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Abstract 

The Virtual Generalizing Random Access Memory Weightless Neural Network (VG-

RAM WNN) is a type of WNN that only requires storage capacity proportional to the 

training set. As such, it is an effective machine learning technique that offers simple 

implementation and fast training – it can be made in one shot. However, the VG-RAM 

WNN test time for applications that require many training samples can be large, since it 

increases with the size of the memory of each neuron. In this paper, we present Fat-Fast 

VG-RAM WNNs. Fat-Fast VG-RAM WNNs employ multi-index chained hashing for 

fast neuron memory search. Our chained hashing technique increases the VG-RAM 

memory consumption (fat) but reduces test time substantially (fast), while keeping most 

of its machine learning performance. To address the memory consumption problem, we 

employ a data clustering technique to reduce the overall size of the neurons’ memory. 

This can be achieved by replacing clusters of neurons’ memory by their respective 

centroid values. With our approach, we were able to reduce VG-RAM WNN test time 

and memory footprint, while maintaining a high and acceptable machine learning 

performance. We performed experiments with the Fat-Fast VG-RAM WNN applied to 

two recognition problems: (i) handwritten digit recognition, and (ii) traffic sign 

recognition. Our experimental results showed that, in both recognition problems, our 

new VG-RAM WNN approach was able to run three orders of magnitude faster and 

consume two orders of magnitude less memory than standard VG-RAM, while 

experiencing only a small reduction in recognition performance.  

 

Keywords: WNN, VG-RAM, multi-index chained hashing, data clustering, traffic sign 

recognition, handwritten digit recognition. 
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1. Introduction 

Weightless Neural Networks (WNNs [1]), also called n-tuple classifiers [2], are 

powerful machine learning techniques [3] that offer fast training and test. In contrast 

with standard feed-forward Neural Networks [4], which store knowledge in the form of 

synaptic weights, WNN store knowledge mainly in Random Access Memory (RAM) 

inside the network’s neurons, which makes training and test fast. Their first version was 

proposed by Bledsoe and Browning in 1959 [5] and, after that, many other 

implementations were proposed (see [1] for a review). All implementations share the 

following two properties: (i) the synapses of WNN neurons do not carry weights (hence 

the denomination of these neural networks), and each of them only collect a single bit 

(zero or one) from the network’s inputs; and (ii) the network’s knowledge is stored in 

binary look-up tables inside the network’s neurons. It is important to note that the 

interconnection pattern between a layer of WNN neurons and its inputs stores 

knowledge as well, but typically a static knowledge, i.e. once created, the 

interconnection pattern does not change.  

In WNNs, the synapses of each neuron of a layer of neurons collect a vector of 

bits from the network’s input (or other neural layers of the network) and use this vector 

of bits as a key to access the neuron’s look-up table. During training, this access key is 

used to store an expected output, associated with the input vector, into the look-up table 

(supervised learning). During test, the input vector is used as an access key for reading 

one of the previously learned outputs from the look-up table. In its most simple 

implementation, the look-up table is a random access memory (RAM); therefore, 

training and test can be made in one shot. Training basically consists of storing the 

desired output value into the look-up table’s address that is associated with the neuron 

input vector, while test consists of retrieving the information stored in the look-up 

table’s address that is associated with the neuron input vector. However, in this simple 

implementation, the neuron memory size may become prohibitive if the neuron input 

vector is too large (the neuron memory size for this simple WNN is equal 2
p
, where p is 

the neuron input vector size). 

To overcome this limitation, many solutions have been investigated. A well-

known solution is the Wilkes, Stonham and Aleksander Recognition Device 

(WiSARD), which in algorithm form is identical to the n-tuple recognition algorithm of 

Bledsoe and Browning [5]. WiSARD overcomes this limitation by dividing the p-sized 

neuron input vector (collected by its synapses) in q segments. Each segment is used to 

address a specific RAM memory module of size 2
p/q

 – each one of these modules is 

responsible for recognizing a single class of input pattern of interest (see [6] for a 

detailed description of WiSARD and [7] for a shorter one). With this organization, the 

total amount of memory required per neuron is reduced from 2
p
 to q × 2

p/q
. This 

framework, and many variants, have been used for a large variety of applications, 

including indoor positioning systems [8], robot localization system [9, 10, 11], 

recognition of DNA chains [12], feature tracking in images [13], data clustering [14], 

and audio recognition [15]. However, given the constraints imposed by dividing the 

neuron input vector in q segments, the representation capacity of the network is reduced 

[16], which hinders its generalization ability [17].  As a result, the performance of 

applications using WiSARD may be lower than that obtained with related techniques, 

such as Virtual Generalizing Random Access Memory WNN (VG-RAM WNN, or VG-

RAM for short). This can be seen in [18], where the accuracy of a traffic sign 

recognition system with WiSARD and VG-RAM were compared.  
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The VG-RAM WNN is a type of WNN that only requires storage capacity 

proportional to the training set [7]. They have shown high classification performance for 

a variety of multi-class classification applications, including text categorization [19, 20], 

face recognition [21, 22, 23], and traffic sign detection and recognition [18, 24, 25]. 

During training, VG-RAM neurons store pairs of associated input-output patterns, i.e. 

input binary vectors and associated outputs, instead of only the output, as mentioned 

above for the WNNs. Thanks to their training method, VG-RAM’s memory footprint is 

optimized, and its training performance in terms of time is maintained. One 

disadvantage of VG-RAMs, however, is their test time, which depends on the size of 

their neurons’ memory, i.e. the number of trained input-output pairs. During test, VG-

RAM’s neurons compute their outputs by searching for the learned input-output pair 

whose input is the closest to the current neuron’s input – the output of this input-output 

pair is used as the neuron’s output. The search for the closest pair is sequential, which is 

costly in terms of time if there are many training samples. 

To cope with this problem, in this paper we present a Fat-Fast version of VG-

RAM WNNs. Our Fat-Fast VG-RAMs employ multi-index chained hashing for fast 

searching in the neuron’s memory. Even though our chained hashing technique 

increases the VG-RAM memory’s consumption (fat), it reduces test time substantially 

(fast), while keeping most of the machine learning performance of VG-RAM. To 

address the increase in memory consumption of the Fat-Fast VG-RAMs, we have 

employed data clustering techniques for reducing the overall size of their neurons’ 

memory (a preliminary study of memory clustering techniques for VG-RAM is 

presented in [26]). With this approach, we were able to reduce the VG-RAM test time 

and memory footprint, while maintaining a high and acceptable machine learning 

performance. To validate the Fat-Fast VG-RAM, we performed experiments with two 

machine learning problems: handwritten digit recognition and traffic sign recognition. 

Our experimental results showed that, in both problems, our new VG-RAM approach 

was able to run three orders of magnitude faster and consume two orders of magnitude 

less memory than standard VG-RAM, while experiencing only a small reduction in 

classification performance. 

This paper is organized as follows. After this introduction, in Section 2, we 

describe the VG-RAM WNN and the techniques employed to improve VG-RAM’s test 

time and to alleviate memory consumption. In Section 3 we describe the experimental 

methodology, in Section 4 our experimental results and, in Section 5, we present an 

overall discussion of this work. Finally, we conclude and point directions for future 

work in Section 6. 

 

2. Framework 

Section 2.1 presents our VG-RAM’s architecture designed to solve image-related 

classification problems by employing a committee of VG-RAM units, called neurons, 

which are individually responsible to represent the binary patterns extracted from the 

input and their corresponding label. Those neurons are organized in layers and can also 

serve as input to further layers in the architecture. As a machine learning method, its use 

consists of a training phase to store pairs of inputs and labels, which will be compared 

to new inputs in the testing phase. Considering that its testing-time increases linearly 

with the number of training samples, it is proposed in Section 2.2 a faster neuron 

memory search leveraged by an indexed data structure with sub-linear runtime for 

uniformly distributed patterns. Unfortunately, this data structure requires a significant 

amount of additional memory to index the memory of each VG-RAM neuron. Thus, to 
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https://www.researchgate.net/publication/221079487_Face_Recognition_with_VG-RAM_Weightless_Neural_Networks?el=1_x_8&enrichId=rgreq-006e954e-c0f0-49e9-a348-3067a689c4c9&enrichSource=Y292ZXJQYWdlOzI4ODkxOTExOTtBUzozMTQyMzE3NzIxMjMxMzZAMTQ1MTkzMDEwMDU1NQ==
https://www.researchgate.net/publication/265866169_Facial_access_control_based_on_VG-RAM_weightless_neural_networks?el=1_x_8&enrichId=rgreq-006e954e-c0f0-49e9-a348-3067a689c4c9&enrichSource=Y292ZXJQYWdlOzI4ODkxOTExOTtBUzozMTQyMzE3NzIxMjMxMzZAMTQ1MTkzMDEwMDU1NQ==
https://www.researchgate.net/publication/261468053_Traffic_sign_recognition_with_VG-RAM_Weightless_Neural_Networks?el=1_x_8&enrichId=rgreq-006e954e-c0f0-49e9-a348-3067a689c4c9&enrichSource=Y292ZXJQYWdlOzI4ODkxOTExOTtBUzozMTQyMzE3NzIxMjMxMzZAMTQ1MTkzMDEwMDU1NQ==
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compensate this memory overhead, it is presented in Section 2.3 a clustering method 

over the VG-RAM neuron’s memory to compress the number of representative input 

patterns associated to each label in each neuron memory. 

 

2.1 VG-RAM 

The architecture of VG-RAM WNNs comprises neuron layers with many neurons 

connected to Input Layers (e.g. images or other neuron layers) through a set 

S = {s1, …, sp} of synapses. Since VG-RAM neurons generate outputs in the form of 

label values, t, the output of a neural layer can also function as an image, where each 

pixel is the output of a neuron.  

The synapses of a VG-RAM neuron are responsible for sampling a binary vector 

I = {i1, …, ip} (one bit per synapse) from the input layer according to the neuron’s 

Receptive Field. Each bit of vector I is computed using a synapse mapping function that 

transforms non-binary values in binary values. Individual neurons have private 

memories, i.e. look-up tables, that store sets L = {L1, …, Lj, …, Lm} of learned binary 

input vectors, I, and corresponding output labels, t, i.e. Lj = (Ij, tj) (input-output pairs). 

An illustration of a single layer of such a network is presented in Figure 1. 

 

 

Figure 1: Illustration of a single layer VG-RAM WNN. The VG-RAM WNN Neural Layer comprises 

many neurons that are connected to the Input Layer (e.g. an image) by a set of Synapses S = {s1, …, sp}. 

These synapses sample binary input vectors I = {i1, …, ip} from the Input Layer according to the 

Receptive Field of each neuron. The bits of these vectors are computed using a synapse mapping function 

that transforms non-binary values in binary values. Each neuron of the Neural Layer has a private 

memory (Look-up Table) of size m that stores a set L = {L1, …, Lj, …, Lm} of Lj = (Ij, tj) input-output 

pairs learned during training. Each neuron shows an output activation value, t, read from its memory 

(Look-up Table column t and Neural Layer colored circles). This value corresponds to the output of the 

input-output pair, j, whose input Ij is the closest to the current binary input vector I extracted by the 

neuron’s synapses during testing phase. 

 

VG-RAMs operate in two phases: a training phase, in which neurons learn new 

pairs of binary input vectors and corresponding output labels (input-output pairs); and a 

testing phase, in which neurons receive binary input vectors and respond with the label 

values associated with the closest binary input vectors in the input-output pairs 

previously learned.  
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More specifically, in the training phase, each neuron includes a new input-output 

pair, or line L, in its local memory as follows. Firstly, an input image is set in the Input 

Layer of the VG-RAM (Figure 1). Secondly, the corresponding Neuron Outputs are set 

in the Neural Layer of the VG-RAM (expected output value t of each neuron for the 

input image set). Finally, one input-output pair (binary input vector I and corresponding 

output label t) is extracted for each neuron and is added into its memory as a new line 

L = (I, t). In the test phase, each neuron computes an output label t as follows. Firstly, 

an input image is set in the Input Layer of the VG-RAM. Secondly, a binary input 

vector I is extracted for each neuron. Finally, each neuron searches its memory to find 

the input-output pair Lj = (Ij, tj) whose input Ij is the closest to the extracted input I, and 

sets the corresponding Neuron Output of the Neural Layer with the output value tj of 

this pair. In case of more than one pair with an input at the same minimum distance of 

the extracted input, the output value is randomly chosen among them. The memory 

search is sequential and the distance function is the Hamming distance. 

The Hamming distance between two binary patterns can be efficiently computed 

at machine code level in current 64-bit CPUs and GPUs of personal computers using 

two instructions: one instruction to identify the bits that differ in the two binary patterns, 

i.e. bit-wise exclusive-or; and another instruction to count these bits, i.e. population 

count instruction.  

VG-RAM WNNs scores high machine learning performance within an acceptable 

response time for many daily-life applications with (i) not a very large number of 

training examples or (ii) not requiring real-time performance. However, lately, the 

amount of training data has grown together with the need for real-time machine learning 

applications. Given the architecture of this type of network, two major limitations arise 

when dealing with applications with large training datasets: test time and memory 

usage. The first is associated with the search for the closest pattern, which is performed 

sequentially in the memory of each neuron. The second is associated with the pairs of 

examples that have to be kept in memory. These hinder not only the wide use of VG-

RAM with real time applications, but also its use with devices with limited amount of 

memory, such as low-power embedded systems [26]. Both problems are related to the 

size of L, which may slow-down the sequential search and increase the memory usage. 

The size of L is proportional to the number of synapses p and the number of samples m, 

where the latter is more likely to grow in future relevant applications. 

 

2.2 Faster Neuron Memory Search with Fat-Fast VG-RAM 

The search for the nearest input-output pair Lj = (Ij, tj) whose input Ij is the closest 

to the neuron input vector I is a k-nearest neighbor search in a hamming space, where k 

is equal to 1. To efficiently address this problem at bit level and return the exact k 

nearest neighbors, Narouzi et. al [27, 28] employed a method where the searched pattern 

I is divided in sub-patterns that, in turn, are used to index multiple hash tables (one table 

per sub-pattern). They have shown that a good compromise between access speed and 

memory usage can be found for the hash tables. Following in the same direction, this 

paper brings the multiple hash tables idea into the VGRAM WNN in order to speed up 

the test phase. Differently from the approach mentioned above, we are not restricted to 

an exact match of the nearest neighbor. Instead, we are interested on a good trade-off 

between classification accuracy and test time, when considering real world applications. 

In our approach, multiple hash tables are created for the memory of each VG-

RAM neuron considering the binary space defined by its input vector I; we named these 
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modified VG-RAM neurons Fat-Fast VG-RAM neurons. Figure 2 gives an overview of 

our multi-index hash approach to the neuron memory architecture.  

 

 

Figure 2: Fat-Fast VG-RAM neuron memory. A Fat-Fast Neuron X reads, via its synapses, the binary 

input vector I. The figure illustrates the process of mapping an input vector, I, of size equal to p bits, into 

buckets, Bk,v, that stores references to the set of memory lines that have to be inspected during memory 

search (see arrows above). The input vector I is firstly divided into sub-vectors, V = {V1, …, Vk …, Vh}, 

where Vk = {0, 1, …, v,…, 2
p/h

}. These sub-vectors are used to address the multi-index hash table, 

H = {H1, … Hk …, Hh}. Each address, Vk, points to a bucket Bk,v of lines, L, that should be considered in 

the search. Note that this illustration uses binary codes, Vk, of 3 bits only for clarity. 

 

Since we are working with bits, a very effective hash function Ψ(I) can be created 

by simply dividing the binary input vector I = {i1, …, ip} into h binary segments, i.e. 

binary sub-vectors V = {V1, …, Vk …, Vh}. Each binary sub-vector comprises p/h bits 

regularly sampled from I, i.e. Vk = {0, 1, …, v,…, 2
p/h

}. V is used as index to the multi-

index hash table H = {H1, … Hk …, Hh}, where 1 ≤ h ≤ p. Each Vk is directly used as an 

address of the respective hash table, Hk, of H. Each hash table Hk has 2
p/h

 unique 

buckets, Bk,v, containing |Bk,v| indexes to memory lines. Buckets are necessary because 

several learned memory lines may share the same sub-vector code value, i.e., may have 

conflicting Vk addresses (e.g., see conflicting lines L1 and L3 of bucket B1,0 in Figure 2). 

Buckets can store references to up to m memory lines that have conflicting addresses, 

where m is the number of learned input-output pairs, i.e. |L|. An efficient 

implementation of buckets can be achieved with arrays of variable size.  

To train a Fat-Fast neuron, it is necessary to fill its memory with input-output 

pairs Lj = (Ij, tj) following the same training procedure of a standard VG-RAM. In 

addition, it is necessary to populate the multi-index hash table, H, with references to 

each one of the learned pairs. For that, the binary codes V are extracted from Ij using 

Ψ(Ij), and one reference to Lj is added to the respective bucket of each hash table of H.  

During test, fast search for the nearest neighbor of a binary input vector I can be 

performed for each Fat-Fast VG-RAM neuron as follows. Firstly, the function Ψ(I) is 

used to retrieve V. Subsequently, each Vk is used as an address to the bucket Bk,v. 

Finally, the input vector Ij of each memory line Lj = (Ij, tj) of each selected bucket is 

examined as a candidate for the nearest input to the neuron input vector I. Note that, all 

candidates are compared with I using the Hamming distance between the full bit 

vectors, i.e. the p bits of I and Ij. The Fat-Fast VG-RAM output is the label tj of the 

nearest line, Lj. If more than one candidate line is at the same closest distance to I, the 

neuron output is randomly selected among them.  

It may occur that the number of lines in a selected bucket is zero. In these cases, 

no memory line is considered for that bucket. If none of the h selected buckets has 

candidate lines, the neuron output is taken from a random line of memory. On the other 
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hand, it may also occur that there are too many lines in one or more selected buckets. In 

such cases, the searching time could increase substantially. Hence, in these cases, a 

maximum of r candidates in each large bucket (bucket size bigger than r) is randomly 

selected for comparison with the input vector I, where r is a Fat-Fast parameter.  

Indeed, the parameter r is required to be tuned manually and accordingly to each 

particular application, i.e., one needs to balance the trade-off between accuracy and 

runtime, conditioned to the amount of available RAM. As to be discussed, a higher 

parameter r increases the accuracy close to VG-RAM levels, but at the same time slows 

down the system, and vice versa. The multi-index hash tables of Fat-Fast VG-RAM 

WNN neurons are only used as a mean to reduce the number of memory lines to be 

examined. In practice, converting the vector I into V can be costly if performed 

inappropriately. In order to avoid unnecessary processing, in our Fat-Fast 

implementations, we kept p/h equal to the number of bits used in the basic types of 

common programming languages, which facilitates retrieving the address Vk of each 

bucket. Yet, it is possible to determine an optimal p/h ratio that minimizes the total 

number of collisions inside the multi-index hash [27, 28]. Thus, given a fixed number of 

synapses p, the optimal value for h is log2(m), where m is the total number of training 

examples. But here we consider p/h fixed because, otherwise, it could affect the runtime 

measurements given that h is computed based on different values of m. 

The search time of each neuron in standard VGRAM WNN is O(m) because the 

hamming distance has to be calculated for every example in the memory. The search 

time with the multi-index hash tables approach is at the most O(h×r) because only up to 

r lines per hash table will have the hamming distance computed. For applications with 

large number of training examples, the gain might be huge for small r because h << m. 

Since we are interested in the overall machine learning power of the network, it is 

important to know the effect of changes in r. The larger the value of r is, the more the 

search for the nearest neighbor approximates the exact search. In the other hand, the 

smaller the value of r is, the more is the impact on machine learning performance, since 

some good neuron memory lines could be left out of the hamming distance comparison. 

 

2.3 Memory Size Reduction 

Our Fat-Fast VGRAM WNN re-organizes the neurons’ memory using a special 

multi-index hash system that increases the network’s memory footprint in exchange for 

faster test time. To tackle the memory size increase issue, we propose the use of data 

clustering techniques to reduce the overall size of the neurons’ memory [26]. Assuming 

that the memory of each neuron has a large amount of redundant or irrelevant 

information, we should be able to accomplish memory reduction by carefully 

eliminating input-output pairs of the neurons’ memory, L. This is achieved by using a 

clustering algorithm to find the most relevant input-output pairs in the memory of each 

neuron.  

From a number of clustering techniques [29, 30, 31, 32], and considering the fact 

that the clustering procedure needs to be done many times for each neuron (see below), 

we decided to use k-Means [32] due to its simplicity and efficiency. The k-Means 

algorithm partitions a set I of |I| vectors into k clusters, k < |I|, where the parameter k is 

set a priori. This iterative partitioning scheme minimizes the sum, over all clusters, of 

the within-cluster sums of point-to-cluster-centroid distances. For our experiments, we 

used the Hamming distance to define the centroids of each cluster.   

Our memory reduction framework is illustrated in Figure 3. Initially, the original 

memory of each neuron, containing m lines, is sorted according to its output labels t (i.e. 
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same handwritten digit or traffic sign of same type). The result is a set of lines ordered 

according to each output type, e.g. the set of lines L
1
 = { , …, } for outputs of type 

equal to label t = 1, L
2
 = { , …, } for outputs of type equal to label t = 2, until  L

l
 = 

{ , …, } for outputs of type equal to label t = l.  Subsequently, we apply k-Means 

separately to each set of lines L
1
, L

2
, …, L

l
, partitioning each one of them into k 

clusters. Each cluster has a centroid C that is equivalent to a memory line L. k-Means 

computes the set C
1
 = { , …, } of centroids from the lines of set L

1
, where k1 < m1 

and m1 = |L
1
|; the set C

2
 = { , …, } of centroids from the lines of set L

2
, where k2 

< m2; and so on until the set C
l
 = { , …, }, where kl < ml. The centroid sets C

1
, C

2
, 

…, C
l
 become the new memory entries for the respective neuron (see Figure 3). This 

process is repeated for all neurons, i.e. the clustering process is performed n × l times. 

As a result, the number of entries in the network memory is reduced according to the 

specified number of clusters, kj, of each label type j. To maintain the original memory 

balance between entries for the different output types, we use different values of k for 

each label type, i.e. kj = mj × rl, where 0 < rl < 1 is the memory retention level – the 

lower the rl, the higher the memory reduction (rl expresses the amount of memory that 

remains after memory reduction). As a general rule, the parameter rl can be chosen as 

closest to one as possible, regarding the amount of available memory. We believe that 

this formulation, which determines the number of clusters k, is an important property of 

our approach since it allows changing the memory compression level depending on the 

application requirements. For instance, this approach could be used for resource-

restricted applications by appropriately selecting the parameter rl that best fit the 

hardware requirements. For further discussion about tuning the parameter rl the 

interested reader can refer to [26], where the parameter rl is studied under a more 

resource-restricted settings. 

 

 

Figure 3: Memory reduction framework. The original memory of each neuron, containing m lines, is 

treated as a set of points in a multi-dimensional space. First, the neuron’s memory is grouped according to 

its output type t. Thereafter, each group is clustered separately using k-Means, where k is defined based 

on the trade-off between accuracy x runtime.  At the end, the resulting centroids for each output type 

group become the new entries for the reduced memory, substituting the original memory information. 

 

It is important to note that our approach changes the contents of the neurons’ 

memory. It can even create a new entry that was not part of the learning process. We see 

this as an advantage of our framework since it is able to summarize the memory 

information according to the data. Please note that the input patterns Ij = {i1, …, ip} of 
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all centroids Cj = (Ij, tj) must be binary, therefore, the centroids’ elements need to be 

rounded to values 0 or 1. 

 

3. Experimental Methodology 

We implemented two recognition systems for evaluating the Fat-Fast VG-RAM 

WNN: (i) a handwritten digit recognition system, and (ii) a traffic sign recognition 

system. We performed experiments with both systems using either Fat-Fast neurons or 

standard VG-RAM neurons. For that, we used well known datasets of handwritten 

digits and traffic signs, and employed well defined metrics for performance evaluation. 

As our systems have parameters that need to be properly adjusted, we used a parameter 

tuning procedure for each system before the experimental evaluation. 

All experiments were run in a Dell Precision R5500 machine, with 2 Intel Xeon 

processors of 2.13 GHZ, and 24 GB of DDR3 RAM of 1.33 GHZ, running Ubuntu 

12.4LTS. The recognition systems were written in C, and compiled with gcc 4.6.3 with 

maximum optimization and using OpenMP (the main loops of the code were annotated 

with proper OpenMP directives). We computed the Hamming distances by doing one 

xor operation for every 32 bits, followed by a pop count to count the number of 1s – we 

used the built-in gcc function __builtin_popcountll for this purpose. 

 

3.1 Handwritten Digit Recognition System  

The handwritten digit recognition system employs a single layer VG-RAM WNN 

architecture where each neuron has a set of synapses that are connected to the network’s 

Input Layer (it is identical to the architecture of Figure 1). The synaptic interconnection 

pattern of each neuron forms a Receptive Field that follows a random two-dimensional 

Gaussian distribution of synapses equivalent to the one used in the feature-based neural 

network architecture described in [21], where the center of the Receptive Fields of the 

neurons are linearly distributed along the Input Layer. The Gaussian synaptic 

interconnection pattern mimics biological synaptic interconnection patterns observed in 

many classes of biological neurons [33]; it is randomly created when the network is 

built and it does not change afterwards. 

The WNN synapses can only get a single bit from the network’s Input Layer. 

Thus, in order to allow our WNN to deal with images, in which a pixel may assume a 

range of different values, we use minchinton cells [34]. Each neuron’s synapse forms a 

minchinton cell with the next (the last one forms a minchinton cell with the first one). 

The type of the minchinton cell we have used returns 1 (one) if the synapse is connected 

to an element of the Input Layer whose value is larger than the value of the element to 

which the next synapse is connected; otherwise, it returns zero. 

The images of handwritten digits are transformed before being copied to the 

network’s Input Layer. They are: (i) scaled to fit into the network’s input; and (ii) 

filtered by a Gaussian filter to smooth out artifacts produced by the scaling. During 

training, a handwritten digit image is transformed (scaled and filtered), the pixels of the 

transformed image are copied to the network’s Input Layer, and all neurons’ outputs are 

set to the value of the label (class id) associated with the image. All neurons are then 

trained to output this label with this input image. This procedure is repeated for all 

images of handwritten digits in the training dataset. During testing, the transformed 

image of a handwritten digit is copied to the network’s Input Layer and all neurons’ 

outputs are computed. The number of votes for each label is calculated as the sum of the 
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neurons outputting that label; the network’s output is given by the top ranked label. This 

procedure is repeated for all images of handwritten digits in the test dataset.  

 

3.2 Traffic Sign Recognition System  

The traffic sign recognition system also employs a single layer VG-RAM 

architecture with the synaptic interconnection pattern of each neuron following a two-

dimensional Gaussian distribution. However, the center of the Receptive Field of the 

neurons is not linearly distributed along the input. Instead, it is centered in the position 

of the Input Layer given by the inverse log-polar function of the neuron’s position in the 

neural layer (see [24] for details). The VG-RAM synapses collect binary input vectors 

from the network’s Input Layer using minchinton cells  [34].  

The traffic sign images are transformed before being copied to the network’s 

Input Layer. They are: (i) equalized to improve contrast; (ii) cropped to keep only the 

region of interest (traffic sign region); (iii) translated to bring the region of interest’s 

center closer to the input image’s center; (iv) scaled to fit into the network’s Input 

Layer; (v) filtered by a Gaussian filter to smooth out artifacts produced by 

transformations; and (vi) filtered by mask filters to yield grayscale images representing 

each one of the RGB color channels. In contrast to the system proposed in [24], only the 

grayscale image representing the channel with the highest accuracy (the green channel) 

was chosen to run most of the experiments presented here.  

Training and test procedures were identical to those used in [24], except that, 

during test, each image is tested only once (see [24] for details).  

 

3.3 Datasets 

We compared the performance of the Fat-Fast VG-RAM WNN against that of the 

standard one using two datasets: (i) the modified National Institute of Standards and 

Technology (MNIST) handwritten digit dataset [35], and (ii) the German Traffic Sign 

Recognition Benchmark dataset (GTSRB) [36]. The MNIST handwritten digit dataset is 

one of the most important benchmark datasets for the machine learning community until 

today. It includes thousands of segmented grayscale-image samples for each digit class, 

which constitutes a tough challenge for our new VG-RAM approach improving testing-

time whilst maintaining a good compromise with accuracy. The same is true for the 

GTSRB dataset, which includes hundreds of non-segmented colored-image samples for 

each traffic sign class. Even though it is quite recent, it is a well-established benchmark 

dataset in the machine learning community. Although our new VG-RAM approach can 

be applied to other different machine learning problems, we are mainly interested in 

image-based classification problems with larger datasets and these two represent very 

well this type of problem. 

 

3.3.1 MNIST Handwritten Digit Dataset 

The MNIST dataset (http://yann.lecun.com/exdb/mnist/) [35] is composed of 

70,000 grayscale images of handwritten digits. It is divided in two parts, a 60,000-

images training dataset and a 10,000-images test dataset. These images were size 

normalized to fit into a 20×20 box and centered in a 28×28 image by computing the 

center of mass of the pixels and translating the image to position this point at the center 
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of the 28×28 image. Figure 4 shows examples of handwritten digits randomly chosen 

from the MNIST training dataset. 

 

 

 Figure 4: Examples of handwritten digits of the MNIST dataset [35]. 

 

3.3.2 GTSRB Dataset 

The GTSRB (http://benchmark.ini.rub.de/) [36, 37] consists of 51,839 colored 

images of German traffic signs classified into 43 classes. These images contain a border 

of about 10% around the actual traffic sign (at least 5 pixels) and the traffic sign is not 

necessarily centered within the image. Image sizes vary between 15×15 and 250×250 

pixels. The GTSRB is divided into a training dataset that contains 39,209 images, and a 

test dataset with 12,630 images. Figure 5 shows examples of the 43 traffic sign classes, 

which were randomly selected from the GTSRB training dataset. 

 

3.4 Metrics 

We compare the performances of the standard VG-RAM against that of Fat-Fast 

VG-RAM in terms of memory usage, classification precision, and classification test 

time. We measured the memory usage in bytes with the following equations:  

 

Mvg-ram = (p / b + sizeof(t)) × m × n (1) 

Mfat-fast = Mvg-ram + h × (2
p/h

 + m) × sizeof(m) × n (2) 

 

In Equations (1) and (2), p is the number of synapses, sizeof(.) computes the size 

in bytes of its argument, m is the number of training samples, n is the number of 

neurons, and h is the number of hash tables of H. As Equation (1) shows, the memory 

consumption of the standard VG-RAM, Mvg-ram, is equal to the number of bytes 

necessary to store one input-output pair, L = (I, t), where I requires p / b bytes and t 

requires sizeof(t) bytes (in our experiments, t is represented by an integer, i.e. 

sizeof(t) = 4 bytes; and b is the number of synapses represented by a byte), times the 

number of learned pairs, m, times the number of neurons, n. The memory consumption 

of the Fat-Fast VG-RAM, Equation (2), is equal to Mvg-ram plus the number of bytes 

necessary to store the multi-indexed hash table H, which can be inferred by inspecting 

Figure 2. 

We measured the classification precision by counting the number of hits in the test 

dataset and dividing it by the size of this dataset. The time spent in classification task – 

i.e. finding the nearest pattern in memory – was estimated by dividing the time it took to 

classify all samples of test dataset by the number of samples of this dataset. For each 

classification system implemented, we computed classification time while using 

standard and Fat-Fast VG-RAM neurons. To compare the performances in terms of time 
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of these two cases, we computed the speedup obtained with the use of Fat-Fast neurons 

dividing the classification time with standard by the classification time with Fat-Fast 

VG-RAM neurons.  

 

 

Figure 5: Examples of the 43 traffic sign classes of the GTSRB dataset [36, 37]. 

 

3.5 Tuning Parameter Selection 

The neural architecture employed in the Handwritten Recognition System has four 

parameters: (i) the dimensions of the Neural Layer (Figure 1); (ii) the dimensions of the 

Input Layer; (iii) the number, p, of synapses per neuron; and (iv) the standard deviation, 

σ, of the Gaussian synaptic interconnection pattern of the neurons [21]. We examined 

networks with: Neural Layer dimensions equal to 2×2, 4×4, 8×8, 16×16, 32×32, and 

64×64 neurons; Input Layer with always twice the size of the Neural Layer; number of 

synapses per neuron, p, equal to 8, 16, 32, 64, 128, 256 and 512 synapses; and σ equals 

to 1, 2, 4, 6, 8, and 10.  

For tuning the architecture, we randomly selected 15,000 samples from the 

training dataset, and divided it into 10,000 training samples and 5,000 test samples. As 

Figure 6 shows, the classification performance of the system grows with the number of 



 

13 

neurons and synapses per neuron, and reaches a plateau at about 32×32 neurons and 128 

synapses for all σ values tested. The performance also grows with σ and reaches a 

plateau at about 10. Considering these results, we selected the number of neurons equal 

to 32 × 32; the number of synapses per neuron equal to 128; the size of the network 

input equal to 64 × 64; and the σ equal to 10 pixels. 

 

  
(a) σ equal to 1 (b) σ equal to 2 

  
(c) σ equal to 4 (d) σ equal to 6 

  
(e) σ equal to 8 (f) σ equal to 10 

Figure 6: Handwritten digit recognition system parameter tuning. (a) Classification performance for σ 

equal to 1. (b) Classification performance for σ equal to 2. (c) σ equal to 4. (d) σ equal to 6. (e) σ equal to 

8, (f) σ equal to 10. 

 

We have set the traffic sign recognition system’s parameters with the same values 

presented in [18], i.e.: 51 × 27 neurons, 64 synapses per neuron, and standard deviation 

σ = 7. For more details regarding the traffic sign recognition system and its parameters 

tuning please refer to [18]. 

 

4. Results 

Herein are presented the results obtained according to the experimental 

methodology described in the previous section.  
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4.1 Fat-Fast VG-RAM Memory Consumption 

The additional memory consumption imposed by the Fat-Fast neuron can be 

visualized in Table 1 (see equations (1) and (2)). In Table 1, the first column describes 

the classification system under analysis, the intermediate columns are the parameters of 

equations (1) and (2) for each system, and the last column is the memory consumption 

of the system. To take advantage of the ability of current machines to handle 8-bit and 

16-bit addresses, in our implementations, the sub-vector Vk size (p/h) was restricted to 

these two sizes. As Table 1 shows, the use of Fat-Fast neurons increases memory 

consumption by more than 400% for the handwritten digit recognition system 

(4,938/1,172 ≈ 421%; and 5,095/1,172 ≈ 435%), and more than 300% for the traffic 

sign recognition system (6,807/1,854 ≈ 367%; and 5,702/1,854 ≈ 308%). It is 

interesting to note that the memory consumption of the Fat-Fast implementations with 

sub-vector Vk size (p/h) equal to 8 bits or 16 bits, either increase memory consumption 

with the value of p/h (for the Handwritten recognition system), or decrease with the 

value of p/h (for the Traffic Sign recognition system). This is expected, however, for 

these values of the ratio p/h, and number of training samples (please examine equation 

(2)). 

 

Table 1: Memory consumption of Fat-Fast and standard VG-RAM neurons in the Handwritten and the 

Traffic Sign recognition systems. 

Recognition 

System Type / Neuron 

Type / Value of p/h 

Nu

mber of 

Synapses 

(p) 

S

ize of 

int in 

Bytes 

Numbe

r of Trained 

Samples (m) 

Nu

mber of 

Neurons 

(n) 

Nu

mber of 

Hash 

Tables (h) 

Memo

ry Size in 

MB 

Handwritten / 

VG-RAM /  

128 4 60000 102

4 
 1172 

Traffic Sign / 

VG-RAM /  

64 4 117627 137

7 
 1854 

Handwritten / 

Fat-Fast VG-RAM / 8-

bits 

128 4 60000 102

4 

16 4938 

Handwritten / 

Fat-Fast VG-RAM / 16-

bits 

128 4 60000 102

4 

8 5095 

Traffic Sign / 

Fat-Fast VG-RAM / 8-

bits 

64 4 117627 137

7 

8 6807 

Traffic Sign / 

Fat-Fast VG-RAM / 16-

bits 

64 4 117627 137

7 

4 5702 

 

4.2 Fat-Fast VG-RAM Precision and Speedup 

In this section, we evaluate the classification precision and speed up of our 

systems implemented with Fat-Fast neurons, against those of our systems implemented 

with standard VG-RAM neurons. 

 

4.2.1 Handwritten Digit Recognition System 

The bars in the graph of Figure 7 show the precision of standard and Fat-Fast VG-

RAM on the classification of the MNIST test dataset for p/h = 16 bits. There is one bar 

for standard VG-RAM, and several bars for Fat-Fast VG-RAM, each for a different 
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value of the parameter r (see Section 2.2). The precision value is denoted in the left 

vertical axis. As the bars in the graph of Figure 7 show, Fat-Fast neurons causes only a 

small reduction in the classification precision – less than 1% (in about 97%) – for r 

varying from 30 to 5. With r = 1, the loss in precision is equal to 1.87%.  

The curve in the graph of Figure 7 shows the speedup obtained with Fat-Fast 

neurons; the speedup value is denoted in the right vertical axis. As the curve in Figure 7 

shows, for large values of r the speedup is modest. However, for r = 5 the speed is about 

40 and for r = 1, higher than 150.  

 

 

 

Figure 7: Handwritten Recognition System performance. Bars: Classification precision for 

implementations with standard VG-RAM, and Fat-Fast VG-RAM with different values of r for p/h = 16 

bits. Curve: Speedup of the Fat-Fast implementation for different values of r. 

 

Figure 8 shows our experimental results for the Fat-Fast VG-RAM 

implementation with sub-vector Vk size (p/h) equal to 8 bits. A comparison of the 

results presented in Figure 7 and Figure 8 shows that the p/h = 16 bits version is more 

accurate than the p/h = 8 bits version, especially for r = 1. In addition, the p/h = 16 

version is roughly 2 times faster than the p/h = 8 bits version. By comparing the amount 

of memory consumed by both Fat-Fast architectures (see Table 1), it is possible to see 

that the p/h = 16 version consumes about the same amount of memory of the p/h = 8 

version (5,095 MB versus 4,938 MB). Considering these results, the p/h = 16 version is 

much preferred. These results highlight the importance of the p/h parameter. It is 

important to note, however, that increasing this parameter to, say, p/h = 32, would not 

be viable for current machines, since this would imply hash tables, Hk, of 2
32

 entries 

each. 
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Figure 8: Handwritten Recognition System performance. Bars: Classification precision for 

implementations with standard VG-RAM, and Fat-Fast VG-RAM with different values of r for p/h = 8 

bits. Curve: Speedup of the Fat-Fast implementation for different values of r. 

 

4.2.2 Traffic Sign Recognition System 

The bars in the graph of Figure 9 show the precision of standard and Fat-Fast VG-

RAM systems on the classification of the GTSRB test dataset for p/h = 16 bits. We 

show precision bars for all three RGB-color channels (see Section 3.2). The bars in the 

graph are grouped by neuron type and also by the parameter r for the Fat-Fast system. 

There is one group of bars for the standard VG-RAM system, and several groups of bars 

for the Fat-Fast VG-RAM system, each group of the later for a different value of the 

parameter r (see Section 3). The precision value is denoted in the left vertical axis. As 

the bars in the graph of Figure 9 show, Fat-Fast neurons causes only a small reduction 

in the classification precision – about 1% for all three color channels – for r varying 

from 30 to 5.  

The curve in the graph of Figure 9 shows the speedup obtained with Fat-Fast 

neurons; the speedup value is denoted in the right vertical axis. As the curve in Figure 9 

shows, for large values of r, the speedup is about 50 for all channels, and for r = 5, the 

speedup is about 150. For r = 1, the speedup is higher than 550.  

 

 

0

20

40

60

80

100

120

140

160

180

90
91
92
93
94
95
96
97
98
99

100

C
la

ss
if

ic
a
ti

o
n

 S
p

ee
d

 U
p

C
la

ss
if

ic
a
ti

o
n

 P
re

ci
si

o
n

 [
%

]

Precision Speed Up



 

17 

 

Figure 9: Traffic Sign Recognition System performance. Bars (blue, green, and red channels): 

Classification precision for implementations with standard VG-RAM, and Fat-Fast VG-RAM with 

different values of r for p/h = 16 bits. Curve: Speedup of the Fat-Fast implementation for different values 

of r. 

 

Figure 10 presents the performance of the Fat-Fast VG-RAM WNN with p/h = 8. 

A comparison of the results in Figure 9 and Figure 10 shows that the p/h = 16 bits 

version is more accurate than the p/h = 8 bits version, especially for r = 1. In addition, 

the p/h = 16 version is roughly 2 times faster than the p/h = 8 version. 

Overall, the experimental results obtained with Fat-Fast neurons in both 

classification systems show the same behavior, which suggests that equivalent results 

should be expected when using Fat-Fast neurons in other applications. 

 

Figure 10: Traffic Sign Recognition System performance. Bars (blue, green, and red channels): 

Classification precision for implementations with standard VG-RAM, and Fat-Fast VG-RAM with 

different values of r for p/h = 8 bits. Curve: Speedup of the Fat-Fast implementation for different values 

of r. 
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4.3 Performance of Fat-Fast VG-RAM with Memory Reduction 

In the next experiments, we evaluated the combined impact of using Fat-Fast VG-

RAM neurons and the VG-RAM memory reduction technique presented in Section 2.3 

on VG-RAM performance. We measured Fat-Fast precision and speedup for different 

memory retention levels, for sub-vector Vk size (p/h) equal to 16 and bits 8, and for r 

equal to 30 and 1. We also examined the impact of memory reduction on standard VG-

RAM WNN.  

 

4.3.1 Handwritten Digit Recognition System 

The bars of the graph of Figure 11 show the precision of the standard and Fat-Fast 

VG-RAM implementations of our handwritten digit recognition system for different 

memory retention levels, rl. We examined five memory retention levels: rl = 0.25%, 

rl = 0.5%, rl = 1%, rl = 10% and, when no memory reduction has been made, rl = 100%. 

The Fat-Fast bars are for a system with p/h = 16 bits, and r = 30. As can be seen in 

Figure 11, the impact on precision of a reduction to 10% of the original memory size (or 

training set size, m; see Section 2.3) is very small for both, standard and Fat-Fast VG-

RAM systems; a reduction to 1% of the original memory has still a small impact of on 

precision – a decrease of about 1%. Larger reduction levels produce higher impact on 

precision. Please note that the reduction steps employed have different sizes (rl = 100% 

 rl = 10%, 10-times reduction step; rl = 10%  rl = 1%, 10-times reduction step; rl = 

1%  rl = 0.5%, 2-times step; rl = 0.5%  rl = 0.25%, 2-times step). 

The curves of the graph of Figure 11 show the speedups our handwritten digit 

recognition systems for different memory retention levels, rl. As these curves show, Fat-

Fast presents better performance only for rl > 10%. For larger reductions in neuron 

memory size (rl < 10%), standard VG-RAM presents better speedup and precision than 

Fat-Fast VG-RAM. In addition, using our memory reduction technique, standard VG-

RAM memory consumption reduces linearly with rl (see Equation (1)), while the same 

does not occur with Fat-Fast VG-RAM, since part of the size of the hash tables, H, does 

not depend on the size of the training set, m (see Equation (2), term 2
p/h

). This is 

illustrated by Figure 12, where we show the memory footprint of the standard and Fat-

Fast systems for the retention levels considered. The memory footprint of Fat-Fast VG-

RAM reached a plateau at about rl = 1% and does not decrease after this value. 
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Figure 11: Impact of different memory retention levels on the performance of the Handwritten 

Recognition System implemented with standard VG-RAM, and Fat-Fast VG-RAM with p/h = 16 bits and 

r = 30. 

 

 

Figure 12: Memory footprint of the Handwritten Recognition System implemented with standard VG-

RAM, and Fat-Fast VG-RAM with p/h = 16 bits and r = 30. 

 

The same experiments were made considering the Fat-Fast system implemented 

with p/h = 8 bits. The results are in Figure 13. As the bars in this figure show, the 

classification performance of Fat-Fast VG-RAM with this configuration is closer to that 

of standard VG-RAM, and even superior for rl = 0.5%. On the other hand, the speedups 

of Fat-Fast are smaller than those of the configuration with p/h = 16 bits.  

Figure 14 shows the memory footprint of the Fat-Fast systems with p/h = 8 bits 

(the memory footprint of the standard VG-RAM is also shown for comparison, but it is 

the same of the Figure 12, obviously). The memory footprint of Fat-Fast VG-RAM 

reaches a plateau at about rl = 0.5% with significantly smaller memory consumption 

than before (please compare Figure 14 with Figure 12). 
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Figure 13: Impact of different memory retention levels on the performance of the Handwritten 

Recognition System implemented with standard VG-RAM, and Fat-Fast VG-RAM with p/h = 8 bits and 

r = 30. 

 

 

Figure 14: Memory footprint of the Handwritten Recognition System implemented with standard VG-

RAM, and Fat-Fast VG-RAM with p/h = 8 bits and r = 30. 

 

The same experiments were made considering the Fat-Fast system implemented 

with p/h = 16 and p/h = 8 bits, but with r = 1. Figure 15 and Figure 16 show the results. 

With r = 1 and p/h = 16 (Figure 15), Fat-Fast is always faster than standard VG-RAM, 

being able to reach a speedup of 308 for rl = 0.25%. With r = 1 and p/h = 8 (Figure 16), 

Fat-Fast is faster than standard VG-RAM for rl > 1% only. For both cases, however, 

Fat-Fast with r = 1 shows significantly worse precision than with r = 30. But it is 

interesting to note that, for r = 1, Fat-Fast achieves better precision with smaller rl, 

reaching a plateau at about rl = 1%. This phenomenon can be understood through the 

following example.  

Suppose that an entry v in a hash table Hk of a neuron has a considerable amount 

of collisions, i.e. a large bucket size, |Bk,v| (see Figure 2), and that the current input 

vector of the neuron has a sub-vector, Vk, addressing this bucket. In this case, there 
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would be only a single chance (considering r = 1) of choosing the entry in Bk,v that 

points to the memory line of the neuron that has the lowest hamming distance to the 

input vector. This example illustrates the benefits of our memory reduction technique. It 

reduces the size the memory, |L|, leaving the most promising training samples in it, and, 

as a consequence, it also reduces the size of the buckets Bk,v, leaving in them pointers to 

promising training samples. 

 

 

Figure 15: Impact of different memory retention levels on the performance of the Handwritten 

Recognition System implemented with standard VG-RAM, and Fat-Fast VG-RAM with p/h = 16 bits and 

r = 1. 

 

 

Figure 16: Impact of different memory retention levels on the performance of the Handwritten 

Recognition System implemented with standard VG-RAM, and Fat-Fast VG-RAM with p/h = 8 bits and 

r = 1. 
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4.3.2 Traffic Sign Recognition System 

In this subsection, we evaluate the combined impact of using Fat-Fast neurons and 

our memory reduction technique on the performance of the traffic sign recognition 

system. For clarity, only the green color channel is considered. So, the figures follow 

the same format as the figures of the previous sub-section; however, please note that the 

vertical scales are different.  

The bars of the graph of Figure 17 show the precision of the standard and Fat-Fast 

(p/h = 16 bits, r = 30) VG-RAM for different memory retention levels, rl. As can be 

seen in Figure 17, the impact on precision of a reduction to 10% of the original memory 

size is small for both, standard and Fat-Fast VG-RAM implementations, but a reduction 

to 1% of the original memory has a more noticeable impact on precision than before – a 

decrease of about 2%. Larger reduction levels produce even higher impact on precision.  

The speedups achieved with the traffic sign recognition system with the p/h = 16 

bits and r = 30 configuration are much higher, as Figure 17 shows. The Fat-Fast 

implementation is faster for all retention levels and reaches a three order of magnitude 

speedup over standard VG-RAM without memory reduction – 1,301 times faster for 

rl = 0.25%. However, this level of retention has a high impact on precision (about 8% 

loss in precision). Compared with the standard VG-RAM with the same retention level, 

Fat-Fast is 3.8 times faster and 2.76% less precise. 

Figure 18 shows the memory footprint of the standard and Fat-Fast systems for 

the retention levels considered. Again, the memory footprint of Fat-Fast reaches a 

plateau at about rl = 1% and does not decrease after this value. However, the memory 

footprint reduction with smaller retention levels is more noticeable for the traffic sign 

system (please compare Figure 18 with Figure 12). 

 

 

Figure 17: Impact of different memory retention levels on the performance of the Traffic Sign 

Recognition System implemented with standard VG-RAM, and Fat-Fast VG-RAM with p/h = 16 bits and 

r = 30. 

 

0

200

400

600

800

1000

1200

1400

100 10 1 0.5 0.25

80

82

84

86

88

90

92

94

96

98

100

C
la

ss
if

ic
a
ti

o
n

 S
p

ee
d

 U
p

Retention Level [%]

C
la

ss
if

ic
a
ti

o
n

 P
re

ci
si

o
n

 [
%

]

VG-RAM - Precision Fat-Fast r=30 - Precision

VG-RAM - Speed Up Fat-Fast r=30 - Speed Up



 

23 

 

Figure 18: Memory footprint of the Traffic Sign Recognition System implemented with standard VG-

RAM, and Fat-Fast VG-RAM with p/h = 16 bits and r = 30. 

 

Figure 19 shows the experimental results considering a Fat-Fast system with 

p/h = 8 bits. As the bars in this figure show, the classification performance of the Fat-

Fast VG-RAM with this configuration is closer to that of standard VG-RAM, having 

about the same performance for rl ≤ 1%. On the other hand, the speedups of Fat-Fast are 

much smaller than those of the configuration with p/h = 16 bits. Figure 20 shows the 

memory footprint of the Fat-Fast systems with p/h = 8 bits. The memory footprint of 

Fat-Fast VG-RAM reaches a plateau at about rl = 1% with significantly smaller memory 

consumption than before (please compare Figure 20 with Figure 18). 

 

 

Figure 19: Impact of different memory retention levels on the performance of the Traffic Sign 

Recognition System implemented with standard VG-RAM, and Fat-Fast VG-RAM with p/h = 8 bits and 

r = 30. 
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Figure 20: Memory footprint of the Traffic Sign Recognition System implemented with standard VG-

RAM, and Fat-Fast VG-RAM with p/h = 8 bits and r = 30. 

 

Figure 21 and Figure 22 present the experimental results considering Fat-Fast 

implementations with p/h = 16 and p/h = 8 bits, and r = 1. Fat-Fast was faster than 

standard VG-RAM in all experiments with these configurations, reaching a speedup of 

1,643 with p/h = 16 for rl = 0.25%. Again, however, Fat-Fast with r = 1 shows 

significantly worse precision than with r = 30. But it is important to note that, with the 

p/h = 16 and without memory reduction (rl = 100%), Fat-Fast achieves speedup higher 

than 500 in this application with less than 2% loss in precision. 

 

 

Figure 21: Impact of different memory retention levels on the performance of the Traffic Sign 

Recognition System implemented with standard VG-RAM, and Fat-Fast VG-RAM with p/h = 16 bits and 

r = 1. 
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Figure 22: Impact of different memory retention levels on the performance of the Traffic Sign 

Recognition System implemented with standard VG-RAM, and Fat-Fast VG-RAM with p/h = 8 bits and 

r = 1. 

 

5. Discussion 

The bottleneck of VGRAM based methods is the testing phase. Standard VG-

RAM WNN neurons perform a linear search on their training set to find the output 

value with the nearest input vector. Fat-Fast VG-RAM, in the other hand, exploits the 

regularity and constancy among bit substrings within its input vectors to perform a 

faster indexed search. Such an improvement in the technique enables achieving high 

speedups during the test phase of applications with very large training datasets. Taking 

the traffic sign application with 117627 training samples as an example, our results 

showed that the Fat-Fast can speed up the VG-RAM in at least about 50 times with less 

than 1% loss of accuracy (see Figure 9). In addition, our results also showed that the 

gain in speed depends on the number of training samples of the application. The 

handwritten recognition dataset, for example, had a lower speedup (less than 10 times, 

see Figure 7) because it only has half of the training samples of the traffic sign dataset, 

and therefore speedup is affected by the overhead of processing the indexation through 

the hashes. Our experiments also investigated the effect of the parameter r. Parameter r 

is able to control the gain in speed, because it imposes an upper bound limit on the 

number of potential comparisons to be done by the Fat-Fast VG-RAM neuron, in case 

of large number of collisions occurs in the multi-indexed hash table. Our traffic sign 

application results also showed that speedups higher than 550 times can be achieved by 

adjusting the parameter r = 1 of the proposed method, but compromising the accuracy in 

up to 2% (see Figure 9). 

As mentioned before, a drawback of the Fat-Fast method is the increase of the 

used memory because of the multi-indexed hash tables. Applications running on 

desktop, with good memory capacity, impose no additional problem. However 

sometimes, it is desirable to keep the use of the memory to a certain level following the 

constraints of a specific machine. To cope with such cases and to reduce even more the 

testing time of the applications, we also propose to use a memory reduction technique 

[26] together with the fat-fast approach. The effect of the Fat-Fast method in the 

memory size is evident in all our experiments, and is highlighted in Figure 12, Figure 

14, Figure 18 and Figure 20. As it can be seen, there is clearly a trade-off between 
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memory consumption, speedup and machine learning performance. The figures show 

that even with our memory reduction technique, the Fat-Fast VG-RAM WNN may 

require much more memory than standard VG-RAM WNN. The benefits of the memory 

reduction are supported by our results, for the traffic sign application for example (see 

Figure 17). They showed that the memory from the original VG-RAM can be reduced 

to 10% of the original size and used together with the Fat-Fast to achieve speedups of 

100 times with a decrease in accuracy of less than 1% (see Figure 17). Although the 

gain in speed is now only from 100 times, it is important to realize that the original 

memory was decreased to 10%. Another important fact is that the Fat-Fast approach has 

more effect in memories with many samples, and a reduction of the memory also 

reduces the effect of the Fat-Fast (see Figure 11 for the Handwritten dataset where 

normal VGRAM is faster than the Fat-Fast). However, the gain in speed can still be 

seen for large training sets (e.g. retention level of 10%). Finally, other results also 

showed that higher gains in speed can be achieved on the cost of the accuracy, when 

using a combination of Fat-Fast and memory compression (e.g. 0.25% of what the 

original size achieves is 1301 times faster and 8% less precise, see Figure 17 for an 

example). In summary, the following rules should be used to decide on which technique 

combination to use. If you have an application with a large training set, but have no 

restriction on the testing time, use standard VGRAM. Otherwise, if you have restriction 

on the testing time, but have no restriction on the available memory, use Fat-Fast 

VGRAM. In addition, adjust the parameter r to get the best accuracy according to your 

available memory (r controls the trade-off between Fat-Fast memory use and accuracy). 

Otherwise, if you have restriction on the testing time and have restriction on the 

available memory, use the combination of Fat-Fast VGRAM and memory compression. 

In addition, adjust the parameter rl to get the best accuracy according to your available 

memory (rl controls the trade-off between memory compression and accuracy). 

 

6. Conclusion 

In this paper we presented the Fat-Fast VG-RAM WNN. Fat-Fast VG-RAMs 

employ multi-index chained hashing for fast search in the neuron’s memory. The 

chained hashing technique increases the memory consumption of VG-RAM 

substantially; however, it strongly reduces test time, while keeping most of the machine 

learning performance of VG-RAM. To address the larger memory consumption of Fat-

Fast VG-RAMs, we have employed data clustering techniques for reducing the overall 

amount of memory space required to store training data. Using Fat-Fast neurons with 

memory reduction via clustering techniques, we were able to reduce the standard VG-

RAM runtime and memory footprint, while maintaining a high and acceptable machine 

learning performance.  

To validate the Fat-Fast VG-RAM with memory reduction, we performed several 

experiments with two well-established and large datasets: the MNIST handwritten digit 

dataset and the GTSRB dataset. Our experimental results showed that our new 

optimized VG-RAM approach was able to run up to three orders of magnitude faster 

and consume two orders of magnitude less memory than standard VG-RAM, while 

experiencing only a small reduction in classification performance. Thus achieving high-

performance results in terms of accuracy, runtime and memory consumption.  

In future works, we will examine the Fat-Fast VG-RAM performance in other 

relevant applications, better policies for memory access using the operating system 

facilities such as posix_madvise, and the implementation of Fat-Fast VG-RAM in 

hardware (in Field Programmable Gate Arrays – FPGA, for example). 
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