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Abstract

We examine the effect of a threat of entry on experimentation about demand by an incumbent

monopolist when there is a fixed cost of entry. We show that experimentation may itself be used

as a tool for entry deterrence and derive conditions under which experimentation reduces the

probability of entry. These conditions depend on the entry rule which in turn depends on entry

costs. We show that if experimentation does not deter entry, the monopolist incumbent experiments

less. We also characterize experimentation and entry in the linear-uniform example, and show that

cost of entry and experimentation do not have a monotonic relationship.



1 Introduction

This paper studies experimentation in a market with potential entry that entails a fixed cost.

Experimentation, or active learning, refers to a firm adjusting its choices away from the myopically

optimal levels in order to learn about parameters of interest. In the absence of entry, it has been

shown (see Mirman, Samuelson and Urbano, 1993 (MSU)), that a monopolist has an incentive to

actively learn about demand so that it can make greater profits in the future. We examine the

impact of potential, costly entry on this incentive. In addition, we identify and analyze a new

rationale for experimentation, namely entry-deterrence, since due to fixed cost of entry, entry need

not always occur.

The issues addressed in this paper are important because firms face constant pressures of existing

or potential competition, while making decisions under uncertainty. In addition to the standard

decisions such as setting prices or choosing output, a firm also aims to acquire information about

various elements relevant to its profits, such as demand, cost of production and the nature of

competition. However, just as with prices or quantities, the firm must consider strategic effects in

determining the extent of active learning. That is, the firm must take into account the effect of

its experimentation on decisions of other firms in the market or firms considering entry into the

market. On one hand, experimentation may reveal good information to other firms and encourage

further entry thereby reducing future benefit to the experimenting firm but on the other hand,

it may reveal bad news discouraging entry. In order to understand pricing in such markets, it is

important to analyze experimentation and entry in the same model. Indeed, since experimentation

itself may lead to a lower price in the market, just as limit pricing, it is important to incorporate
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the effect of experimentation in a market with threat of entry. It is then an empirical issue whether

the observed low prices are a result of limit pricing or experimentation, given other aspects of the

market, such as the demand structure. Further, the learning behavior of the incumbent is also

important for understanding overall welfare effects of entry. For example, if a threat of entry leads

to more information generation, which in turn leads to better economic decisions by agents, welfare

effects of entry are strengthened.

This work has empirical implications for emerging markets that are characterized by increasing

deregulation and therefore, potential entry and at the same time, by uncertainty and asymmetric

information. Similarly, there are empirical implications for markets where experimentation is com-

mon such as the health industry or the movie industry. Firms introduce new products, such as

drugs, or movies, in limited markets to learn about demand or firms may adjust their advertising

expenditure in order to learn about demand. This paper provides insights into the effect of potential

entry on various experimentation variables. In particular, we show that in such markets, the level

of fixed costs and therefore, the extent to which entry is a threat, determines the market outcomes

including the extent to which information is generated and used in setting prices and quantities.

Traditionally, the literature on entry-deterrence has focused on limit pricing, financial structure,

capacity expansion or advertising etc., as a tool for deterring entry. We show that an incumbent

operating under uncertainty can use experimentation as a tool for entry-deterrence for some para-

meter values. While the literature on entry-deterrence (see the pioneering works of Milgrom and

Roberts, 1981, and Matthews and Mirman, 1983) as well as experimentation is extensive, the role

of experimentation as an entry-deterrence tool has not been analyzed. The existing literature has
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examined experimentation in different contexts, such as a duopoly market structure (see Mirman,

Samuelson and Schlee, 1994, Alepuz and Urbano, 1999 and Belleflamme and Bloch, 2001) or learn-

ing by a principal in the context of entry-deterrence (Jain, Jeitschko and Mirman (2002, 2003 and

2005))1 or information acquisition by an incumbent facing entry when there are no entry costs

(Dimitrova and Schlee2 (DS), 2003 and Patron, 2001)). This paper generalizes the work of DS by

incorporating entry costs and thereby permitting the analysis of the effects of experimentation on

entry-deterrence. With no entry costs, entry cannot be deterred and therefore, the new role of

experiementation cannot be studied.

We also provide insights into how entry affects the incumbent’s incentive to experiment when

there are entry costs. In this respect, we generalize results of DS. They show that entry reduces

information acquisition, under the conditions of linear demand, increasing demand dispersion and

no entry costs. Since most models of entry assume fixed costs of entry, reflecting the conclusions

of empirical research, it seems important to study experimentation and entry when the entrant

faces fixed entry costs, as we do in this paper. DS provide an example with entry costs where

entry increases information acquisition. Our contribution is to derive conditions under which the

incumbent experiments less even when there are entry costs. Further, our results are robust to the

direction of demand dispersion, and are consistent with the DS example of information increasing

entry. We do not address the other useful examples in DS where entry increases information

acquisition since our focus is on conditions under which entry reduces information acquisition.

The reason to expect that an incumbent threatened with entry may experiment to a different

1These authors do not emphasize the role of experimentation as an entry-deterrence tool. Their focus is on the
role of debt in deterring entry.

2They provide an interesting example with entry costs.
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extent is that entry reduces future profits of the incumbent and thus, reduces the marginal benefit

from experimentation. If this were the only effect, the monopolist facing entry will reduce experi-

mentation since the marginal benefit is smaller and the marginal cost of experimentation, incurred

in the first period in the form of lower profits than in the static case, remains the same.3 However,

when entry does not occur surely, experimentation also influences the potential entrant’s decision to

enter the market, and may deter entry. The intuition behind this is that experimentation increases

the probability of a high price being associated with high demand and a low price being associ-

ated with low demand. Since entry is only profitable when demand is high, experimentation can

lower the probability of entry. This is not guaranteed and only occurs for some parameter values

because better information can either reinforce beliefs that market is good or that the market is

bad. For example, if entry only occurs when demand is good, then experimentation, by increasing

this probability, increases the probability of entry. This scenario depends on the cost of entry and

other parameters of the model.

We show that if experimentation does not deter entry, the threatened incumbent experiments

less. The precise conditions that lead to a higher probability of entry and less experimentation

depend on the entry rule, which in turn depends on the size of the fixed cost. We also show that these

conditions become weaker as fixed cost increases. That is, as fixed cost increases, experimentation

increases probability of entry and thus, the incumbent experiments less due to entry for a larger

set of parameters. If entry is deterred, which occurs when entry cost is suffi ciently low, results are

3We use the term ‘myopic ’in the sense standard in the experimentation literature - that the incumbent ignores
the effect of its current actions on the future outcomes altogether. The implication is that the myopic incumbent
chooses the same quantity with or without the threat of entry. Then, greater experimentation by the incumbent can
be simply measured by the difference between the output choice of the isolated incumbent and that of the threatened
incumbent.
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unclear in a general setting because there is a trade-off between the reduced marginal benefit from

experimentation (given entry) and the increased benefit of experimentation as an entry-deterrence

tool. We work out an example in which this trade-offbecomes clear. In the example, the price shock

is uniformly distributed and the demand function is linear, satisfying the assumption of increasing

dispersion. Results cover the entire range of possibilities, depending on entry costs. That is,

probability of entry may increase or decrease and experimentation by the threatened incumbent

may or may not be less than that of the isolated incumbent. Further, we find that the effect of fixed

cost of entry on experimentation is non-monotonic. As entry cost increases from low to moderate,

the incumbent experiments more but as entry cost increases from moderate to high, the incumbent

experiments less. The intuition behind this is that when entry cost is moderate, so that entry does

not occur surely, entry-deterrence becomes possible. The implication for welfare effects of entry is

that at moderate levels of entry cost, the competitive effects of entry are strengthened whereas for

high levels, the informational effect offsets the competitive effects.

We assume the standard environment (as in MSU) to study this problem. Demand is uncertain.

It can be ‘high’or ‘low’, and in each case, there is a random shock, independent of the state of

demand, that determines the price of the good. Firms only know the probabilities of demand being

high or low and of the random shock. Price of the good at the end of the first period is assumed

to be observable and used to update beliefs about the state of demand by all market participants.

In this paper, it is assumed that output of the incumbent is also observable so that the posterior

beliefs are identical across market participants.4 The incumbent is the only firm in the market

4This assumption is standard in the experimentation literature. While this assumption does not apply to all
economic situations, the resulting analysis is useful in understanding certain economic situations, for example, when
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in the first period and therefore is the only firm that can experiment. We assume that all costs

other than entry costs are zero, for convenience. We also assume a demand structure in which a

higher output provides more information about true demand, that is, demand structure satisfies

increasing demand dispersion, though results can be shown to hold even when the opposite holds.

We then consider different entry rules, corresponding to different levels of fixed cost.

The paper is organized as follows: in section 2, the model is presented, with both the benchmark

no-entry case and the entry case; in section 3, we present an example with linear demand and

uniformly distributed demand shock; in section 4, the effect of potential entry is analyzed in general;

finally, in section 5, we conclude. The Appendix contains some derivations and proofs.

2 Model

There are two time periods, t = 1, 2. In each period, output is chosen by firms in the market,

given the inverse demand function, to maximize their expected profit over the two periods. We

assume no discounting for simplicity. Let p = g(q, γ)+ε denote the inverse demand function, where

p is the market price of the good, publicly observed at the end of the first period; q is the first

period output; g(., γ) is a twice-continuously differentiable function, decreasing in q, and γ is a

time-invariant demand parameter in {γ, γ}. The upper bar indicates high demand and the lower

bar indicates low demand. We shall use g and g to denote the expected price under high demand

and low demand states respectively. The state of demand is unknown to the firms. Instead, firms

the choice variable is advertising expenditure, or research and development expenditure, rather than output. In some
situations, even output may be observed simply because the firm may be required to report it. Further, the analysis
and results of the observable case provide guidance for the analysis of the situation where the output is not observed
and hence, signal jamming occurs.
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have a prior belief that with probability ρ0 demand is high and with probability 1− ρ0, demand is

low. The random component of the market price ε is distributed according to the density function

f(ε).We assume that the density function f satisfies the monotone likelihood ratio property strictly

(f
′(ε)
f(ε) is a continuous and strictly decreasing function), is continuously differentiable on the entire

real line and has zero mean. The random component is assumed to be uncorrelated over the two

time periods.

At the end of the first period, the market price is realized and observed by all market partic-

ipants. In this paper, it is also assumed that output q is observed by all participants. These two

observations are used to update beliefs about the state of the demand, according to Bayes’rule.

Denoting the posterior belief that demand is high by ρ, we obtain:

ρ(p, q) =
ρ0f(p− g(q, γ))

ρ0f(p− g(q, γ)) + (1− ρ0)f(p− g(q, γ))
(1)

≡ ρ0f

ρ0f + (1− ρ0)f
.

It should be noted that MLRP is equivalent to ρ being non-decreasing in p. It is also equivalent to

f/f decreasing in p.

After updating beliefs, all firms in the market choose the second period output, given the

expected inverse demand function, to maximize the second period expected profits. Expected

profits of the incumbent in the first period are given by π(q) = q(ρ0g(q, γ) + ((1− ρ0)g(q, γ)). For

simplicity, we assume that costs are zero for the incumbent. The entrant incurs a fixed cost of

entry, F.
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2.1 The benchmark: No-Entry

This is the standard experimentation model (see MSU). The second period expected profits of the

incumbent are the same as in the first period except for possibly different beliefs, denoted by ρ. Let

VM (ρ(p, q)) denote the interim value function of the incumbent under the no-entry scenario, that

is, the maximized expected second period profits, given ρ. Let h(p, q) denote the probability that

p is realized at the end of the first period given the choice of q. That is, h(p, q) = ρ0f + (1− ρ0)f.

Finally, let WM (q) denote the value function, that is the interim value function integrated over

the first period price, namely,
∫
VM (ρ(p, q))h(p, q)dp. The first period maximization problem of the

monopolist, then, is to choose the first period output q to maximize the sum of expected profits in

each period:

Π(q) = π(q) +WM (q).

A myopic incumbent ignores the future and thus, chooses the first period output to maximize

π(q). Experimentation is measured by the difference between the first period output chosen by a

myopic incumbent and that of an experimenting incumbent who takes the effect of its first period

choice on the future beliefs. We impose Assumption 1 of MSU to ensure that quantity-increasing

experimentation occurs when the incumbent does not face the threat of entry. For convenience,

this assumption is stated below and illustrated in Figure 1. Let q̂ be the highest quantity chosen

by the incumbent who does not face the threat of entry, to be referred to as an isolated incumbent.

Assumption 1 (MSU): For all q ∈ [0, q̂], g < g and g′ < g′ < 0.

That is, the ‘high demand’curve lies above and is flatter than the ‘low demand’curve. In other

words, mean demand curves become further apart as q increases so that a higher q leads to better
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information in the second period. Furthermore, information is valuable because different outputs

are optimal corresponding to the states of high and low demand under Assumption 1. MSU show

that under this assumption, the monopolist chooses a higher q than in the myopic case because

the marginal benefit of doing so is positive at the myopic output level. This in turn is based on

two conditions: one that the interim value function is convex in ρ, implying that information is

valuable (see Blackwell, 1951) and second that the incumbent’s actions can influence information

because demand curves become further apart with a higher q. MSU provide examples of linear

demand functions where either information is not valuable or the monopolist is unable to learn.

We rule out those cases so that experimentation occurs in the absence of the threat of entry. Note

that experimentation is costly in the current period. That is, due to the choice of an output that

is different from the static optimal level, the monopolist sacrifices current profits in exchange for

higher profits in the future on account of better information. It is this trade-off that drives the

decision to experiment.

2.2 Potential Entry

Expected profit of the entrant upon entry is πe(qe, qi) = qe(ρg(qe + qi, γ) + ((1 − ρ)g(qe + qi, γ)),

where qe is the entrant’s output and qi is the incumbent’s output in the second period. The entrant

enters if and only if πe(q∗e(ρ), q∗i (ρ)) = πe(ρ) ≥ F, where q∗e and q∗i are the Cournot-Nash equilibrium

outputs under incomplete information. We assume that the demand function satisfies conditions

to generate a unique equilibrium in which the entrant’s profits are increasing in ρ5 and therefore,

the entry condition reduces to ρ ≥ ρe, where ρe is a constant determined from the values of F, γ

5The Appendix contains the precise conditions required. These conditions are satisfied when demand is linear.
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and γ.

Let π(qe, qi) = qi(ρg(qe + qi, γ) + ((1 − ρ)g(qe + qi, γ)) denote the incumbent’s second period

profits if ρ ≥ ρe. Let VD(ρ) = π(q∗e(ρ), q∗i (ρ)) denote the incumbent’s interim value function under

Cournot duopoly. Specifically, the interim value function of the incumbent, denoted by Vi(ρ), is

given by:

Vi(ρ) = VM (ρ), ρ < ρe,

Vi(ρ) = VD(ρ), ρ ≥ ρe.

Obviously, VM (ρ) > VD(ρ)∀ρ ≥ ρe and therefore, the interim value function is discontinuous at ρe.6

Substituting ρe in (1) for ρ yields a cut-off value for the observed market price p, as a function

of q. Then, by MLRP, the entry rule ‘enter if and only if ρ ≥ ρe’is equivalent to ‘enter if and only

if p ≥ p̂(q)’where p̂(q) is the price that corresponds to the cut-off belief ρe, given q. That is, the

entrant enters for all prices above p̂(q) and stays out otherwise. This implies that the expected

value function of the threatened incumbent takes the following form:

Wi(q) =

∫ p̂(q)

−∞
VM (ρ(p, q))h(p, q)dp+

∫ ∞
p̂(q)

VD(ρ(p, q))h(p, q)dp.

The problem of the myopic incumbent remains the same and thus, the threatened incumbent is

said to experiment more if and only if it chooses a higher output than the isolated incumbent. Since

6Note that this discontinuity implies that we can not use convexity of the value function to demonstrate that the
threatened incumbent learns or the convexity of the difference VM − Vi to show that the isolated monopolist learns
more, as DS do, since VM −Vi is discontinuous at the belief when entry occurs. However, we can and do use convexity
of VM − VD in our main result.
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the two types of incumbent face the same cost in the first period, it suffi ces to consider the effect

of the first period choice on the value function. In particular, the isolated incumbent experiments

more if and only if the marginal future benefit from the first period output is larger without the

threat of entry.

3 An Example

In this section, we examine the case where the inverse demand is linear and the random term in the

inverse demand function is uniformly distributed. We derive closed-form solutions in this example

and therefore, characterize the relationship between experimentation and entry-deterrence. We

find that depending on the fixed cost of entry and therefore the entry rule, probability of entry

may increase or decrease with experimentation. The uniform distribution leads to either complete

learning or no learning. Due to this extreme learning outcome, the effects of experimentation on

entry become transparent.

Let the inverse demand function be given by p = a − bq + ε, where a and b are unknown,

strictly positive, parameters and ε is a random, unobservable term that is known to be distributed

uniformly on the interval [−η, η], where η > 0. The intercept a and slope b take two different

values: (a, a) and (b, b), where a ≥ a and b < b, so that demand displays increasing dispersion as q

increases. Let p and p be the mean prices under high demand and low demand respectively. The

prior belief that demand is high (the upper bars) is ρ0. Let â(ρ) and b̂(ρ) denote the mean values

of the intercept and slope respectively, at the posterior belief ρ.
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Bayes’rule generates the following posterior distribution:

ρ =



1, prob = ρ0
p−p
2η ,

0, prob = (1− ρ0)
p−p
2η

ρ0, prob =
2η−(p−p)

2η


The interim value function of the isolated monopolist is VM (ρ) = (â(ρ))2 /4b̂(ρ) and that of a

monopolist who faces sure entry is VD(ρ) = (â(ρ))2 /9b̂(ρ). However, since ρ takes only three values,

probabilities of which are easily calculated, we obtain the following value function of the isolated

monopolist:

EVM =
a2

4b
(1− ρ0)

(
a− a− (b− b)q

2η

)
+
a2

4b
ρ0

(
a− a− (b− b)q

2η

)
+

+

(
â(ρ0)2

4b̂(ρ0)

)(
2η −

(
a− a− (b− b)q

)
2η

)
.

For the incumbent facing entry, the value function depends on the entry rule, which in turn

depends on the size of the fixed cost of entry. Since expected profits of the entrant are increasing

in ρ,7 as F increases, entry occurs for a smaller set of beliefs. Setting πe(ρ) = F yields the level of

posterior belief, in terms of F, such that the entrant breaks even. Precise conditions for the three

entry rules can now be presented:

7To see this, note that expected profits of the entrant are πe(ρ) = â(ρ)2/9b̂(ρ). Using 4a for a − a and 4b for
b− b, we obtain,

dπe(ρ)

dρ
=
b̂(2â)(4a)− â24b

9b̂2
.

This expression is positive if and only if ρ4b4a+2ba+ab ≥ 0. All terms in this expression are positive. Thus, πe(ρ)
is increasing in ρ.
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1. If πe(ρ0) < F and πe(1) = a2

9b
≥ F, entry occurs if and only if ρ = 1;

2. If a
2

9b < F and πe(ρ0) ≥ F, entry occurs if and only if ρ ∈ {ρ0, 1};

3. If πe(0) = a2

9b ≥ F, entry occurs for all beliefs.

We consider these cases next.

3.1 Entry when ρ = 1 : High Entry Cost

If entry occurs only when demand is revealed to be high, then, the value function of the threatened

incumbent equals:

EVi =
(a)2

4b
(1− ρ0)

a− a− (b− b)q
2η

+
(a)2

9b
ρ0

a− a− (b− b)q
2η

+

+

(
â(ρ0)2

4b̂(ρ0)

)
2η −

(
a− a− (b− b)q

)
2η

.

Thus, the only change is in the second term. Due to possible entry, the incumbent’s profits are

reduced in the high-demand state. Note that in this case, the probability of entry is ρ0

(
a−a−(b−b)q

2η

)
,

which increases as q increases.

To see how entry affects experimentation, we calculate the impact of the first period output

on value functions in the two cases (dropping the argument of the mean intercept and slope for
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convenience):

dEVM
dq

=
−(b− b)

2η

(
(a)2

4b
(1− ρ0) +

(a)2

4b
ρ0 −

(â)2

4b̂

)
,

dEVi
dq

=
−(b− b)

2η

(
(a)2

4b
(1− ρ0) +

(a)2

9b
ρ0 −

(â)2

4b̂

)
.

The isolated incumbent experiments more if and only if dEVMdq − dEVi
dq ≥ 0, that is,

−(b− b)
2η

(
5(a)2

36b
ρ0

)
≥ 0.

This inequality holds because −(b− b) > 0.

Thus, the threatened incumbent experiments less than the isolated incumbent. The intuition

is that experimentation increases the probability of entry and thus, the standard experimentation

effect is reinforced by the entry-deterrence effect. Further, note that the threatened incumbent

experiments if and only if dEVidq ≥ 0 which can be shown to hold only for some parameter values.

For all other values, the incumbent reduces information and therefore, reduces the probability of

entry compared to the myopic case.

Next, we consider the case where entry occurs when demand is revealed to be high or not

revealed at all.
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3.2 Entry when ρ = 1 or ρ0 : Moderate Entry Cost

The value function of the incumbent changes to:

EVi =
(a)2

4b
(1− ρ0)

(
a− a− (b− b)q

2η

)
+

(a)2

9b
ρ0

(
a− a− (b− b)q

2η

)
+

+

(
(â)2

9b̂

)(
2η −

(
a− a− (b− b)q

)
2η

)
,

and,

dEVi
dq

=
−(b− b)

2η

(
(a)2

4b
(1− ρ0) +

(a)2

9b
ρ0 −

(â)2

9b̂

)
.

The isolated incumbent learns more if and only if dEVMdq − dEVi
dq ≥ 0. This can be simplified to

obtain,

ρ0 ≥
â2

b̂

b

a2 .

Since â and b̂ are functions of the prior, we substitute for â and b̂ and obtain the following quadratic

inequality in ρ0 :

ρ2
0(a2

(
b− b

)
− b (a− a)2) + ρ0

(
a2b− 2 (a− a) ab

)
− ba2 ≥ 0.

It is straightforward to show that this inequality holds for ρ0 suffi ciently high provided a/b < a/2b,

that is, if and only if, low demand is suffi ciently lower than high demand. If this is the case, the

isolated incumbent learns more for suffi ciently high values of ρ0. Otherwise, the inequality does not

hold except weakly at ρ0 = 1, implying that entry increases experimentation.

Note that probability of entry in this case is 1 − (1 − ρ0)
(
a−a−(b−b)q

2η

)
, which is decreasing
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in q. Thus, the interpretation of the result above is that when high demand and low demand

are not too different, the entry-deterrence role of experimentation dominates the reduced benefit

from experimentation and hence, the threatened incumbent experiments more. Thus, when the

noise is uniformly distributed and demand is linear, there are conditions under which a threatened

incumbent experiments more.

Further, in this case, dEVi
dq ≥ 0 implying that the threatened incumbent experiments for all

parameter values and therefore, the probability of entry is less with experimentation.

3.3 Sure Entry: Low Entry Cost

In this case, the profits of the incumbent are lower in all states and thus, the marginal future benefit

from experimentation changes to:

dEVi
dq

=
−(b− b)

2η

(
(a)2

9b
(1− ρ0) +

(a)2

9b
ρ0 −

(â)2

9b̂

)
.

The isolated incumbent experiments more if and only if dEVMdq − dEVi
dq ≥ 0 or,

−(b− b)
2η

5

36

(
(a)2

b
(1− ρ0) +

(a)2

b
ρ0 −

(â)2

b̂

)
≥ 0,

which holds by strict convexity of the value function. Thus, the isolated incumbent experiments

more. This is intuitive since entry cannot be deterred so that entry reduces benefits from experi-

mentation unambiguously. Further, in this case, dEVidq ≥ 0 implying that the threatened incumbent

experiments for all parameter values
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Let q∗d and q
∗
m denote the optimal first period output of the threatened incumbent and the

isolated incumbent respectively. Let q∗0 be the optimal output chosen by a myopic incumbent. We

can summarize the results for the Example in the following Proposition:

Proposition 1 When demand is linear, satisfies increasing dispersion and the random component

of price is uniformly distributed, then,

1. If entry occurs if and only if ρ = 1, (i) the probability of entry increases with experimentation;

(ii) q∗m > q∗d and (iii) q
∗
d > q∗0 for some parameter values.

2. If entry occurs for sure, q∗m > q∗d > q∗0.

3. If entry occurs if and only if ρ ∈ {1, ρ0}, (i) the probability of entry decreases in q. (ii) q∗m > q∗d

if and only if a/b < a/2b and ρ0 ≥
(
â2/b̂

) (
b/a2

)
and (iii) q∗d > q∗0.

Summarizing, if fixed cost is high so that profitable entry requires demand to be high for sure,

probability of entry increases with experimentation and the threatened incumbent experiments less

than the isolated incumbent. Indeed, for some parameter values, the threatened incumbent reduces

information in order to deter entry. In contrast, when fixed cost is at a moderate level, probability

of entry decreases with experimentation and the threatened incumbent may, for some parameter

values, experiment more than the isolated incumbent. The incumbent never reduces information

in this case. Finally, when fixed cost is low so that entry occurs for all possible beliefs, there is

no entry-deterrence effect. Consequently, the threatened incumbent experiments but less than the

isolated incumbent. Note that the relationship between fixed cost of entry and experimentation is

non-monotonic. The precise relationship is presented in the following Corollary:
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Corollary 1 q∗d increases as F increases from low to moderate and decreases as F increases from

moderate to high.

The proof is straightforward and therefore, omitted.

The intuition for this result is that as F increases from low to moderate, the entry-deterrence

role comes into play to offset the standard experimentation effect. As a result, experimentation

increases. On the other hand, as F increases further so that profitable entry requires high demand,

the entry-deterrence role of experimentation reverses. As a result, experimentation decreases.

Figure 2 illustrates Proposition 1 and Corollary 1.

The linear-uniform case provides insights into the factors that determine whether the threatened

incumbent experiments more or less. In the next section, we exploit these insights in a model where

the assumptions of linearity of demand and uniform distribution of the demand shock are relaxed.

4 General Analysis

In the general model, learning is never complete and given our assumptions on f and g, the posterior

belief ρ is a differentiable function of p and q, unlike the linear-uniform case. Now, if F is higher

than the expected profits under high demand, the threat of entry is vacuous. On the other hand,

if F is less than expected profits under low demand then entry occurs for all beliefs. In this case,

there is no entry-deterrence possible and the standard experimentation effect prevails, leading the

incumbent to experiment less (as shown by DS, and as seen above in the linear-uniform case). So,

it remains to consider values of F that generate entry for some beliefs but not all.

Let ρm denote the posterior resulting from the observation of price pm, the unique modal price
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under high demand (it equals the mean price p, if the distribution is symmetric). MLRP holding

strictly implies that f/f decreases as p increases, implying that there can be only one price at which

f/f = 1. Existence of such a price is implied by the assumptions of infnite support and zero (finite)

mean. This is because f cannot be monotonic and must have a global maximum. We define ρ
m

and p
m
similarly. By Assumption 1, the density function f lies to the right of the density function

f since g − g > 0 ⇒ p
m
< pm. We start with moderate values of F, values that yield the cut-off

belief for entry to be between ρ
m
and ρm, and then consider the extreme cases where 1 > ρe > ρm

or 0 < ρe < ρ
m
.

4.1 Moderate Fixed Cost: ρe ∈ [ρm, ρm]

We first show that the cut-off observed price, above which the entrant enters, is a decreasing

function of the first period output.

Lemma 1 : For ρe ∈ [ρ
m
, ρm], dp̂(q)dq ≤ 0.

Proof. Substituting ρe in (1) for ρ yields (arguments are suppressed for convenience),

ρe =
ρ0f

ρ0f + (1− ρ0)f
,

f = αf, α ≡ ρe(1− ρ0)

ρ0(1− ρe)
. (2)

Differentiating implicitly with respect to q yields,

dp̂

dq
=
ff ′g′ − ff ′g′

ff ′ − ff ′
. (3)
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By MLRP, the denominator is negative. To show that the numerator is positive, note that by

Assumption 1, both g′ and g′ are negative. Further, f ′ < 0 and f
′
> 0, at p̂(q), in the range of

beliefs considered, since p
m
and pm are modal prices for the two densities.

Increase in q is equivalent to mean demand curves being further apart, by Assumption 1. Thus,

the set of prices for which the potential entrant enters increases as expected prices are set further

apart. However, this does not necessarily imply that the probability of entry increases as we show

below in the next lemma.

Lemma 2 For ρe ∈ [ρ
m
, ρm], experimentation reduces the probability of entry if and only if the

following condition is satisfied:

ρ0 ≤
f2f

′

f2f
′
− f2

f ′
. (4)

Proof. Probability of entry = Pr{p ≥ p̂(q)} =
∫∞
p̂(q) h(p, q)dp. Now,

d

dq

∫ ∞
p̂(q)

h(p, q)dp ≤ 0⇔

ρ0fg
′ + (1− ρ0)fg′ ≤

(
ρ0f + (1− ρ0)f

) dp̂
dq
. (5)

Substituting for dp̂
dq from (3), we obtain,

ρ0(fg′ − fg′) + fg′ ≤ (ρ0(f − f) + f)
ff ′g′ − ff ′g′

ff ′ − ff ′
.
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Since ff ′ − ff ′ < 0 by MLRP, we obtain the following condition after some simplifying,

ρ0(g′ − g′)
(
f

2
f ′ − f2f

′) ≥ −f2f
′ (
g′ − g′

)
.

Now, by assumption, g′ − g′ > 0 and we can show that f
2
f ′ − f2f

′
< 0 by MLRP8. The result

follows.

There are two effects on the probability of entry of an increase in q. On one hand, holding the

cut-off price constant, a higher q implies that lower prices are more likely, which in turn implies

that demand is more likely to be low, and therefore, the probability of entry decreases. On the

other hand, the potential entrant rationally revises the cut-off price downward, after observing a

higher output, and this increases the probability of entry. Lemma 2 shows that if ρ0 is not too

high, the negative effect on entry dominates. The logic of the proof is that the increase in q shifts

both distributions to the left but the low-demand distribution shifts more than the high-demand

distribution. The result is that the two distributions intersect at a lower price (and by MLRP, a

lower density) implying an increase in the probability of entry if demand turns out to be high and a

decrease in the probability of entry if demand turns out to be low. The lower the prior that demand

is high, the lower the weight on the increase. The intuition behind this is simple: entry occurs if and

only if the entrant believes that demand is suffi ciently likely to be high. Experimentation increases

the probability that higher prices are a result of high demand and lower prices the result of low

demand. The former increases the probability of entry and the latter decreases it. The greater the

8f
2
f ′ − f2f ′ < 0⇔ f

2
f ′ < f2f

′ ⇔ f
2

f2
f ′ < f

′
. This is true because MLRP implies that f

f
f ′ < f

′
. Since the RHS

is positive and the LHS is negative, multiplying the LHS by α > 0 preserves the inequality.
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prior belief that demand is high, the greater the weight on the former possibility and hence, the

probability of entry increases for suffi ciently high values of the prior belief.9

Next, we examine the marginal benefit from experimentation by comparing the effect of a change

in q on the value function.

dWi(q)

dq
=

d

dq

[∫ p̂(q)

−∞
VM (ρ(p, q))h(p, q)dp+

∫ ∞
p̂(q)

VD(ρ(p, q))h(p, q)dp

]

=

∫ p̂(q)

−∞

d

dq
[VM (ρ(p, q))h(p, q)] dp+

∫ ∞
p̂(q)

d

dq
[VD(ρ(p, q))h(p, q)] dp

+ [VM (ρ0)− VD(ρ0)]h(p̂(q), q)
dp̂

dq
. (6)

Similarly,

dWM (q)

dq
=

∫ ∞
−∞

d

dq
[VM (ρ(p, q))h(p, q)] dp. (7)

To compare the two derivatives, given by Equations (6) and (7), we fix q at the level chosen

when the incumbent is myopic, say q0, and let p̂(q0) = p0. Then, subtracting (6) from (7) yields,

d (WM (ρ))

dq
− d (Wi(ρ))

dq
cq0

=

∫ ∞
p0

d

dq
[VM (ρ(p, q))h(p, q)] dp−

∫ ∞
p0

d

dq
[VD(ρ(p, q))h(p, q)] dp

− [VM (ρ0)− VD(ρ0)]h(p0, q)
dp̂

dq
cq0 . ( 8)

9Note that this is an insight not obtained in the Example. There, learning is either complete or zero and conse-
quently, probability of entry is either unaffected, decreases unambiguously or increases unambiguously, regardless of
the value of the prior. Nevertheless, the Example does show that probability of entry may either increase or decrease
with experimentation, depending on F.
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Using the derivation in the Appendix, Equation (8) becomes,

d (WM (ρ))

dq
− d (Wi(ρ))

dq
cq0

= (g′ − g′)(1− ρ0)
(
V ′M − V ′D

)
ρ0f(p0)

+
(
g′ − g′

)
(1− ρ0)

∫ ∞
p0

(V
′′
M − V

′′
D)
dρ

dp
ρfdp

+ (VM (ρ0)− VD(ρ0)) (ρ0fg
′ + (1− ρ0)fg′) (9)

− [VM (ρ0)− VD(ρ0)]h(p0, q)
dp̂

dq
cq0 .

Now, we can prove the main result of this paper.

Proposition 2 The isolated incumbent learns more, by choosing a higher q, than the threatened

incumbent if VM − VD is an increasing and convex function of ρ, and the prior satisfies:

ρ0 ≥
f2f

′

f2f
′ − f2

f ′
. (10)

Proof. The isolated incumbent learns more if and only if d(EVM (ρ))
dq − d(EVi(ρ))

dq cq0 ≥ 0⇒ R.H.S.

of (9) ≥ 0. Now, by assumption of increasing demand dispersion, that is, g′ − g′ > 0 and by

assumptions on VM − VD, the first and the second terms in the RHS of (9) are positive. The third

term is negative because g′ and g′ are both negative. And the fourth term is positive by Lemma

1 and by the fact that VM − VD ≥ 0. The Proposition follows if the sum of the last two terms is
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positive. That is,

(VM (ρ0)− VD(ρ0)) (ρ0fg
′ + (1− ρ0)fg′ − h(p0, q)

dp̂

dq
cq0) ≥ 0,

ρ0fg
′ + (1− ρ0)fg′ − h(p0, q)

dp̂

dq
cq0 ≥ 0.

This inequality is the opposite of (5) and therefore, the result follows.

Condition (4) is necessary and suffi cient for a decrease in probability of entry. Thus, condition

(10) in Proposition 1 implies that if the probability of entry is increasing in q, which occurs if the

prior on high demand is high enough, and if conditions on value functions are satisfied, then the

isolated incumbent will experiment more than the threatened incumbent.10

This proof provides insight into the trade-off that a threatened incumbent faces when choosing

output in the first period. The first two terms in (9) represent the reduced expected marginal

benefit from experimentation given a certain probability of entry and the last two terms represent

the expected gain/loss due to a change in the probability of entry induced by experimentation.

Since entry reduces the expected marginal benefit from experimentation, the first two terms are

positive (meaning that the isolated incumbent enjoys a higher expected marginal benefit). On the

other hand, the effect of experimentation on entry deterrence is ambiguous. If it increases the

probability of entry, as is the case when (10) is met, the entry-deterrence effect and the standard

experimentation effect reinforce each other, implying that the threat of entry reduces information

acquisition. This corresponds to the scenario of high fixed costs in the Example. On the other

10 It can be easily verified that the assumptions on VM −VD are satisifed for linear demand, that is, g(q, γ) = a−bq,
where γ = (a, b). There, VM − VD = 5 (â(ρ))2 /36b̂(ρ).
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hand, if (10) is not met, entry may or may not reduce information acquisition, depending on the

demand function and the nature of uncertainty. This corresponds to the case of moderate fixed

costs in the Example.

We next show that the suffi cient condition for entry to reduce experimentation by the incumbent

becomes weaker as entry becomes more costly. That is, the incumbent experiments less in the

presence of a threat of entry for a larger set of prior beliefs. This result corresponds to the monotonic

effect of F on experimentation in the Example, as F increases from moderate to high.

Let ρ∗0 ≡
f2f
′

f2f
′−f2f ′

, the bound given in Proposition 2, by Inequality (10).

Proposition 3 The bound ρ∗0 decreases as F increases.

The proof is in the Appendix.

We next discuss cases where cost of entry is either low or high so that the effect of experimen-

tation on entry is unambiguous, that is regardless of the value of the prior. These cases correspond

to the scenarios of moderate and high fixed cost in the Example.

4.2 Extreme Fixed Cost

In this subsection, we discuss the extreme cases. There are two possibilities to consider: one, when

profitable entry requires that the cut-off belief for entry satisfy 1 > ρe > ρm, due to a high fixed

cost and two, when profitable entry occurs even when 0 < ρe < ρm, due to a low fixed cost of

entry. It turns out that experimentation has an unambiguous effect on probability of entry in

these two cases. When fixed cost is high, experimentation increases probability of entry regardless

of the prior. To understand the intuition, note that in this range of prices, both f and f slope
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downwards. As a result, as experimentation spreads the distributions apart and to the left, the

cut-off price has a higher likelihood of occurring under high demand but then to maintain the cut-

off likelihood ratio, the cut-off price must also entail a higher likelihood under low demand. Thus,

the probability of entry increases regardless of the state of demand. This has a straightforward

implication for experimentation: the threatened incumbent has less of an incentive to experiment

because both the entry-deterrence effect and the marginal benefit effect reinforce each other.

In contrast, in the other extreme case, when ρe < ρ
m
, experimentation reduces probability of

entry regardless of the value of prior and therefore, the effect on experimentation of the threat

of entry is ambiguous since the entry-deterrence effect and the standard benefit from learning go

in the opposite direction. The intuition behind entry deterrence is that now both f and f slope

upwards, and thus as experimentation spreads the distributions apart and to the left, probability

of entry falls regardless of the state of demand. As a result, we do not have an obvious suffi cient

condition to ensure less experimentation by an incumbent facing entry. Note that this is the case in

which the trade-off between standard marginal benefit from experimentation and entry-deterrence

benefit is most severe. This would seem to be the case in which entry may increase experimentation.

On the other hand, this is also the case when entry occurs more often and therefore the expected

marginal benefit from experimentation (given a probability of entry) is lower. Thus, overall, one

cannot conclude that entry increases experimentation.

The linear-uniform example illustrates these results. When entry cost is high, the probability

of entry is increasing in experimentation and experimentation is less under a threat of entry. When

entry cost is moderate, probability of entry decreases in experimentation but the entry-deterrence
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role of experimentation may or may not be dominated by the reduced benefit from experimentation

in the future due to entry.

Thus, the overall conclusion of this section, which assumes increasing demand dispersion, is

that when demand displays increasing dispersion, as the cut-off belief for entry increases, the role

of experimentation in entry-deterrence becomes weaker and therefore, the suffi cient condition for

entry to reduce experimentation becomes weaker. Since the level of fixed cost drives the cut-off

belief in our model, the implication is that, the higher the fixed cost of entry, the more likely it is

that the incumbent facing entry experiments less than the incumbent not facing entry.11

5 Conclusion

This paper provides another rationale for experimentation, namely, that it can be used as a tool for

entry-deterrence, and thus, enriches the literature both on entry-deterrence and experimentation.

We have analyzed the learning behavior of an incumbent who faces a threat of entry with entry

costs. The main question addressed here is whether the threat of entry reduces or increases ex-

perimentation and if so, under what conditions. We have derived suffi cient conditions under which

the incumbent facing a threat of entry experiments less. In doing so, we have also shown that ex-

perimentation need not reduce the probability of entry and identified conditions under which entry

becomes more likely or less likely due to experimentation. Further, the linear-uniform example

provides a complete characterization of the effects of entry on experimentation and vice-versa.

11As mentioned in the Introduction, results continue to hold if demand satisfies decreasing dispersion.
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Appendix

Conditions underlying Second Period Equilibrium

The entrant maximizes the expected profits, πe(qe, qi, F ), by choosing output qe, given the

incumbent’s output in the second period, qi, and the fixed cost of entry F :

πe(qe, qi, F ) = qe(ρg(qe + qi, γ) + ((1− ρ)g(qe + qi, γ))− F.

The entrant enters if and only if πe(q∗e , q
∗
i ) = πe(ρ, F ) ≥ 0, where q∗e and q

∗
i are the Cournot-Nash

equilibrium outputs under incomplete information. Since this is a standard symmetric Cournot

duopoly problem, except that the demand function relates expected price to quantity and the

entrant faces an entry cost, a suffi cient condition for a unique, pure-strategy, equilibrium (see

Tirole (1988)) is that 0 > ∂2πi
∂qiqj

> ∂2πi
∂q2i

, that is the effect of the other firm’s output on firm

i′s expected marginal profit is negative and smaller in absolute value than the effect of its own

output. In our model, this condition reduces to assuming that ∂2πi
∂qiqj

= qiĝ11 + ĝ1 < 0 where

ĝ(qe + qi, ρ) = ρg(qe + qi, γ) + ((1 − ρ)g(qe + qi, γ), ĝ1 denotes
∂ĝ
∂qi

and ĝ11 denotes
∂2ĝ
∂q2i

. Now,

∂2πi
∂q2i

= qiĝ11 + 2ĝ1 < 0 and smaller than ∂2πi
∂qiqj

because ĝ1 < 0 by assumption. If demand curve is

concave or not ‘too convex’, so that qiĝ11 + ĝ1 < 0, a unique pure-strategy Cournot equilibrium

exists. To ensure that the equilibrium is interior, we further assume that the monopoly output is

larger than the output that induces the other firm to produce zero. The equilibrium outputs q∗e

and q∗i are functions of ρ and parameters γ and γ. Note that F does not enter the solutions.
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Suppressing the parameters, πe(q∗e(ρ), q∗i (ρ), F ) is an increasing function of ρ if and only if

q∗e

(
ρ ∂g
∂q∗i

q∗′i + (1− ρ)
∂g

∂q∗i
q∗′i + g(ρ)− g(ρ)

)
≥ 0. This condition requires that ĝ1q

∗′
i + ĝρ ≥ 0. That

is, the direct and indirect effect of ρ on expected price is positive. Using the first order conditions

and exploiting symmetry of the firms, one can show that q∗′i =
q∗′i ĝ1ρ+ĝρ

2q∗′i ĝ11+3ĝ1
≥ 0 so that the suffi cient

condition for expected profits to be an increasing function of ρ is as follows:

ĝρ ≥ − ĝĝ1ρ

2(qiĝ11 + ĝ1)

g − g ≥
ĝ
(
g1 − g1

)
2(qiĝ11 + ĝ1)

.

We impose these conditions on the demand function (linear demand satisfies these conditions,

for example) and therefore, the entry condition reduces to ρ ≥ ρe, where ρe is a constant determined

from the values of F, γ and γ. Further, ρe is an increasing function of F.

Derivation of Equation (9)

Suppressing arguments where there is no scope for confusion, we first derive the expression for

the first term on the right hand side of (8).

∫ ∞
p0

d

dq
[VM (ρ(p, q))h(p, q)] dp

=

∫ ∞
p0

V ′M
dρ

dq
hdp−

∫ ∞
p0

VM (ρ0f
′
g′ + (1− ρ0)f ′g′)dp
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Integrating the second term by parts yields,

∫ ∞
p0

d

dq
[VM (ρ(p, q))h(p, q)] dp

=

∫ ∞
p0

V ′M

(
dρ

dq
h+

dρ

dp
(ρ0fg

′ + (1− ρ0)fg′)

)
dp

+VM (ρ0)(ρ0fg
′ + (1− ρ0)fg′)

This expression can be reduced to (see Mirman, Samuelson and Schlee (1994) for the first term):

−
(
g′ − g′

) [∫ ∞
p0

V ′M
dρ

dp
(1− ρ0)fdp+

∫ ∞
p0

V ′Mf
′ρ(1− ρ0)dp

]
+VM (ρ0)(ρ0fg

′ + (1− ρ0)fg′) (A1)

Now,

∫ ∞
p0

V ′Mf
′ρ(1− ρ0)dp

= (1− ρ0)

[
−V ′M (ρ0)ρ0f(p0)−

∫ ∞
p0

V
′′
M

dρ

dp
ρfdp−

∫ ∞
p0

V ′
′
M

dρ

dp
fdp

]

Substituting this in Equation (A1), we obtain,

∫ ∞
p0

d

dq
[VM (ρ(p, q))h(p, q)] dp

=
(
g′ − g′

)
(1− ρ0)V ′M (ρ0)ρ0f(p0)

+
(
g′ − g′

)
(1− ρ0)

∫ ∞
p0

V ”
M

dρ

dp
ρfdp

+VM (ρ0)(ρ0fg
′ + (1− ρ0)fg′)
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A similar expression can be obtained for
∫∞
p0

d
dq [VD(ρ(p, q))h(p, q)] dp.

Proof of Proposition 3

Proof. Let ∆ = f2f
′ − f2

f ′. Then ρ∗0 =
f2f
′

∆ , and,

dρ∗0
dF

=
1

∆2

[
∆
(
f2f” + 2ff

′
f ′
)
− f2f

′ (
f2f

′′
+ 2ff

′
f ′ − f2

f ′′ − 2ff
′
f ′
)]

=
ff

∆2

[
ff
(
f
′
f ′′ − f ′f ′′

)
− 2f

′
f ′
(
ff ′ − ff ′

)]

≤ 0⇔ fff ′

(
f
′

f ′
f ′′ − f ′′

)
− 2f

′
f ′
(
ff ′ − ff ′

)
≤ 0. (A2)

Now, MLRP implies that f ′

f is decreasing in p. Thus, using the fact that in the assumed range,

f ′ < 0 and f
′
> 0, we obtain,

f ′′ ≤ f
′2

f
(A3)(

f
′

f ′
f ′′ − f ′′

)
f ′ ≤

(
f
′

f ′
f ′′ − f

′2

f

)
f ′. (A4)

Inequality (A2) follows if,

f ′

(
f
′

f ′
f ′′ − f ′′

)
≤

2f
′
f ′
(
ff ′ − ff ′

)
ff
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which holds because of (A4) if,

(
f
′

f ′
f ′′ − f

′2

f

)
f ′ ≤

2f
′
f ′
(
ff ′ − ff ′

)
ff

f ′′

f ′
− f

′

f
≥

2
(
ff ′ − ff ′

)
ff

f ′′ ≤
f ′

f

[
2f ′ −

f

f
f
′
]

= 2
f ′2

f
− f ′ f

′

f
.

By Inequality (A3),

f ′′ ≤
f ′2

f
≤ 2

f ′2

f
≤ 2

f ′2

f
− f ′ f

′

f
.

Last inequality follows because in the assumed range, f ′ < 0 and f
′
> 0. Hence, the proof.
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