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Abstract

The Lloyd’s 2007 Survey of Underwriters states that “for the third year running, managing the cycle

emerged as the most important challenge for the industry, by some margin”. The premise is, of course,

that underwriting cycles exist in property and casualty insurance, and are economically significant. Us-

ing a meta-analysis of published papers in the area of insurance economics, we show that the evidence

supporting the existence of underwriting cycles is misleading. There is, in fact, little evidence in favour

of insurance cycles with a linear autoregressive character. This means that any cyclicality in firm prof-

itability in the property and casualty insurance industry is not predictable in a classical econometric

framework. It follows that pricing in the property and casualty insurance industry is not incompatible

with that of a competitive market.
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Underwriting Apophenia and Cryptids: Are Cycles Statistical
Figments of our Imagination?

Introduction

Ever since Brockett and Witt (1982) showed that insurer profitability may be modelled by a second-order

autoregressive process, insurance economists have presumed the existence of profitability cycles usually based

on linear time series analysis. Winter (1991), for instance, states that “the existence of cycles in insurance

markets is a central topic of insurance literature” (p. 117). These cycles are believed to be present in the

property and casualty insurance industry, but not in the life insurance industry. Insurance practitioners

also generally assume that cycles exist, although the cycles are not necessarily specified to be of the AR(2)

variety. For example, one can read in Lloyd’s 2007 Survey of Underwriters that “for the third year running,

underwriters in the Lloyd’s market have identified managing the cycle as the most important challenge for

the industry” (Lloyd’s, 2007).

These underwriting cycles appear to happen at regular intervals in many OECD countries according

to the literature: see Venezian (1985), Cummins and Outreville (1987), Lamm-Tennant and Weiss (1997),

Chen et al. (1999), Harrington and Niehaus (2000), Meier (2006a, b), Venezian and Leng (2006), Wang et al.

(2010), Lazar and Denuit (2012), among others. The cycles are characterized by periods of high profitability

followed by periods of low profitability. The existence of a predictable underwriting cycle has been seen

by some authors as a sufficient condition for concluding that insurance markets are inefficient (Gron, 2010;

Outreville, 1990), so that regulatory intervention might be warranted (Derien, 2008). On the other hand,

Winter (1991) argues that intervention would exacerbate cycles. Trufin et al. (2009) associate underwriting

cycles, again modelled by an AR(2) process, with higher probability of insurer ruin. This furnishes another

reason why cycles can become the catalyst for government intervention in the insurance markets.

The purpose of this paper is to caution against the presumption that underwriting cycles are perfectly

described by a linear autoregressive process, particularly for the purposes of insurance enterprise risk man-

agement. The AR(2) process is a statistical model which provides a simplified representation of insurance

market behaviour; it is not the only possible description for cycles and certainly does not provide a perfect

representation of insurance markets. The word “apophenia” is apposite in the title of this paper because

it refers to the behavioural bias whereby one sees patterns where there is none in random data. The tests

that have been used in previous research on underwriting cycles were biased in favour of finding such cycles,

so that any inference and/or conclusion drawn from these tests may be misleading. Once these biases are

corrected, significant underwriting cycles become the exception rather than the norm. The word “cryptids”,

which also appears in the title and means mythical creatures, refers to autoregressive cycles which are not
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really there.

This paper complements the study of Boyer et al. (2012) who show that there is neither in-sample nor

out-of-sample evidence which supports the view that there is any type of predictability in annual insurance

underwriting performance in the United States. We extend the results of Boyer et al. (2012) in a number

of ways. First, we pool the results, as published in the relevant literature, of the time series analysis of

nearly 200 data sets, diversified by country and by product line. Second, we analyse the significance of

AR(2) parameter estimates in these time series regressions. Third, we show that estimation errors are large

enough–because the annual data in these studies is short relative to the presumed 6—7 year-long cycle

periods–that neither the presence nor the absence of AR(2) cycles can be established statistically.

It is important to note that the conclusion in this paper is not that insurance prices and insurer prof-

itability are unaffected by external or internal shocks; rather, it is that there is no evidence that such shocks

are anything other than random unpredictable occurrences. There may therefore be merit in the pragmatic

view of insurance professionals, who do not ascribe the attribute of predictability, in the econometric sense,

to the concept of underwriting cycles. Theorists should stress that their autoregressive modelling of insur-

ance profitability provides a simplified description of the insurance market, designed to estimate cyclicality

approximately and thereby provide some assistance to professionals when they manage risk. They provide

definitive evidence neither in favour nor against linear autoregressive cycles, and must be open to the pos-

sibility that the true underlying processes which generate cycles are nonlinear, and indeed to the possibility

that there is no predictable cyclicality. (The departure from linearity taken by Jawadi et al. (2009) and

Wang et al. (2010) is a case in point.) There is a high probability of uncovering an autoregressive cycle if one

takes a short enough sample of any Brownian motion time series. Successive periods of higher profitability

and lower profitability in the property-casualty insurance market may simply be the occurrences of random

draws. Therefore, scientific rigour demands that we do not dismiss a random walk in insurer profitability

and that we do not reject speculative efficiency on the insurance markets. At the same time, this does not

contradict the industry viewpoint concerning the presence of cycles, as long as ‘cycles’ are not defined within

the econometric strictures of linear time series.

This article is organised as follows. Section 2 summarizes the classical theories on property and casualty

insurance underwriting cycles, and describes the papers that are used in our meta-analysis. Section 3 presents

the methodology used to analyse the likelihood that cycles occur in any time series. The key statistical tests

and results of this paper are also presented in Section 3. Concluding remarks are offered in Section 4.

Insurance cycles

Many theories have been proposed to explain the existence of underwriting cycles as defined by Brockett and

Witt (1982). We do not present all these theories here, and instead invite the interested reader to consult the
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surveys of Harrington (2004), Meier and Outreville (2006) and Wang et al. (2010). Some of these theories

are nevertheless seminal and deserving of further comment in this section.

Insurance cycles are concerned with prices, so financial pricing theories are relevant to explanations of

cycles. There are various insurance pricing models based on financial theory (Cummins and Phillips, 2000).

They assume perfect markets, risk-neutral insurers with rational expectations, and possibly equilibrium risk-

return relationships or absence of arbitrage. At its simplest, financial pricing theory predicts that the price of

insurance is the expected present value of future claims and expenses. Interest rate variations can therefore

explain some of the volatility in underwriting cycles (Doherty and Kang, 1988; Fields and Venezian, 1989).

Underwriting cycle theories come into their own because several studies show that the variation in prices

or profits cannot be fully explained by the perfect markets theory. For example, Harrington and Niehaus

(2000) find that insurance prices follow a second-order autoregressive process. They suggest that premium

variations are only partially due to variations in fundamentals. They focus on capital shock models to explain

both hard and soft market periods in the insurance industry. This relies on the assumption that markets

are imperfect and the supply of capital to insurers adjusts slowly in the short run, particularly after an

industry-wide loss shock. The capacity-constraint theory argument is that underwriting cycles are the result

of frictions caused by a temporary incapacity of the industry to insure all risks (Gron, 1994a, b; Winter,

1994), or the impact of a major catastrophe (Cummins, 2006; Born and Viscusi, 2006) which depletes part

of the capital in the reinsurance market (Berger et al., 1992; Meier and Outreville, 2006). As insured risks

are not independent, premium nonlinearity results from the dependence between losses.

Cummins and Outreville (1987) propose that autoregressive AR(2) cycles are the result of external factors,

such as institutional and regulatory lags, as well as accounting practices. They contend that, even though

premiums and profit margins are rationally set to reflect all available information, cycles may arise because

of external factors which vary across countries owing to different regulations and regulatory lags. In the

same vein, Venezian (1985) suggests that fluctuations in underwriting profit margins are caused by adaptive

rate-making methods. The methods used by insurers to forecast future rates violate rational expectations

and induce AR(2) cycles. Consequently, insurer profitability should be a combination of a predicable cyclical

component and of random components (see also Lamm-Tennant et al., 1992, Harrington and Yu, 2003, and

Boyer et al., 2012).

Various other studies purport to show autoregressive cycles in insurer profitability. Lamm-Tennant and

Weiss (1997) extend the approach of Cummins and Outreville (1987) to different countries and their specific

institutional features, as well as to different product lines. Chen et al. (1999), Meier (2006a, b) and Meier

and Outreville (2006) find similar and more recent evidence in countries other than the United States.

A few studies do not rely on autoregressive linear time series. Wang et al. (2010) detect a well-known

asymmetry between hard and soft markets: prices and profitability rise faster in the hard phase than they
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fall in the soft phase. (In extreme cases, hard markets lead to ‘insurance crises’. Wang et al. (2010) do not

discuss any asymmetry in the availability of coverage when markets harden or soften.) They find that a

nonlinear Markov model provides a better fit to insurance data than does an AR(2) model.

Other authors supplement or replace an analysis based on the AR(2) model with a spectral analysis

on univariate insurance profits and loss ratios: see Doherty and Kang (1988), Grace and Hotchkiss (1995),

Venezian (2006) and Venezian and Leng (2006). Their results are suggestive of cycles, but the sparseness of

data, choice of bandwidth, and periodogram smoothing methods do not afford conclusive results. A more

powerful and modern test for peaks in spectra is carried out by Lazar and Denuit (2012) and appears to

detect a cycle in premium data. However, this is also not clear-cut because it points to a longer cycle period

than is estimated in time-domain analysis, possibly conflicting with autoregressive cycles.

Another line of work examines the relationships, in the short and long runs, between insurance profits and

variables such as interest rates, stock market indices and GDP through cointegration. Haley (1993), Grace

and Hotchkiss (1995) and Choi, Hardigree and Thistle (2002) find various cointegrated relationships, which

supports the existence of underwriting cycles by linking them to the macroeconomic business cycle. However,

Harrington and Yu (2003) find that underwriting profits are not non-stationary, therefore undermining the

hypothesis of cointegration. Jawadi et al. (2009) apply a novel nonlinear cointegration methodology, and

report two distinct regimes in the data, with strong cointegrated relationships within each regime. This may

indicate that linear time series-based underwriting cycles are an oversimplification.

Many underwriting cycle theories do not predict any autoregressive time series but do suggest other

testable statistical relationships. Harrington and Danzon (1994) propose that cycles are partly caused by

the moral hazard of weaker insurers betting on resuscitation: a less established insurer with low intangible

capital and with depleted assets–because of large losses, say–is tempted to sell its products at a low price

in an attempt to improve its market share. This underpricing of insurance can also stem from heterogeneous

information and poor loss forecast quality (see also Fitzpatrick, 2004, and Boyer et al., 2011). Both cases

induce insurers to cut their prices to protect their market share. Harrington and Danzon (1994) find support

for their hypothesis as forecast revisions and prices are inversely related.

Another asymmetric information approach is that of Cummins and Danzon (1997), whereby the price of

insurance is inversely related to insurer’s default risk. As insurers raise capital in response to adverse shocks,

their loss ratio should be inversely related to their default risk, which means that insurance premiums

should be positively correlated to financial quality. (See also Doherty and Kang (1988) and Doherty and

Garven (1992).) Niehaus and Terry (1993) observe cases of premiums being explained by past losses, along

with strong evidence that they are determined by past surplus in the industry. Their findings support the

hypothesis that underwriting cycles are partly the result of costly external capital. The consensus in the

economic literature is summarised by Cummins (2006) when he cites Winter (1994), Cummins and Danzon
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(1997) and Cummins and Doherty (2002) and writes that “hard and soft markets are driven by capital market

and insurance market imperfections such that capital does not flow freely into and out of the industry in

response to unusual loss events” (p. 345).

Background and data

Background

The insurance industry goes through periods of high and low premiums relative to losses, or periods of high

and low profitability. The typical approach used to examine cycles in the property and casualty insurance

industry is based on standard econometric models (Stock and Watson, 1988; Nelson and Plosser, 1982) which

can be represented as:

Φ()  =  +   ∼ i.i.d.N(0 2) (1)

where  ∈ R,  is a profitability measure (such as the underwriting ratio, loss ratio, combined ratio, or any
other measure of insurer profitability), and Φ() is a polynomial of degree  ∈ N in the backshift operator
. (See Boyer et al. (2012) for more details.) When   1, the characteristic equation, Φ() = 0,  ∈ C,
may have conjugate pairs of complex roots with non-zero imaginary parts, if the corresponding discriminant

is negative. Then, for any such pair  and ∗, with norm |||| and real part R(), there is a cycle in the
autocorrelation of  with period:

 =
2

arccos
³
R()
||||

´  (2)

This suggests a maximum likelihood estimator of  based upon the maximum likelihood estimator of the

complex roots, which itself follows from the maximum likelihood estimator of Φ, expressed as a vector of

autoregressive parameters in equation (1).

In particular, when we examine autoregressive models of the second order (i.e. AR(2) models), then

Φ() = 1−1−22, with 1 2 ∈ R. It is well-known (Sargent, 1986; Hamilton, 1994) that complex roots
occur provided that 21 + 42  0, giving a cycle period of

 =
2

arccos

µ
1

2
√
−2

¶  (3)

Data collection and summary statistics

We collected the AR(2) coefficients from a set of well-known studies in the literature: Venezian (1985),

Cummins and Outreville (1987), Chen et al. (1999), Harrington and Niehaus (2000), Meier (2006a, b) and

Meier and Outreville (2006). These papers were chosen because they are authoritative and peer-reviewed,

and cover diverse countries, lines of property-casualty business, and periods of time. They are also influential

papers and are regularly cited in the literature on insurance cycles. Our own AR(2) parameter estimates
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were also used and are based on data provided by A.M. Best’s Aggregates & Averages for the United States

and by the Insurance Bureau of Canada for Canada, as used by Trufin et al. (2009). As can be seen from

Table 1 in the Appendix, this exercise yields a total of 98 regressions which cover different periods, different

countries and different econometric specifications.

The summary statistics associated with these time series are presented in Table 2 in the column under

the heading ‘ALL’. Of the 98 series, 69 series exhibit AR(2) cycles, i.e. a proportion of 70% contains cycles.

Conditional on cycles being present, the mean period or length of these cycles is 8.11 years, and the standard

deviation of the cycle periods is 3.51 years. (Table 2 in the Appendix contains a wealth of other information,

and we return to it repeatedly at the appropriate points in the paper.)

There is another set of 96 time series of insurer profitability which is studied by Lamm-Tennant and

Weiss (1997). None of the AR(2) coefficients is supplied, so these time series are not included in the final

analysis. The summary statistics for these time series are presented in Table 2 in the column under the

heading ‘LTW ’. Of the 96 time series in the LTW sample, 61% contained AR(2) cycles, with a mean cycle

period of 7.05 years. The column headed ‘Combined ’ aggregates the 98 observations in ALL and the 96

observations in LTW, yielding 66% cyclicality in the 194 combined time series.1

It is important to note that there is no statistical difference (according to a two-tailed Student test at the

5% level) between the mean cycle periods in the LTW and ALL samples, especially if we remove the longest

cycle (28 years) that is obtained after performing a regression without a trend component using U.S. data

from 1969—2004. However, a non-parametric Kolmogorov-Smirnov test on the two samples shows that the

distributions of cycle lengths in LTW and in ALL are not equal, that neither is normally distributed, and

that neither is lognormally distributed. This biases the Student equality test used on the means of the two

samples. The 96 regression results in LTW are not included in the final analysis because Lamm-Tennant

and Weiss (1997) did not report the standard errors and -statistics of their AR(2) parameter estimates.

Figure 1 presents the point estimates of the 1 and 2 parameters of the 98 regression results which are

displayed in Table 1 in the Appendix. This corresponds to the ALL sample for which the standard errors of

the AR(2) regression parameters are known.

1We also analyzed the 1874-1901 U.S. fire insurance experience reported in Baranoff (2003), the 1874-1906 fire insurance

industry loss ratio reported in Zanjani (2004), the recent data from 1992 until 2011 reported in Hartwig (2011) for P&C

commercial lines, homeowner and workers’ compensation, and South African marine insurance data from Tarr (2008). Because

these papers are not regularly cited in the established literature, they are not included in the overall analysis. Their incorporation

would not change the conclusion of this paper. For the sake of completeness, we note that the data in Baranoff (2003) and

Zanjani (2004) do not yield cycles, as defined by Brockett and Witt (1982), since both 1 and 2 parameters are positive, and

only one of the three time series data in Hartwig (2011) yields such a cycle. Finally, there was only one cyclical time series out

of the the two time series of Tarr (2008).
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Figure 1: Plot of 2 (vertical axis) versus 1 (horizontal axis) showing AR(2) coefficients for each time series

in the ALL sample.

Data analysis and results

A key issue raised by Boyer et al. (2012) is that there may be a wide confidence interval around estimates

of any AR(2) cycle period. This is because of the nonlinear relationship seen in equation (3) between  and

the autoregressive parameters 1 and 2. The commonly quoted estimates of cycle period are therefore very

likely to be obtained by chance. This compromises the very statistical evidence for the presence of cycles.

In this section, we apply their insights to the data described in the preceding section.

Proportion of cycles in time series data

Of the 98 regression results in the ALL sample listed in Table 1, only 69 are such that we can actually

compute a cycle period. Figure 2 illustrates the 98 regression results with square markers representing

regression results for which a cycle is absent. The observations represented by diamond-shaped markers are

such that the values of 1 and 2 allow the calculation of an underwriting cycle period.

Further, if we add the 59 instances of cycles presented by Lamm-Tennant and Weiss (1997), out of the

96 regressions they conducted (12 countries, 8 lines of business), the proportion of instances where a cycle

is reported is 128194 = 66%, as can be seen under the column labelled Combined in Table 2. Now, some of

these series may be partially correlated, either because of overlaps and coincident time periods, or because of

the dependence of insurance product lines. Nevertheless, the conventional view, stemming from the studies
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Figure 2: Plot of 2 (vertical axis) versus 1 (horizontal axis) showing AR(2) coefficients for each time series

in the ALL sample. A cycle period cannot be computed for the observations displayed using square markers.

summarised in Table 2, seems to be that insurance cycles are very likely to exist. Is there a 66% likelihood

of observing a cycle and, if so, how significant is the 66% likelihood?

A Monte Carlo thought experiment

Consider an AR(2) process in the mould of equation (1). If and only if it is covariance-stationary, then the

roots of the characteristic equation Φ() = 0 lie outside the centered unit circle on the complex plane. This

in turn means that 1 and 2 lie on a “stationarity triangle” with vertices at (−2−1), (2−1) and (0 1)
on the 1—2 plane (Stralkowski, 1968; Zellner, 1971; Sargent, 1986; Hamilton, 1994).

2 Formally, define the

stationarity triangle as the domain

D0 = {(1 2) ∈ R2 |2  −1 1 + 2  1 2 − 1  1} (4)

As stated in the vicinity of equation (3), cycles occur provided that 21 + 42  0, so another domain in the

parameter space which is of interest is

D1 = {(1 2) ∈ R2 |21 + 42  0} (5)

Suppose that we draw values for (1 2) randomly and independently from a bivariate uniform distribution

on the stationarity triangle D1. The probability of observing a cycle in an AR(2) process, given that the
process is stationary, is equal to the area of D0∩D1 normalized by the area of D1. In other words, it is equal
to the area under the parabola 21 + 42 = 0 and above the base of the stationarity triangle, divided by the

area of the stationarity triangle. That is, the probability is 1
4

³
4− R 2−2 142´ = 23.

2Note that there is a typographical error in the stationarity conditions in Boyer et al. (2012).
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Figure 3: Plot of 2 (vertical axis) versus 1 (horizontal axis) showing AR(2) coefficients for each time series

in the ALL sample. A cycle period cannot be computed for the observations displayed using square markers

because they lie above the parabola. The straight line represents the upper right limit of the stationarity

triangle.

It is striking that the proportion (66%) of observations where cycles are observed in the Combined set

in Table 2 is almost equal to the probability (23) of cycles occurring from randomly constructed stationary

AR(2) processes. Admittedly, the 194 insurance time series in the Combined set do not constitute an

independent and identically distributed sample, despite diversification across countries, periods and lines of

business. At the very least, this shows that caution is required before inferring from the existing insurance

cycle studies that cycles are very likely to occur.

Before proceeding further, it is worth noting that, in all the regressions from which our data is pooled, the

authors of these studies have estimated the 1 parameter to be positive (see Table 1).
3 This is equivalent to

conditioning on persistence (i.e. a positive lag-one autocorrelation) in addition to stationarity, in our Monte-

Carlo thought experiment above. This means that we may sample from the right-half of the stationarity

triangle (rather than all of it), i.e. over the domain

D2 = {(1 2) ∈ R2 | 1  0 2  −1 1 + 2  1} (6)

Symmetry means that the same probability of 23 for cycles ensues again.4

3Correlograms of insurance profitability measures tend to decay quickly, sometimes with oscillations, conforming to sta-

tionarity. Rapid ‘switching behavior’ in the autocorrelation function {  ∈ Z+}, whereby sgn() = (−1), would signal
a negative value of 1 (see also Hamilton, 1994), but this is not visible in sample correlograms. (Here, sgn denotes the sign

function: sgn() = +1 for   0, and −1 for   0.)
4 It follows from the stationarity of an AR(2) process that |2|  1, i.e. (1 2) ∈ D0⇒ |2|  1. The lag-one autocorrelation
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Distribution of cycle periods

We now consider the distribution of cycle periods in our metadata. Boyer et al. (2012) show, by means of

stochastic simulations, that randomly chosen values of 1 and 2 generate a right-skewed distribution for

 . As may be seen in Table 2, all three key samples, labelled ALL, LTW and Combined, are also positively

skewed. Furthermore, both the Jarque-Bera test and the non-parametric Kolmogorov-Smirnov normality

test reject the hypothesis of normality, at the 95% level of confidence, in the distribution of cycle periods in

ALL, LTW and Combined. (There are three smaller subsamples in Table 2, to be defined and explained later,

where normality cannot be rejected, at the 95% confidence level, even using the small-sample Shapiro-Wilk

test.)

In order to investigate this further, we repeat and extend the stochastic simulations of Boyer et al. (2012).

Values for (1 2) are simulated from a bivariate uniform distribution over the right-half of the stationarity

triangle, i.e. over domain D2. More specifically, 700 series of 200 random draws of (1 2) are simulated. The
Random column of Table 2 displays the cycle length statistics, conditional on cycles being present. Using

the same 140,000 simulated values of 1 and 2, the last column (Trunc.) of Table 2 shows the statistics

obtained when the longest cycle in the Random sample is limited to 30 years. Thirty years is the maximum

cycle period that is observed in the first six columns of Table 2: see the fifth row from the bottom, labelled

‘Longest cycle’, in Table 2. Trunc. may therefore be regarded as a realistic, truncated subsample of Random,

where ‘impractical’ values of 1 and 2 lying towards the edges of domain D2 are eliminated.
Boyer et al. (2012) paid no heed to actual data when describing the distribution of cycle periods. We

can now compare the cycle period statistics in the actual data (ALL, LTW, Combined) with those in the

simulated data (Random, Trunc.) in Table 2. We note, in particular, the closeness of the first two moments

and of the median, when comparing across these five samples. For instance, the mean of the cycle period

in the Combined sample (7.62 years) is not statistically different from the mean of the cycle period in the

Trunc. sample (7.50 years). Notice also that the Trunc. sample retains positive skewness in the cycle period

distribution (and indeed fails the Jarque-Bera test for normality) even though impractical and unrealistic

values of 1 and 2 in the outskirts of domain D2 have been discarded.
This would all seem to support the case made by Boyer et al. (2012) that the evidence for cycles gathered in

various studies may be spurious, and that the estimates of cycle lengths is subject to large chance variations.

Finally, we carry out a basic verification. All the data time series in samples ALL, LTW and Combined

have an estimated value of 1 which is positive. The simulated samples Random and Trunc. also satisfy

this positive condition on 1. (Recall that the simulations are carried out on domain D2, by design.) Now,
is 1 = 1(1−2)  0. Hence, for a stationary AR(2) process, 1  0 ⇔ 1  0. We may therefore constrain our sampling to

the half-plane 1  0 only. Both the stationarity triangle and the parabola 21 + 42 = 0 are symmetrical in 1 = 0, yielding

the same probability of 23 that was obtained above.
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a positive 1 parameter means that cycles cannot occur with a period less than 4 years.
5 The fourth row

from the bottom in Table 2 displays the shortest cycle period in various samples: none of these samples has

a sample period shorter than 4 years.

Interestingly, the histogram of cycle periods shown in Boyer et al. (2012, Fig. 1) is not bounded below by

4 years, because they do not condition on persistence, i.e. they do not assume that 1  0. Had they done

so, their distribution would have displayed a median much closer to actual data, as we have shown here.

Statistical tests

Next, we analyse the significance of the AR(2) parameter estimates in the regressions which are detailed in

Table 1 (in the Appendix) and whose cycle statistics are summarised under column ALL in Table 2.

Not all the regression results presented in Table 1 have regression coefficients that are significant. In

fact, of the 98 regression results under study, only 30 actually have 1 and 2 coefficients that are both

significantly different from zero.6 In other words, more than half of the regressions where a cycle has been

presumed to exist are subject to important errors in variable problems. Another interesting observation is

that the real test one should conduct is not for the 1 and 2 coefficients to be different from zero, but to be

different from the parabola that delimits the existence or not of a cycle. Surprisingly, no one in the literature

has conducted a joint significance test on the two parameters of interest. Therefore, our formal hypothesis

test is:

H∅ : (1 2) 6∈ D1 (absence of AR(2) cycle)

H1 : (1 2) ∈ D1 (presence of AR(2) cycle)

Using a Bonferroni test (see Abdi, 2007) or a Student test reduces even more the likelihood that a cycle

is observed. The Bonferroni test is a simple conservative joint estimation test whereby if there are two

parameters of interest in a regression, then the Bonferroni -value of the joint test is equal to twice the

highest -value. For example, if the two coefficients have individual -values of 1% and 3%, the combined

-value is 2×max [1% 3%] = 6%. The Student statistic is computed as (1 + 42) 
q
(1)

2
+ (42)

2
, where

1 and 2 denote the standard errors in the estimates of 1 and 2 respectively, and where the covariance

between these estimates is assumed to be zero7. It is important to note that neither test is precise: the

Bonferroni test by design, and the Student test by absence of data, since the covariances of the parameter

estimates are not provided by the authors of the studies whence our data is sourced.

5Assuming 1  0 and that we take only the positive value of
−2 in equation (3), then  is bounded below at 4, since

arccos

12

−2  → 2 and  → 4+, as 1 → 0+.
6Of the 19 observations where 2 is positive, only 2 are statistically so. In neither case is the corresponding 1 coefficient

statistically different from zero.

7The proper test is actually (1 + 42) 


(1)

2 + (42)
2 + (1 42), but since we do not have the covariance be-

tween the two regressor estimates, we need to suppose that  (1 42) = 0.
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Figure 4: Plot of 2 (vertical axis) versus 1 (horizontal axis) showing AR(2) coefficients for each time series

in the ALL sample. Different levels of test significance are reported using different markers. ‘Insignificant’

means that either 1 or 2 is not significantly different from zero. The other three measures are relative

to the parameter values on the parabola which delineates whether a cycle period can be computed or not:

‘Significant’ means that 1 and 2 are significantly different from zero but not different from the parabola,

whereas ‘Bonferroni’ and ‘Student’ mean that 1 and 2 pass the eponymous tests (the Student test being

more stringent than the Bonferroni test).

Figure 4 highlights the correspondence of parameter values between observations where at least one

parameter is statistically different from zero (Insignificant), the 30 observations (Significant) whereby both

parameters are statistically different from zero but do not pass the Bonferroni test, the 21 observations

(Bonferroni) whereby the parameters pass the Bonferroni test but not the Student test, and finally the 11

observations (Student) which pass all tests, including the most stringent Student test.8

If one focuses only on the observations which pass the Bonferroni test, there are merely 21 observations

whereby it would be reasonable to believe that a cycle exists out of the 98 original observations. This

represents a success ratio of 22%. From these 21 observations, one calculates an average cycle period of 6.9

years (median of 6.5 years) and a standard deviation of 1.3 years. See the column with the heading “Bonf.”

in Table 2 for these and related statistics. Comparing columns “Bonf.” and “Trunc.” in Table 2, the average

cycle period (6.9 years) in the subsample which passes the Bonferroni test is shorter than the mean (7.5

years) of the randomly obtained cycle periods calculated using an independent and uniform distribution of

1 and 2 when restricting to cycles of less than 30 years.

8 Incidentally, only 6 out of the 20 observations in Cummins and Outreville (1987) pass the Bonferroni test, 8 out of 12 in

Venezian (1985), 2 out of 25 in Chen et al. (1999) and 3 out of 6 in Harrington and Niehaus (2000). None of the observations

in Meier (2006a, b) passes the Bonferroni test.
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Using the Student test as the appropriate statistic, only 11% of the data points display coefficient values

that are consistent with a cycle. Table 2, column Stud., contains the relevant statistics. The mean and

median cycle period then become approximately 6 years with a very small standard deviation of 0.6 years.

Interestingly, 6 years is the median cycle period for both the Random and Stud. samples in Table 2.

Discussion of results

In the preceding section, we have sought to show that the evidence for insurance cycles, based on the

authoritative established studies to date, is weak. In this section, we discuss various issues related to our

analysis.

Admissible area

We showed that randomly constructed stationary AR(2) processes yield cycles almost as often as cycles

appear in the studies on which we base our meta-analysis (with a probability of 23). This was based on

sampling from the area under the parabola but within the stationarity triangle, when drawing randomly and

uniformly over the whole of the stationarity triangle: see Figure 5, based on Stralkowski (1968) and replicated

in Sargent (1987 , p. 189) and Hamilton (1994, p. 17). We also showed that, conditioning on persistence (or

positive autocorrelation at lag one) as well as on stationarity, resulted in the same probability of 23.

Figure 5: Stationarity triangle and cycle parabola in an AR(2) regression.

An argument may be made that it is the probability of finding both cycles and persistence, conditioned

on stationarity, which should be of interest. A moment’s thought reveals that this probability is 13, a figure
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lower than the 66% occurrence of cycles in the Combined data of Table 2, and hence suggestive of evidence

for joint cyclicality and persistence. One could counter, however, that persistence is not in question–it has

perhaps fewer ramifications for risk management than cyclicality–so that this is not the right metric by

which to settle the insurance cycle debate.

An alternative argument is that one should not condition on stationarity at all, but on a wider acceptable

domain for the AR(2) parameter space, such as one might find in practical time series modelling. One such

domain might be D3 = {(1 2) ∈ R2 | 1 ∈ [−2 2] 2 ∈ [−1 1]}. The probability of finding both cycles
and persistence, conditioned on this ‘reasonable’ econometric structure, then falls to 16. This makes the

proportion of 66% of cycles in the Combined data of Table 2 appear even more persuasive in favour of

cyclicality. Disregarding stationarity may be attractive given that the cointegrated relationships found by

Haley (1993), Grace and Hotchkiss (1995) and Choi, Hardigree and Thistle (2002) are founded on individually

nonstationary series (see the second section of this paper). On the other hand, Harrington and Yu (2003) find

little evidence of unit roots in de-trended profits data, calling into question these cointegrated relationships.

Indeed, all but two data points in Figure 3 are located inside the stationarity triangle.

Linearity

We assumed in our analysis that insurance cycles may be described by linear time series, specifically second-

order autoregressive processes. In this, we implicitly follow much of the time series literature on insurance

cycles. However, insurance cycle theories–reviewed in an earlier section–are not predicated on AR(2)

cycles. Arguably, the capital constraint theory of Winter (1994) and Gron (1994a, b), the underpricing

hypothesis of Harrington and Danzon (1994), and the financial quality hypothesis of Cummins and Danzon

(1997) can explain the asymmetry that is typically observed in the evolution of hard and soft markets. This

asymmetry is antithetical to the linearity of autoregressive processes.

More recent work by Wang et al. (2010) and Jawadi et al. (2009) shows that nonlinear regimes and

breaks may provide a better description of insurance profitability data. The pragmatic view of insurance

practitioners, who do not necessarily ascribe an AR(2) character to insurance cycles, cannot be dismissed.

It is imperative, therefore, to examine the existence of cycles outside the framework of linearity. If cycles do

indeed exist in these nonlinear models, then the conventionally accepted estimates of cycle periods–based

on autoregressive cycles–may need to be revised. This has important implications for risk management.

Heterogeneity and dependence

The existing studies incorporated in our meta-analysis span several decades, several product lines, and

several countries, and report different profitability measures. The commercial and regulatory environment

has changed over time, and varies by line of business and by country. Pooling the regression results from so

many separate studies may therefore be inconsistent. In particular, stronger evidence of cycles on some lines
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or at certain periods may be diluted.9 We stress that we do not pool or combine the data sets themselves,

however. The regression results remain discrete, and we examine them separately for significance. Our

meta-analysis seeks to capture the overall and cumulative impact of several highly-respected studies.

Any heterogeneity in the data also mitigates against dependence. In other words, whilst one may argue

that there is an inevitable degree of overlap between the data which we collate, the diversity across countries,

periods and lines supports our comparison with randomly constructed autoregressive processes. Indeed the

plot in Figure 1 shows a widespread scatter with little discernable pattern. Nevertheless, it is difficult to

argue that there is no commonality in the samples, and they are not independent of each other and identically

distributed. In particular, dependence may result from the global nature of the insurance and reinsurance

business.

The issue of dependence cuts both ways, however. The profusion of studies claiming both evidence for

cycles and estimates for the cycle periods may have led economists and professionals to accept the existence

of cycles, without necessarily questioning the dependence in the data.

Conclusion: are underwriting cycles really cryptids?

The purpose of this short article was to offer a challenge to the popular view that the property and casualty

insurance industry is characterized by profitability cycles akin to real business cycles in the economy. We

performed a meta-analysis of several studies in this field, these studies being arguably the most influential

in the insurance economics literature on underwriting cycles. The papers which we used are certainly well-

respected and authoritative. They also span different lines of insurance, different countries, different samples,

different time frames, and different second-order autoregressive specifications.

The main conclusion of this paper is that the existence of underwriting cycles is far from obvious. The

standard error on parameter estimates in many of these studies is large enough that the presence of cycles

is not statistically significant. When a proper statistical test on the AR(2) regression parameter values is

conducted (a Bonferroni test to be exact, or a more stringent Student test), we find that a cycle is likely to

be observed in less than a quarter of the studies on the topic.

This is far from the 65% to 70% likelihood that is generally presented in the literature. This generally

reported probability range is, in fact, close to the probability of finding a cycle by drawing the two AR(2)

parameters randomly from a uniform distribution. The success rate for the existence of cycles in the data

is therefore commensurate with the probability of cycles occurring in appropriate statistical processes with

randomly chosen parameter values.

Of course, our analysis is based on regression results that have already been published in the literature,

without verifying directly the validity of these regressions. Also, we used only a subset of the results that

9The authors wish to thank an anonymous reviewer for raising this issue.
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may be found in the insurance economics literature. Only rigorous and peer-reviewed studies, which provided

estimates of the standard errors of the AR(2) regression parameters, were included in our meta-analysis.

Insurance profitability cycles may of course exist in some lines, countries and for some time periods.

However, the evidence is that they are not of the predictable linear autoregressive character that is ascribed

to them. And even if there are instances where the absence of a cycle can be rejected, there is no evidence

whatsoever that the trend superposed on the cycle is predictable (see Boyer et al., 2012, for more on this

topic). This means that those insurers which “have simply accepted the insurance cycle, seeing it as a force

of nature with an uncontrollable impact on their business”10 may have been justified. Insurance cycles may

simply be a ‘force of nature’ akin to capital market cycles11 which uncontrollably buffet a pension plan.

The belief that predictable underwriting cycles exist leads to the perception that the insurance market

is plagued with imperfections. The supposed presence of underwriting cycles can then become the basis

for government intervention (Gron, 2010), or can become part of financial stability regulation to control

insolvency (European Commission, 2002), even though solvency regulation may actually exacerbate cycles

(Winter, 1991). Perhaps we would be wise to heed the conclusion of Baker (2005) who argues that “leaving

the insurance cycle alone would be the wiser course for now”.

10Lloyd’s (2006). Annual Report - Strategy.

http://www.lloyds.com/Lloyds/Press-Centre/Press-Releases/2006/12/Seven_steps_to_managing_the_cycle}
11Using monthly data, we calculate a cycle period of 4.69 months for total returns on the S&P500 from April 1993 to June

2012 (or 7.22 years when using yearly total returns over the same period), a cycle of 4.15 months for the total returns on the

FTSE100 from July 1984 to June 2012, and a cycle of 4.16 months for the total return on the 30-year Treasury bond from May

1977 to June 2012.
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Appendix

Table 2. Summary statistics of cycles in the different samples and subsamples

SE available

Combined ALL Signif. Bonf. Stud. LTW Random Trunc.

Total observations 194 98 98 98 98 96 700*200 140,000

Number with cycles 128 69 30 21 11 59 91000

Proportion with cycles 66% 70% 31% 22% 11% 61% 66% (3%) 65%

Mean period 7.62 8.11 7.03 6.89 6.08 7.05 8.6 (12) 7.50

Median period 6.90 7.70 6.95 6.51 6.11 6.15 6.0 (03) 5.95

St.Dev. of period 3.37 3.51 1.31 1.32 0.57 3.12 9.8 (9) 4.25

Skewness of period 3.08 3.33 0.43 0.89 0.94 2.89 5 (22) 2.3

Kurtosis of period 13.83 16.44 -0.66 0.28 1.24 10.54 35 (30) 6.1

Longest period 28.40 28.40 9.92 9.92 7.35 21.97 10,000 30

Shortest period 4.09 4.36 5.17 5.24 5.39 4.09 4 4

Gaussian (JB-test) Fail Fail Pass Pass Pass Fail Fail Fail

Gaussian (KS-test) Fail Fail Pass Pass Pass Fail

Gaussian (SW-test) Pass Pass Pass

LTW refers to the results from Lamm-Tennant and Weiss (1997).

‘SE available’ refers to those studies where the standard errors of the two AR(2) regression coefficients are available.

ALL uses all the data points; Signif. uses all data points where the two coefficients are significantly different from

zero; Bonf. uses the data points where the two coefficients pass the Bonferroni test, and Stud. uses the data points

where the two coefficients pass the Student test. Combined combines the 98 observations where standard errors are

available with the 96 observations presented in Lamm-Tennant and Weiss (1997).

Random and Trunc. refer to the case where 1 and 2 were each randomly drawn from a uniform distribution.

The values under the Random column are the average values for each statistical moment using 700 series of 200

draws with the standard deviation in parentheses. The values under the Trunc. column were obtain using the

same 140,000 draws, but limiting the maximum period to 30 years.

The Jarque-Bera test examines whether the observation are distributed normally based on the observed

skewness and kurtosis. The JB statistic is given by  = 
6

³
2 +

(−3)2
4

´
, with  being the number of

observations and  and  being the third and fourth moment of the empirical distribution (not the kurtosis

which is the fourth central moment from which we substract
3(−1)2

(−2)(−3) ). The JB statistic follows a 2

distribution with two degrees of freedom.

The Kolmogorov-Smirnov test of normality is valid only for a number of observations between 10 and

1024. We present the 5% test here so that we cannot reject the normality distribution assumption with a

95% confidence interval.

The Shapiro-Wilk test of normality is valid only for a small number of observations (between 5 and 38).

We present the 5% test here so that we cannot reject the normality distribution assumption with a 95%

confidence interval.
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Table 1. Source of the AR(2) results in the literature on P&C insurance underwriting 
cycles and value of the coefficient and its standard deviation 

Source  Type of test  Specific regression Φ2  SD(Φ2)  Φ1  SD(Φ1) 

Cummins Outreville (T2)  t‐stat(23, 5%, two‐tail)=2,069  Canada  ‐0,635  0,169  0,851  0,170 

Cummins Outreville (T2)  t‐stat(23, 5%, two‐tail)=2,069  France  ‐0,431  0,165  0,946  0,197 

Cummins Outreville (T2)  t‐stat(23, 5%, two‐tail)=2,069  Italy  ‐0,612  0,152  1,261  0,166 

Cummins Outreville (T2)  t‐stat(23, 5%, two‐tail)=2,069  Sweden  ‐0,397  0,190  0,816  0,216 

Cummins Outreville (T2)  t‐stat(23, 5%, two‐tail)=2,069  Suisse  ‐0,409  0,182  0,445  0,201 

Cummins Outreville (T2)  t‐stat(23, 5%, two‐tail)=2,069  U.S.  ‐0,653  0,140  0,735  0,153 

Cummins Outreville (T1)  t‐stat(23, 5%, two‐tail)=2,069  Australia  ‐0,411  0,212  0,294  0,209 

Cummins Outreville (T1)  t‐stat(23, 5%, two‐tail)=2,069  Canada  ‐0,670  0,161  0,959  0,159 

Cummins Outreville (T1)  t‐stat(23, 5%, two‐tail)=2,069  Denmark  0,109  0,229  0,477  0,230 

Cummins Outreville (T1)  t‐stat(23, 5%, two‐tail)=2,069  Finland  ‐0,029  0,213  0,490  0,227 

Cummins Outreville (T1)  t‐stat(23, 5%, two‐tail)=2,069  France  ‐0,392  0,166  0,904  0,202 

Cummins Outreville (T1)  t‐stat(23, 5%, two‐tail)=2,069  Germany  ‐0,406  0,209  0,879  0,207 

Cummins Outreville (T1)  t‐stat(23, 5%, two‐tail)=2,069  Italy (1)  ‐0,253  0,181  0,865  0,181 

Cummins Outreville (T1)  t‐stat(20, 5%, two‐tail)=2,086  Italy (2)  ‐0,346  0,206  0,775  0,223 

Cummins Outreville (T1)  t‐stat(23, 5%, two‐tail)=2,069  Japan  ‐0,349  0,173  0,812  0,177 

Cummins Outreville (T1)  t‐stat(23, 5%, two‐tail)=2,069  NewZealand  ‐0,397  0,199  0,694  0,208 

Cummins Outreville (T1)  t‐stat(23, 5%, two‐tail)=2,069  Norway  0,233  0,217  0,515  0,222 

Cummins Outreville (T1)  t‐stat(23, 5%, two‐tail)=2,069  Sweden  ‐0,434  0,229  0,714  0,211 

Cummins Outreville (T1)  t‐stat(23, 5%, two‐tail)=2,069  Suisse  ‐0,210  0,225  0,355  0,220 

Cummins Outreville (T1)  t‐stat(23, 5%, two‐tail)=2,069  U.S.  ‐0,767  0,129  0,904  0,132 

The numbers in bold are those that are statistically different from zero using the appropriate test. 
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Table 1. Source of the AR(2) results in the literature on P&C insurance underwriting 
cycles and value of the coefficient and its standard deviation (cont’d) 

Source  Type of test  Specific regression Φ2  SD(Φ2)  Φ1  SD(Φ1) 

Harrington Niehaus   t‐stat(25, 5%, two‐tail)=2,060  U.S. 5579 (with trend)  ‐0,790  0,142  0,940  0,132 

Harrington Niehaus  t‐stat(25, 5%, two‐tail)=2,060  U.S. 6084 (with trend)  ‐0,580  0,229  1,210  0,201 

Harrington Niehaus   t‐stat(25, 5%, two‐tail)=2,060  U.S.6589 (with trend)  ‐0,590  0,199  1,090  0,172 

Harrington Niehaus   t‐stat(25, 5%, two‐tail)=2,060  U.S. 7094 (with trend)  ‐0,260  0,167  0,730  0,155 

Harrington Niehaus   t‐stat(40, 5%, two‐tail)=2,021  U.S. 5594 (with trend)  ‐0,320  0,144  0,840  0,132 

Harrington Niehaus   t‐stat(42, 5%, two‐tail)=2,020  U.S. 5596 (with trend)  ‐0,310  0,134  0,840  0,129 

Chen et al. (app)  ** et *** in Chen paper  Singapore All  ‐0,290  0,232  0,744  0,222 
Chen et al. (app)  ** et *** in Chen paper  Singapore MAT  ‐0,018  0,257  0,440  0,249 
Chen et al. (app)  ** et *** in Chen paper  Singapore Fire  0,086  0,166  0,265  0,227 

Chen et al. (app)  ** et *** in Chen paper  Singapore Motor  ‐0,534  0,190  1,001  0,191 
Chen et al. (app)  ** et *** in Chen paper  Singapore Oth  ‐0,132  0,167  0,820  0,163 
Chen et al. (app)  ** et *** in Chen paper  Malaysia All  ‐0,350  0,252  1,024  0,221 
Chen et al. (app)  ** et *** in Chen paper  Malaysia MAT  0,160  0,209  0,194  0,212 

Chen et al. (app)  ** et *** in Chen paper  Malaysia Fire  ‐0,061  0,203  0,400  0,222 
Chen et al. (app)  ** et *** in Chen paper  Malaysia Motor  0,070  0,222  0,258  0,223 

Chen et al. (app)  ** et *** in Chen paper  Malaysia Oth  0,582  1,039  0,570  0,222 
Chen et al. (app)  ** et *** in Chen paper  South Korea All  0,348  0,206  0,433  0,220 
Chen et al. (app)  ** et *** in Chen paper  South Korea MAT  0,151  0,240  0,421  0,239 
Chen et al. (app)  ** et *** in Chen paper  South Korea Fire  ‐0,204  0,180  0,338  0,205 

Chen et al. (app)  ** et *** in Chen paper  South Korea Motor  ‐0,039  0,195  0,465  0,198 

The numbers in bold are those that are statistically different from zero using the appropriate test. 
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Table 1. Source of the AR(2) results in the literature on P&C insurance underwriting
cycles and value of the coefficient and its standard deviation (cont’d) 

Source  Type of test  Specific regression Φ2  SD(Φ2)  Φ1  SD(Φ1) 

Chen et al. (app)  ** et *** in Chen paper  South Korea Oth  0,178  ‐0,233  1,041  0,230 
Chen et al. (app)  ** et *** in Chen paper  Taiwan All  0,049  ‐0,211  0,568  0,224 
Chen et al. (app)  ** et *** in Chen paper  Taiwan MAT  0,361  0,175  0,273  0,176 

Chen et al. (app)  ** et *** in Chen paper  Taiwan Fire  0,044  0,017  ‐0,019  0,186 

Chen et al. (app)  ** et *** in Chen paper  Taiwan Motor  ‐0,351  0,182  0,494  0,189 
Chen et al. (app)  ** et *** in Chen paper  Taiwan Oth  0,047  0,218  0,345  0,217 

Chen et al. (app)  ** et *** in Chen paper  Japan All  ‐0,242  0,222  0,885  0,217 
Chen et al. (app)  ** et *** in Chen paper  Japan MAT  ‐0,673  0,232  1,075  0,232 
Chen et al. (app)  ** et *** in Chen paper  Japan Fire  ‐0,306  0,247  0,723  0,245 
Chen et al. (app)  ** et *** in Chen paper  Japan Motor  ‐0,807  0,164  1,179  0,163 
Chen et al. (app)  ** et *** in Chen paper  Japan Oth  ‐0,162  0,285  0,936  0,253 
Meier (1) (T1)  t‐stat(41, 5%, two‐tail)=2,021  Switzerland  ‐0,192  0,167  0,726  0,160 
Meier (1) (T1)  t‐stat(41, 5%, two‐tail)=2,021  US(1)  ‐0,328  0,171  0,900  0,167 
Meier (1) (T1)  t‐stat(41, 5%, two‐tail)=2,021  US(2)  ‐0,294  0,170  0,906  0,166 
Meier (1) (T1)  t‐stat(28, 5%, two‐tail)=2,048  Japan  ‐0,240  0,194  0,925  0,197 
Meier (1) (T1)  t‐stat(31, 5%, two‐tail)=2,042  Germany  ‐0,180  0,188  0,701  0,189 
Meier (2) (T2)  t‐stat(37, 5%, two‐tail)=2,022  Suisse  ‐0,160  0,193  0,570  0,186 

Meier (2) (T2)  t‐stat(37, 5%, two‐tail)=2,022  U.S.  ‐0,350  0,229  0,670  0,169 

Meier (2) (T2)  t‐stat(27, 5%, two‐tail)=2,052  Japan  0,060  0,250  0,730  0,203 

Meier (2) (T4)  t‐stat(36, 5%, two‐tail)=2,022  Switzerland  ‐0,070  0,212  0,690  0,197 

The numbers in bold are those that are statistically different from zero using the appropriate test. 
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Table 1. Source of the AR(2) results in the literature on P&C insurance underwriting 
cycles and value of the coefficient and its standard deviation (cont’d) 

Source  Type of test  Specific regression Φ2  SD(Φ2)  Φ1  SD(Φ1) 

Meier (2) (T4)  t‐stat(36, 5%, two‐tail)=2,022  U.S.  ‐0,270  0,186  0,790  0,178 
Meier (2) (T4)  t‐stat(26, 5%, two‐tail)=2,056  Japan  0,250  0,269  0,680  0,215 
Meier Outreville (T3)  t‐stat(20, 5%, two‐tail)=2,086  France  ‐0,270  0,250  0,180  0,261 

Meier Outreville (T3)  t‐stat(20, 5%, two‐tail)=2,086  Switzerland  ‐0,610  0,223  1,030  0,199 

Meier Outreville (T3)  t‐stat(20, 5%, two‐tail)=2,086  Germany (1)  ‐0,070  0,167  0,130  0,228 

Meier Outreville (T3)  t‐stat(20, 5%, two‐tail)=2,086  Germany (2)  ‐0,150  0,211  0,400  0,253 

Meier Outreville (T4)  t‐stat(20, 5%, two‐tail)=2,086  France (1)  ‐0,040  0,222  0,290  0,240 

Meier Outreville (T4)  t‐stat(20, 5%, two‐tail)=2,086  France (2)  ‐0,080  0,242  0,220  0,259 

Meier Outreville (T4)  t‐stat(20, 5%, two‐tail)=2,086  France (3)  ‐0,160  0,229  0,160  0,235 

Meier Outreville (T4)  t‐stat(20, 5%, two‐tail)=2,086  France (4)  ‐0,210  0,239  0,120  0,255 

Meier Outreville (T4)  t‐stat(20, 5%, two‐tail)=2,086  Switzerland (1)  ‐0,480  0,217  1,010  0,188 

Meier Outreville (T4)  t‐stat(20, 5%, two‐tail)=2,086  Switzerland (2)  ‐0,310  0,218  0,720  0,224 

Meier Outreville (T4)  t‐stat(20, 5%, two‐tail)=2,086  Switzerland (3)  ‐0,510  0,223  0,990  0,191 

Meier Outreville (T4)  t‐stat(20, 5%, two‐tail)=2,086  Switzerland (4)  ‐0,440  0,232  1,010  0,193 

Meier Outreville (T4)  t‐stat(20, 5%, two‐tail)=2,086  Germany (1)  0,060  0,273  0,640  0,228 

Meier Outreville (T4)  t‐stat(20, 5%, two‐tail)=2,086  Germany (2)  0,060  0,286  0,650  0,269 

Meier Outreville (T4)  t‐stat(20, 5%, two‐tail)=2,086  Germany (3)  0,100  0,286  0,630  0,238 

Meier Outreville (T4)  t‐stat(20, 5%, two‐tail)=2,086  Germany (4)  0,240  0,202  0,150  0,217 

Meier Outreville (WPA2)     LR(1)  ‐0,130     0,630    

Meier Outreville (WPA2)     CR(1)  ‐0,150     0,610    

The numbers in bold are those that are statistically different from zero using the appropriate test. 
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Table 1. Source of the AR(2) results in the literature on P&C insurance underwriting 
cycles and value of the coefficient and its standard deviation (cont’d) 

Source  Type of test  Specific regression Φ2  SD(Φ2)  Φ1  SD(Φ1) 

Venezian  t‐stat(15, 5%, two‐tail)=2,131  Fire  ‐0,554  0,210  0,847  0,209 

Venezian  t‐stat(15, 5%, two‐tail)=2,131  HMP  ‐0,742  0,186  0,728  0,189 

Venezian  t‐stat(15, 5%, two‐tail)=2,131  CMP  ‐0,473  0,220  0,617  0,226 

Venezian  t‐stat(15, 5%, two‐tail)=2,131  OM  ‐0,284  0,249  0,832  0,249 

Venezian  t‐stat(15, 5%, two‐tail)=2,131  IM  ‐0,860  0,279  1,278  0,272 

Venezian  t‐stat(15, 5%, two‐tail)=2,131  WC  ‐0,436  0,251  1,122  0,246 

Venezian  t‐stat(15, 5%, two‐tail)=2,131  NBIL  ‐0,418  0,247  1,054  0,236 

Venezian  t‐stat(15, 5%, two‐tail)=2,131  ABIL  ‐0,891  0,185  1,000  0,176 

Venezian  t‐stat(15, 5%, two‐tail)=2,131  APDL  ‐0,541  0,206  0,535  0,213 

Venezian  t‐stat(15, 5%, two‐tail)=2,131  COLL  ‐0,612  0,195  0,616  0,200 

Venezian  t‐stat(15, 5%, two‐tail)=2,131  FTC  ‐0,790  0,154  0,728  0,154 

Venezian  t‐stat(15, 5%, two‐tail)=2,131  ALL  ‐0,815  0,140  0,919  0,142 

(Self here): 1986‐2006  t‐stat(20, 5%, two‐tail)=2,086  Canada all  ‐0,030  0,273  0,908  0,254 

(Self here): 1986‐2006  t‐stat(20, 5%, two‐tail)=2,086  Canada Auto  ‐0,081  0,261  0,642  0,260 

(Self here): 1986‐2006  t‐stat(20, 5%, two‐tail)=2,086  Canada Com. Prop.  0,047  0,283  0,465  0,291 

(Self here): 1986‐2006  t‐stat(20, 5%, two‐tail)=2,086  Canada Liab. ex‐auto  0,051  0,330  0,488  0,326 

(Self here): 1969‐2004  t‐stat(36, 5%, two‐tail)=2,022  U.S. all  ‐0,215  0,166  0,905  0,171 

(Self here): 1969‐2004  t‐stat(36, 5%, two‐tail)=2,022  U.S. all with trend  ‐0,304  0,181  0,870  0,173 

The numbers in bold are those that are statistically different from zero using the appropriate test. 

 




