
              

City, University of London Institutional Repository

Citation: Ching, A., Imai, S., Ishihara, M. & Jain, N. (2012). A practitioner's guide to 

Bayesian estimation of discrete choice dynamic programming models. Quantitative 
Marketing and Economics, 10(2), pp. 151-196. doi: 10.1007/s11129-012-9119-6 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/14216/

Link to published version: https://doi.org/10.1007/s11129-012-9119-6

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Electronic copy available at: http://ssrn.com/abstract=1398444

A Practitioner’s Guide to Bayesian Estimation of Discrete Choice

Dynamic Programming Models∗

Andrew T. Ching†

Rotman School of Management
University of Toronto

Susumu Imai
Department of Economics

Queen’s University

Masakazu Ishihara
Stern School of Business
New York University

Neelam Jain
Department of Economics
City University London

First draft: May 1, 2009
Revised: March 9, 2010

Revised: October 27, 2011

Forthcoming in Quantitative Marketing and Economics

∗We thank Martin Burda, Monica Meireles, Matthew Osborne, Peter Rossi, Andrei Strijnev, K. Sudhir, S. Siddarth
and two anonymous referees for their helpful comments. We also thank the participants of the UCLA Marketing Camp,
SBIES conference, Marketing Science Conference, Marketing Dynamics Conference, UTD-FORMS Conference, Canadian
Economic Association Meeting, Econometric Society Meeting and Ph.D. seminars at OSU’s Fisher College of Business,
Yale School of Management, and University of Groningen, University of Zurich and University of Southern California for
their useful feedback. Hyunwoo Lim provided excellent research assistance. All remaining errors are ours. Andrew Ching
and Susumu Imai acknowledge the financial support from SSHRC.

†The computer codes (in C and Matlab) for implementing the Monte Carlo exercises are available upon request. Please
direct all correspondence to: Andrew Ching, Rotman School of Management, University of Toronto, 105 St George Street,
Toronto, ON, CANADA M5S 3E6. Email: andrew.ching@rotman.utoronto.ca. Phone: 416-946-0728. Fax: 416-978-5433.



Electronic copy available at: http://ssrn.com/abstract=1398444

A Practitioner’s Guide to Bayesian Estimation of Discrete Choice
Dynamic Programming Models

Abstract

This paper provides a step-by-step guide to estimating infinite horizon discrete choice dynamic

programming (DDP) models using a new Bayesian estimation algorithm (Imai, Jain and Ching, Econo-

metrica 77:1865-1899, 2009) (IJC). In the conventional nested fixed point algorithm, most of the in-

formation obtained in the past iterations remains unused in the current iteration. In contrast, the

IJC algorithm extensively uses the computational results obtained from the past iterations to help

solve the DDP model at the current iterated parameter values. Consequently, it has the potential to

significantly alleviate the computational burden of estimating DDP models. To illustrate this new esti-

mation method, we use a simple dynamic store choice model where stores offer “frequent-buyer” type

rewards programs. Our Monte Carlo results demonstrate that the IJC method is able to recover the

true parameter values of this model quite precisely. We also show that the IJC method could reduce the

estimation time significantly when estimating DDP models with unobserved heterogeneity, especially

when the discount factor is close to 1.

Keywords: Bayesian Estimation, Dynamic Programming, Discrete Choice Models, Rewards Programs

JEL: C11, C35, C61, D91, M31



1 Introduction

In economics and marketing, there is a growing empirical literature which studies choice of agents in

both the demand and supply side, taking into account their forward-looking behavior. A common

framework to capture consumers’ or firms’ forward-looking behavior is the discrete choice dynamic

programming (DDP) model. This framework has been applied to study a manager’s decision to replace

old equipment (e.g., Rust 1987), career decision choice (e.g., Keane and Wolpin 1997; Diermeier, Merlo

and Keane 2005), choice to commit crimes (e.g., Imai and Krishna 2004), dynamic brand choice (e.g.,

Erdem and Keane 1996; Gönül and Srinivasan 1996; Crawford and Shum 2005), dynamic quantity choice

with stockpiling behavior (e.g., Erdem, Imai and Keane 2003; Sun 2005; Hendel and Nevo 2006), new

product/technology adoption decisions (e.g., Ackerberg 2003; Song and Chintagunta 2003; Yang and

Ching 2010), new product introduction decisions (e.g., Hitsch 2006), dynamic pricing decisions (e.g.,

Ching 2010), etc. Although the framework provides a theoretically tractable way to model forward-

looking incentives, and this literature has been growing, it remains small relative to the literature that

models choice using a static reduced form framework. This is mainly due to two obstacles of estimating

this class of model: (i) the curse of dimensionality problem in the state space, putting a constraint on

developing models that match the real world applications; (ii) the complexity of the likelihood/GMM

objective function, making it difficult to search for the global maximum/minimum when using the

classical approach to estimate them. To overcome the hurdle due to the curse of dimensionality problem,

several studies have proposed different ways to approximate the dynamic programming solutions (e.g.,

Keane and Wolpin 1994; Rust 1997; Hotz and Miller 1993; Aguirregabiria and Mira 2002; Ackerberg

2009).1 Nevertheless, little progress has been made in handling the complexity of the likelihood function

resulting from DDP models. A typical approach is to use different initial values to re-estimate the
1Geweke and Keane (2000) proposed to use a flexible polynomial to approximate the future component of the Bellman

equation. Their approach allowed them to conduct Bayesian inference on the structural parameters of the current payoff
functions and the reduced form parameters of the polynomial approximations. However, since it completely avoids solving
and fully specifying the DDP model, their estimation results are not efficient and in general policy experiments cannot be
conducted under their approach.

1



model, and check which set of parameter estimates gives the highest likelihood value. However, without

knowing the exact shape of the likelihood function, it is often difficult to confirm whether the estimated

parameter vector indeed gives us the global maximum.

In the past two decades, the Bayesian Markov Chain Monte Carlo (MCMC) approach has provided

a tractable way to simulate the posterior distribution of parameter vectors for complicated static dis-

crete choice models, making the posterior mean an attractive estimator compared with classical point

estimates in that setting (Albert and Chib 1993; McCulloch and Rossi 1994; Allenby and Lenk 1994;

Allenby 1994; Rossi et al. 1996; Allenby and Rossi 1999). Nonetheless, researchers seldom use the

Bayesian approach to estimate DDP models. The main problem is that the Bayesian MCMC approach

typically requires many more iterations than the classical approach to achieve convergence. In each

simulated draw of the parameter vector, the DDP model needs to be solved to calculate the likelihood

function. As a result, the computational burden of solving a DDP model has essentially ruled out the

Bayesian approach except for very simple models, where the model can be solved very quickly or there

exists a closed form solution (e.g., Lancaster 1997).

Recently, Imai, Jain and Ching (2009a) (IJC) propose a new modified Bayesian MCMC algorithm

to reduce the computational burden of estimating infinite horizon DDP models. This method combines

the DDP solution algorithm with the Bayesian MCMC algorithm into a single algorithm, which solves

the DDP model and estimates its structural parameters simultaneously. In the conventional nested

fixed point algorithm, most of the information obtained in the past iterations remains unused in the

current iteration. In contrast, the IJC algorithm extensively uses the computational results obtained

from the past iterations to help solve the DDP model at the current iterated parameter values. This

new method is potentially superior to prior methods because (1) it could significantly reduce the

computational burden of solving for the DDP model in each iteration, and (2) it produces the posterior

distribution of parameter vectors, and the corresponding solutions for the DDP model – this avoids the

2



need to search for the global maximum of a complicated likelihood function.

The objective of this paper is to provide a step-by-step guide to use the IJC method in terms of an

example, and demonstrate some properties of this method. We consider an example where consumers

need to choose which store to visit, and each store offers its own frequent-buyer rewards program. Our

Monte Carlo results demonstrate that the IJC method is able to recover the true parameter values of

this model quite precisely. We also show that the IJC method could reduce the estimation time very

significantly when estimating DDP models with unobserved heterogeneity, especially when the discount

factor is close to 1.

The rest of the paper is organized as follows. In section 2, we present the IJC method and a general

class of models that it can handle. In section 3, we describe the simple dynamic store choice model

with rewards programs. In section 4, we discuss how to use the IJC method to estimate this model in

detail. We also discuss several practical aspects of using this new method. Section 5 conducts two sets

of Monte Carlo experiments to demonstrate the performance and some properties of the IJC algorithm.

Section 6 compares the IJC algorithm with other approximation approaches to estimate DDP models.

Section 7 is the conclusion.

2 General Description of the IJC algorithm

2.1 The Basic Framework for a stationary DDP problem

We consider an infinite horizon stationary dynamic model of a forward-looking agent. By “stationary,”

we mean that conditioning on the value of the state variables, the optimal decisions of the agent do

not depend on time t. Let S be the set of state space points and let s be an element of S. We assume

that S is finite. Let A be the finite set of all possible actions and let a be an element of A.

Let Θ be the parameter space and let θ = (θR, θε, θs, β) ∈ Θ be the parameter vector. Let

R(s, a, εa; θR) be the current period return function of choosing action a given s, and εa is a random

shock to current returns to choice a. Depending on the applications, the return could be consumers’

3



utility, wages, revenue, etc. Let ε be a vector whose ath element is εa. We assume that ε follows a

multivariate distribution F (ε; θε) with density function dF (ε; θε) and is independent over time. But

note that ε could be correlated across a’s. We assume that the transition probability of next period

state s′, given current period state s and action a, is f(s′|s, a; θs). Let β be the discount factor. We

define the time invariant value function to be the maximum of the discounted sum of expected returns:

V(st, εt; θ) ≡ max
{at,at+1,...}

E[
∞∑

τ=t

βτ−tR(sτ , aτ , εaτ ; θR)|st, εt].

If we further assume that 0 < β < 1 and R is bounded, then the time invariant value function will

satisfy the following functional equation.

V(s, ε; θ) = max
a∈A

{R(s, a, εa; θR) + βEs′,ε′ [V(s′, ε′; θ)|s, a]}, (1)

where the expectation is taken over the next period s′ and ε′:

Es′,ε′ [V(s′, ε′; θ)|s, a] =
∑

s′∈S

[∫

ε′
V(s′, ε′; θ)dF (ε′; θε)

]
f(s′|s, a; θs). (2)

The literature refers to Equation (1) as the Bellman equation, and Es′,ε′ [V(s′, ε′; θ)|s, a] as the expected

value function. If we use the Bellman equation to define a functional operator (which maps a function

to another function), we can rewrite Equation (1) as the fixed point of the Bellman operator, i.e.,

V(s, ε; θ) = TθV(s, ε; θ),

where

TθV(s, ε; θ) ≡ max
a∈A

{R(s, a, εa; θR) + βEs′,ε′ [V(s′, ε′; θ)|s, a]}.

It can be shown that this operator is a contraction mapping. Therefore, to solve for V, one can

start with any bounded function, V0, and recursively apply the Bellman operator, Vn+1 = TθVn. In

the limit, Vn → V. This procedure, which is called the method of successive approximation, provides a

tractable way to solve for the Bellman equation and agents’ optimal decisions numerically.

4



Suppose we only observe agents’ choice and their corresponding state, {ai, si}I
i=1, where i indexes

agents (I agents), ai = {ait}T
t=1, and si = {sit}T

t=1. We assume that εiat are unobserved to researchers.

To estimate θ, we need to construct the likelihood of the observed data. The likelihood will take the form

of products of choice probabilities, Pj(sit; θ). Let Vj(s, εj ; θ) ≡ R(s, j, εj ; θR)+βEs′,ε′ [V(s′, ε′; θ)|s, a = j].

Vj is usually called the alternative specific value function. The probability of observing agent i choosing

j given the observed state, sit, is:

Pj(sit; θ) = P (ε : Vj(sit, εijt; θ) ≥ Vl(sit, εilt; θ),∀l) .

Then the likelihood increment for agent i at time t is:

Lit(ait|sit; θ) = Pj(sit; θ) if ait = j.

The likelihood of the observed data is

L(a|s; θ) =
∏

i

∏
t

Lit(ait|sit; θ),

where a = (a1, · · · , aI), s = (s1, · · · , sI). Let π(θ) be the prior distribution. Then the posterior

distribution of the parameters is proportional to the product of prior and the likelihood. That is,

p(θ|a, s) ∝ π(θ) · L(a|s; θ).

2.2 The IJC algorithm

To simplify the exposition, we assume that θs is known.2 A structural estimation algorithm can typically

be broken down into two components: outer loop and inner loop. In Bayesian estimation, the outer loop

is implemented using the Markov Chain Monte Carlo (MCMC) method (e.g., Metropolis-Hastings Al-

gorithm).3 It makes use of π(θ) and L(a|s; θ) to obtain a new draw from the posterior distribution. The

inner loop, which is nested within the outer loop, computes V(., ε; θ), and Vj(sit, εj ; θ) for constructing

2Given that we assume s evolves according to f(s′|s, a; θs), one can estimate θs based on the observed transition of s
alone, without using the DDP model.

3Walsh (2004) provides an excellent introduction to MCMC methods.

5



the likelihood. Given a trial parameter vector θ∗, the traditional approach applies the Bellman operator

repeatedly to solve for V(., ε; θ∗), which is the unique fixed point of the contraction mapping. Since

Rust (1987), the literature refers to this approach as the Nested Fixed Point Algorithm. An MCMC

outer loop typically requires many iterations to achieve convergence (10,000-100,000). This (roughly)

implies that we need to solve for the fixed point 10,000-100,000 times if we apply the Nested Fixed

Point Algorithm to conduct Bayesian inference. Obviously, the traditional approach is computationally

very demanding.

The IJC algorithm aims at providing a more practical way for Bayesian estimation of DDP models.

It relies on the following insights. In most of the applications, the value function is continuous in

θ.4 Therefore, at any given parameter vector, θ∗, it is possible to approximate the expected value

function (Es′,ε′ [V(s′, ε′; θ∗)|s, a]) using a set of value functions obtained from the earlier iterations of

the MCMC algorithm. Note that this set of value functions are evaluated at randomly drawn θ’s and

ε’s. Intuitively, one can obtain an estimate of the expected value function given any current trial θ by

running a non-parametric regression.

Another insight is the following. For any given neighborhood of the parameter space that belongs

to the support of the proposal density, the outer loop (i.e., the MCMC algorithm) will revisit this

neighborhood infinitely often as the number of outer loop iterations goes to infinity. Therefore, in

each iteration, one does not have to apply the Bellman operator iteratively until we solve for the value

function at a given trial parameter vector. At the minimum, one needs to apply the Bellman operator

only once in each iteration, and then save this “pseudo-value function” for future use when we revisit

this neighborhood. As the algorithm runs, we will revisit this neighborhood repeatedly, and this implies

that the “effective” number of Bellman operator iterations applied to this neighborhood will increase.

Since we can make the neighborhood arbitrarily small, it follows from the contraction mapping property

of the Bellman operator that the pseudo-value functions converge to the true value functions for any θ

4Norets (2010) provides a set of general model assumptions under which the implied value function is continuous in θ.

6



that belongs to the support of the proposal density. When this convergence is achieved, this algorithm

effectively “converges” to the conventional Bayesian MCMC algorithm. By just applying the Bellman

operator once in each iteration, this approach could significantly reduce the computational time per

iteration.5

We will now outline the basic IJC algorithm. Since the IJC algorithm approximates the value

function, we will use the terms, pseudo-value function (Ṽ l), pseudo-expected value function (Ẽl
s′,ε′V),

pseudo-alternative specific value function (Ṽ l
j ) and pseudo-likelihood (L̃l) when we outline the algo-

rithm. The superscript l indicates that they are derived at outer loop iteration l.

1) The outer loop (Metropolis-Hastings (M-H) Algorithm)

The outer loop is a Metropolis-Hastings (M-H) algorithm, which is a version of Markov-chain Monte

Carlo (MCMC) algorithm. The M-H algorithm allows us to simulate a Markov-chain of parameter

draws {θl} whose sample distribution converges to the true posterior distribution. It is well-known that

directly drawing θl from the posterior density p(θ|a, s) is computationally difficult due to the complexity

of the high dimensional posterior density. MCMC provides a tractable way to by-pass this problem.

In the M-H algorithm, we first draw a candidate parameter vector from a proposal density. Then,

we decide whether or not to accept the candidate parameter vector. We will denote the candidate

parameter vector in iteration r by θ∗r and the accepted parameter vector in iteration r by θr. Let

q(θ∗r|θr−1) denote the proposal density of θ∗r given θr−1 (e.g., θ∗r ∼ N(θr−1, σ2)).

Suppose we are at the beginning of iteration r. We first draw a candidate parameter vector from

the proposal density

θ∗r ∼ q
(
θ∗r|θr−1

)
.

5Formally, the convergence results require three more assumptions: (i) Θ is compact; (ii) the return function,
R(s, a, ε; θR) and the initial guess of the value function, V0(s, ε; θ), are continuous in ε and θ; (iii) the prior distribu-
tion π(θ) is positive and bounded for any given θ ∈ Θ.

7



Then, accept θ∗r with probability λ. That is,

θr =

{
θ∗r with probability λ

θr−1 with probability 1− λ

where λ, the acceptance probability, is calculated as follows.

λ = min

{
π(θ∗r)L̃r(a|s; θ∗r)q(θr−1|θ∗r)

π(θr−1)L̃r(a|s; θr−1)q(θ∗r|θr−1)
, 1

}
,

where L̃ is the pseudo-likelihood function based on a pseudo-alternative specific value function, which

is computed in the inner loop.

2) The inner loop

The inner loop does two jobs. First, it computes the pseudo-alternative specific value function, which

is then used to construct the pseudo-likelihood in the outer loop. Second, it updates the pseudo-

value function by applying the Bellman operator once. In these processes, we need to first compute

the expected value function. To alleviate the computational burden of deriving the fixed point of

the above dynamic programming algorithm, IJC approximate the expected value function by using

the information from earlier iterations of the MCMC estimation algorithm. They propose to store

Hr = {θ∗l, Ṽ l(., εl; θ∗l)}r−1
l=r−N , where εl is a simulated draw obtained from F (ε; θ∗lε ) in iteration l; N is

the number of past value functions to store. The pseudo-expected value function is then

Ẽr
s′,ε′ [V(s′, ε′; θ∗r)|s, a] =

∑

s′∈S

[
r−1∑

l=r−N

Ṽ l(s′, εl; θ∗l) · ω(θ∗l, θ∗r)

]
f(s′|s, a; θs), (3)

where ω(θ∗l, θ∗r) is the weight that takes high (low) value for θ∗l that is close to (far away from) the

current θ∗r. In particular, IJC use the following weight,

ω(θ∗l, θ∗r) =
Kh(θ∗l, θ∗r)∑r−1

k=r−N Kh(θ∗k, θ∗r)
,

where Kh is the Gaussian kernel density with bandwidth h. We should emphasize that the step above

allows us to integrate out ε′ as well. To see this more clearly, let us fix the parameters at each iteration

8



to θ∗, then Equation (3) becomes

Ẽr
s′,ε′ [V(s′, ε′; θ∗)|s, a] =

∑

s′∈S

[
r−1∑

l=r−N

Ṽ l(s′, εl; θ∗) · ω(θ∗, θ∗)

]
f(s′|s, a; θs)

=
∑

s′∈S

[
1
N

r−1∑

l=r−N

Ṽ l(s′, εl; θ∗)

]
f(s′|s, a; θs),

where 1
N

∑r−1
l=r−N Ṽ l(s′, εl; θ∗) is the Monte Carlo approximation of the expectation with respect to

ε′. With this pseudo-expected value function, we can construct the value of choosing each alternative

conditional on (s, ε) (i.e., pseudo-alternative specific value function):

Ṽ r
j (s, εj ; θ∗r) = R(s, j, εj ; θ∗rR ) + βẼr

s′,ε′ [V(s′, ε′; θ∗r)|s, a = j],

which can then be used to construct the pseudo-likelihood for θ∗r. The pseudo-likelihood for θr−1 can

be constructed in a similar way.

To update the pseudo-value function, we simulate a draw of εr from F (ε; θ∗rε ), substitute it into Ṽ r
j

above for all s ∈ S, and obtain

Ṽr(s, εr; θ∗r) = max
a∈A

Ṽ r
a (s, εr

a; θ
∗r), ∀s ∈ S.

We then store {θ∗r, Ṽr(., εr; θ∗r)} and update Hr to Hr+1.

IJC prove that under some regularity conditions, as the total number of outer loop iterations grows,

pseudo-value functions converge to the true value functions, and consequently the sample distribution

of the accepted draws of parameter vectors converges to the true posterior distribution.6 In theory, we

need to increase N as the number of iterations grows to obtain the convergence. When we have more

“data points” for the non-parametric approximation, we also need the bandwidth to shrink in order to

get convergence. IJC derive the precise convergence rates.7

We should emphasize that the pseudo-expected value function step (i.e., Equation (3)) is the key

innovation of IJC. In principle, this step is also applicable in classical estimation methods such as GMM
6Strictly speaking, parameter vector draws obtained from the IJC algorithm are not a markov chain because the

pseudo-expected value function depends on the past pseudo-value functions, which are evaluated at {θl}r−2
l=r−N in addition

to θr−1. As a result, the proof of convergence is non-standard (Imai, Jain and Ching, 2009b).
7Norets (2009) derives the convergence rates under the nearest neighbor kernel.

9



and maximum likelihood.8 However, there are at least two advantages of implementing IJC’s pseudo-

expected value function approach in Bayesian estimation.9 First, the non-parametric approximation

would be more efficient if the past pseudo-value functions are evaluated at θ∗l’s (l < r), which are

randomly distributed around θ∗r. This can be naturally achieved by the Bayesian MCMC algorithm.

On the contrary, classical estimation methods typically require minimizing/maximizing an objective

function. Commonly used minimization/maximization routines (e.g., BHHH, quasi-Newton methods,

etc.) tend to search over the parameter space along a particular path, not giving much variation

in the parameters around the approximation point, resulting in poor nonparametric approximation.

We therefore believe that the approximation step proposed by IJC should perform better under the

Bayesian MCMC approach.10 Second, in the presence of unobserved consumer heterogeneity, it is

common that the likelihood function is multi-modal even for static choice problems. In this situation,

Bayesian posterior means often turn out to be better estimators of the true parameter values than

classical point estimates. This is because in practice, accurately simulating a posterior is usually easier

than finding the global maximum/minimum of a complex likelihood/GMM objective function (e.g.,

Geweke, Houser and Keane 2001).

We make three remarks here. First, the above approximation of the expected value function relies

on a “moving window” of past pseudo-value functions, and in particular, we need to discard the “old”

ones and use the most recent ones. This is because the pseudo-value function produced in each new

iteration represents an improved approximation of the true value function. By discarding the “old”

pseudo-value functions, it ensures that we use the most accurate past pseudo-value functions to form a
8Brown and Flinn (2011) extend the implementation of this key step in estimating a dynamic model of marital status

choice and investment in children using the method of simulated moments.
9It is important to note that Bernstein and von Mises Theorem states that Bayesian posterior mean and the ML

estimators are asymptotically equivalent.
10A stochastic optimization algorithm, simulated annealing, has recently gained some attention to handle complicated

objective functions. This algorithm is an adaptation of the M-H algorithm (Kirkpatrick et al. 1983; Černý 1985).
The approximation step proposed by IJC should also be well-suited when researchers use simulated annealing to maxi-
mize/minmize the objective function in classical approaches (e.g., ML and GMM). However, we should note that before a
researcher starts the estimation, this method requires him/her to choose a “cooling” rate. The ideal cooling rate cannot
be determined a priori. In the MCMC-based Bayesian algorithm, one does not need to deal with this nuisance parameter.

10



weighted average approximation for the expected value function. Second, note that we store the past

pseudo-value functions evaluated at θ∗l (the draw from the proposal distribution) instead of θl (the draw

from the posterior distribution of θ). Why do we take this approach? If we store {θl, Ṽ l(., εl; θl)}r−1
l=r−N ,

there may be a significant portion of θl’s that are repeated because the acceptance rate of the M-H

step is usually set at around 1
3 . In order to conduct the non-parametric approximation for the expected

value function, it is often more efficient to have a set of Ṽ l’s evaluated at parameter vectors that span

the parameter space. Since θ∗l’s are drawn from a candidate generating function, it is much easier

for us to achieve this goal by storing {θ∗l, Ṽ l(., εl; θ∗l)}r−1
l=r−N .11 Third, we emphasize that Ṽ l(., εl; θ∗l)

means “Ṽ l(s, εl; θ∗l), ∀s”. Therefore, if the size of the state space is large, this algorithm will need a

large amount of computer memory to implement efficiently.

2.3 Special case: ε is i.i.d. extreme value distributed

So far, the assumptions we made for the distribution of ε are fairly general. In many applications,

however, researchers are willing to assume that ε’s are i.i.d. extreme value distributed and enter the

return functions in an additively separable way. Hence,

R(s, a, εa; θR) = R̄(s, a; θR) + εa.

Sometimes even though such an assumption is not strongly motivated by the modeling needs, it may

still be worth adding them because it can lead to a smooth and closed form likelihood function given the

value function. Another advantage is that the expected maximum of alternative specific value functions

with respect to εa has a closed form expression. This will significantly reduce the computational burden

of solving for the value function.12

11Imai, Jain and Ching (2009b) only proved convergence for the algorithm where the value function for the candidate
parameter draws were stored. This is because it is easier to prove convergence when the stochastic variations of the
parameters are controlled by the candidate generating function than jointly by the candidate generating function and the
acceptance rate of the M-H algorithm.

12Note that in this setup, the return function is unbounded because εa has unbounded support. Therefore, to show that
the Bellman operator is a contraction mapping, one needs to apply a generalized version of Blackwell’s Theorem provided
in Rust (1988).

11



We now modify our exposition about the recursive set up of the DDP model to show how to take

advantage of this distributional assumption. Recall that the alternative specific value function is:

Vj(s, εj ; θ) = R(s, j, εj ; θR) + βEs′,ε′ [V(s′, ε′; θ)|s, a = j]

= R̄(s, j; θR) + εj + βEs′
[
Eε′ [V(s′, ε′; θ)]|s, a = j

]
. (4)

Let Wj(s; θ) ≡ Vj(s, εj ; θ)− εj . The assumption that εj ’s are i.i.d. extreme value distributed implies

Eε′ [V(s′, ε′; θ)] = Eε′ [max
j

Vj(s′, ε′j ; θ)]

= Eε′ [max
j
{Wj(s′; θ) + ε′j}]

= ln


∑

j

exp(Wj(s′; θ))


 .

We refer to Eε′ [V(s′, ε′; θ)] as the Eεmax function. To simplify notation, we defineW(s; θ) ≡ Eε[V(s, ε; θ)].

Then, the solution to this stationary dynamic optimization problem can be reformulated as follows.

W(s; θ) = ln


∑

j

exp(Wj(s; θ))


 , (5)

where

Wj(s; θ) = R̄(s, j; θR) + βEs′ [W(s′; θ)|s, a = j]. (6)

The above formulation suggests that we can storeW instead of V when implementing the IJC algorithm.

More precisely, we store Hr = {θ∗l, W̃ l(.; θ∗l)}r−1
l=r−N , where W̃ l(.; θ) is the pseudo-Eεmax function.

Then the pseudo-expected value function at iteration r given the candidate parameter vector θ∗r will

be given by,

Ẽr
s′ [W(s′; θ∗r)|s, a] =

∑

s′∈S

[
r−1∑

l=r−N

W̃ l(s′; θ∗l) · ω(θ∗l, θ∗r)

]
f(s′|s, a; θs).

With this pseudo-expected value function, we can construct the counterpart of W r
j as follows.

W̃ r
j (s; θ∗r) = R̄(s, j; θ∗rR ) + βẼr

s′ [W(s′; θ∗r)|s, a = j],

12



and the pseudo-likelihood increment for agent i at time t is

L̃r
it(ait|sit; θ∗r) =

exp(W̃ r
j (sit; θ∗r))∑

k∈A exp(W̃ r
k (sit; θ∗r))

if ait = j.

To update the pseudo-Eεmax function, we no longer need to simulate a draw of εr. We can simply

compute

W̃r(s; θ∗r) = ln


∑

j

exp(W̃ r
j (s; θ∗r))


 , ∀s ∈ S.

One can then update Hr to Hr+1.

2.4 Extension 1: continuous state variables

So far, we have maintained the assumption that S is finite. However, in many marketing and economics

applications, we have to deal with continuous state variables such as prices, advertising expenditures,

capital stocks, etc. IJC also describe how to extend the algorithm to allow for continuous state variables,

by combining it with the random grid approximation proposed by Rust (1997). To illustrate the

procedure, we now assume that all state variables are continuous.13 Let f(s′|s, a; θs) be the transition

density of next period state s′, given current period state s and action a.

To incorporate continuous state variables, we store Hr = {θ∗l, sl, Ṽ l(sl, εl; θ∗l)}r−1
l=r−N , where εl is

a simulated draw obtained from F (ε; θε) in iteration l, and sl is a simulated draw from an uniform

distribution that covers the support of S. IJC propose to construct the pseudo-expected value function

in iteration r given θ∗r as,

Ẽr
s′,ε′ [V(s′, ε′; θ∗r)|s, a] =

r−1∑

l=r−N

Ṽ l(sl, εl; θ∗l) · ψ(θ∗l, θ∗r; sl, s|a)

where

ψ(θ∗l, θ∗r; sl, s|a) =
Kh(θ∗l, θ∗r)f(sl|s, a; θs)∑r−1

k=r−N Kh(θ∗k, θ∗r)f(sk|s, a; θs)
.

13In general, the state space can consist of a mixture of discrete and continuous state variables. In such a case, readers
can combine the results in the base case and in this subsection to obtain the nonparametric approximation of the expected
value function. See section 4.4 for an example.

13



Thus, ψ(θ∗l, θ∗r; sl, s|a) assigns higher weights not only for parameters θ∗l’s that are close to the current

parameter θ∗r, but also for states sl’s that have higher transition densities from state s. Since sl’s are

drawn from an uniform distribution, this weighted average will integrate out the next period state s′.

With this pseudo-expected value function, we can construct the pseudo-alternative specific value

functions:

Ṽ r
j (s, εj ; θ∗r) = R(s, j, εj ; θ∗rR ) + βẼr

s′,ε′ [V(s′, ε′; θ∗r)|s, a = j],

which can then be used to construct the pseudo-likelihood.

To update the pseudo-value function, we simulate a draw of εr from F (ε; θ∗rε ) and a draw of sr from

an uniform distribution over the support of S, substitute them into Ṽ r
j , and obtain

Ṽr(sr, εr; θ∗r) = max
a∈A

Ṽ r
a (sr, εr

a; θ
∗r).

One important difference from the base case is that we only need to update and store the pseudo-value

function at s = sr, in contrast to updating and storing the pseudo-value function at all s ∈ S.

Conventionally, randomly generated grid points are fixed throughout the solution-estimation algo-

rithm. IJC, however, propose to randomly draw one state vector, sr, in iteration r, apply the Bellman

operator once and store the pseudo-value function conditional on sr. Thus, when approximating the

expected value function, we use past pseudo-value functions that are evaluated at randomly generated

sl’s. In this approach, one can easily adjust the precision of the approximation because the total num-

ber of random grid points can be made arbitrarily large by increasing N . We should also point out

that if researchers simply apply the conventional Rust’s random grid approximation with M fixed grid

points in the IJC algorithm, they need to compute the pseudo-value functions at M grid points in each

iteration. As a result, the “effective” size of the state space will become M , while the IJC’s random

grid approach will keep it at one. The main advantage of the IJC’s random grid algorithm comes

from the fact that the integration of the continuous state variables is already incorporated into the

computation of the weighted average of past pseudo-value functions. This feature allows us to compute

14



the pseudo-value function at only one grid point per iteration.

Finally, the IJC algorithm can also handle the situation in which the transition of a state variable is

deterministic. A critical assumption when applying the random grid approximation by Rust (1997) is

that the transition density f(s′|s, a; θs) is not degenerate. IJC propose a kernel-based local interpolation

approach to handle this issue. Let Khs be the kernel function with bandwidth hs for the state variable

s and Khθ
be the kernel function with bandwidth hθ for the parameter vector θ. The pseudo-expected

value function in iteration r given θ∗r can now be obtained by

Ẽr
ε′ [V(s′, ε′; θ∗r)|s, a] =

r−1∑

l=r−N

Ṽ l(sl, εl; θ∗l) · ϕ(θ∗l, θ∗r; sl, s′),

where

ϕ(θ∗l, θ∗r; sl, s′) =
Khθ

(θ∗l, θ∗r)Khs(s
l, s′)∑r−1

k=r−N Khθ
(θ∗k, θ∗r)Khs(sk, s′)

.

With this pseudo-expected value function, we can construct the value of choosing each alternative

conditional on (s, ε):

Ṽ r
j (s, εj ; θ∗r) = R(s, j, εj ; θ∗rR ) + βẼr

ε′ [V(s′, ε′; θ∗r)|s, a = j],

which can then be used to construct the pseudo-likelihood.

We update the pseudo-value function in a way similar to the case of stochastic continuous state

variables. We simulate a draw of εr from F (ε; θ∗rε ) and sr from a uniform distribution, substitute them

into Ṽ r
j , and obtain

Ṽr(sr, εr; θ∗r) = max
a∈A

Ṽ r
a (sr, εr

a; θ
∗r).

2.5 Extension 2: unobserved heterogeneity

Extension of the above estimation methodology to a model with individual-specific unobserved hetero-

geneity is straightforward. IJC propose to combine it with the Hierarchical Bayes approach to estimate

individual-specific unobserved heterogeneity (e.g., Allenby and Rossi 2006). If readers are not familiar

15



with the Hierarchical Bayes approach, we suggest them to read Chapter 12 of Train (2003) or Chapter

5 of Rossi et al. (2005) first. Although we try to make the presentation self-contained, it will be easier

to follow if readers have such knowledge.

Suppose that some of the parameters for the return function, θR, take different values for different

agents. We rewrite the parameter vector for the return function as θRi = (θR1i, θR2) where θR1i is a

vector of individual-specific parameters and θR2 is a vector of parameters common across agents. We

assume that θR1i follows the density function below:

θR1i ∼ g(θR1i; µ),

where µ is a parameter vector for this density (it is called hyperparameter in the Bayesian inference

literature). The entire parameter vector consists of θ = (µ, {θR1i}I
i=1, θR2, θε, θs). Let us rewrite this

vector as θ = (µ, {θR1i}I
i=1, θc) where θc = (θR2, θε, θs) is the vector of parameters common across

agents. Then the Bellman equation in the base case (Equation (1)) can be modified as:

V(s, ε; θR1i, θc) = max
a∈A

{R(s, a, εa; θRi) + βEs′,ε′ [V(s′, ε′; θR1i, θc)|s, a]}.

Note that the value function, V(s, ε; θR1i, θc), is now individual-specific and does not depend on θR1k for

k 6= i. Also, it does not depend on the hyperparameter µ. Consequently, when calculating the pseudo-

likelihood, the “effective” parameter vector only consists of ({θR1i}I
i=1, θc). When approximating the

expected value function for each agent, we combine the common and individual-specific kernel weights

to produce the weighted average of past pseudo-value functions.

The outer loop iteration for drawing a parameter vector from the posterior distribution can be

broken down into three steps.

Step 1. Hyperparameter updating step: we draw the hyperparameter µr conditional on {θr−1
R1i }I

i=1.

There is no inner loop associated with this step.

16



Step 2. Data augmentation step: we draw individual-specific parameters {θr
R1i}I

i=1 conditional on µr

and θr−1
c using the M-H algorithm.

Step 3. Step for drawing common parameters: we draw θr
c using the M-H algorithm conditional on

{θr
R1i}I

i=1.

Steps 1 and 2 are the additional steps compared to the base case where all parameters are common

across agents. Also notice that the inner loops are nested within steps 2 and 3. The only difference

between the two inner loops in steps 2 and 3 is that the value function will be solved conditional on

a different parameter vector. In what follows, we will first describe the three steps in the outer loop,

and then explain the inner loop. We assume that the prior is independent for (µ, θc), i.e., π(µ, θc) =

π(µ) · π(θc).

1) The outer loop

Suppose we are in iteration r with parameter estimates being (µr, {θr
R1i}I

i=1, θ
r
c).

1.1) Hyperparameter updating step

Given {θr−1
R1i }I

i=1, the posterior density for µ is proportional to

π(µ)
I∏

i=1

g(θr−1
R1i ; µ).

In most applications, we can draw µr directly from this posterior density.14 Note that this step does

not involve the solution of the DP problem.

1.2) Data augmentation step

The model specification implies that g(θR1i; µr) is effectively the prior for θR1i. For each agent i, we

first draw a candidate parameter from the proposal density

θ∗rR1i ∼ q(θ∗rR1i|θr−1
R1i , µ

r).
14In the example that we will discuss later, we assume g is a normal distribution and µ includes parameters for mean

and standard deviation. Assuming that the prior on the mean parameters is normal and that for standard deviation
parameters is inverse Wishart (or inverse Gamma if θR1i is a scalar), the posterior distribution for mean parameters is
normal and that for standard deviation parameter is inverse Wishart. There are simple procedures for making a draw
from both distributions (e.g., see Train 2003).

17



Then, accept θ∗rR1i with probability λ. That is,

θr
R1i =

{
θ∗rR1i with probability λ,
θr−1
R1i with probability 1− λ,

where

λ = min

{
g(θ∗rR1i;µ

r)L̃r
i (ai|si; θ∗rR1i, θ

r−1
c )q(θr−1

R1i |θ∗rR1i, µ
r)

g(θr−1
R1i ;µr)L̃r

i (ai|si; θr−1
R1i , θ

r−1
c )q(θ∗rR1i|θr−1

R1i , µ
r)

, 1

}
.

Note that the computation of L̃r
i requires us to compute the pseudo-expected values in the future for

observations of agent i only, i.e., {ai, si}. We will discuss how to compute this pseudo-expected value

function in step 2 below.

1.3) Step for drawing common parameters

This step is essentially the same as the outer loop step in the base case. We first draw a candidate

parameter from the proposal density

θ∗rc ∼ q(θ∗rc |θr−1
c ).

Then, accept θ∗rc with probability λ. That is,

θr
c =

{
θ∗rc with probability λ,
θr−1
c with probability 1− λ,

where

λ = min

{
π(θ∗rc )L̃r(a|s; θr

R1i, θ
∗r
c )q(θr−1

c |θ∗rc )
π(θr−1

c )L̃r(a|s; θr
R1i, θ

r−1
c )q(θ∗rc |θr−1

c )
, 1

}
.

Note that the computation of L̃r requires us to compute the pseudo-expected values in the future for

all observations, i.e., {ai, si}I
i=1. Step 2 discusses how to compute them.

2) The inner loop

Recall that in the current setting, the value function is individual-specific. This feature suggests that

we need to store pseudo-value functions for each agent. Thus, in iteration r, the output of the algorithm

is

Hr = {θ∗lc , {θ∗lR1i, Ṽ(., εl; θ∗lR1i, θ
∗l
c )}I

i=1}r−1
l=r−N .

18



The pseudo-expected value function for agent i given (θR1i, θc) is then

Ẽr
s′,ε′ [V(s′, ε′; θR1i, θc)|s, a] =

∑

s′∈S

[
r−1∑

l=r−N

Ṽ(s′, εl; θ∗lR1i, θ
∗l
c ) · ω(θ∗lR1i, θ

∗l
c ; θR1i, θc)

]
f(s′|s, a; θs),

where

ω(θ∗lR1i, θ
∗l
c ; θR1i, θc) =

Kh(θ∗lR1i, θR1i)Kh(θ∗lc , θc)∑r−1
k=r−N Kh(θ∗kR1i, θR1i)Kh(θ∗kc , θc)

.

With this pseudo-expected value function, we can construct the value of choosing each alternative

conditional on (s, ε):

Ṽ r
j (s, εj ; θR1i, θc) = R(s, j, εj ; θRi) + βẼr

s′,ε′ [V(s′, ε′; θR1i, θc)|s, a = j],

which can then be used to construct the pseudo-likelihood for agent i. We should emphasize that in

step 1.2, we need to compute the pseudo-expected value function at (θ∗rR1i, θ
r−1
c ) while in step 1.3, we

do so at (θr
R1i, θ

∗r
c ). In both steps, we use the same set of past pseudo-value functions.

To update the pseudo-value function for agent i, we can simply follow the base case: simulate a

draw of εr, substitute it into Ṽ r
j for agent i above for all s ∈ S, and obtain,

Ṽr(s, εr; θ∗rR1i, θ
∗r
c ) = max

a∈A
Ṽ r

a (s, εr
a; θ

∗r
R1i, θ

∗r
c ), ∀s ∈ S.

3 A rewards program example

We now present an example and use it to illustrate how to apply the IJC algorithm to do Bayesian

inference for a DDP model. Suppose that there are two supermarket chains in a city (j = 1, 2). Each

supermarket chain offers a stamp card, which can be exchanged for a gift upon completion. The stamp

card for a chain is valid for all stores in the same chain. Consumers get one stamp for each visit at any

store of a chain with a purchase. Rewards programs at the two supermarket chains differ in terms of

(i) the number of stamps required for a gift (S̄j), and (ii) the mean value of the gift (Gj). Consumers

get a gift in the same period that they complete the stamp card. Once consumers receive a gift, they

will start with a blank stamp card again in the next period.

19



In each period, a consumer chooses which supermarket chain to visit. Each chain offers different

prices for their products. Let pijt be the price index that consumer i faces in supermarket chain j at

time t. We allow the price index to be individual specific to reflect that consumers may differ in terms

of their consumption baskets (e.g., some consumers have babies and they need to shop for diapers, some

consumers are vegetarian and they do not shop for meats, etc.). For simplicity, we assume that pijt

is drawn from an i.i.d. normal distribution, N(p̄, σ2
p), which is known to consumers, and they observe

pijt in the period that they decide their choices.15 Let sijt ∈ Sj ≡ {0, 1, . . . , S̄j − 1} denote the number

of stamps collected for chain j in period t before consumer i makes a decision. Note that sijt does not

take the value S̄j because of our assumption that consumers get a gift in the same period that they

complete the stamp card. The state space of this dynamic model is S ≡ S1 × S2.

Consumer i’s single period utility of visiting supermarket chain j in period t at sit = (si1t, si2t) and

pit = (pi1t, pi2t) is given by,

Uijt(sit, pit) =

{
αj + γpijt + εijt if sijt < S̄j − 1,
αj + γpijt + Gij + εijt if sijt = S̄j − 1,

where αj captures the brand equity for chain j, γ is the price sensitivity, Gij is consumer i’s valuation of

the gift for chain j, and εijt is the i.i.d. idiosyncratic random utility term. We assume εijt is unobserved

to researchers and extreme-value distributed. Gij is assumed to be normally distributed around Gj

with the standard deviation, σGj . We allow Gij to differ across consumers to reflect that individual’s

valuation for a gift may vary.16 In each period, consumers may choose not to go shopping (j = 0). The

single period mean utility of no shopping is normalized to zero, i.e., Ui0t(sit, pit) = εi0t.

Consumer i’s objective is to maximize the sum of the present discounted future utility:

max
{bijt}∞t=1

E



∞∑

t=1

βt−1
2∑

j=0

bijtUijt(sit, pit)


 ,

where bijt = 1 if consumer i chooses chain j in period t and bijt = 0 otherwise. β is the discount factor.
15We will discuss how to estimate an extension where pijt is serially correlated in section 4.4.
16Suppose that the gift is a vase. Some consumers may value it highly, but others who already have several vases at

home, may not.

20



The evolution of state, sit, is deterministic and depends on consumers’ choice. Given the current state

sijt, the next period state, sijt+1, is determined as follows:

sijt+1 =





sijt + 1 if sijt < S̄j − 1 and purchase at chain j in period t;
0 if sijt = S̄j − 1 and purchase at chain j in period t;
sijt if purchase at chain −j or no shopping in period t.

(7)

The parameters of the model are {αj , Gj , σGj}2
j=1, γ, β, p̄, and σp. In what follows, we assume that p̄

and σp are known to researchers. Note that this is not a strong assumption because these two parameters

can be recovered from the price data alone. Let θ be the vector of parameters, and Gi ≡ (Gi1, Gi2).17

Since the dynamic optimization problem is stationary, we drop the t subscript hereafter. The Eεmax

function is given by: For each si, pi,

W(si, pi; Gi, θ) ≡ Eε max
j∈{0,1,2}

{Wj(si, pi; Gi, θ) + εij}

= ln




2∑

j=0

exp(Wj(si, pi; Gi, θ))


 , (8)

where the second equality follows from the extreme value assumption on ε. Denote p′ as the price vector

next period. The alternative specific value functions are given by: For j = 1, 2,

Wj(sij , si−j , pi; Gi, θ) =

{
αj + γpij + βEp′ [W(sij + 1, si−j , p

′; Gi, θ)] if sij < S̄j − 1,
αj + γpij + Gij + βEp′ [W(0, si−j , p

′;Gi, θ)] if sij = S̄j − 1,
(9)

W0(si, pi; Gi, θ) = βEp′ [W(si, p
′;Gi, θ)], (10)

where Ep′ [W(., p′; Gi, θ)] =
∫ W(., p′;Gi, θ)dF (p′) is the expected value function.

4 Estimation procedures

We now discuss how to estimate this model. We describe the conventional Bayesian estimation method

and the IJC method in order, and highlight their differences.18

17With a slight abuse of notation, we use Gj to denote the mean value of the gift at store j = 1, 2, and Gi = (Gi1, Gi2)
to denote the vector of the values of the gift for consumer i.

18For the identification issue of this model, see Ching, Imai, Ishihara and Jain (2011).

21



4.1 Conventional Bayesian approach (full-solution based method)

The conventional approach is essentially a nested fixed point algorithm proposed by Rust (1987). It

proceeds in the following two main steps: the outer loop and inner loop. For simplicity, we present

the procedure for the model without unobserved heterogeneity (i.e., Gij = Gj ,∀i). We refer readers to

Figure 1 for a flowchart as they read the following two subsections.

4.1.1 The outer loop (MCMC algorithm)

Recall that the outer loop is a standard M-H algorithm. Let us use (bit, sit, pit), I and Ti to denote the

observed data, total number of consumers, and total number of periods observed for each consumer i,

respectively. Define b ≡ {bit,∀i, t}, s ≡ {sit, ∀i, t}, p ≡ {pit, ∀i, t} and let L(b|s, p; θ) be the likelihood

of observing b:

L(b|s, p; θ) =
I∏

i=1

Ti∏

t=1

2∏

j=0

(
exp(Wj(sit, pit; θ))∑2

k=0 exp(Wk(sit, pit; θ))

)bijt

.

Let π(θ) be the prior on θ. The posterior density of θ is proportional to π(θ) · L(b|s, p; θ).

Suppose we are at iteration r with parameter estimates being θr. Then, we first draw the candidate

parameter from the proposal density

θ∗r ∼ q(θ∗r|θr−1).

Then we accept θ∗r, i.e., set θr = θ∗r, with probability,

λ = min
{

π(θ∗r)L(b|s, p; θ∗r)q(θr−1|θ∗r)
π(θr−1)L(b|s, p; θr−1)q(θ∗r|θr−1)

, 1
}

;

and we reject θ∗r, i.e., set θr = θr−1, with probability 1− λ.

Note that L(b|s, p; θ∗r) and L(b|s, p; θr−1) depend on the expected value function evaluated at θ∗r

and θr−1, respectively. We now discuss how to implement the inner loop, which solves for the expected

value functions numerically at these parameter vectors.

22



4.1.2 The inner loop (the method of successive approximation)

To solve the model described in Section 3 numerically, we take advantage of the contraction mapping

property of the Bellman operator and apply the method of successive approximation as follows.

1. For each j = 1, 2, make M independent draws of {p̃m
j }M

m=1 from the price distribution function,

N(p̄, σ2
p). We denote the draws to be PM = {p̃m,m = 1, ..., M}, where p̃m = (p̃m

1 , p̃m
2 ), and fix

them below.

2. Start with an arbitrary initial guess of Eεmax function, e.g., set W0(s, p̃m; θ) = 0, ∀s ∈ S and

∀p̃m. Suppose that we know W l, where l indexes the number of iterations. Steps 3 & 4 discuss

how to obtain W l+1.

3. For each s, substitute {p̃m}M
m=1 into W l(s, p; θ), and then take the average across p̃m’s to obtain

a Monte Carlo approximation of the expected value function:

Ēp′W l(s, p′; θ) =
1
M

M∑

m=1

W l(s, p̃m; θ).

4. Substitute this approximated expected value function into the Bellman operator (i.e., Equations

(8)-(10)) and obtain W l+1(s, p̃m; θ), that is, ∀s ∈ S, ∀p̃m ∈ PM ,

W l+1(s, p̃m; θ) = ln




2∑

j=0

exp(W l
j(s, p̃

m; θ))


 , (11)

where for j = 1, 2,

W l
j(s, p̃

m; θ) =

{
αj + γp̃m

j + βĒp′W l(sj + 1, s−j , p
′; θ) if sj < S̄j − 1,

αj + γp̃m
j + Gij + βĒp′W l(0, s−j , p

′; θ) if sj = S̄j − 1,
(12)

W l
0(s, p̃

m; θ) = βĒp′W l(s, p′; θ). (13)

5. Repeat steps 3-4 until Ēp′W l+1(., p′; θ) converges. The convergence is determined by checking

whether maxs∈S ||Ēp′W l+1(s, p′; θ)− Ēp′W l(s, p′; θ)|| < ν, where ν is the tolerance level set by the

researcher. Typically, the tolerance level is set at 1e-6.

23



In general, the computational burden increases exponentially with the number of state variables, and

linearly with the number of values in each state variable. Also, the number of iterations required to

achieve the convergence of Ēp′W l(s, p′; θ) increases as the discount factor β increases (e.g., see Santos

and Rust 2004). We will now turn to discuss how to apply the IJC algorithm to estimate this rewards

program model.

4.2 How to apply the IJC algorithm

By now, it should be clear that the main obstacle of the conventional Bayesian approach is the com-

putational burden of solving for the expected value function at a large number of parameter vectors

simulated from the M-H algorithm. As discussed earlier, the main difference between the IJC and

conventional Bayesian methods is the inner loop. Instead of using the contraction mapping argument

to obtain the expected value function, the IJC method uses the past pseudo-Eεmax functions (or

pseudo-value functions in the general case) to form a non-parametric estimate of the expected value

function evaluated at the current draw of parameter vector. More precisely, the non-parametric esti-

mate is a weighted average of the pseudo-Eεmax functions obtained as past outcomes of the estimation

algorithm. The weights depend on the distance between the past parameter vector draws and the

current one – the shorter the distance, the higher the weight. Later, we will provide evidence that

such a non-parametric estimate is usually computationally much cheaper than the method of successive

approximation described in section 4.1.2, especially for β close to 1. Consequently, the IJC algorithm

has the potential to significantly reduce the computational burden per iteration compared with the

conventional Bayesian approach.

For simplicity, suppose that there is no unobserved consumer heterogeneity (i.e., Gij = Gj ,∀i).

The output of the IJC algorithm in each iteration r is {θr, θ∗r, W̃r(., p̃r; θ∗r)}, where p̃r
j is a draw from

N(p̄, σ2
p) for j = 1, 2, and W̃r(., p̃r; θ∗r) is the pseudo-Eεmax function of s, given p̃r and θ∗r. We store

Hr = {θ∗l, W̃ l(., p̃l; θ∗l)}r−1
l=r−N . It should be emphasized that W̃ l(., p̃l; θ∗l) refers to W̃ l(s, p̃l; θ∗l) for

24



all s ∈ S. In other words, we need to store W̃ l at all s. The pseudo-Eεmax functions, W̃r, and the

pseudo-alternative specific value functions, W̃ r
j , are defined as follows. First, we draw p̃r

j from N(p̄, σ2
p),

for j = 1, 2.19 Then, for each s ∈ S,

W̃r(s, p̃r; θ∗r) = ln




2∑

j=0

exp(W̃ r
j (s, p̃r; θ∗r))


 , (14)

where for j = 1, 2,

W̃ r
j (s, p̃r; θ∗r) =

{
αj + γp̃r

j + βẼr
p′W(sj + 1, s−j , p

′; θ∗r) if sj < S̄j − 1,
αj + γp̃r

j + Gj + βẼr
p′W(0, s−j , p

′; θ∗r) if sj = S̄j − 1,
(15)

W̃ r
0 (s; p̃r; θ∗r) = βẼr

p′W(s, p′; θ∗r). (16)

The pseudo-expected value function, Ẽr
p′W(., p′; θ∗r), is defined as the weighted average of the past

pseudo-Eεmax functions obtained from the estimation algorithm. For instance, Ẽr
p′W(s, p′; θ∗r) can be

constructed as follows:

Ẽr
p′W(s, p′; θ∗r) =

r−1∑

l=r−N

W̃ l(s, p̃l; θ∗l)
Kh(θ∗l, θ∗r)∑r−1

k=r−N Kh(θ∗k, θ∗r)
, (17)

where Kh(.) is a Gaussian kernel with bandwidth h. Note that the price shock is integrated out by this

weighted average of the past pseudo-Eεmax functions evaluated at random draws of {p̃l}r−1
l=r−N .

4.3 Details of the IJC algorithm

Now we provide a step-by-step guide to implement the IJC algorithm. The steps are similar to the

conventional Bayesian approach, except that we use Equation (17) to approximate the expected value

function. Once the readers understand how to implement the algorithm in this simple example, they

should be able to extend it to more complicated settings. We consider two versions of the model: (i)

without unobserved consumer heterogeneity, and (ii) with unobserved consumer heterogeneity.
19Here we propose to make one draw of price vector in each iteration. However, in practice, we find it useful to draw

several price vectors in each iteration and store the average of pseudo-Eεmax functions evaluated at these draws of price
vectors. We will discuss this procedure in Appendix A.

25



4.3.1 Homogeneous consumers

We first present the implementation of the IJC algorithm when consumers are homogeneous in their

valuations of Gj (i.e., σGj = 0 for j = 1, 2). To assist readers to understand these steps, we summarize

a list of notations in Table 1 and create a flowchart in Figure 2; readers may refer to them as they read

through the steps below.

1. Suppose that we are at iteration r. Let N be the number of past pseudo-Eεmax functions that

we plan to store. More precisely, for r ≥ N , we store,

Hr = {θ∗l, W̃ l(., p̃l; θ∗l)}r−1
l=r−N ,

We will discuss how to modify the steps when r < N later.

2. Draw a candidate parameter vector, θ∗r, from a proposal distribution q(θ∗r|θr−1).

3. Compute the pseudo-likelihood conditional on θ∗r, L̃r(b|s, p; θ∗r),

L̃r(b|s, p; θ∗r) =
I∏

i=1

Ti∏

t=1

2∏

j=0

(
exp(W̃ r

j (sit, pit; θ∗r))∑2
k=0 exp(W̃ r

k (sit, pit; θ∗r))

)bijt

.

To obtain W̃ r
j , we need to calculate Ẽr

p′W(., p′; θ∗r), which is obtained using the weighted aver-

age of the past pseudo-Eεmax functions: {W̃ l(., p̃l; θ∗l)}r−1
l=r−N . The weights are determined by

Gaussian independent kernels with bandwidth h. For all s,

Ẽr
p′W(s, p′; θ∗r) =

r−1∑

l=r−N

W̃ l(s, p̃l; θ∗l)
Kh(θ∗l, θ∗r)∑r−1

k=r−N Kh(θ∗k, θ∗r)
.

Substituting this into Equations (15) and (16) gives us W̃ r
j .

Similarly, compute the pseudo-likelihood conditional on θr−1, L̃r(b|s, p; θr−1). Let π(·) be the

prior distribution of the parameter vector. Then we determine whether or not to accept θ∗r based

on the acceptance probability,

min

{
π(θ∗r)L̃r(b|s, p; θ∗r)q(θr−1|θ∗r)

π(θr−1)L̃r(b|s, p; θr−1)q(θ∗r|θr−1)
, 1

}
.

26



If accept, set θr = θ∗r; otherwise, set θr = θr−1.

4. Since we propose to store the pseudo-Eεmax functions at θ∗r, we need to compute W̃r(., p̃r; θ∗r).

(a) Make one draw of p̃r
j from N(p̄, σ2

p), for j = 1, 2.

(b) Compute W̃ r
j (., p̃r; θ∗r) for j = 0, 1, 2, using Ẽr

p′W(., p′; θ∗r) obtained from step 3.

(c) Given W̃ r
j (., p̃r; θ∗r) for j = 0, 1, 2, obtain the pseudo-Eεmax function, W̃r(., p̃r; θ∗r), using

Equation (14).

(d) Update Hr+1.

5. Go to iteration r + 1.

We make three remarks here. First, when we start the algorithm (i.e., r = 1), H1 is empty, and

we set Ẽ1
p′W(., p′; θ0) = Ẽ1

p′W(., p′; θ∗1) = 0. Second, for r < N , we set Hr = {θ∗l, W̃ l(., p̃l; θ∗l)}r−1
l=1 ,

and the calculation of Ẽr
p′W(., p′; θ∗r) should be modified accordingly (i.e., the summation should start

from l = 1 to r − 1 instead of from l = r − N to r − 1). Third, in step 3, we need to compute

the pseudo-likelihood at previously accepted parameter vector, θr−1. It may first seem that this is

redundant because the pseudo-likelihood at θr−1 has been computed in the previous iteration, and thus

we can re-use it in the current iteration. This is true in a full-solution based Bayesian MCMC algorithm,

where we solve for the Eεmax function exactly in each iteration. However, in the IJC algorithm, the

likelihood in iteration r depends on Hr (this is why we call it pseudo-likelihood), which is updated in

each iteration. Thus, in principle, we need to compute the pseudo-likelihood at θr−1 using the updated

set of past pseudo-Eεmax functions in iteration r.20

20In practice, however, it may not be worthwhile to compute the pseudo-likelihood at θr−1 in every iteration because
the set of past pseudo-Eεmax functions is updated by only one element in each iteration. Therefore, the pseudo-likelihood
based on Hr−1 could be a good approximation for the pseudo-likelihood based on Hr. We will discuss more details in
Appendix A.

27



4.3.2 Heterogeneous consumers

We now present the implementation of the IJC algorithm when consumers have heterogeneous valuations

for the reward (i.e., σGj > 0).

We will take the Hierarchical Bayes approach and treat Gij as individual-specific parameters in

our estimation. In this case, the parameter vector can be partitioned into three parts with θ =

(µ, {Gi}I
i=1, θc), where µ = (G1, G2, σG1 , σG2); Gi = (Gi1, Gi2); θc = (α1, α2, γ, β). One can treat µ

as the vector of hyperparameters that captures the distribution of the individual-specific parameters,

and θc consists of parameters that are common across consumers.21 To simplify the discussion, we use

a normal prior on Gj and an inverted gamma prior on σGj . We assume that they are independent

across j. The prior on θc can be flexible and we use independent flat priors in our estimation exercise.

Each MCMC iteration mainly consists of three blocks.

(i) Draw µr, that is, for j = 1, 2, draw Gr
j ∼ fG(.|σr−1

Gj
, {Gr−1

ij }I
i=1) and σr

Gj
∼ fσ(.|Gr

j , {Gr−1
ij }I

i=1)

where fG and fσ are the conditional posterior distributions.

(ii) Draw individual parameters Gr
i ∼ fi(.|bi, si, pi, µ

r, θr−1
c ) using the M-H algorithm.

(iii) Draw θr
c ∼ fθc(.|b, s, p, {Gr

i }I
i=1) using the M-H algorithm. Note that this block is similar to the

steps described in the homogeneous case.

Heterogeneity introduces an additional complication that the expected value functions need to be

approximated for each consumer. As before, this is achieved by taking a weighted average of past

pseudo-Eεmax functions based on the distance of the current parameter vector to the past parameter

vector. It should be emphasized that conditional on {Gi}I
i=1, the expected value functions (and hence

the likelihood functions) do not depend on µ. Consequently, when calculating the likelihoods in blocks

(ii) and (iii), the “effective” parameter vector only consists of ({Gi}I
i=1, θc).

21In terms of the notation in Section 2.5, µ = µ, Gi = θR1i, and θc = θR2.

28



We now describe the details of the estimation steps. To assist the readers to follow these steps, we

summarize a list of notations in Table 2 and provide a flowchart in Figure 3; readers may refer to them

as they read through the steps below. Steps 2-3 belong to block (i), step 4 belongs to block (ii) and

step 5 belongs to block (iii). Note that we only describe steps 2 and 3 briefly here because they are

standard. For the details of these two steps, we refer readers to Chapter 12 of Train (2003).

1. Suppose that we are at iteration r. We start with

Hr = {θ∗lc , {G∗l
i , W̃ l(., p̃l; G∗l

i , θ∗lc )}I
i=1}r−1

l=r−N ,

where I is the number of consumers; N is the number of past iterations used for the expected

value function approximation. by discarding its value after the decimal place.

2. For each j = 1, 2, draw Gr
j (population mean of Gij) from the posterior density conditional on

σr−1
Gj

and {Gr−1
ij }I

i=1.

3. For each j = 1, 2, draw σr
Gj

(population variance of Gij) from the posterior density conditional

on Gr
j and {Gr−1

ij }I
i=1.

• Steps 2 and 3 give us µr = (Gr
1, G

r
2, σ

r
G1

, σr
G2

).

4. For each i = 1, ..., I, draw Gr
i from its posterior distribution conditional on (bi, si, pi, µ

r, θr−1
c ),

fi(Gi|bi, si, pi, µ
r, θr−1

c ). Recall that our model specification implies that the “effective” prior on

Gij is N(Gr
j , (σ

r
Gj

)2). Therefore, fi(Gi|bi, si, pi, µ
r, θr−1

c ) ∝ φ(Gi|µr)L̃r
i (bi|si, pi;Gi, θ

r−1
c ), where

φ(Gi|µr) is the normal density. Since there is no easy way to draw from this posterior, we use the

M-H algorithm. We use G∗r
i to denote the candidate value for Gr

i .

(a) Draw G∗r
i from a proposal distribution q(G∗r

i |Gr−1
i , µr).

(b) Compute the pseudo-likelihood for consumer i at G∗r
i , i.e., L̃r

i (bi|si, pi; G∗r
i , θr−1

c ). The

29



pseudo-likelihood is expressed as

L̃r
i (bi|si, pi; G∗r

i , θr−1
c ) =

Ti∏

t=1

2∏

j=0

(
exp(W̃ r

j (sit, pit; G∗r
i , θr−1

c ))
∑2

k=0 exp(W̃ r
k (sit, pit;G∗r

i , θr−1
c ))

)bijt

.

To obtain W̃ r
j , we need Ẽr

p′W(., p′; G∗r
i , θr−1

c ), which is obtained by a weighted average of

past pseudo-Eεmax functions, {W̃ l(., p̃l; G∗l
i , θ∗lc )}r−1

l=r−N , treating Gi as one of the parameters

when computing the weights. In the case of independent kernels, for all s,

Ẽr
p′W(s, p′; G∗r

i , θr−1
c ) =

r−1∑

l=r−N

W̃ l(s, p̃l; G∗l
i , θ∗lc )

Kh(θ∗lc , θr−1
c )Kh(G∗l

i , G∗r
i )∑r−1

k=r−N Kh(θ∗kc , θr−1
c )Kh(G∗k

i , G∗r
i )

.

We repeat the same step to obtain the pseudo-likelihood conditional on (Gr−1
i , θr−1

c ),

L̃r
i (bi|si, pi; Gr−1

i , θr−1
c ). Then, we determine whether or not to accept G∗r

i with the accep-

tance probability, λ:

λ = min

{
φ(G∗r

i |µr)L̃r
i (bi|si, pi; G∗r

i , θr−1
c )q(Gr−1

i |G∗r
i , µr)

φ(Gr−1
i |µr)L̃r

i (bi|si, pi; Gr−1
i , θr−1

c )q(G∗r
i |Gr−1

i , µr)
, 1

}
.

If accept, set Gr
i = G∗r

i ; otherwise, set Gr
i = Gr−1

i .22

(c) Repeat (a) & (b) for all i.

5. Use the M-H algorithm to draw θr
c = (αr

1, α
r
2, γ

r, βr) conditional on Gr
ij .

(a) Draw θ∗rc = (α∗r1 , α∗r2 , γ∗r, β∗r) from a proposal distribution, q(θ∗rc |θr−1
c ).

(b) We then compute the pseudo-likelihood conditional on θ∗rc and {Gr
i }I

i=1, based on the pseudo-

alternative specific value functions. The pseudo-likelihood, L̃r(b|s, p; {Gr
i }I

i=1, θ
∗r
c ), is ex-

pressed as

L̃r(b|s, p; {Gr
i }I

i=1, θ
∗r
c ) =

I∏

i=1

Ti∏

t=1

2∏

j=0

(
exp(W̃ r

j (sit, pit; Gr
i , θ

∗r
c ))

∑2
k=0 exp(W̃ r

k (sit, pit;Gr
i , θ

∗r
c ))

)bijt

.

To obtain W̃ r
j (., .; Gr

i , θ
∗r
c )), we need to calculate Ẽr

p′W(., p′; Gr
i , θ

∗r
c ), which is a weighted

average of the past pseudo-Eεmax functions, {W̃ l(., p̃l; G∗l
i , θ∗lc )}r−1

l=r−N . In computing the

22Note that if q(., .) is symmetric, the expression of the acceptance probability will be simplified to λ =

min

{
π(G∗r

i |µr)L̃r
i (bi|si,pi;G

∗r
i ,θr−1

c )

π(Gr−1
i |µr)L̃r

i (bi|si,pi;G
r−1
i ,θr−1

c )
, 1

}
.

30



weights, we treat Gi as a parameter. In the case of independent kernels, Equation (17)

becomes

Ẽr
p′W(s, p′; Gr

i , θ
∗r
c ) =

r−1∑

l=r−N

W̃ l(s, p̃l; G∗l
i , θ∗lc )

Kh(θ∗lc , θ∗rc )Kh(G∗l
i , Gr

i )∑r−1
k=r−N Kh(θ∗kc , θ∗rc )Kh(G∗k

i , Gr
i )

.

We repeat the same step and obtain the pseudo-likelihood conditional on θr−1
c and {Gr

i }I
i=1,

L̃r(b|s, p; {Gr
i }I

i=1, θ
r−1
c ).

Then, we determine whether or not to accept θ∗r. The acceptance probability, λ, is given by

λ = min

{
π(θ∗rc )L̃r(b|s, p; {Gr

i }I
i=1, θ

∗r
c )q(θr−1

c |θ∗rc )
π(θr−1

c )L̃r(b|s, p; {Gr
i }I

i=1, θ
r−1
c )q(θ∗rc |θr−1

c )
, 1

}

= min

{
L̃r(b|s, p; {Gr

i }I
i=1, θ

∗r
c )q(θr−1

c |θ∗rc )
L̃r(b|s, p; {Gr

i }I
i=1, θ

r−1
c )q(θ∗rc |θr−1

c )
, 1

}
,

where the second equality follows from the flat priors assumption. If accept, set θr
c = θ∗rc ;

otherwise, set θr
c = θr−1

c .

6. Computation of the pseudo-Eεmax function, {W̃r(., p̃r;G∗r
i , θ∗rc )}I

i=1.

(a) Make one draw of prices, p̃r, from the price distribution. Start with consumer i = 1.

(b) Compute the pseudo-expected value function at (G∗r
i , θ∗rc ). For all s,

Ẽr
p′W(s, p′; G∗r

i , θ∗rc ) =
r−1∑

l=r−N

W̃ l(s, p̃l; G∗l
i , θ∗rc )

Kh(θ∗lc , θ∗rc )Kh(G∗l
i , G∗r

i )∑r−1
k=r−N Kh(θ∗kc , θ∗rc )Kh(G∗k

i , G∗r
i )

.23

We should emphasize that there is a subtle difference between this step and step 5(b) above,

which evaluates Ẽr
p′W at Gr

i instead of G∗r
i .

(c) Compute the pseudo-alternative specific value function, W̃ r
j (., p̃r; G∗r

i , θ∗rc ) using Ẽr
p′W ob-

tained from (b)

(d) Then compute the pseudo-Eεmax function:

W̃r(., p̃r; G∗r
i , θ∗rc ) = ln




2∑

j=0

exp(W̃ r
j (., p̃r;G∗r

i , θ∗rc ))


 .

23Note that both the common and individual-specific parts of the weights have already been computed seprately in
steps 4 and 5, and can thus be re-used here.

31



(e) Repeat (b)-(d) for all i.

(f) Update Hr+1.

7. Go to iteration r + 1 (i.e., start Step 1).

Here we make four practical suggestions about how to implement the above procedure. First, in step

5(b), one can re-use the individual pseudo-likelihoods already computed in step 4(b) to form the joint

pseudo-likelihood conditional on θr−1
c and {Gr

i }I
i=1. Second, when implementing step 5, it could be more

efficient to separate the parameters by blocks if the acceptance rate is low. The trade-off is that when

implementing this step by blocks, we also increase the number of expected future value approximation

calculations and likelihood evaluations. Third, the kernel weights based on θc are common across all

consumers in steps 4 and 5, and can therefore be pre-computed prior to these two steps. This can save

some computational time by avoiding double-calculation.

Fourth, the above procedure is much more memory intensive and computationally demanding than

the homogeneous case, because we need to store and compute I ×N instead of N past pseudo-Eεmax

functions. If computer memory is a constraint faced by a researcher, an alternative procedure is to

randomly pick one consumer’s pseudo-Eεmax function to store for each iteration l. When approxi-

mating the expected value function for each consumer, one can then treat all the past pseudo-Eεmax

functions stored as a common pool to form the kernel approximation. In Appendix B, we explain how

to implement this procedure.

Finally, it is worth emphasizing that when estimating a model with unobserved heterogeneity, a key

difference from the homogeneous model is that one needs to draw individual-specific parameters. When

the number of individuals is large, this part of the MCMC algorithm can be slow even for static choice

models (e.g., Rossi et al. 2005). When estimating a DDP model, this part of the MCMC algorithm is

even more computationally intensive than estimating a static choice model, because the expected value

functions need to be computed individual-by-individual. This feature suggests that the IJC method

32



may be particularly useful in estimating models with unobserved heterogeneity. Suppose that we can

save one second by using the IJC method to approximate one expected value function in the inner loop.

If there are 1000 individuals in the sample, we can then approximately save 1000 seconds per MCMC

outer loop iteration. In our Monte Carlo exercises, we will illustrate the potential time savings that

one can achieve by using the IJC method.

4.4 Extension to serially correlated prices

So far we assume prices are distributed i.i.d. over time. It is straightforward to extend the IJC algorithm

to incorporate serially correlated prices. To illustrate how it works, we consider the homogeneous model

here.

Suppose that prices set by the two supermarket chains follow a first-order Markov process: f(p′|p; θp),

where θp is the vector of parameters for the price process. In this setting, the expected value functions

in Equations (15) and (16) are conditional on the current price p, Ep′ [W(., p′; θ)|p]. To handle this

situation, for each iteration r, we make one draw of prices, p̃r = (p̃r
1, p̃

r
2), from an uniform distribution

on [p, p̄]2 where p and p̄ are the lowest and highest observed prices, respectively. Then, we compute and

store the pseudo-Eεmax function at p̃r, W̃r(., p̃r; θ∗r), and also store p̃r. Thus, Hr in step 1 of section

4.3.1 needs to be modified as

Hr = {θ∗l, p̃l, W̃ l(., p̃l; θ∗l)}r−1
l=r−N .

The expected value function given s′, p, and θ∗r is then approximated as follows.

Ẽr
p′ [W(s′, p′; θ∗r)|p] =

r−1∑

l=r−N

W̃ l(s′, p̃l; θ∗l)
Kh(θ∗l, θ∗r)f(p̃l|p; θp)∑r−1

k=r−N Kh(θ∗k, θ∗r)f(p̃k|p; θp)
. (18)

Compared with Equation (17), the main difference is that in Equation (18), the transition density of

prices is also used in creating the weights so as to integrate out future prices.

33



4.5 Choice of kernel’s bandwidth and N

The IJC method relies on classical non-parametric methods to approximate the expected value function.

One practical problem of nonparametric regression analysis is that the data becomes increasingly sparse

as the dimensionality of the explanatory variables increases (note that the number of parameters of the

DDC model in IJC corresponds to the number of explanatory variables in the traditional non-parametric

regression). For instance, ten points that are uniformly distributed in the unit cube are more scattered

than ten points distributed uniformly in the unit interval. Thus the number of observations available

to provide information about the local behavior of a function becomes small with large dimension. The

curse of dimensionality of this non-parametric technique (in terms of number of parameters) could be

something that we need to worry about.24

However, in implementing the IJC algorithm, the nature of this problem is different from the stan-

dard non-parametric estimation. Unlike a standard estimation problem where an econometrician cannot

control the sample size of the data set, we can control the sample size for our nonparametric regressions

by storing/using more past pseudo-Eεmax functions (or pseudo-value functions in the general case)

generated by the algorithm (by increasing N). In practice, it is possible that N may need to increase

with the number of parameters in the model to ensure that the IJC algorithm performs well. As a

result, it would also take more time to compute one iteration if the model becomes more complicated.

The discussion above suggests that the convergence rate is typically inversely related to the number

of dimensions. But the situation that we face here is more subtle for two reasons. First, it is likely that

the convergence rate is model specific, as the shape of the likelihood function is also model specific.

Second, it should also depend on the data sample size. In general, when a model is well-identified and

the data has sufficient variation, the posterior variance of the parameters decreases with the sample

size. This suggests that when the MCMC converges, the simulated parameter values would move within
24This curse of dimensionality problem is different from that of solving for a dynamic programming model, where it

refers to the size of the state space increasing exponentially with the number of state variables and linearly with the
number of values for each state variable.

34



a small neighborhood of the posterior means. This implies that the set of past expected pseudo-Eεmax

functions would be evaluated at parameter vectors that are concentrated in a small neighborhood in

the parameter space. We expect that this should alleviate the curse of dimensionality problem.

It is worth discussing the impact of N on the estimation results. If we increase N , more older past

pseudo-Eεmax functions will be used in the approximation. This may result in slow improvements in

the approximation, and may slow down the MCMC convergence rate. If we decrease N , more recent

and accurate pseudo-Eεmax functions will be used in the approximation. However, by decreasing N ,

the variance of the pseudo-expected value functions may increase. This may result in a higher standard

deviation of the posterior distribution for some parameters. One way of mitigating this trade-off is to

set a small N at the beginning of the IJC algorithm and let N increase during the MCMC iterations. In

this way, we can achieve a faster convergence and more stable posterior distributions at the same time.

Another way to address this issue is to weigh the past N expected pseudo-Eεmax functions differently

so that the more recent expected pseudo-Eεmax functions receive higher weights (because they should

be more accurate approximations).

An obvious question that would likely come to researchers’ mind is: How do we choose N and

h (i.e., the bandwidth for the kernel)? We believe that any suggested guidelines should ensure that

the pseudo-Eεmax function gives us a good approximation for the true Eεmax function. We suggest

that researchers check the distance between the pseudo-Eεmax function and the exact Eεmax function

during the estimation, and adjust N and h within the iterative process. For instance, researchers can

store a large set of past pseudo-Eεmax functions (i.e., large N), and use the most recent N ′ < N of

them to do the approximation. This has the advantage that researchers can immediately increase N ′

if they discover that the approximation is not good enough. Researchers can start the algorithm with

a small N ′ (say N ′ = 100), and an arbitrary bandwidth (say 0.01). For every, say 1,000 iterations,

they can compute the means of the MCMC draws, ¯̃
θ, and solve for the exact Eεmax function at ¯̃

θ

35



numerically. Then they can compare the distance between the pseudo-Eεmax function and the exact

Eεmax function at ¯̃
θ. If the distance is larger than what the researcher would accept, N ′ should be

increased. Researchers can then use this new larger set of past pseudo-Eεmax functions to compute

summary statistics and apply a standard optimal bandwidth formula, e.g., Silverman’s rule of thumb

(Silverman 1986, p.48), to set h. Of course, the cost of storing a large number of past pseudo-Eεmax

function is that it requires more memory. But thanks to the advance of computational power, the cost

of memory is decreasing rapidly over time these days. Hence, we expect that memory would become less

of a constraint in the near future. This suggestion would require us to solve for the DDP model exactly

once every 1,000 iterations. For complicated DDP models with random coefficients, this could still be

computationally costly. But even in this case, one could simply compare the pseudo-Eεmax function

and the exact Eεmax function at a small number of simulated heterogeneous parameter vectors, say

5. This would be equivalent to solving 5 homogeneous DDP models numerically and should be feasible

even for complicated DDP models.

5 Estimation results

To illustrate the performance of the IJC algorithm and investigate some of its properties, we conduct two

sets of Monte Carlo experiments. For each experiment, the simulated sample size is 1,000 consumers and

100 periods. We use the Gaussian kernel to weigh the past pseudo-Eεmax functions when approximating

the expected value functions. The total number of MCMC iterations is 10,000, and we report the

posterior distributions of parameters based on the 5,001-10,000 iterations. For all experiments, the

following parameters are fixed and not estimated: S̄1 = 2, S̄2 = 4, p̄ = 1.0, and σp = 0.3. In the first

set of experiments, we check whether IJC is able to recover the true parameter values of the model

presented here.

36



5.1 Ability of recovering true parameter values

We first estimate a version of the model without unobserved heterogeneity. When simulating the data,

we set σG1 = σG2 = α1 = α2 = 0.0, G1 = 1.0, G2 = 5.0, γ = −1.0, and β = 0.6 or 0.8. Our goal

is to estimate α1, α2, G1, G2, γ, and β, treating other parameters as known. To ensure that β < 1

during the estimation, we transform it as β = 1
1+exp(φ) and estimate φ instead. For all parameters, we

use the flat prior (i.e., π(θ) = 1, ∀θ). In addition, we use a normal random-walk proposal distribution

(i.e., θ∗r ∼ N(θr−1, σ2)). This implies that the acceptance probability stated in step 3 of section 4.3.1

becomes min
{

L̃r(b|s,p;θ∗r)

L̃r(b|s,p;θr−1)
, 1

}
because the proposal distribution is symmetric. Table 3 summarizes

the estimation results, and Figure 4 plots the MCMC draws of parameters for the case of β = 0.8.

The posterior means and standard deviations show that the IJC algorithm is able to recover the true

parameter values well. Moreover, it appears that the MCMC draws converge after 2,000 iterations.

Now we estimate a version of the model with unobserved heterogeneity. For simplicity, we only allow

for consumer heterogeneity in G2 (i.e., we fix σG1 = 0). The data is simulated based on the following

parameter values: α1 = α2 = 0.0, G1 = 1.0, G2 = 5.0, σG1 = 0.0, σG2 = 1.0, γ = −1.0, and β = 0.6

or 0.8. As before, we transform β by the logit formula, i.e., β = 1
1+exp(φ) . Our goal is to estimate

α1, α2, G1, G2, σG2 , γ, and β, treating other parameters as known. For α1, α2, G1, γ, and φ, we use

flat prior. For G2, we use a diffuse normal prior (i.e., setting the standard deviation of the prior to

∞). For σG2 , we use a diffuse inverted gamma prior, IG(ν0, s0) (i.e., setting s0 = 1, ν0 → 1). In step

4(b) of section 4.3.2, we use N(Gr
j , (σ

r
Gj

)2) as the proposal distribution for generating G∗r
ij . Given this

proposal distribution, the probability of accepting G∗r
ij becomes λ = min

{
L̃r

i (bi|si,pi;G
∗r
i ,θr−1

c )

L̃r
i (bi|si,pi;G

r−1
i ,θr−1

c )
, 1

}
. In

each iteration, we also implement the procedure in Appendix B by randomly selecting one consumer’s

pseudo-Eεmax function to compute and store, and use a common pool of past pseudo-Eεmax functions

to approximate the expected value functions for all consumers. Table 4 shows the estimation results,

and Figure 5 plots the simulated draws of parameters for β = 0.8. Again, the IJC algorithm is able to

37



recover the true parameter values well. The MCMC draws appear to converge after 2,000 iterations for

most of the parameters except G1, which takes about 3,000 iterations to achieve convergence.

Finally, note that when β = 0.98, the true parameter values are recovered less precisely, in particular,

for αj and Gj . This is due to an identification problem (Ching et al. 2012): When β is very close to 1,

changing Gj would simply shift the choice probabilities almost equally across s, similar to changing αj .

5.2 Potential reduction in computation time

In the second set of experiments, we compare the computational time between the IJC and conventional

Bayesian approaches. To learn more about the potential gain of IJC in terms of computational time, we

compute the time per iteration and compare the IJC algorithm with the full-solution based Bayesian

MCMC algorithm for both homogeneous model and heterogeneous model. In the full-solution based

Bayesian algorithm, we set M = 100 for {p̃m}M
m=1, that is, we use 100 simulated draws of prices to

integrate out future prices. For each model, we study three cases: β = 0.6, 0.8 and 0.98. Table 5

summarizes the average computation time per iteration (in seconds). The estimation is done with a C

program compiled by the gcc compiler, and run in a linux workstation with Intel Core 2 Duo E4400

2GHz processor (single-thread).

In the homogeneous model, the computation for the full-solution based Bayesian is faster for β = 0.6

and 0.8. This is because: (i) when β is small, solving the exact expected value function is not that costly

compared with computing the weighted average of 1,000 past pseudo-Eεmax functions; (ii) full-solution

based Bayesian approach does not need to compute the pseudo-likelihood conditional on previously

accepted parameter vector (step 3 in the homogeneous case, and step 4(b) in the heterogeneous case).25

However, when β = 0.98, the IJC algorithm is 40% faster than the full-solution algorithm. This is

because in the full-solution based Bayesian algorithm, the number of iterations required for convergence

in a contraction mapping increases with β (i.e., the modulus), and hence the computation time of the
25In this exercise, we computed the pseudo-likelihood conditional on previously accepted parameter vector every time

a candidate parameter vector was rejected.

38



inner loop will generally increase with β. However, the computation time of the inner loop will not be

influenced by the value of β in the IJC algorithm.

In the heterogeneous model, we can see the advantage of the IJC algorithm much more clearly.

When β = 0.6, the IJC algorithm is 50% faster than the full-solution based Bayesian algorithm; when

β = 0.8, it is about 200% faster; when β = 0.98, it is about 3,000% faster. In particular, it is clear that

average computational time per iteration basically remains unchanged in the IJC algorithm. For the

full solution based method, the computational time per iteration increases exponentially in β because,

roughly speaking, we need to solve for the DDP model for each individual. If there are 1,000 individuals,

the computational time is approximately equal to the time to solve the expected value function once

multiplied by one thousand. For the heterogeneous model, with β = 0.98, it would take about 70 days

(' 613×10, 000 seconds) to run the full-solution based Bayesian MCMC algorithm for 10,000 iterations.

Using the IJC algorithm, it would take less than 2.5 days (' 18.4 × 10, 000 seconds) to obtain 10,000

iterations.

6 Comparison with other approximation approaches

In this section, we will compare the IJC algorithm with two other estimation approaches by Keane and

Wolpin (1994) and Ackerberg (2009), which also rely on approximating the likelihood.

6.1 Keane and Wolpin (1994)

So far we have focused on estimating infinite horizon stationary DDP models. The estimation issues

for finite horizon non-stationary DDP models are slightly different.26 When solving a finite horizon

non-stationary DDP model, the common approach is to use backward induction and start solving

the model from the terminal period, T . Unlike the infinite horizon DDP models, which relies on the

successive approximation algorithm to obtain the value function, the computational burden of solving
26Examples of finite horizon non-stationary dynamic programming models include Ching (2010), Diermeier et al. (2005),

Keane and Wolpin (1997), Yang and Ching (2010). It is typical to use this approach when modeling agents’ decisions
during their life-cycles.

39



finite horizon DDP models does not depend on the discount factor, β. Instead, it solely depends on

the size of the state space. As shown above, the IJC algorithm can be viewed as an extension of the

successive approximation algorithm. Therefore, it may first seem that the IJC algorithm would not be

suitable for estimating a finite horizon DDP model. However, Ishihara (2011) points out that when

some of the state variables are continuous, it is still possible to extend the IJC algorithm to reduce the

computational burden of estimating such a model.

Another method to reduce the computational burden for this type of model is by Keane and Wolpin

(1994). Their method is more general in the sense that it applies even though all the state variables are

discrete. Moreover, it is designed to handle problems with large state spaces. In their approach, the

expected value functions are evaluated at a subset of state points and some methods of interpolation

are used to evaluate the expected value functions at other values of the state space. Keane and Wolpin

(1994) provide Monte Carlo evidence that suggests their approximation would converge to the true

solution as the subset of the state points that are chosen increases. This method has proven to be very

effective in reducing the computational time for finite horizon DDP models with a large state space

(e.g., Erdem and Keane 1996; Keane and Wolpin 1997; Ackerberg 2003; Crawford and Shum 2005).

One fruitful area for future research is to combine this interpolation approach with the IJC algorithm.

This could address the memory constraint limitation for the IJC algorithm.

6.2 Ackerberg (2009)

Recently, Ackerberg (2009) proposed an alternative estimation approach that makes use of importance

sampling and change of variables techniques. To use this approach, one would simulate a set of pa-

rameter vectors, {θ̃m}M
m=1, solve the model and obtain the sub-likelihood at each θ̃m upfront. The

likelihood is a weighted average of these sub-likelihoods, where the weights are partly determined by

the importance sampling density chosen. When searching over the parameter space to maximize the

likelihood, one only needs to change the weights associated with each sub-likelihood, and does not have

40



to solve the model at different simulated parameter vectors again in each outer loop iteration. As a

result, Ackerberg’s approach also has the potential to significantly reduce the computational burden

of estimating DDP models. This method has been applied to several DDP problems, e.g., Hartmann

(2006), Pantano (2008).

Ackerberg’s approach is more general than IJC in the sense that it can be applied to a larger class of

DDP models, including finite horizon non-stationary DDP models with discrete state space. However,

often times, to apply his method, one needs to allow all parameters of the model to have continuous

random effects, and this could lead to identification problems for some of the parameters. Moreover, a

poor choice of importance sampling density function could lead to very large simulation errors in this

approach. Ackerberg (2009) discusses some practical ways to address this issue.

It should also be noted that the IJC method can be used in both Bayesian and classical estimation,

while Ackerberg’s method is less suitable for the Bayesian approach. This is because in the Bayesian

approach, one does not have to marginalize the unobserved heterogeneity. Rather, it is more straight-

forward to treat the random coefficient as a set of individual-specific parameters in the Hierarchical

Bayes approach. For models with complicated likelihoods (i.e., with multiple modes), the MCMC based

IJC approach might lead to more stable estimation results because, in practice, simulating draws from

posterior distributions using MCMC appears to be easier than searching for the global maximum in

such situations.

7 Conclusion

In this paper, we discuss how to implement the IJC method using a dynamic store choice model. For

illustration purpose, the specification of the model is relatively simple. We believe that this new method

is quite promising in estimating DDP models. Osborne (2011) has successfully applied this method to

estimate a much more detailed consumer learning model. Roos et al. (2011) have applied it estimate

a hyper-media search model. The IJC method allows them to incorporate more general unobserved

41



consumer heterogeneity than the previous literature, and draw inference on the relative importance

of switching costs, consumer learning and consumer heterogeneity in explaining customers’ persistent

purchase behavior observed in micro panel data. Ching et al. (2009) have also successfully estimated

a learning and forgetting model where consumers are forward-looking.

It should also be noted that there are many kernels that one could use in forming a non-parametric

approximation for the expected value functions. IJC discuss their method in terms of the Gaussian

kernel. Norets (2009) extends IJC’s method by using the nearest neighbor kernel instead of Gaussian

kernel, and allowing the error terms to be serially correlated. At this point, the relative performances

of different kernels in this setting are still largely unknown. It is possible that for models with certain

features, the Gaussian kernel performs better than other kernels in approximating the pseudo-Eεmax

function, while other kernels may outperform the Gaussian kernel for models with other features. More

research is needed to document the pros and cons of different kernels, and provide guidance in the

choice of kernel when implementing the IJC method.

The IJC approach is most useful when applying to stationary DDP models. In principle, the IJC

method should also be applicable to any structural models which can be solved using contraction

mapping arguments. For instance, Berry et al. (1995) propose to use the method of successive approx-

imation to back out the unobserved product characteristics in their nested fixed point GMM approach

when estimating static demand models using product level data; in some game-theoretic models (e.g.,

bargaining models) which have a unique equilibrium, the method of successive approximation is also a

common way to numerically solve for the equilibrium. The IJC method can be potentially applicable

in these situations as well.

Bayesian inference has allowed researchers and practitioners to develop more realistic static choice

models in the last two decades. It is our hope that the new method presented here and its extensions

would allow us to take another step to develop more realistic DDP models in the near future.

42



References

Ackerberg, Daniel A. 2003. Advertising, Learning, and Consumer Choice in Experience Good Markets:

An Empirical Examination. International Economic Review 44(3) 1007–1040.

Ackerberg, Daniel A. 2009. A New Use of Importance Sampling to Reduce Computational Burden in

Simulation Estimation. Quantitative Marketing and Economics 7(4) 343–376.

Aguirregabiria, Victor, Pedro Mira. 2002. Swapping the Nested Fixed Point Algorithm: A Class of

Estimators for Discrete Markov Decision Models. Econometrica 70(4) 1519–1543.

Albert, James H., Siddhartha Chib. 1993. Bayesian Analysis of Binary and Polychotomous Response

Data. Journal of the American Statistical Association 88 669–679.

Allenby, Greg M. 1994. An Introduction to Hierarchical Bayesian Modeling. Tutorial Notes, Advanced

Research Techniques Forum, American Marketing Association.

Allenby, Greg M., Peter J. Lenk. 1994. Modeling Household Purchase Behavior with Logistic Normal

Regression. Journal of the American Statistical Association 89 1218–1231.

Allenby, Greg M., Peter E. Rossi. 2006. Hierarchical Bayes Models: A Practitioner’s Guide. R. Grover,

M. Vriens, eds., The Handbook of Marketing Research. Sage Publications.

Berry, Steven T., James Levinshohn, Ariel Pakes. 1995. Automobile Prices in Market Equilibrium.

Econometrica 63(4) 841–890.

Brown, Meta, Christopher J. Flinn. 2011. Family Law Effects on Divorce, Fertility and Child Invest-

ment. Working paper, Department of Economics, New York University.

Černý, V. 1985. Thermodynamical Approach to the Travelling Salesman Problem: An Efficient Simu-

lation Algorithm. Journal of Optimization Theory and Applications 45(1) 41–51.

43



Ching, Andrew T. 2010. A Dynamic Oligopoly Structural Model for the Prescription Drug Market

After Patent Expiration. International Economic Review 51(4) 1175–1207.

Ching, Andrew T., Susumu Imai, Masakazu Ishihara, Neelam Jain. 2009. A Dynamic Model of Con-

sumer Learning and Forgetting. Work-in-progress, Rotman School of Management, University of

Toronto.

Ching, Andrew T., Susumu Imai, Masakazu Ishihara, Neelam Jain. 2012. Identification of Dynamic

Models of Rewards Program. Working paper, Rotman School of Management, University of Toronto.

Crawford, Gregory S., Matthew Shum. 2005. Uncertainty and Learning in Pharmaceutical Demand.

Econometrica 73(4) 1137–1174.

Diermeier, Daniel, Michael P. Keane, Antonio M. Merlo. 2005. A Political Economy Model of Congres-

sional Careers. American Economic Review 95 347–373.

Erdem, Tülin, Susumu Imai, Michael P. Keane. 2003. Brand and Quality Choice Dynamics under Price

Uncertainty. Quantitative Marketing and Economics 1(1) 5–64.

Erdem, Tülin, Michael P. Keane. 1996. Decision Making under Uncertainty: Capturing Dynamic Brand

Choice Processes in Turbulent Consumer Goods Markets. Marketing Science 15(1) 1–20.

Geweke, John, Daniel Houser, Michael P. Keane. 2001. Simulation Based Inference for Dynamic Multi-

nomial Choice Models. B.H. Baltagi, ed., A Companion to Theoretical Econometrics. Blackwell,

London, 466–493.

Geweke, John F., Michael P. Keane. 2000. Bayesian Inference for Dynamic Discrete Choice Models

Without the Need for Dynamic Programming. Mariano, Schuermann, Weeks, eds., Simulation Based

Inference and Econometrics: Methods and Applications. Cambridge University Press, Cambridge,

UK.

44



Gönül, Füsun, Kannan Srinivasan. 1996. Estimating the Impact of Consumer Expectations of Coupons

on Purchase Behavior: A Dynamic Structural Model. Marketing Science 15(3) 262–279.

Hartmann, Wesley R. 2006. Intertemporal Effects of Consumption and their implications for Demand

Elasticity Estimates. Quantitative Marketing and Economics 4(4) 325–349.

Hendel, Igal, Aviv Nevo. 2006. Measuring the Implications of Sales and Consumer Inventory Behavior.

Econometrica 74(6) 1637–1673.

Hitsch, Günter. 2006. An Empirical Model of Optimal Dynamic Product Launch and Exit Under

Demand Uncertainty. Marketing Science 25(1) 25–50.

Hotz, Joseph V., Robert Miller. 1993. Conditional Choice Probabilities and the Estimation of Dynamic

Models. Review of Economic Studies 60(3) 497–529.

Imai, Susumu, Neelam Jain, Andrew Ching. 2009a. Bayesian Estimation of Dynamic Discrete Choice

Models. Econometrica 77(6) 1865–1899.

Imai, Susumu, Neelam Jain, Andrew Ching. 2009b. Supplement to ‘Bayesian Estima-

tion of Dynamic Discrete Choice Models’. Econometrica Supplementary Material, 77,

http://www.econometricsociety.org/ecta/Supmat/5658 proofs.pdf.

Imai, Susumu, Kala Krishna. 2004. Employment, Deterrence and Crime in a Dynamic Model. Inter-

national Economic Review 45(3) 845–872.

Ishihara, Masakazu. 2011. Dynamic Demand for New and Used Durable Goods without Physical

Depreciation. Ph.D. dissertation, Rotman School of Management, University of Toronto.

Keane, Michael P., Kenneth I. Wolpin. 1994. The Solution and Estimation of Discrete Choice Dynamic

Programming Models by Simulation and Interpolation: Monte Carlo Evidence. Review of Economics

and Statistics 76(4) 648–672.

45



Keane, Michael P., Kenneth I. Wolpin. 1997. The Career Decisions of Young Men. Journal of Political

Economy 105 473–521.

Kirkpatrick, S., C.D. Gelatt, M.P. Vecchi. 1983. Optimization by Simulated Annealing. Science 220

671–680.

Lancaster, Tony. 1997. Exact Structural Inference in Optimal Job Search Models. Journal of Business

and Economic Statistics 15(2) 165–179.

McCulloch, Robert, Peter E. Rossi. 1994. An Exact Likelihood Analysis of the Multinomial Probit

Model. Journal of Econometrics 64 207–240.

Norets, Andriy. 2009. Inference in Dynamic Discrete Choice Models with Serially Correlated Unobserved

State Variables. Econometrica 77(5) 1665–1682.

Norets, Andriy. 2010. Continuity and Differentiability of Expected Value Functions in Dynamic Discrete

Choice Models. Quantitative Economics 1(2) 305–322.

Osborne, Matthew. 2011. Consumer Learning, Switching Costs, and Heterogeneity: A Structural

Examination. Quantitative Marketing and Economics 9(1) 25–70.

Pantano, Juan. 2008. Essays in Applied Microeconomics. Ph.D. dissertation, UCLA.

Roos, Jason M.T., Carl F. Mela, Ron Shachar. 2011. Hyper-Media Search and Consumption. Working

paper, Fuqua School of Business, Duke University.

Rossi, Peter E., Greg M. Allenby. 1999. Marketing Models of Consumer Heterogeneity. Journal of

Econometrics 89 57–78.

Rossi, Peter E., Greg M. Allenby, Robert McCulloch. 2005. Bayesian Statistics and Marketing. John

Wiley and Sons Ltd, Chichester, UK.

46



Rossi, Peter E., Robert McCulloch, Greg M. Allenby. 1996. The Value of Purchase History Data in

Target Marketing. Marketing Science 15 321–340.

Rust, John. 1987. Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher.

Econometrica 55(5) 999–1033.

Rust, John. 1988. Maximum Likelihood Estimation of Discrete Control Processes. SIAM Journal on

Control and Optimization 26(5) 1006–1024.

Rust, John. 1997. Using Randomization to Break the Curse of Dimensionality. Econometrica 65(3)

487–516.

Santos, Manuel S., John Rust. 2004. Convergence Properties of Policy Iteration. SIAM Journal on

Control and Optimization 42(6) 2094–2115.

Silverman, Bernard W. 1986. Density Estimation for Statistics and Data Analysis. Chapman and Hall,

London, UK.

Song, Inseong, Pradeep K. Chintagunta. 2003. A Micromodel of New Product Adoption with Heteroge-

neous and Forward Looking Consumers: Application to the Digital Camera Category. Quantitative

Marketing and Economics 1(4) 371–407.

Sun, Baohong. 2005. Promotion Effect on Endogenous Consumption. Marketing Science 24(3) 430–443.

Train, Kenneth E. 2003. Discrete Choice Methods with Simulation. Cambridge University Press,

Cambridge, UK. Available at http://elsa.berkeley.edu/books/choice2.html.

Walsh, Bruce. 2004. Markov Chain Monte Carlo and Gibbs Sampling. Lecture Notes for EEB 581,

University of Arizona. http://nitro.biosci.arizona.edu/courses/EEB581-2004/handouts/Gibbs.pdf.

Yang, Botao, Andrew Ching. 2010. Dynamics of Consumer Adoption of Financial Innovation: The Case

47



of ATM Cards. Working paper, Rotman School of Management, University of Toronto. Available at

SSRN: http://ssrn.com/abstract=1434722.

48



Table 1: List of notations for homogeneous model in Section 4.3.1

Notation Description

θ∗r Candidate parameter vector in iteration r

θr Accepted parameter vector in iteration r

p̃r =(p̃r
1, p̃

r
2); a draw of price vector in iteration r such that p̃r

j ∼ N(p̄, σ2
p)

W̃ r
j (s, p̃r; θ∗r) Pseudo-alternative specific value function for alternative j in iteration r

conditional on (s, p̃r; θ∗r)

W̃r(s, p̃r; θ∗r) =Eε maxj{W̃ r
j (s, p̃r; θ∗r) + εij}; pseudo-Eεmax function in iteration r

conditional on (s, p̃r; θ∗r)

Hr ={θ∗l, W̃ l(., p̃l; θ∗l)}r−1
l=r−N ; set of past pseudo-Eεmax functions used for

approximating the expected value functions in iteration r

Ẽr
p′W(s, p′; θ∗r) =

∑r−1
l=r−N W̃ l(s, p̃l; θ∗l) Kh(θ∗l,θ∗r)∑r−1

k=r−N Kh(θ∗k,θ∗r)
; pseudo-expected value function

in iteration r conditional on (s; θ∗r)

b ={bijt ∀i, j, t}; a vector of observed buying decisions

L̃r(b|s, p; θ∗r) Pseudo-likelihood conditional on Hr, (s, p), and θ∗r

49



Table 2: List of notations for heterogeneous model in Section 4.3.2

Notation Description

Gr
j Draw of Gj (population mean) in iteration r

σr
Gj

Draw of σGj (population standard deviation) in iteration r

G∗r
i = (G∗r

i1 , G∗r
i2 ); Candidate parameter value specific to consumer i in iteration r

Gr
i = (Gr

i1, G
r
i2); Accepted parameter value specific to consumer i in iteration r

θ∗rc Candidate parameter vector common across consumers in iteration r

θr
c Accepted parameter vector common across consumers in iteration r

p̃r =(p̃r
1, p̃

r
2); a draw of price vector in iteration r such that p̃r

j ∼ N(p̄, σ2
p)

W̃ r
j (s, p̃r; G∗r

i , θ∗rc ) Consumer i’s pseudo-alternative specific value function for alternative j

in iteration r conditional on (s, p̃r;G∗r
i , θ∗rc )

W̃r(s, p̃r;G∗r
i , θ∗rc ) =Eε maxj{W̃ r

j (s, p̃r; G∗r
i , θ∗rc ) + εij}; consumer i’s pseudo-Eεmax function

in iteration r conditional on (s, p̃r;G∗r
i , θ∗rc )

Hr ={θ∗lc , {G∗r
i , W̃ l(., p̃l; G∗r

i , θ∗lc )}I
i=1}r−1

l=r−N ; set of past pseudo-Eεmax

functions used for approximating the expected future value functions in iteration r

Ẽr
p′W(s, p′; G∗r

i , θ∗rc ) =
∑r−1

l=r−N W̃ l(s, p̃l;G∗r
i , θ∗lc ) Kh(θ∗l

c ,θ∗r
c )Kh(G∗l

i ,G∗r
i )∑r−1

k=r−N Kh(θ∗k
c ,θ∗r

c )Kh(G∗k
i ,G∗r

i )
; pseudo-expected

value function for consumer i in iteration r conditional on (s;G∗r
i , θ∗rc )

bi ={bijt ∀j, t}; a vector of observed buying decisions for consumer i

L̃r
i (bi|si, pi;G∗r

i , θ∗rc ) Pseudo-likelihood for consumer i conditional on Hr, (si, pi), and (G∗r
i , θ∗rc )

b ={bijt ∀i, j, t}; a vector of observed buying decisions

L̃r(b|s, p; {G∗r
i }I

i=1, θ
∗r
c ) Joint pseudo-likelihood conditional on Hr, (s, p), and ({G∗r

i }I
i=1, θ

∗r
c )

50



Table 3: Estimation Results: Homogeneous Model

parameter TRUE mean sd mean sd

α1 (intercept for store 1) 0.0 -0.001 0.019 -0.030 0.022

α2 (intercept for store 2) 0.0 -0.002 0.019 -0.018 0.028

G1 (reward for store 1) 1.0 0.998 0.017 1.052 0.021

G2 (reward for store 2) 5.0 5.032 0.048 5.088 0.085�
 (price coefficient) -1.0 -0.999 0.016 -0.996 0.019

β (discount factor) 0.6/0.8 0.601 0.008 0.800 0.010

β = 0.6 β = 0.8

Notes
Sample size: 1,000 consumers for 100 periods.
Fixed parameters: S̄1 = 2, S̄2 = 4, p̄ = 1.0, σp = 0.3, σGj

= 0 for j = 1, 2.
Tuning parameters: N = 1, 000 (number of past pseudo-Eεmax functions used for expected value function
approximations), h = 0.01 (bandwidth).

Table 4: Estimation Results: Heterogeneous Model

parameter TRUE mean sd mean sd

α1 (intercept for store 1) 0.0 -0.005 0.019 -0.022 0.022

α2 (intercept for store 2) 0.0 0.010 0.021 0.005 0.037

G1 (reward for store 1) 1.0 1.017 0.017 1.010 0.019

G2 (reward for store 2) 5.0 5.066 0.065 4.945 0.130

σG2 (sd of G2) 1.0 1.034 0.046 1.029 0.040�
 (price coefficient) -1.0 -1.004 0.016 -0.985 0.019

β (discount factor) 0.6/0.8 0.595 0.005 0.798 0.006

β = 0.6 β = 0.8

Notes
Sample size: 1,000 consumers for 100 periods.
Fixed parameters: S̄1 = 2, S̄2 = 4, p̄ = 1.0, σp = 0.3, σG1 = 0.
Tuning parameters: N = 1, 000 (number of past pseudo-Eεmax functions used for expected value function
approximations), h = 0.01 (bandwidth).

51



Table 5: Computation Time Per MCMC Iteration (in seconds)

algorithm β = 0.6 β = 0.8 β = 0.98 β = 0.6 β = 0.8 β = 0.98

Full solution based Bayesian 0.782 0.807 1.410 31.526 65.380 613.26

IJC with N=1000 1.071 1.049 1.006 19.300 19.599 18.387

Homogeneous 

Model

Heterogeneous 

Model

Notes
Sample size: 1,000 consumers for 100 periods.
Number of state points: 8 (S̄1 = 2, S̄2 = 4).
Parameters:

• Homogeneous model:(α1, α2, G1, G2, γ, β). We drew each parameter separately using the Metropolis-
Hastings within Gibbs.

• Heterogeneous model: (α1, α2, G1, G2, σG2 , γ, β). We drew each parameter except for G2 and σG2 sepa-
rately using the Metropolis-Hastings within Gibbs.

52



Figure 1: Flowchart for the conventional Bayesian approach (homogeneous model)

�
�

�
�Start

?

Read data
�
��

�
��

?
Read starting

parameter value,

θ0 = (α0
1, α

0
2, G

0
1, G

0
2, γ

0, β0)
�
�
�
��

�
�
�
��

?
Computation of the

value functions at θ0

Set Ēp′W
0(., p′; θ0) = 0 & l = 0

?

Start with Ēp′W
l(., p′; θ0)

Apply the Bellman operator

to get Ēp′W
l+1(., p′; θ0)

?

�������

HHHHHHH

�������

HHHHHHH

|ĒW l+1 − ĒW l| < ν?
No

Yes

�l = l + 1

-

?
Compute L(b|s, p; θ0)

based on Ēp′W(., p′; θ0)

?

Start MCMC Iterations
Set r = 1

?
Draw a candidate parameter vector,
θ∗r = (α∗r1 , α∗r2 , G∗r1 , G∗r2 , γ∗r, β∗r)

-
Computation of the

value functions at θ∗r

Set Ēp′W
0(., p′; θ∗r) = 0 & l = 0

?

Start with Ēp′W
l(., p′; θ∗r)

Apply the Bellman operator

to get Ēp′W
l+1(., p′; θ∗r)

?

�������

HHHHHHH

�������

HHHHHHH

|ĒW l+1 − ĒW l| < ν?
No

Yes

- l = l + 1

Inner
loop

�

?
Compute L(b|s, p; θ∗r)

based on Ēp′W(., p′; θ∗r)

?
Use L(b|s, p; θ∗r)

& L(b|s, p; θr−1)
to compute the acceptance

probability, λ

?

�������

HHHHHHH

�������

HHHHHHH

Draw u ∼ U [0, 1] u ≥ λ

u < λ

?

θr = θr−1

�

?

θr = θ∗r

?

��������

HHHHHHHH

��������

HHHHHHHH

r <Total no. of
MCMC iterations?

Yes

No

�r = r + 1
Outer
loop

-

?�
�

�
�End

53



Figure 2: Flowchart for the IJC algorithm (homogeneous model)

�
�

�
�Start

?

Read data
�
��

�
��

?
Read starting

parameter value,

θ0 = (α0

1
, α0

2
, G0

1
, G0

2
, γ0, β0)

�
�
�
��

�
�
�
��

?

Set Ẽ0

p′W(., p′; θ0) = 0

and compute L̃0(b|s, p; θ0)

?

Start MCMC Iterations
Set r = 1

?
Draw a candidate parameter vector,
θ∗r = (α∗r

1
, α∗r

2
, G∗r

1
, G∗r

2
, γ∗r, β∗r)

?
Compute

Ẽr
p′W(., p′; θ∗r) & Ẽr

p′W(., p′; θr−1)

using the weighted averages of

{W̃ l(., p̃l; θ∗l)}r−1l=r−N

Inner
loop

-

?
Compute L̃r(b|s, p; θ∗r)

& L̃r(b|s, p; θr−1)
based on

Ẽr
p′W(., p′; θ∗r) & Ẽr

p′W(., p′; θr−1),

respectively

-

Use L̃r(b|s, p; θ∗r)

& L̃r(b|s, p; θr−1)
to compute the acceptance

probability, λ

?

��������

HHHHHHHH

��������

HHHHHHHH

Draw u ∼ U [0, 1] u ≥ λ

u < λ

?

θr = θr−1

�

?

θr = θ∗r

?
Make a draw of p̃r

Compute and store

W̃r(., p̃r; θ∗r)

?

��������

HHHHHHHH

��������

HHHHHHHH

r <Total no. of
MCMC iterations?

Yes

No

�r = r + 1
Outer
loop

-

?�
�

�
�End

54



Figure 3: Flowchart for the IJC algorithm (heterogeneous model)

�
�

�
�Start

?
Read data

�
��

�
��

?
Read starting parameter value,

µ0 = (G0

1
, G0

2
, σ0

G1
, σ0

G2
)

& θ0c = (α0

1
, α0

2
, γ0, β0)

�
�
�
�
�

�
�
�
�
�

?
Draw G0

ij ∼ N(G0

j , (σ
0

Gj
)2) ∀i, j

�
��

�
��

?
Set Ẽ0

p′W(., p′;G0

i , θ
0
c ) = 0 ∀i

and compute L̃0

i (bi|si, pi;G
0

i , θ
0
c ) ∀i

?
Start MCMC Iterations

Set r = 1

?
Draw Gr

j ∀j given σr−1
Gj

and {Gr−1
ij }Ii=1

?
Draw σr

Gj
∀j given Gr

j and {Gr−1
ij }Ii=1

?
Draw of Gr

i (consumer-specific parameter)
Set i = 1

?
Draw a candidate parameter vector, G∗ri

?
Compute Ẽr

p′W(., p′;G∗ri , θr−1c )

& Ẽr
p′W(., p′;Gr−1

i , θr−1c )

using the weighted averages of

{W̃ l(., p̃l;G∗li , θ
∗l
c )}

r−1
l=r−N

Inner
loop

�

?
Compute L̃r

i (bi|si, pi;G
∗r
i , θr−1c )

& L̃r
i (bi|si, pi;G

r−1
i , θr−1c )

based on Ẽr
p′W(., p′;G∗ri , θr−1c ) &

Ẽr
p′W(., p′;Gr−1

i , θr−1c ), respectively

?
Use L̃r

i (bi|si, pi;G
∗r
i , θr−1c )

& L̃r
i (bi|si, pi;G

r−1
i , θr−1c )

to compute the acceptance probability, λ

-�������

PPPPPPP

�������

PPPPPPP

Draw u ∼ U [0, 1] u ≥ λ

u < λ

?
Gr

i = Gr−1
i

�

?
Gr

i = G∗ri

?
�����

PPPPP
�����

PPPPP

i < I? Yes
No

Consumer
loopi = i+ 1

�

?
Draw of θrc (common parameter)

Draw a candidate parameter vector,
θ∗rc = (α∗r

1
, α∗r

2
, γ∗r, β∗r)

?
Compute Ẽr

p′W(., p′;Gr
i , θ

∗r
c )

& Ẽr
p′W(., p′;Gr

i , θ
r−1
c ) ∀i

using the weighted averages of

{W̃ l(s, p̃l;G∗li , θ
∗l
c )}

r−1
l=r−N

Inner
loop

�

?
Compute L̃r(b|s, p; {Gr

i }
I
i=1

, θ∗rc )

& L̃r(b|s, p; {Gr
i }

I
i=1

, θr−1c )

based on Ẽr
p′W(., p′;Gr

i , θ
∗r
c )

& Ẽr
p′W(., p′;Gr

i , θ
r−1
c ), respectively

?
Use L̃r(b|s, p; {Gr

i }
I
i=1

, θ∗rc )

& L̃r(b|s, p; {Gr
i }

I
i=1

, θr−1c )
to compute the acceptance probability, λ

?

�������

PPPPPPP

�������

PPPPPPP

Draw u ∼ U [0, 1] u ≥ λ

u < λ

?
θrc = θr−1c

�

?
θrc = θ∗rc

?
Make a draw of p̃r

Compute and store W̃r(., p̃r;G∗ri , θ∗rc ) ∀i

?

���������

PPPPPPPPP

���������

PPPPPPPPP

r <Total no. of
MCMC iterations?

Yes

No

�r = r + 1
Outer
loop

-

?�
�

�
�End

55



Figure 4: MCMC plots: Homogeneous Model with β = 0.8

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0 2000 4000 6000 8000 10000

 

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2000 4000 6000 8000 10000

  

α1 (true value = 0.0)     α2 (true value = 0.0) 

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 2000 4000 6000 8000 10000

 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 2000 4000 6000 8000 10000  

G1 (true value = 1.0)     G2 (true value = 5.0) 

 
-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0 2000 4000 6000 8000 10000

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2000 4000 6000 8000 10000  

γ (true value = -1.0)     β (true value = 0.8) 

 

56



Figure 5: MCMC plots: Heterogeneous Model with β = 0.8

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0 2000 4000 6000 8000 10000

 

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2000 4000 6000 8000 10000

 

α1 (true value = 0.0)     α2 (true value = 0.0) 

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 2000 4000 6000 8000 10000

 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 2000 4000 6000 8000 10000  

G1 (true value = 1.0)     G2 (true value = 5.0) 

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0 2000 4000 6000 8000 10000

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2000 4000 6000 8000 10000

β

σG2
2

 

γ (true value = -1.0)     β (true value = 0.8)  

σG2
2
 (true value = 1.0) 

57



Appendix A

In this appendix, we discuss some techniques that one can use in practice to reduce the computational

burden further. While we will use the model without unobserved heterogeneity for illustration purpose,

the same ideas apply to the model with unobserved heterogeneity.

Integration of iid price shocks

In the base model specification of the store choice model with reward programs, we assume that prices

are iid normal random variable. When implementing the IJC algorithm, we propose to make one draw

of price vector, p̃r, and store W̃r(s, p̃r; θ∗r) in each iteration. Alternatively, we may draw a number of

price vector in each iteration, {p̃m}M
m=1, evaluate Ēp′W̃r(s, p′; θr) using

Ēp′W̃r(s, p′; θ∗r) =
1
M

M∑

m=1

W̃r(s, p̃m; θ∗r), (19)

and store Ēp′W̃r(s, p′; θ∗r) instead of W̃r(s, p̃r; θ∗r). The expected value function can then be approxi-

mated as follows (correspond to step 3 in Section 4.3.1).

Ẽr
p′W(s, p′; θ∗r) =

r−1∑

l=r−N

Ēp′W̃ l(s, p′; θ∗l)
Kh(θ∗l, θ∗r)∑r−1

k=r−N Kh(θ∗k, θ∗r)
.

In this alternative approach, we integrate out price first, before using the kernel regression to obtain

the pseudo expected value function Ẽr
p′W(s, p′; θ∗r). So this approach should allow us to achieve the

same level of precision by using a smaller N . One potential advantage is that it saves us some memory

when computing the weighted average. The additional cost is that we need to compute Ēp′W̃r in each

MCMC iteration. In terms of computational time, we find that these two approaches are roughly the

same in our example.

We should also note that in the present example where we assume prices are observed, one can

use the observed prices as random realizations in computing Ēp′W̃r(s, p′; θ∗r), provided that there

are a sufficient number of observations for each s. The advantage of using this approach is that the

58



pseudo-Eεmax functions of the observed prices, W̃ r
j (s, p; θ∗r), are by-products of the likelihood function

computation. So we can skip step 4(a) and (b) in section 4.3.1.

Computation of L̃r(b|s, p; θr−1)

In Section 4.3.1, we propose to compute the pseudo-likelihood at previously accepted parameter vector,

L̃r(b|s, p; θr−1), in each iteration. This is mainly because in IJC, the set of past pseudo-Eεmax func-

tions is updated in each iteration, and thus the pseudo-likelihood computed in the previous iteration,

L̃r−1(b|s, p; θr−1), is different from L̃r(b|s, p; θr−1). However, in practice, the computation of pseudo-

likelihood is the most time-consuming part in the algorithm. Moreover, the set of past pseudo-Eεmax

functions is updated only by one element in each iteration. Thus, we propose the following procedure,

which avoids computing L̃r(b|s, p; θr−1) in every iteration.

Suppose that we are in step 3 of iteration r (Section 4.3.1). If we have accepted the candidate

parameter value in iteration r − 1 (i.e., θr−1 = θ∗(r−1)), then use L̃r−1(b|s, p; θ∗(r−1)) as a proxy for

L̃r(b|s, p; θr−1). Note that the calculations of L̃r(b|s, p; θr−1) and L̃r−1(b|s, p; θ∗(r−1)) only differ in one

past pseudo-Eεmax function, and L̃r−1(b|s, p; θ∗(r−1)) has already been computed in iteration r− 1. If

we have rejected the candidate parameter vector (i.e., θr−1 = θr−2), then we could use L̃r−1(b|s, p; θr−2)

as a proxy for L̃r(b|s, p; θr−1), and only compute L̃r(b|s, p; θr−1) once every several successive rejections.

This procedure avoids using the pseudo-likelihood that is based on an old set of past pseudo-Eεmax

functions as a proxy for L̃r(b|s, p; θr−1). According to our experience, one can obtain a fairly decent

reduction in computational time when using this approach.

59



Appendix B

In this appendix, we explain an alternative way to implement IJC when estimating the model with

unobserved heterogeneity. The main goal of this alternative approach is to reduce the memory require-

ment and computational burden further. Instead of storing {θ∗lc , {G∗l
i , W̃ l(., pl;G∗l

i , θ∗lc )}I
i=1}r−1

l=r−N , one

can store {θ∗lc , G∗l
i′ , W̃ l(., pl; G∗l

i′ , θ
∗l
c )}r−1

l=r−N , where i′ = r−I ∗ int( r−1
I ); int(.) is an integer function that

converts any real number to an integer by discarding its value after the decimal place. i′ is simply one

way to “randomly” select a consumer’s pseudo-Eεmax function to be stored in each iteration. When

approximating the expected value function in, say step 4(b) in section 4.3.2, we can then set

Ẽr
p′W(s, p′; G∗r

i , θr−1
c ) =

r−1∑

l=r−N

W̃ l(s, p̃l; G∗l
i′ , θ

∗l
c )

Kh(θ∗lc , θr−1
c )Kh(G∗l

i′ , G
∗r
i )∑r−1

k=r−N Kh(θ∗kc , θr−1
c )Kh(G∗k

i′ , G∗r
i )

.

Note that we are using the same set of past pseudo-Eεmax functions for all consumers here. If there

is a large number of consumers in the sample, this approach, which is also independently adopted

by Osborne (2011), can dramatically reduce the memory requirement and computational burden for

implementing IJC.

This approach works because G∗l
i′ is a random realization from a distribution that covers the support

of the parameter space. This is one important requirement that ensures the pseudo-Eεmax functions

converge to the true ones in the proof of IJC.

60


