2.2 Else, build a bounding box containing G and divide it into 9 equal rectangles by two 

horizontal and two vertical lines (Fig. 1 left). Check if the central rectangle contains 
fewer points than any other rectangle (this means that the maximal point density is not 
attained near the geometric centre of the cluster). If not, go to the next group. 

2.3 Else, subdivide G into smaller groups (Fig. 4 right) by applying the base algorithm to G 
with the parameter value R/2. Add the resulting groups to Γ and remove G from Γ.  

2.4 Redistribute points from the neighbouring groups: if a point is closer to the centre of 
one of the new groups than to the centre of its current group, move it to the new group. 

3. Remove from Γ the groups where the number of points is less than Nmin. Return Γ as the 
result. 

For extracting personal places from the San Diego data, we used the following parameters: 
Rmax=150m, Rmin=75m, Nmin=5. The rationale for choosing the radius range 75-150 m is as 
follows. We want to avoid combining points related to several semantically different places into 
one cluster; hence, the radius limit should be small. But then, we should account for possible 



position errors in the data. Particularly, mobile devices often determine positions using WiFi, 
which is less accurate than GPS. Empirical studies [33][34] have shown that WiFi positioning 
errors may be much larger than the 20 – 40 m officially reported. In the experiments, 70-90% of 
the errors were within the range of 0-150 m, and the median error was about 74m. Hence, using a 
value smaller than 150 m as the maximal cluster radius is not advisable. 

The VAST Challenge data are supposed to imitate GPS data, which are usually quite accurate; 
however, the data providers intentionally introduced noise in some tracks. We have taken 
Rmax=100m, Rmin=75m, Nmin=2. The latter value is small because the time span of the data is 
only two weeks; even a place that was visited only twice in two weeks may be one of regularly 
visited personal places. 

Another problem to deal with in place extraction is that some places may be quite large. For 
example, a person may work or study on the campus of University of California, San Diego, the 
extent of which is 3×2 km. The person’s points located on the campus may form multiple small 
clusters (Fig. 5A; points are represented by pink semi-transparent circles), which will be 
undesirably interpreted as separate personal places. When the person’s visits are aggregated into 
such small places, the resulting temporal patterns for these places might not resemble a typical 
temporal pattern of attending a place of work or study. Please note that points of one person are 
shown in Fig. 5 for illustration purpose only. Analysing data of individuals is not a part of the 
suggested methodology. 

Hence, it is desirable to unite neighbouring small clusters into larger clusters while avoiding the 
weaknesses of density-based algorithms discussed earlier. To do this, we further extend the 
space-bounded point clustering algorithm on the basis of the following observation: when two 
clusters are very close in space, there are points in each of them that could also be the members 
of the other cluster, i.e., their distances to the centre of the other cluster are below the maximal 
circle radius. We call such points “connecting points”. The idea is to unite clusters sharing at 
least a chosen minimal number of connecting points Cmin. To avoid extreme growth of the 
resulting clusters, the user may set an upper limit Rmax

+ on the radius of merged clusters. Two 
clusters are not merged if this would result in exceeding Rmax

+. The following algorithm 
extension is proposed: 

1. For each pair of neighbouring clusters, find the number of connecting points. Neighbouring 
clusters are found using the spatial index, which is a part of the base algorithm [32]. Make a 
list of cluster pairs having at least Cmin connecting points. 

2. Sort the list of connected cluster pairs in the order of decreasing number of connecting 
points. 

3. Go through the sorted list. For each pair do the following steps: 
3.1 If the radius of the circle enclosing the two clusters exceeds Rmax

+, skip this pair and 
go to the next one. 

3.2 Else, merge the two clusters. Replace the occurrences of the identifiers of the original 
clusters in the sorted list by the identifier of the merged cluster. Go to the next pair. 

According to this algorithm, strongly connected clusters get higher probability of being merged 
than more loosely connected clusters.  

The impact of the parameter Rmax
+ is illustrated in Fig. 5. In Fig. 5B, the blue polygons are the 

convex hulls of the clusters obtained through merging original clusters connected by at least 3 



points without limiting the extents of the resulting clusters. In Fig. 5C, the green polygons are the 
convex hulls of the clusters obtained with Rmax

+ = 600 m.  

For assessing the appropriateness of the clustering results, the analyst looks at the statistics of the 
resulting cluster radii. The presence of too large values may require the analyst to look at the 
outlines of the largest clusters, which are drawn on a map without showing the identifiers of the 
place owners. The results are acceptable when the largest clusters correspond to large geographic 
objects, such as university campuses, visible on the background map. The spatial convex hulls of 
the clusters are taken as the place boundaries. 

For the San Diego data, clustering without setting Rmax
+ results in obtaining personal places with 

radii up to 1.5 km and public places with radii up to 4 km, which we judged as too large. We 
have empirically found that the upper limit of 600 m works well enough. We extracted 38,225 
personal and 9,301 public places. For the artificial data from the VAST Challenge, there is no 
possibility to check the largest places against a real geographical background. We set Rmax

+ to 
250 m, to avoid obtaining too big places. We obtained 202 personal and 41 public places. 

4 ATTACHING LAND USE OR POI INFORMATION TO PLACES 
To be able to validate place meaning assignments and resolve ambiguities, land use or POI 
information needs to be attached to the extracted places. For this purpose, our tools derive a 
frequency distribution of distinct LU or POI classes for each place. This is done differently for 
LU and POI data. For LU data, which are usually available in the form of polygons labelled by 
land use classes, the frequency distributions are obtained in the following way. First, for each 
point in the original data, the containing land use polygon is found, and the class label of this 
polygon is attached to the point. Second, for each extracted place, the frequencies of occurrence 
of distinct LU classes among the points contained in this place are counted. For POI data, which 
consist of place coordinates and labels signifying the POI classes, the procedure is as follows. 
For each extracted place, all POIs contained within the place boundaries are found, and the 
frequencies of distinct POI classes are counted. 

Depending on the total number N of distinct LU or POI classes occurring on the studied territory, 
the class frequency information may be stored in two different ways. If N is not large, the 
information can be represented by N numeric attributes, one for each class. The values of the 
attributes for each place are the frequencies of the N classes. We used this approach in the VAST 
Challenge case study, where we had 8 distinct POI classes. In case of large N, the class 
frequency information can be represented by k qualitative (nominal) attributes, where k is a 
number chosen by the analyst, such that 1≤k<N. The attributes can be named “most frequent 
class”, “second frequent class”, …, “k-th frequent class”. Their values are the first, second, …, k-
th class labels in the label arrangement by the decreasing frequencies. We used this approach in 
the San Diego case study, where N=103. It would be difficult to deal with 103 numeric attributes 
representing all possible land use classes. We found it sufficient to use instead three qualitative 
attributes, i.e., we took k=3. 

For viewing LU or POI information and using it in the analysis, we have developed two types of 
aggregated data displays. For dealing with a set of numeric attributes representing frequencies (in 
particular, frequencies of different LU or POI classes), we use a multi-attribute summary bar 
chart display. The examples in Figs. 6 and 7 show aggregated frequencies of different POI 
classes by proportional lengths of horizontal bars. There are interactive controls for selecting the 



aggregation operation (sum, average, minimum, maximum, or count) and setting the value 
filtering condition. The display in Fig. 6 applies the operation ‘average’ and shows the average 
percentages of different POI classes per place. The value filtering condition is ‘>0’. The display 
in Fig. 7 applies the operation ‘count’ and the value filtering condition ‘>=5’, i.e., it shows, for 
each POI class, the counts of places where at least 5% of the points have this POI class.  

 
Fig. 6. A multi-attribute summary bar chart of POI class frequencies in the places extracted from 
the VAST Challenge data. 

To compare LU or POI class frequencies in two or more groups of places, a colour propagation 
mechanism is used. When places are divided into groups in any way, such as clustering or 
classification according to the likelihood of having a certain meaning, distinct colours are 
assigned to the groups. Information about the group colours and the group membership of each 
place can be propagated to all currently existing displays. A multi-attribute bar chart reacts to the 
colour propagation by multiplying the bars: it creates as many groups of bars as there are groups 
of places. Each group of bars represents aggregated information for one group of places; the bars 
are painted in the colour of this group. This is illustrated in Fig. 7. Where the deviations of the 
group aggregates from the whole set aggregates are statistically significant, the bars are enclosed 
in black or white frames indicating significantly higher or significantly lower values, 
respectively. The significance of the deviations is determined using the chi-square test. 

 

Fig. 7. A multi-attribute summary bar chart shows POI class frequencies for groups of places. 

For dealing with qualitative attributes, such as the first, second, …, k-th most frequent LU/POI 
class, we designed a qualitative histogram display. When an attribute has a large number of 
distinct values, the values can be organised in a hierarchy. For the San Diego case study, where 
there are 103 different land use classes, we created a hierarchy that can be utilised by the display. 



Fig. 8 demonstrates a hierarchical qualitative histogram for the attribute “Land use: most 
frequent value” of the personal places extracted from the San Diego data. The bar lengths are 
proportional to the counts of the classes and generalised categories of land use. The upmost bar 
corresponds to all land use classes taken together. The display reacts to the propagation of place 
groups and their colours in the same way as shown in Fig. 7. 

 

Fig. 8. A hierarchical qualitative histogram shows counts of places with different land use classes 
for the whole set of personal places extracted from the San Diego data. 

5 EXPLORATION OF TIME PATTERNS OF PLACE VISITS 
The place extraction tool described in Section 3 computes for each place the total number of 
visit-days and a two-dimensional time series of place visits by days of the week and hours of the 
day. For personal places, only the visits of the place owners are counted. Counts of visits are not 
the same as counts of points. If two consecutive points of a person fit in the same place and the 
same hour, they are treated as representing the same visit. 

 
Fig. 9. Based on these temporal patterns of place visits, the places can be interpreted as home 
(left) and work (right). 

For looking at the place visit time series and using them in the analysis, we have designed a two-
dimensional time histogram display illustrated in Fig. 9. A time histogram is a matrix with rows 
corresponding to days of the week and columns to hours of the day. Inside the cells, there are 
symbols with sizes proportional to aggregated visits in the corresponding days and hours for the 
set of places currently considered. The UI allows the user to select the aggregation operation 
(sum, minimum, maximum, average, or count), the condition for including attribute values in the 
aggregates (all, positive, negative, zero, or within a user-specified interval), and the way of 
representing the aggregates in the matrix cells (squares, circles, vertical bars, or horizontal bars). 



The display reacts to propagation of place groups and their colours (as explained in section 4) by 
multiplying the time histogram, so that one histogram represents the whole set of places and the 
remaining histograms show aggregated counts for different groups of places. The symbols in the 
cells of the matrices have the colours of the clusters. When all histograms do not fit in the 
window, the display can be scrolled.  

Figure 9 illustrates the main idea of our approach to identifying place meanings based on the 
time patterns of the place visits. Here, time series of visits to two different places are depicted. 
Based on the observed temporal patterns and our background knowledge concerning the typical 
times of various activities of people, we can assign the meaning ‘home’ to one place and the 
meaning ‘work’ to the other place. 

Since we need to attach meanings (semantic labels) to a large number of places, we cannot do 
this by separately looking at the temporal visit pattern of each place. A more scalable approach is 
to filter and rank the places based on relevant summary attributes derived from the time series. 
An example of such a derived attribute is the number or proportion of place visits fitting in the 
work times, i.e., in the hours from 05 to 18 during the work days. We have implemented 
interactive tools for derivation of relevant attributes, which are described in Appendix II. 

However, before deriving attributes that can appropriately distinguish possible place meanings, it 
is useful to perform an initial exploration of the set of the existing time patterns of place visits. 
The initial exploration can be done by means of clustering of the place visit time series by 
similarity and analysing the clusters with the use of 2d time histograms. To standardize the time 
series across the places and people, the absolute counts are converted to percentages of the total 
number of the place visits. The clustering can be done using any existing clustering algorithm. 
The illustration in Fig. 10 represents selected clusters obtained with the k-means clustering 
method for the San Diego example. The appearances of some patterns suggest the likely 
meanings of the places in the respective clusters. Thus, patterns ‘a’ and ‘b’ in Fig. 10 suggest the 
meaning ‘home’, patterns ‘c’ and ‘d’ evoke the meaning ‘work or study’, ‘e’ could be a shopping 
pattern, and ‘f’ may be attributed to social activities, i.e., visiting or meeting friends or relatives. 
Such observations may give an idea about the possible activities and their typical times for the 
territory and population under study. 



 

Fig. 10. 2d time histograms for selected clusters of places (San Diego example). 

6 INFERRING PLACE MEANINGS 

6.1 Multi-criteria evaluation and ranking 
From the literature and communication with other researchers, we have discerned several criteria 
used for identifying home and work places of individuals: place visit frequency, average time of 
the day when visits happen, counts of visits in the night time and in the work time, and counts of 
daily trip starts and ends. All these criteria seem relevant, but it has not been known, which 
one(s) of them works the best. It seems appropriate to combine these criteria, but so far this has 
only been done in specific studies through ad-hoc rules [13][14]. 

We have developed a generic interactive technique for combining multiple criteria based on 
approaches from decision support science [35] where multiple attributes of decision options are 
integrated into scores representing the degree of suitability or utility of the options. The attributes 
may be given different weights according to their relative importance. Two types of criteria are 
distinguished: benefit criteria with higher values being preferred and cost criteria with lower 
values being preferred. The most common criteria integration method in multi-criteria decision 
making (MCDM) is the weighted linear combination [36]. The attribute values are normalized to 
the range [0, 1] depending on their relative positions between the minimal and maximal values. 
For a benefit criterion, 0 corresponds to the minimum and 1 to the maximum; for a cost criterion, 
it is the other way around. The integrated score is computed as the sum of the products of the 
normalized values multiplied by the attribute weights and divided by the sum of the weights. The 
result is a number ranging from 0 to 1, where 0 is the worst and 1 is the best. 

Previously suggested interactive techniques for MCDM [37][38] allow the user to select relevant 
criteria and set their directionality (cost or benefit) and weights. The evaluation results, i.e., the 
scores and ranks of the options, are immediately shown on visual displays, such as parallel 
coordinates plot and map. The user can test how changes of the criteria weights affect the results. 



The criteria integration approach from MCDM can be adapted to the task of identifying the most 
likely home or work place among the personal places of an individual. By nature of the task, the 
evaluation must be done separately for places of each individual. However, the size of the data 
and the privacy constraints do not allow separate consideration of the places of each individual 
by analysts. Analysts can only choose relevant criteria and set a common set of weights to be 
used for all individuals. A prototypical UI is shown in Fig. 11. A computational tool calculates 
integrated scores separately for the places of each individual and ranks the places according to 
their scores. The target meaning (home, work, etc.) can be assigned to the set of the top ranking 
places of all individuals. We stress that the meaning is assigned to multiple places 
simultaneously without looking at any particular place, i.e., without accessing personal data. 

 

Fig. 11. A fragment of the UI for the multi-criteria interpretation of personal places. 

We have developed two multi-criteria ranking tools for personal and public places. The former 
applies ranking separately to personal places of each individual, whereas the latter applies 
ranking to all public places at once. The tools have similar UIs and functionalities. 

6.2 Validation of place scores and ranks 
As a part of multi-criteria evaluation, two problems need to be solved: how to assess the quality 
of the evaluation outputs and how to test the impact of choosing different criteria and modifying 
their weights. The usual MCDM support tools involve visualization of characteristics and scores 
of individual options, e.g., on a parallel coordinates plot [37][38]. This allows the user to check 
the suitability of one or a few best scoring options by comparing their characteristics with those 
of the other options. The sensitivity of the evaluation results to the settings can be investigated 
by interactively changing the settings and observing the consequent changes in the display.  

This approach is not applicable to the task of personal place evaluation because it would require 
separate consideration and comparison of places for each person, which is both infeasible and 
violates individual privacy. One solution we propose involves land use data. Among the LU 
classes, there are classes associated with the meaning ‘home’ (various residential land uses), 
classes related to work or study (industry, education, office, construction, military land use), and 
classes related to other activities (shopping, recreation, health care, etc.). The quality of place 
ranking results can be judged from the proportion of the places in land use categories relevant to 
the target meaning among the best scoring places. 

Let us consider the example of ranking the personal places extracted from the San Diego data 
with regard to the target meaning ‘work or study’. We have chosen the attributes shown in Fig. 



11 as the ranking criteria, set their directionality (benefit or cost), and obtained initial ranks with 
all criteria having equal weights. The ranking tool creates an attribute ‘Best scored’ and attaches 
values ‘y’ (yes) and ‘n’ (no) to the places. By means of interactive filtering, we select the subset 
of places that have the value ‘y’ and examine the land use classes occurring in this subset using a 
qualitative histogram (Fig. 12). We observe that the subset includes a number of places with LU 
classes relevant to the target meaning ‘work or study’, but there are also many occurrences of 
irrelevant LU classes. We are going to modify the criteria weights and check whether this 
improves the proportions of the relevant land use classes. 

 
Fig. 12. The distribution of different land use classes across the set of places having the highest 
ranks with regard to the target meaning ‘work or study’. 

To support the comparison between outputs of two consecutive rankings, the evaluation tool 
creates a special attribute representing the place rank changes. The possible values of the 
attribute are ‘yy’ (the highest rank in both outputs), ‘nn’ (lower ranks in both outputs), ‘yn’ (the 
highest rank changed to a lower rank), and ‘ny’ (a lower rank changed to the highest rank). 
These values define classes of the places, which can be propagated to the land use histogram. 
The tool remembers the previously used criteria weights, so that the analyst can restore these 
weights and the corresponding place scores and ranks if the result of the changes is not 
satisfactory. 

Continuing our example, we modify the criteria weights as shown in Fig. 11, re-compute the 
place ranks, and propagate the place classes expressing the rank changes to the land use 
histogram. By means of interactive filtering, we focus only on those places that have changed 
their ranks, i.e., the classes ‘ny’ and ‘yn’. In the histogram (Fig. 13), these classes are represented 
by the green and orange bars, respectively. We see that the change in the weight values has 
increased the number of the top-ranked places located in the relevant categories “Education” and 
“Office”: the respective green bars are longer than the orange ones. The number of the top 
ranked places located in the irrelevant land use category “Lodging” has decreased. Hence, the 
change in the weight values has improved the place evaluation result in terms of the relevance of 
the LU classes. Still, it is also necessary to assess the changes with regard to the temporal 
patterns of the place visits. We do this using a 2d time histogram display. It shows us (Fig. 14) 
that the visit patterns of the places that improved their ranks match much better the target 
meaning ‘work or study’ than the patterns of the places with lowered ranks. Hence, the results of 
the weight modification can be approved. 



 
Fig. 13. The qualitative histogram shows aggregate statistics of the land use classes for the places 
that changed their ranks due to a modification of criteria weights. 

 
Fig. 14. The 2d time histograms show the aggregate temporal patterns of visits for the places that 
changed their ranks due to a modification of criteria weights. 

Information about the relevance of the LU classes can be transformed into a binary attribute with 
values 1 and 0 showing whether the list of land use classes attached to a place includes any 
target-relevant class. This is facilitated by a generic tool creating binary attributes based on 
object filtering. Binary attributes can be used for a direct investigation of the relationship 
between the place scores and the land use relevance by means of a 2d cross-histogram display 
(Fig. 15). Its two dimensions correspond to two attributes. In Fig. 15, the dimensions are the 
evaluation score (horizontal dimension) and land use relevance (vertical dimension). The bins 
correspond to values or value intervals of the attributes. The bars in the bins represent the 
frequencies of the corresponding value pairs. The cross-histogram can be displayed in a 
cumulative mode, in which the frequencies are accumulated along the rows or along the columns 
from the minimal to the maximal value of the respective attribute or in the opposite direction. In 
Fig. 15, the frequencies are accumulated along the rows in the direction from the maximal score 
to the minimal; hence, a bar in a score bin (xi, xi+1] represents the number of places with the 
scores greater than xi. In the lower row, it is the number of places with target-irrelevant LU 
classes, and in the upper row, it is the number of places with target-relevant land uses. 



 

Fig. 15. A 2d cross-histogram shows the relationship between the evaluation scores and the land 
use relevance to the target meaning. 

In Fig. 15A, the cross-histogram represents the whole range of the attribute ‘score’. At the left 
end of the histogram, the cumulative number of places with relevant land uses (upper row) is 
much smaller than the number of places with irrelevant land uses (lower row). At about 40% of 
the score range, the number of places with irrelevant land uses starts to steeply decrease as the 
score increases while the decline in the upper row is much gentler. At some point, the number of 
places with relevant land uses starts to exceed the number of places with irrelevant land uses. 
However, it is hard to compare the bar heights in two rows. In order to support the comparison, 
the display UI allows superimposing a user-selected reference row or column on all other rows 
or columns. The superimposed histogram is shown in semi-transparent red. In Fig. 15B, where 
we have focused on the score interval [0.6, 1], the lower row is superimposed on the upper row. 
By moving the mouse cursor along the x-axis, we can see that, starting from the score of about 
0.68, the number of places with relevant land uses exceeds the number of places with irrelevant 
land uses, and the ratio between these numbers increases with increasing the score. This kind of 
dependency indicates that the place evaluation scores represent quite well the place’s likelihood 
of having the target meaning. 

There is a technical possibility of implementing a computational tool that could search for the 
best combination of criteria weights maximising the absolute number and proportion of the top 
ranked places with target-relevant land uses (i.e., with value 1 of the relevance attribute). 
However, the process of finding corresponding places for a given target meaning cannot be fully 
automated. The analyst would need to check, first, if the automatically selected weights 
corresponded to the analyst’s understanding of the relative importance of the criteria; second,  if 
the distribution of the land use classes was good enough; and, third, if the temporal patterns of 
the visits to the top ranked places were plausible for the target meaning. For these tasks, the 
analyst needs interactive visual tools. After the inspection, the analyst may decide to try adding 



new criteria. Such decisions and subsequent choices including a possibility of incorporating 
additional relevant criteria cannot be done automatically. 

Despite being important for the validation of place evaluation and ranking, land use data need to 
be treated with caution. Due to spatial positioning errors, the land use classes of the original data 
points obtained by calculating their containment in land use polygons may be erroneous. 
Besides, land use data can be outdated. Hence, land use information may be utilized as 
supporting evidence but not as a decisive criterion for determining place meanings. 

Another approach to place ranking validation and parameter sensitivity testing involves POI 
data. The difference with regard to land use data is that there may be no specific POI types 
related to the target meaning ‘home’. In this situation, places can be considered as good 
candidates for the target meaning ‘home’ when they contain none or very few public POIs. An 
example of inferring place meanings with the use of POI data is provided in Appendix III and in 
the accompanying video available at geoanalytics.net/and/papers/placeSemantics. 

6.3 Place meaning assignment 
An interactive interface for place meaning assignment includes controls for assigning meanings 
to places based on (a) their ranks, (b) their scores, or (c) current filter. The analyst provides an 
arbitrary textual label representing a meaning, for instance, “home”, “work or study”, 
“shopping”, etc. When option (a) is chosen, the meaning is attached to the top ranking places. 
With option (b), the meaning is attached to the places with the scores above a user-provided 
threshold. A suitable threshold can be chosen using a 2d cross-histogram display as shown in 
Fig. 15. Using option (c), the meaning is attached to the places satisfying currently operating 
filter, irrespective of the place scores or ranks. Options (b) and (c) are mostly used for public 
places and for personal places when the target meaning is not ‘home’ or ‘work’, i.e., when the 
number of personal places that may be expected to have this target meaning is not limited. For 
example, there may be multiple shops or restaurants repeatedly visited by an individual.  

6.4 Interactive filtering 
The analyst can interactively create filters to select subsets of individuals and subsets of places. 
Various types of interactive filters are described in book [5] (section 4.2). Several filters of 
diverse types can be combined. For the task of place meaning discovery, the most important are 
the attribute-based filter, the class/cluster-based filter, and the related set filter. The attribute-
based filter selects objects based on the values of one or more attributes. The class/cluster-based 
filter selects classes or clusters of objects. The related set filter propagates filtering from object 
set A to another object set B or in the opposite direction when the objects in set A have 
references to objects of set B, that is, the values of some attribute of the objects in A are 
identifiers of objects from B. Filter propagation means that the analyst selects a subset of one of 
the sets by any filter, and the related set filter selects only those objects from the other set that are 
related to the selected objects of the former set.  

In the context of our task, there is a set of personal places and a set of place owners; the places 
have references to their owners. The analyst can select, for instance, the individuals who have yet 
been assigned a place with meaning ‘home’ and use the related set filter to select only the places 
of these individuals for further analysis. Conversely, the analyst can select the places with the 
meaning ‘work or study’ and then select the owners of these places to see how many of them 



already have places with the meaning ‘home’. Please note that filtering results are always 
represented in an aggregated form, to preclude any access to possibly sensitive individual data. 

7 GENERAL GUIDELINES FOR INFERRING PLACE SEMANTICS 
As it can be seen from the examples discussed above, determining place meanings is an 
explorative activity strongly relying on analyst’s reasoning, surmises, and insights and often 
involving trials and errors. It is hardly possible to describe it in the form of an algorithm. Still, 
based on our experience, we can propose several general guidelines, which refer to the box 
‘Identify place meanings’ of the flow chart in Fig. 3. 

1. For each target meaning ( ‘home’, ‘work’, ‘shopping’, etc.), determine relevant attributes, by 
which places with this meaning can be distinguished from places with other meanings. If 
needed, derive attributes that are not initially available (see Appendix II).  

2. Apply filtering based on the relevant attributes to select a subset of places that are eligible to 
receive a target meaning. 

3. To find the most likely places for the target meaning, apply multi-criteria evaluation (section 
6.1) to the eligible places. For personal places, apply it separately to the set of places of each 
person; for public places, apply to all places together. Select the top scoring places as 
candidates for receiving the target meaning. Depending on the target meaning, do this in one 
of the two ways: 
3.1 If the evaluation is applied to personal places, and a person typically has a single place 

with the target meaning (e.g., ‘home’), select the places with the highest scores (note 
that there may be several such places for a person). 

3.2 If the evaluation is applied to public places, or if a person may have several places with 
the target meaning, choose a score threshold and select the places with the scores not 
less than the threshold. 

4. Examine the temporal distribution of the visits to the best scoring places and check its 
correspondence to the expected pattern for the target meaning. If the correspondence is not 
good enough, try to improve it by changing the attribute weights and/or including additional 
relevant attributes and/or changing the score threshold. 

5. If there are land use classes or POI types relevant and/or irrelevant to the target meaning, 
watch the proportions of land use classes or frequencies of POI types (section 6.2). Test the 
impact of different attributes and modifications of the attribute weights on these proportions. 
The goal is to increase the proportions or frequencies of the relevant land use or POI types 
and decrease those of the irrelevant types. If good results cannot be reached with the current 
eligibility filter and evaluation criteria, change the filter or include additional criteria. 

6. After gaining confidence in the validity of the candidate place selection, assign the target 
meaning to the selected places (section 6.3). 

The following remarks provide further details and show possible modifications to the procedure. 

Clustering of time patterns of place visits 5 (section ) can produce, among others, clusters of time 
patterns that correspond quite well to certain target meanings. The clustering result can thus be 
used as a relevant attribute for selecting eligible places for these target meanings. The analyst can 
select appropriate clusters using a cluster-based filter. Clustering can also reveal temporal 
patterns that have not been anticipated by the analyst. By observing such a pattern, the analyst 
may arrive at one of expected target meanings, or find new plausible meanings. The guesses 
about the plausible meanings can be checked against the LU or POI data. 



Filter-based meaning assignment 6.3. As described in section , a meaning can be assigned to a 
subset of places based on filtering and not on scores or ranks, which means that step 3 of the 
procedure may be skipped. This is done in the following cases: 

1. There are individuals having unique eligible places for the target meaning. Multi-criteria 
evaluation is not applicable in this case. The eligible places belonging to these individuals 
can be selected through the related set filter (section 6.4).  

2. Existence of multiple places with the target meaning is usual and expected. 

Multiple home and work places

3

. While it is not very typical that people have more than one 
home or work place, such cases do exist. However, it is reasonable to distinguish true cases of 
multiple home or work places from cases of splitting large places into smaller ones when using 
the place extraction algorithm (section ). In the latter case, several places will be close in space, 
and this can be used as a distinguishing criterion. Based on the above argument, we propose the 
following way to deal with multiple eligible places for the same target meaning. First, multi-
criteria evaluation (step 3) is applied and the topmost-ranking places are selected. After 
validating the selection in steps 4-5, the target meaning is assigned to these places. Then the 
distances of the remaining places to the selected places are computed separately for each 
individual. Eligible places located closely to the selected places (i.e., within a chosen distance 
threshold, such as for example 1 km) can be treated as parts of the same places and can be 
assigned the same target meaning. The places that have received meanings are excluded from 
further consideration through filtering. The remaining eligible places may receive target meaning 
‘second home’ or ‘second work’ after validation in steps 4-5. 

8 ANALYSIS OF SEMANTIC TRAJECTORIES 
After assigning semantic labels to personal and public places, the original mobility data (section 
2.1) are transformed into semantic trajectories (section 2.3) in the following way. The sequence 
of records of each individual is divided into daily trajectories taking 4:00 as the beginning hour 
of a day. From our experiences with many mobility datasets, we know that the total number of 
recorded activities is usually minimal at this hour; still, another hour can also be chosen. For 
each trajectory point, the tool tries to find a place containing it. The personal places of the 
individual are checked first. If no place is found, or a place found has no assigned meaning, the 
tool checks the public places. If neither personal nor public place is found, the point is skipped 
(i.e., treated as occasional). If the tool has found a personal or public place with an assigned 
meaning, the semantic label is attached to the trajectory point. Otherwise, if the point is 
contained in one of k most frequently visited personal places of the individual (where k is a 
parameter; in our San Diego experiment, we used k=5), the frequency rank of this place (i.e., 1, 
2, …, k) is attached to the point, to allow subsequent checking for relatively frequently visited 
places that could not be interpreted. Otherwise, the point receives the label “n/a”. 

After this step, the semantic labels attached to the trajectory points are treated as references to 
semantic places ‘home’, ‘work’, ‘shop’, etc.,  located in an abstract semantic space [27]. The set 
of trajectories can be aggregated by semantic places analogously to aggregation by geographic 
places [4][5]. Hence, the trajectories are aggregated spatially by the abstract semantic places and 
temporally by hourly intervals. When the time span covering the data set is not too long, like in 
the VAST Challenge example, it may be divided into intervals based on the linear time model. 
Thus, a period of 2 weeks will be divided into 336 (=2×7×24) hourly intervals. A longer time 
span, as in the San Diego example, can be partitioned based on the cyclic time model. 



Specifically, the weekly cycle (7 days) is divided into hourly intervals, resulting in 168 (=7×24) 
intervals. The result of the aggregation is two sets of time series: hourly visits to semantic places 
and hourly flows (i.e., aggregated moves) between the places. A move between two places is 
counted if the time interval between the points in these two places does not exceed one hour. The 
time series of visits and flows are explored to see whether the daily and weekly temporal patterns 
are realistic. 

To visualize the transformed data, we generate a semantic space [27], i.e., a two-dimensional 
layout of the set of semantic places. This can be done in various ways. In Fig. 16, the layout has 
been obtained by applying Sammon’s mapping [39] to the set of places based on the strength of 
the links between them, i.e., the counts of the moves. The layout in Fig. 17 has been produced by 
the graph visualization software Gephi (http://gephi.org/ ).  

 

Fig. 16. A map of the semantic space derived from the VAST Challenge data represents the 
temporal patterns of the visits to the semantic places. 



 

Fig. 17. Semantic information derived from the San Diego data is represented as a semantic 
space map. 

Figs. 16 and 17 show semantic space maps for the VAST Challenge and San Diego examples, 
respectively. The place visit time series are represented by mosaic diagrams [40]. The rows 
correspond to 14 consecutive days in Fig. 16 and to 7 days of the weekly cycle in Fig. 17; the 
columns correspond to 24 hours of the day. The pixels are coloured according to the hourly visit 
counts. We observe in Fig. 17 that ‘shopping’ in the San Diego example has the highest 
attendance after ‘home’. This does not necessarily mean that San Diego residents spend more 
time shopping than doing any other activity. It may just mean that people tweet more often from 
shopping places than from other types of places. Apart from that, the temporal patterns of the 
visits to semantically interpreted places observed in both maps correspond to the expected 
patterns for these types of places or activities. 

The flows between the semantic places are shown in Figs. 16 and 17 by curved lines with the 
curvature increasing towards the destination. The line widths and opacity are proportional to the 
total number of moves between the origins and destinations. As there is no suitable way to 
represent flow time series in a single map, and it would be daunting to view and compare 



hundreds of maps of the hourly flows, we apply clustering to the hourly flow situations [4][5]. 
The results of k-means clustering with k=8 for the VAST Challenge and k=7 for San Diego are 
shown in Figs. 18 and 19, respectively. With the selected values of k, we could obtain the 
simplest yet informative temporal patterns. The mosaic diagrams (at the bottom right and at the 
top left of the images, respectively) have the same structure as in Figs. 16 and 17, but the pixel 
colours corresponds to the time clusters of similar flow situations. The distributions of the cluster 
colours prominently adhere to the daily and weekly time cycles. The multiple maps in both 
images represent the averaged flow patterns for the clusters. In Fig. 19, we have excluded cluster 
1 (blue), in which the flow magnitudes are very low. The line widths and opacity are 
proportional to the mean hourly move counts. 

 

Fig. 18. Averaged flows (summarized movements) between semantic places by time clusters 
(VAST Challenge). 



 
Fig. 19. Flows between semantic places by time clusters (San Diego). 

In Fig. 18, we observe quite regular daily routines of the people represented in the VAST 
Challenge data: during hours 7-8, they usually have coffee and then go to work; at noon, they go 
for lunch and return back to work in the next one or two hours; then they go home in hour 17 and 
often go to eat out in the evening. This fully agrees with the available ground truth information. 

In Fig. 19, the mean move counts have been transformed to z-scores, i.e., standardized deviations 
from the clusters’ means. This transformation supports disregarding purely numeric differences 
between the clusters, which are mainly caused by the fact that people tweet less in the morning 
than in the second half of the day, and reveals differences in the major flow directions. In the 
morning (cluster 2, cyan), most movements originate from home. Flows to work and to shopping 
accompanied by the use of transport and parking places are prominent. In the middle of the 
working days (cluster 3, green), flows from different places to home increase as well as moves 
between work places (‘work’ and ‘work 2’); the home-work flow decreases as well as the use of 
transport and parking places. In the afternoon hours (clusters 4 and 6), people mostly return from 
work to home or go shopping. Cluster 6 (red) occurring on Thursday and Friday differs from 
cluster 4 (yellow) by smaller flows from work and work 2 to home and bigger flows to places for 
eating out and social life. In the evenings and on weekends (cluster 5, orange), most of the 
movements occur between home and shopping but flows to eating establishments and social life 
are also prominent. Cluster 7 (dark blue) occurring in hour 23 is mostly characterized by returns 



to home from different places. All these patterns correspond to our background knowledge about 
typical human mobility behaviours.  

Please note that, although we did not use any information about place visit sequences in our 
analysis, realistic temporal patterns of movements between places have emerged. This confirms 
the validity of our methods, in addition to the consistency of the results obtained for the VAST 
Challenge data with the available ground truth information. 

9 DISCUSSION AND CONCLUSION 
The problem of deriving significant places from mobility data (i.e., time-stamped geographic 
positions) that lack semantics is ill-defined; therefore, it cannot be solved algorithmically but 
instead requires human reasoning. Additional challenges are the necessity to deal with large 
amounts of data from many individuals and the requirement to respect personal privacy of the 
individuals. By exploring diverse examples of mobility data, we were able to determine, which 
visual analytics techniques can support solving the problem at hand. We designed and developed 
a set of tools meeting the demands of the analytical tasks at hand and tested the effectiveness of 
these tools in practice, successfully solving the problem for two different datasets. Hence, we can 
conclude that the problem is solvable and the techniques that we developed work and can be 
recommended to others. However, due to the ill-defined character of the problem, it is hardly 
possible to formulate a rigorous procedure. We convey our experience as an informally defined 
general procedure accompanied by remarks concerning possible particulars and variations 
(section 7). These guidelines complement our research contribution. 

We are aware of the limitations affecting the mobility data that we have used for our research. 
One of the experiments was done with data from Twitter. It is known that Twitter users are a 
specific and quite particular group of people, i.e., they cannot be considered as a representative 
sample of the population. However, this was not a major obstacle for our research, the main goal 
of which was to develop a methodology for place semantics discovery. Twitter data served as a 
suitable test dataset, but the methodology can also be applied to other data, in particular, to 
mobile phone use data, which can represent larger and more diverse section of the population. 
Second, by example of shopping locations (Figs. 17 and 19), we saw that certain types of places 
and activities may be over-represented in the data and others may be under-represented. This is a 
consequence of the episodic character of the original data, where the recorded positions 
correspond to events that tend to occur more often in some types of places than in others. Mobile 
phone data can be also affected by such problems. Third, there is a time bias: people tend to 
tweet more in the afternoons and evenings than in the mornings. Again, the same problem may 
also exist in mobile phone data. It is necessary to find ways to diminish the place and time biases 
in analysing population mobility based on episodic movement data. We are conducting further 
research to address these data-specific issues. 

Regarding the location privacy of data containing people’s geographic positions, our goal has 
been to test the possibility of determining place meanings in a privacy-respecting way, i.e., so 
that analysts only deal with aggregated data and do not access personal data, in particular, 
individuals’ geographic positions. Our research demonstrated that this is practically possible. In 
two experiments, we used only displays of aggregated data and did not use geographic 
representations, apart from checking the largest places for choosing right parameters for place 
extraction (section 3). 



To conclude, we have presented a visual analytics approach to the problem of scalable and 
personal privacy-friendly extraction and semantic interpretation of personal and public places 
from episodic movement data reflecting human mobility and activities. Our contribution consists 
of a set of computational and visual techniques, and guidelines for solving the problem with the 
use of these techniques. We have also proposed methods for evaluation and validation of the 
results. The approach has been successfully tested on an artificial dataset with known ground 
truth and on a large real world dataset. The extraction of significant places and their meanings is 
a necessary step towards reconstruction of mobility diaries, which is the topic of our ongoing 
research. It can also provide valuable information to researchers of human mobility, who may be 
interested in studying the variety of individual mobility behaviours. Our research shows that such 
studies can be done without compromising personal location privacy.   
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Appendices to paper 

Scalable Interactive Discovery of Place Semantics from Human 
Mobility Traces 

Appendix I. PREPARATION OF DATA FROM VAST CHALLENGE 2014 MINI-CHALLENGE 2 
The original dataset provided for the VAST Challenge 2014 Mini-Challenge 2 [1] consists of 

simulated tracks of cars with duration of two weeks. The records include timestamps, car 

identifiers, and coordinates. We used the tracks of 35 personal cars and ignored the tracks of 5 

remaining vehicles utilized only for business purposes. The full tracks cannot serve as an 

example of episodic mobility data because of a high temporal resolution (1 second), which 

allows determining the exact times of coming to each visited place and leaving it.  

To have a suitable example of episodic data, we extracted a subset of the car position records in 

the following way. First, we extracted the events of stopping for at least one minute. Stops are 

reflected in the data as temporal gaps between consecutive position records, since, according to 

the description of the data, the positions were recorded only when the vehicles were moving. For 

each stop event, we took both the last record before the gap (i.e., stop start) and the first record 

after the gap (i.e., stop end). Additionally, we extracted the first and last records of each track. 

We obtained in total 6,068 position records, which is less than 1% of the original 613,077 

records. From these 6,068 records, we extracted a 25% random sample (1,469 records). It 

imitates the properties of episodic mobility data, where a stop at a location may be represented 

by one or more records, or it may not be represented at all. 

No data similar to land use or POI data were provided for the challenge. As the underlying 

territory for the car tacks is fictitious, existing databases or map feature services cannot give us 

suitable information about places. To create a substitute for POI data, we utilized simulated 

credit card transaction records, also available for the challenge. Each record includes a 

timestamp, the name of the location where the card was used for payment, the amount paid, and 

the first and last names of the customer. We complemented these records with the identifiers of 

the cars used by the customers and the types (semantic categories) of the locations, which 

include ‘eating’, ‘coffee’, ‘shop’, ‘hotel’, ‘sport’, ‘culture’, and ‘business supply’. A fragment of 

the card transaction data table with the added attributes is shown in Fig.1. The column 

“Interpretation” contains the semantic categories of the locations, and the column “CARID” 

contains the identifiers of the cars.  



 

Fig. 1. A fragment of the table with the credit card transaction data enriched with location 

interpretations. 

 

Fig. 2. Stop records enriched with information about the nearest in time transaction events. 

The card transaction data as such cannot substitute POI data because there are no coordinates of 

the locations. We solved this problem by linking transaction records to car stop records based on 

the times of the transactions and the stops. For each stop record, we selected the closest in time 

transaction record with the same car identifier as in this stop record. This was done differently 

for stop starts and stop ends. For stop starts, the search for the closest card transaction was done 

forward in time within the interval of 1.5 hours, assuming that customers usually pay after 

spending some time at a location. For stop ends, the search was done backward in time within 

the interval of 15 minutes, assuming that customers usually pay shortly before leaving a location. 

Not all car transaction records turned to be suitable. For three coffee shops, the transaction 

timestamps were not trustable, since the time of the day in all of them was 12:00:00. These 

records were not used. 

We were able to find the closest transactions for 1,849 out of 6,068 stop records (30.5%). The 

location types of the closest transactions were attached to the stop records; a fragment of the 

table with the resulting data is shown in Fig. 2. These assignments need to be used with caution. 

Since the people did not pay by credit cards during all of their stops, some stops might be 



associated with transactions made elsewhere. Still, for the places where people were supposed to 

pay, it can be expected that the majority of the stop records have got right assignments of 

location types. Of course, this does not apply to the three coffee shops with uniform transaction 

times. The stops at these coffee shops could get either no location types or wrong location types 

from irrelevant transaction records. In the following, we shall show how these data can be used 

with taking into account the possible errors. 

We would like to stress that, although the conditions of the challenge did not require it, we 

analysed the data in a privacy-respecting way, i.e., without looking at any personal data. 
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Appendix II. INTERACTIVE TOOLS FOR DERIVATION OF PLACE ATTRIBUTES 
For each place extracted from mobility data, an automated tool derives a two-dimensional time 

series of the place visits by hours of the day for different days of the week, 168 (=247) counts 

in total. For personal places, only the visits of the place owners are counted. Counts of visits are 

not the same as counts of points. If two consecutive points of a person fit in the same place and 

the same hour, they are treated as representing the same visit.  

We have developed an interactive tool for convenient derivation of further attributes from the 

two-dimensional time series of the place visit counts. Thus, it may be necessary to compute the 

number or percentage of place visits that fit in the work time, i.e., in the hours from 05 to 18 

during work days. The UI of the tool is shown in Fig. 3. To select the hourly intervals that need 

to be summed, the user clicks on the corresponding cells, columns, or rows of the matrix. The 

rows correspond to days of the week and the columns to hours of the day. The sums may be 

normalized as ratios or percentages of the user-chosen attribute, e.g., the total visit count. 

 

Fig. 3. Selecting elements of 2-dimensional time series for summing. 



 

Fig. 4. Interactive specification of a 2d temporal pattern for computing similarity scores. 

A similar interface (Fig. 4) has been built for computing the degrees of similarity in temporal 

patterns of place visits to an arbitrary, user-defined pattern. The user “paints” the matrix cells in 

three colours. The red colour means that the corresponding component of the time series has a 

positive impact on the similarity score, i.e., its value will increase the score. The cyan colour 

means that the component has a negative impact, i.e., its value will diminish the score. The grey 

colour is neutral, i.e., the corresponding component has no impact. Fig. 4 shows an example of a 

painted matrix for a work time pattern. According to this pattern, a person is expected to be 

present at a place from 8:00 until 17:00 in the work days, possibly, with a lunch break in 

between, and is not expected to be present before 6:00, after 19:00, and on the weekend. Of 

course, different people may start and finish their work at different times. To account for such 

differences, the pattern may be shifted to the left and/or to the right by the user-specified number 

of hours. In Fig. 4, the user allows the tool to shift the pattern by up to 3 hours to the left and up 

to 2 hours to the right, thus covering the work time intervals in the range from 5-14 to 10-19. The 

tool computes the similarity scores for all possible positions of the pattern and selects the 

maximal score. The original values involved in the computation may be normalized; the possible 

normalization options can be seen in Fig. 4. The resulting scores are scaled to the range from -1 

(completely opposite) to 1 (perfectly matching). 

We have also developed a thematic enrichment tool that derives various aggregate attributes of 

places from user-chosen attributes of the points belonging to these places. For each place, the 

tool selects from the database the points contained in this place. For personal places, only the 

points of the place owners are selected. The aggregate attributes that can be derived depend on 

the types of the original attributes:  

 Numeric: minimum, maximum, sum, mean, standard deviation, and arbitrary percentiles. 



 Qualitative: (Q1) the number of distinct categories; (Q2) k most frequent categories (i.e., 

having ranks 1, 2, …, k in the descending frequency order; k is chosen by the user) and their 

frequencies. 

 Textual: (T1) k most frequent words and their frequencies. The user can supply a list of stop 

words to be ignored; (T2) frequencies of occurrences of terms from a user-supplied 

dictionary. The dictionary may be composed of main terms and their synonyms or related 

words. Occurrences of related words are counted as occurrences of the main terms. 

Land use classes can be attached to places by deriving Q2 from the land use classes of the points. 

Multiple points contained in the same place may have different land use classes. It may be 

insufficient to take only one most frequent class. In our San Diego example, we chose k=5 to 

retrieve 5 most frequent land use classes per place. 

For Twitter data, which include texts of the posted messages, it is possible to obtain T2, i.e., 

counts of occurrences of different topics (subjects) people tweeted about, such as “family”, 

“home”, “work”, “education”, “friends”, “food”, etc. Error! Reference source not found.. 

These counts can be used additionally to land use or POI data; however, in this paper, we do not 

focus on using Twitter-specific information. 

From POI data, counts of different types of POIs inside the places can also be derived as T2. For 

this purpose, the possible POI types need to be listed as terms in a dictionary. 
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Appendices to paper 

Scalable Interactive Discovery of Place Semantics from Human 
Mobility Traces 

Appendix III. ANALYSIS EXAMPLE 
We shall demonstrate the use of the proposed tools for place meaning discovery on the example 

of the dataset constructed from the VAST Challenge data. It is more suitable for demonstration 

purposes as it is smaller and simpler than the San Diego data; besides, some ground truth is 

available for it. The analysis of the San Diego data included more steps and would be tedious to 

describe and to read. 

III.1 Analysis of personal places 
III.1.1 Identifying home places 
We start the analysis of the VAST Challenge data with an attempt to find the home places of the 

35 individuals among the 202 personal places we have extracted earlier. We shall describe the 

process of identifying and labelling home places in much detail, to show how the analysis is 

done and how the tools are used. 

Using the interactive tool shown in Fig. 3, we derive attributes: “% of visits in home time (hours 

18-08 + weekend)” and “% of visits in work time (hours 07-19 on week days)” from the hourly 

counts of place visits. We apply the place ranking tool using these two attributes and attribute 

“number of different visit days” (computed automatically by the place extraction tool) as criteria 

(Fig. 5). The attribute “% of visits in work time” is minimized, and the two others are 

maximized. When all criteria have equal weights, 36 places of 35 distinct owners receive the 

topmost ranks. After a small increase of the weight of the attribute “% of visits in home time”, 

the number of the topmost ranked places decreases to 35, so that there is a single candidate home 

place for each individual. 

 

Fig. 5. The multi-criteria ranking tool is used for finding the most likely home places. 



 

Fig. 6. The results of place ranking for the target meaning ‘home’ are represented on a 2d time 

histogram display. 

We propagate the place classes (‘y’ for the topmost ranked places and ‘n’ for the remaining 

places) to a 2d time histogram display (Fig. 6). The class ‘y’ is represented by red colour and the 

class ‘n’ by blue colour. We look at the temporal distribution of the stops in the subset of the top 

ranked places (red) and see that there are some stops at the lunch hours of the week days, which 

hints that the subset may include eating places. We check this hypothesis using two multi-

attribute bar chart displays of the POI types associated with the places. One display summarizes 

the counts of the stop points labelled by different POI types (Fig. 7 top) and the other display 

summarizes the percentages of the stops labelled by different POI types (Fig. 7 bottom). 

 

 



Fig. 7. The multi-attribute bar charts represent the sums of the counts of different POI types (top) 

and the maximal percentages of the different POI types (bottom) in two classes of places. 

The multi-attribute bar chart representing the percentages of the different POI types shows a very 

high maximum (73.8%) for the POI type ‘eating’, thus confirming the guess.  

We try to improve the place selection by changing the weights of the currently used criteria, but 

this does not help; thence, we need to involve an additional criterion. To lower the ranks of the 

eating places, which are visited at the lunch time, we compute and employ a new criterion, ‘% of 

visits in lunch time (hours 12-15) on week days’, which needs to be minimized (Fig. 8). A good 

result is obtained when the new criterion is given a high weight (0.65), which removes the places 

visited at the lunch time from the top ranked places.  

 

Fig. 8. A new criterion “% visits in lunch time (12-15) of week days” has been added for a better 

separation of home places from eating places. 

 

Fig. 9. Improved results of place ranking for the target meaning ‘home’ are represented on a 2d 

time histogram display. 



 

 

Fig. 10. The multi-attribute bar charts of the POI types confirm that the place ranking for the 

target meaning ‘home’ has improved after adding a new criterion. 

Fig. 9 shows the resulting temporal distributions of the visits in the top ranked places (red) and 

the remaining places (blue), and Fig. 10 shows the cumulative counts and the maximal 

percentages of the different POI types for the top ranked places and for the remaining places. 

The maximal percentages are now only 7.69% for ‘eating’ and even lower for the other POI 

types, except for ‘hotel’ (16.67%). We filter out the places with high percentages of the POI type 

‘hotel’ and re-compute the scores and ranks for the remaining places in a hope to find better 

candidates for the meaning ‘home’. However, only 34 places of 34 owners could this time 

receive the best scores. Evidently, one person had no home within the area and stayed in a hotel, 

which played the role of this person’s home. Based on this reasoning, we cancel the filter and 

revert the ranking to the previous state. Finally, we assign the meaning ‘home’ to the 35 top 

ranked places of 35 individuals. 

III.1.2 Identifying work places 
By filtering, we exclude the places that have already got semantic labels (i.e., the home places) 

from the further consideration and start the process of identifying work places. We again use the 

criteria “number of different visit days”, “% of visits in work time” and “% of visits in home 

time”. The first two are maximized and the third one is minimized. With equal weights, we get 

35 candidate work places of 34 distinct persons, i.e., one person has two candidate work places 

with equal scores.  



 

Fig. 11. The multi-attribute bar chart of the POI types reflects the result of the place ranking for 

the target meaning ‘work’. 

 

Fig. 12. In the 2d time histogram, the black dots are in the time intervals when the places with 

the high percentages of the POI type ‘coffee’ were visited (see Fig. 11). 

In the bar chart of the POI type occurrences (Fig.11), we see a very high maximal percentage 

(87.5%) of the type ‘coffee’. Very probably, the set of top ranked places includes one or more 

coffee bars. We click on the respective bar and observe in the time histogram (Fig. 12) that the 

stops in this place or these places occurred only in hours 07 and 08, which supports the guess. 

It needs to be explained that high proportions of stops labelled by such POI types as ‘coffee’, 

‘eating’, or ‘shop’ by themselves do not mean that the places cannot be considered as possible 

work places. There may be individuals who work in coffee bars, restaurants, or shops. The role 

of a place for an individual (e.g., whether it is a place to have a cup of coffee or a work place of a 

barista) can be understood from the temporal pattern of the person’s presence in the place. A 

work place is expected to have longer time intervals and/or higher frequency of person’s 

presence than a place visited for the purpose of drinking coffee, eating, or shopping. In our 

example, we see that the places characterized by the high proportions of the POI type ‘coffee’ 

are visited only in hours 7 and 8 (Fig. 12, black dots). Hence, it is unlikely that these can be work 

places of some individuals. Rather, these may be customarily visited coffee bars. Therefore, the 

place classification with regard to the target meaning ‘work’ needs to be improved, i.e., the 

scores of the places that are visited only in hours 7 and 8 need to be decreased. 



To achieve this, we slightly increase the weight of the cost criterion “% of visits in home time”. 

With the weight 0.4 for this criterion and 0.3 for the two others, we exclude the supposed coffee 

bar(s) from the set of best scoring places. As a result, we get 34 top ranked places of 34 distinct 

persons and assign the meaning ‘work’ to them. For one person, no candidate work place could 

be found. This may be the same person who visited the area and stayed in a hotel; evidently, he 

or she had no work place in this area. We refrain from drilling down for investigating the 

personal data; the knowledge we have got is sufficient for our task. 

III.1.3 Interpreting the remaining places 
In the further analysis, we consider only those personal places that were visited in at least two 

different days; otherwise, the information about the place visit times is not sufficient for inferring 

the place meaning. We filter out 27 places having visits in only one day. Previously, in 

identifying the home and work places, the attribute “number of different visit days” was involved 

as a criterion; now, it is used for filtering. Furthermore, we do not use place ranking for 

identifying places with other meanings than ‘home’ and ‘work’. For ‘home’ and ‘work’, we 

applied ranking based on our background knowledge that almost all people have places with 

these meanings (roles), and it is typical to have one home and one work place. This reasoning 

does not apply to places with other meanings. A person may have one, several, or no repeatedly 

visited shops, restaurants, or bars. Therefore, we use filtering rather than ranking to find places 

with such meanings. 

Based on the list of existing POI types, we expect that the personal places may include regularly 

visited coffee shops. For finding them, we filter the places according to the proportion of the 

visits in the morning hours (hours 06-10); see Fig. 13. We find 32 places with proportions about 

100%, which belong to 31 distinct persons. We check the selection using the time histogram 

(Fig. 14) and bar charts of POI types (Fig. 15) and find it quite good; so, we assign the meaning 

‘coffee’ to these 32 places. 

 

Fig. 13. A fragment of an interactive filtering tool used for the selection of the places visited 

mostly in the morning hours (06-10). 



 

Fig. 14. The 2d time histogram shows an aggregated temporal pattern of stops in supposed coffee 

places selected by means of the tool shown in Fig. 13. 

 

 

Fig. 15. The bar charts show the cumulative counts (top) and the maximal proportions (bottom) 

of the stops labelled by different POI types in the set of supposed coffee places. 

To find eating and shopping places, we select places with high values of the attribute “% of visit 

in lunch and evening times”. We assume that eating and shopping places usually include public 

POIs of corresponding types; hence, these places should have high percentages of occurrences of 

the POI type ‘eating’ and ‘shop’, respectively. Consequently, we use these attributes for filtering 

and find 63 personal places with the probable meaning ‘eating’ and 6 places with the probable 

meaning ‘shop’. 



After assigning the meanings to these places, we look which POI types still have high maximal 

percentages of occurrences in the remaining places visited in at least two different days. The only 

type with a high maximal percentage (30%) is ‘hotel’. There are two personal places where the 

percentages of ‘hotel’ are about 30%; all others have zero percentages. We select these two 

places by filtering and see that they belong to two distinct individuals and that they were visited 

at lunch times of some week days. We refrain from assigning any meaning to these two places, 

because it is not usual that people may repeatedly visit a hotel in the midday of working days 

(however, this is a part of the scenario incorporated in the VAST Challenge data). 

 

Fig. 16. The 2d time histograms show the temporal patterns of the stop events for different 

semantic classes of personal places. The histogram in the upper left corner corresponds to the 

entire set of personal places. The histogram in the lower right corner corresponds to the places 

the meanings of which could not be identified. 

 

Fig. 17. The multi-attribute bar chart shows the average percentages of stops labelled by each 

POI type for different semantic classes of personal places. 

The final result of our analysis of the personal places extracted from the VAST Challenge data is 

that we have assigned semantic labels to 170 personal places out of 202, i.e., to 84% of the 

personal places. The confidence in the meaning assignment is very high, owing to the prominent 

temporal patterns of place visits (Fig. 16) supported by frequent occurrences of relevant POI 

types and/or absent or infrequent occurrences of irrelevant POI types (Fig. 17). 



The analysis of the 38,225 personal places of 4,286 distinct individuals in the San Diego 

example was conducted using the same tools and techniques, except that qualitative histograms 

of land use categories were used instead of the bar charts of POI type occurrences. Since all 

displays show aggregated data, there is no principal difference between representing tens, 

hundreds, or thousands of places. Certainly, there are differences between the real San Diego 

data and artificial VAST Challenge data. A larger number of possible place meanings had to be 

considered for the San Diego example, including ‘transport’, ‘education’, ‘religious facility’, 

‘fitness’, and others. We assumed that some people might have two homes or two work places 

and classified some places as second home or second work. The temporal patterns of place visits 

were not so “clean” and easily interpretable as in the VAST Challenge example; therefore, the 

confidence in the meaning assignment was lower than in the VAST Challenge case.  

We managed to attach meanings to 65% of the San Diego places. 3,873 persons (90.4% of all) 

have got home places, and 695 of them have got places with the meaning ‘second home’. We 

could identify probable work or study places only for 2,171 persons (50.7% of all); for 529 

persons, we found probable second work places. For 1,950 persons (45.5%), it was possible to 

find both home and work places. The largest class of personal places is ‘shopping’ (4,695 

places), other large classes are ‘eating’ (2,194), ‘social life’ (1,497), which includes places with 

many visits in the evening and night hours and on the weekend, and ‘transport’ (1,315). 

Please note that, although we analysed personal places, the whole analysis in both case was done 

without seeing any personal data. We used only aggregated data and information about the 

number of currently selected places and the number of persons they belonged to. Hence, our 

experiment has shown that it is possible to determine meanings of personal places without seeing 

personal data and violating personal privacy. 

III.2 Analysis of public places 
In the VAST Challenge example, we have 41 public places extracted earlier from the episodic 

trajectories. A place was selected as public if it was visited by at least 2 distinct persons (the 

threshold was low because there are only 35 persons in total). From the description of the 

challenge, we know that all people work in the same company. Hence, we can expect that one of 

the public places corresponds to this company. We identify it using the ranking tool for public 

places with criteria “total number of visit-days”, “% of visits in work time”, and “% of visits in 

home time”; the first two are maximized and the third one is minimized. 

For other possible place meanings, we cannot assume that there may be only a single place with 

each meaning. Therefore, we analyse the places using filtering rather than ranking, as we did 

previously for the personal places. We identify coffee shops, eating places, and shops in the same 

way as with the personal places. We detect a place with 100% of POI occurrences of the type 

‘business supply’ and assign the meaning ‘business supply’ to it. Analogously, the places with 

high percentages of occurrences of the types ‘fuel’, ‘sport’, ‘culture’, and ‘hotel’ receive these 

meanings after checking their compatibility with the temporal patterns of place visits. In this 

way, we have labelled 24 places. For the remaining 17 places, almost all stops have unknown 

POI types; hence, we cannot rely on the POI information anymore. We can guess about the place 

meaning only on the basis of the temporal distributions of the stops. 

We select places that were visited only on weekend. Among the unlabelled places, there is only 

one such place. This cannot be a church, because the visits on Saturday span from 10 to 16, and 



there is also a visit in hour 18. This may be a place for some kind of recreation, such as a park, 

where people are not expected to pay money (no credit card transaction records could be 

associated with it). We assign the meaning ‘recreation’ to this place. 

We guess than the remaining 16 places may include home places of some people. These may 

include multi-family buildings where several people live, or common parking places, where 

people leave their cars while they are at home. Besides, if some persons were visited by others, 

their home places might be included in the set of public places. Therefore, we look if there are 

places with high percentages of visits in the home time intervals, i.e., from hour 18 till hour 08 

on the working days and the whole weekend. We find 11 places with more than 70% of visits in 

these times. The summarized temporal pattern of place visits in the 2D time histogram looks like 

a home pattern; however, the selected subset may include places that were just occasionally 

visited in home times. We look at the values of the attribute “N visit-days total” and see that the 

smallest number among the selected places is only 2. The next smallest value is 11, which is 

sufficiently high, taking into account that the data cover a period of only 14 days. We exclude 

the place with 2 visit-days and assign the meaning ‘colleague’s home’ to the remaining 10 

places. 

6 public places still remain unlabelled. In the 2d time histogram for these places, we see that 

there were many stops in hour 11. To select the places visited in this hour, we compute an 

attribute “% visits in hour 11”. The values of this attribute range from 0 to 100, the second 

smallest value after 0 is 33.3%. There are 5 places with such high proportions of stops in hour 

11. Their joint temporal pattern of stops looks very regular, which should have a certain 

meaning. Since we cannot guess what the meaning is, we make a special category ‘hour 11 

place’ including these particular places. Finding these particular places corresponds to the VAST 

Challenge scenario. 

Finally, only one public place remains unlabelled. It was visited only twice, which does not give 

us enough information for determining its meaning. 

The final result of assigning semantic categories to the public places is presented in Fig. 18 (the 

temporal patterns of the stops) and Fig. 19 (the average percentages of stops labelled by the 

existing POI types). 



 

Fig. 18. Temporal patterns of stop events for different semantic categories of public places. 

 

Fig. 19. Percentages of stop events labelled by the available POI types for different semantic 

categories of public places. 

In a similar way, we analysed 9,301 public places in the San Diego case, involving land use data 

instead of the counts and percentages of POI type occurrences. This required more effort, since 

the land use classes are much more numerous than the POI types in the VAST Challenge 

example. Another complication was that the temporal patterns of the visits to the real public 

places were much more blurred than those for the artificial places. The reason may be that many 

real public places may have multiple uses; for example, shopping centres may include 

restaurants, bars, cinemas, and fitness rooms. We were able to assign semantic labels to 5,144 

public places (55.3%). 
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