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Abstract. Diabetes is one of the biggest health challenges of the 21
st
 century. The obesity epidemic, sedentary 

lifestyles and an ageing population mean prevalence of the condition is currently doubling every generation. 

Diabetes is associated with serious chronic ill health, disability and premature mortality. Long-term 

complications including heart disease, stroke, blindness, kidney disease and amputations, make the greatest 

contribution to the costs of diabetes care. Many of these long-term effects could be avoided with earlier, more 

effective monitoring and treatment. Currently, blood glucose can only be monitored through the use of invasive 

techniques. To date there is no widely accepted and readily available non-invasive monitoring technique to 

measure blood glucose despite the many attempts. This paper challenges one of the most difficult non-invasive 

monitoring techniques, that of blood glucose, and proposes a new novel approach that will enable the accurate, 

and calibration free estimation of glucose concentration in blood. This approach is based on spectroscopic 

techniques and a new adaptive modelling scheme. The theoretical implementation and the effectiveness of the 

adaptive modelling scheme for this application has been described and a detailed mathematical evaluation has 

been employed to prove that such a scheme has the capability of extracting accurately the concentration of 

glucose from a complex biological media.  

 

 

1.  Introduction 

Diabetes mellitus is a disease characterized by persistent hyperglycaemia (high blood sugar 

levels). Since the first therapeutic use of insulin in 1921 diabetes has been a treatable, 

however chronic condition and the main risks to health are its characteristic long-term 

complications. These include cardiovascular disease, chronic renal failure, retinal damage 

which can lead to blindness, nerve damage, erectile dysfunction, to gangrene [1]. Around 1.9 

million people in the UK and more than 194 million worldwide have been diagnosed with 

diabetes. Regular blood glucose testing, especially in Type 1 diabetics, is essential to keep 

adequate control of the glucose levels and to reduce the chance of long-term complications of 

the disease [2]. 

Currently, blood glucose can only be monitored through the use of invasive techniques. Most 

of these involve drawing blood through a small pinprick and placing a drop on a test strip. 

The glucose level in the blood is then measured using one of several ways available in the 
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market today. These measurements must be taken several times, up to half a dozen, a day by 

those with diabetes. The risk of infection and measurement inaccuracy are present with all of 

the invasive techniques. In addition, to the discomfort caused by the pinprick and the resultant 

bruising, many diabetics (especially children) do not check their glucose levels as often as 

recommended and as a result increase their chance of developing hyperglycaemia or diabetic 

coma. 

Advances in technology have allowed the investigation of new techniques for assessing blood 

glucose in an attempt to find one that is non-invasive, accurate, continuous, easy to use, 

reproducible and inexpensive. Examples of techniques used for the non-invasive monitoring 

of blood glucose include fluid extraction from skin (or reverse iontophoresis), interstitial fluid 

harvesting, non-optical electromagnetic radiation (far infrared (FIR) spectroscopy, radio wave 

impedance), optical rotation of polarized light, thermal emission spectroscopy, and visible 

light and near infrared spectroscopy. All of these techniques [3][4] share advantages and 

disadvantages, as well as have limitations that preclude their routine application for non-

invasive monitoring of blood glucose. The main problem experienced with prior attempts at 

blood glucose measurement is calibration. Because of varying amounts of protein, fats, and 

water in different people, a single, universal measurement scheme has not been developed yet. 

Interference in the absorption of these with the absorption of blood glucose has caused the 

most problems with prior research. 

The actual measurement of blood glucose through absorption in the visible to low near 

infrared light region has the problems of interference through protein and fat absorption. 

Measurement in the near infrared region has the problems with interference from water [5][6]. 

Due to the strong interference in the visible and near-infrared bands as mentioned above, none 

of these optical techniques have currently shown much success when brought to clinical trials. 

Some of these techniques may also cause mild discomfort when applied to the skin. Also, 

some of them are designed as single use devices and consequently the expense of these 

disposables could impede frequent use of the monitor. Therefore, to date there is no widely 

accepted and readily available non-invasive monitoring technique to quantify blood glucose. 

A key factor for the improvement of non-invasive techniques for objective monitoring of 

blood glucose lies in further understanding the mechanisms and processes that cause major 

problems in the measurement of blood glucose concentration [7]. There are a number of 

components, which absorb optical radiation at the same wavelengths as glucose. These 

components are present in much higher concentrations with greater absorption characteristics 

than glucose. Under normal conditions the concentrations of these components change at a 

much slower rates than glucose concentration (days against minutes); therefore, it is possible 

to calibrate an optical measurement system empirically to measure glucose concentration 

[8][9]. However, calibration must be done individually for each patient and repeated 

approximately once a week (after calibration, the precision degrades rapidly with time). Other 

situations that could also require recalibration include, use of medications that absorb the 

same wavelength; alterations in haemoglobin concentration or other proteins that absorb at the 

applied wavelength; alterations in body temperature; alterations in state of hydration or 

nutrition [5]. In addition, the calibration is invasive. These make the empirical calibration 

approach for photometric glucose measurement expensive, impractical and not truly non-

invasive. 



 

 

 

 

 

 

We believe we can develop a new novel non-invasive optical glucose sensor based on a non-

empirical analytical technique called “adaptive modelling measurement” to overcome the 

calibration problems and to provide continuous and accurate measurements of blood glucose 

concentration in diabetic patients. The description of this technique and a mathematical 

evaluation demonstrating how this technique will allow the accurate estimation of blood 

glucose will be the subject of this paper. 

2.  Methods 

In the methodology, the hypothesis of using a novel adaptive modelling scheme as a basis for 

the development of a complete system (hardware and software) for the estimation of blood 

glucose will be explained. A detailed mathematical approach demonstrating the theoretical 

extraction of blood glucose concentration (based on optical techniques) from a complex 

biological media will be employed. 

2.1.  Adaptive modelling measurement technique 

Adaptive modelling measurement is a non-empirical analytical technique that will not require 

individual calibration and in theory it could be used to measure other blood chemical 

components, apart from glucose. Its implementation for the optical absorption spectroscopy 

non-invasive blood glucose concentration measurement is presented in Figure 1. 

 

This adaptive modelling could be implemented by using either transmittance or reflectance 

photometric techniques applied to vascular tissue of diabetic patients. This is shown in 

Figure 1 as “Vascular tissue”. Properties of interest of the “Vascular tissue” are represented 

numerically by a vector of parameters  nxxxxX ...,, 321 . The emitted optical radiation 

wavelength and intensity EI  should be selected in such a way so that alteration of any 

chosen property of the “Vascular tissue” will produce a change in the detected optical 

radiation DI . One of the properties of the “Vascular tissue” will be glucose concentration, 

which is represented by one of the parameters in the vector X . 

 

 

Figure 1. Adaptive modelling scheme for the optical absorption spectroscopy non-invasive blood 

glucose concentration evaluation. 



 

 

 

 

 

 

The relationship between emitted and detected optical radiation will be established by a 

mathematical approximation of the “Vascular tissue” defined in Figure 2 as “Vascular tissue 

model”. When the parameters in the vector X  match the properties of the “Vascular tissue”, 

then the “Model-detection difference” will become small, and vector X  could be accepted as 

a description of the real properties of the vascular tissue. Mathematically the existence of 

more than one vector X  producing close “Model-detection differences” is possible. 

Therefore, the “Optical emitter” must emit radiation with a certain number of different 

intensities, wavelengths and in different geometrical positions in respect to the “Optical 

detector” depending on the “Control information set”. Thus, the correct vector X  will be the 

one which produces the smallest “Model-detection difference” for a sufficiently large number 

of “Control information sets”. 

Measurement of glucose concentration using an optical technique employing the adaptive 

modelling scheme can be represented by the two following nested loops (first nested into 

second): 

 

1. The “Control information set” is fixed and consequently the “Detected information 

set” is also fixed. The “Vascular tissue model” takes initial predefined parameters and 

produces a “Modelled information set”. The “Modelled information set” and the 

“Detected information set” are subtracted by the “Comparator” to find the “Model-

detection difference”. The “Model parameters adaptation” adjusts the parameters 

striving to decrease the “Model-detection difference” and passes them back to the 

“Vascular tissue model”. The cycle is repeated until the best matching vector of 

parameters is found. 

 

2. “Model parameters adaptation” changes the “Control information set” and repeats the 

first cycle. These repetitions occur until the vector of parameters X  which works for 

all “Control information sets” is found. The information of the glucose concentration 

is then extracted from the vector of parameters. 

 

This algorithmic blood glucose estimation procedure will allow continuous “auto-calibration” 

of the blood glucose measuring system, making it efficient without the need of individual 

calibration. This suggested technique is intended to overcome the empirical calibration 

problem of existing technologies as outlined above. 

The above general description of the adaptive modelling scheme explains descriptively the 

system’s principle of operation without any details whether such a system can form the basis 

of a working device. Therefore, the following sections are an attempt to analytically justify 

the feasibility of the adaptive modelling measurements for the non-invasive optical absorption 

blood spectroscopy. The process for glucose concentration evaluation is based on the 

measured light intensity values. This process will be explained and analysed in the following 

sections. 

 



 

 

 

 

 

 

2.2.  Signal Separation and Information Extraction (SSIE) 

Figure 2 shows the radiation propagation through tissue, between emitter (light emitting 

diode) and photodetector (photodiode). Where   is a monochromatic radiation wavelength, 

EI  is an emitted radiation intensity, DI  is a detected radiation intensity, and l  is a relative 

emitter–detector position. 

2.2.1.  Signal separation 

The purpose of this subsection is to identify which part of the optical radiation emitted on the 

biological media is lost either due to scattering or absorption [10][11]. To do that, let LI  

represent radiation intensity losses in tissue. Then for the wavelength  : 

  DEL III   1 

Modern quantum theory of light postulates that intensity losses occur due to the different 

kinds of photons scattering and absorption [12][13]. Thus, if S  are the losses occurring due 

to the scattering and A  are the losses due to the absorption on light at wavelength  , then the 

following sum can be stated as: 

  ASIL   2 

Suppose that there is an optical model describing the propagation of the light in the tissue 

[7][14]-[19]. This model (Figure 2) should provide sufficient approximation of the 

experimentally obtained light intensity, LI  and should allow functional parameterization of 

the tissue properties and separation of the absorbed and scattered parts of the light intensity 

losses (like in Equation 2): 

 ),,(),,(  EE IlHGIlPFE   3 

Where E  is a model approximation for the radiation intensity losses in the tissue LI ; 

),,(  EIlPF  is a approximating parameterized function for the radiation losses occurring due 

to the tissue scattering S ; and ),,(  EIlHG  is the approximating parameterized function for 

the losses occurring due to the tissue radiation absorption A .   nppppP ...,, 321 , and 

  mhhhhH ...,, 321  are parameter vectors describing scattering and absorption properties 

of the tissue. 

 

Figure 2: Tissue optic radiation back scattering model. 



 

 

 

 

 

 

Suppose that the optical measuring device allows the measurement of light intensity losses 

LI  at wavelength   at k  different geometric locations il . Then k  sets of variables 

  LE IIl ,,  can be obtained experimentally and substituted into Equation 3: 
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If the left system of equations approximates the right system, for the sufficiently high number 

k  of the different experimentally measured variable sets   LE IIl ,,  (Figure 2) then the 

following hypotheses can be stated for each line in Equation 4: 

  iEii SIlPF ),,(  5 

  iEii AIlHG ),,(  6 

Equations 5 and 6 mean that the model E  in a set of Equations 4 that closely approximates 

scattered and absorbed parts of the light intensity loses in the tissue. Thus, this set of 

equations can be rewritten into the following form: 
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“Approximately equal sign” has been intentionally substituted by the “equal sign”. This form 

corresponds to the ideal case of the “perfect optical tissue model”. Unknown variables in 

these equations are scalars of the tissue parameters vectors   nppppP ...,, 321 , and 

  mhhhhH ...,, 321 , total number of those unknown variables is nm . Thus, the number of 

equations k  in the system of Equations 7 required to keep the system solvable is: 

 nmk   8 

This number determines the minimum amount of the optical emitter-detector combinations in 

the measuring device required to obtain the variable sets   LE IIl ,,  necessary to build a 

solvable system of Equations 7. 

The optical tissue model and relative emitter-detector geometrical positions must be chosen in 

such a way that the equations in the system will be independent (i.e. it must not be possible to 

cancel one of the equations by axiomatically allowed algebraic transformations). There will 

be cases when the system of equations has more than one solution. Thus, the model E  must 



 

 

 

 

 

 

allow to eliminate all except one solution by cancelling, mathematically allowable although 

physiologically impossible, tissue parameters sets H  and E . 

Unlike an ideal case of the “perfect optical tissue model”, substitution of the physically 

correct parameters sets H  and E  into model Equation 3 would result in a model 

approximation error  : 

   EI L  9 

Practically this error should be less than some pre-required value, which is obtained 

empirically. This value reflects the required accuracy of the glucose concentration 

measurement results (e.g. 5%). Thus, each equation in the set of Equations 7 should be 

changed into model error inequality: 

 iEiiEiiLi IlHGIlPFI  ),,(),,(   10 

It may not be possible to solve such system of inequalities analytically and some adaptive 

algorithm may have to be used to numerically evaluate P  and H  tissue parameter vectors. 

The number nm  will depend on the particular optical tissue model. Selected variable sets 

  LE IIl ,,  must not produce dependency in the system of Equations 7. Thus, the model 

should be constructed prior to the variable sets selection. Generally, a model of higher 

complexity should result in better measurements accuracy, although higher complexity would 

significantly increase the sensor’s hardware and software requirements. Therefore, 

unnecessary accuracy should be avoided during optical tissue model design, keeping it as 

simple as measurement results would allow. 

Assume that the mathematical and physiological correct set of parameters   HP ,  describing 

tissue optical properties on wavelength   is found, then those parameters would be the 

averaged values for all tissue light absorbing components, and they would not allow 

distinguishing between different components. To evaluate a particular tissue component such 

as glucose the concentration of more than one light wavelength is required. 

2.2.2.  Information extraction 

Suppose that the tissue contains   physical components which do absorb radiation at 

wavelength 1  [20][21]. Any other tissue components not included in those   do not absorb 

at wavelength 1 . One of those components is the glucose. Lets assume that there is a set of 

wavelengths   ,...,..., 32 j , and for each component j  the wavelength j  exists, on which 

that component absorbs light radiation. Any other component from those   may or may not 

absorb on the wavelength j . Thus, if the light intensity loss on wavelength j  is jA  

(Equation 6) then: 
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Where jiU   is the part of the radiation intensity loss at wavelength j , occurring due to the 

absorption by the tissue component i . 

Practically, system of Equations 11 means that if there are 1  components which absorb 

light on the same wavelengths as glucose, then the measuring device should be able to emit 

and measure light intensities on at least   different wavelengths. Each wavelength must also 

have k  physical channels for Signal separation modelling, in order to distinguish between 

absorbed and scattered parts of the light intensity losses. 

The Beer-Lambert equation is a well known empirical law [12][22] relating light absorbance 

to absorbing component concentration in simple non-scattering samples. In its roots this 

equation is a solution of a linear integral of the light intensity losses occurring during light 

propagation along the straight line through the sample. The basic assumption, taken in the 

derivation of this integral is that for small parts of the sample mater, light intensity absorbed 

by the particular sample absorber is proportional to the absorber’s concentration [23][24]. 

This assumption can be used even if the light does not propagate along straight lines, although 

the integral in this case will not be linear. 

Another assumption used in conventional spectroscopy is that if there are two or more 

absorbing components in the material then the total sample’s absorption will be the sum of 

absorptions of each component obtained separately [12]. This assumption is the classic case 

of the linear superposition principle and it has been used to construct the system of Equations 

11. The optical tissue model used in the Signal separation process can be used to create 

another set of equations. One integral equation should be built for the each absorbing 

component i  in the tissue, which would relate its concentration ic  [10], absorbed part of the 

light intensity jiU   at wavelength j  and the emitted radiation intensity jEI  . To build such 

equations, absorption coefficients (not the same as Beer-Lambert law absorptivities, although 

they are related [21]) of the all   tissue components on each wavelength j  are required: 

 ),,,( jEjjiiji IPYcLU    12 

where L  is an integral equation;   nppppP ...,, 321  are parameters describing scattering 

property of tissue (obtained during the Signal separation process); and 

 qjijijijiji yyyyY ,3,2,1, ...,    are absorption coefficients of each component i  at wavelength j  

(measured and preliminary programmed in to measuring system). Thus, system of Equations 

11 can be combined with Equations 6 and rewritten into the following approximating form: 
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The only unknown variables in this equations system are tissue components concentrations ic . 

The number of the equations is equal to the number of the unknown variables, by 

construction. Thus, in theory, by solving this equations system, component concentrations ic  

(including glucose) could be found analytically or by adaptation (numerically). 

3.  Conclusions and discussion 

This paper challenges one of the most difficult non-invasive monitoring techniques, that of 

blood glucose, and proposes a new novel approach that will enable the accurate, and 

calibration free estimation of glucose concentration in blood. This approach is based on 

spectroscopic techniques and a new adaptive modelling scheme. 

 

The theoretical implementation and the effectiveness of the adaptive modelling scheme for 

this application has been presented and a detailed mathematical approach has been employed 

to prove that such a scheme has the capability of extracting accurately the concentration of 

glucose from a complex biological media comprised of many light absorbing material such as 

tissue, venous and arterial blood, water, fat, bone, etc. The mathematical derivation shown 

above has demonstrated that the accuracy of the glucose concentration depends on the 

complexity of the model. The more the information in the model relating to others absorbers 

within the biological media the more accurate the concentration of glucose will be extracted. 

 

This stage of the work paves the way and suggests the software and hardware specifications 

including the optical glucose sensor design. It also sheds light of what will be the minimum 

number of wavelengths used for the estimation of blood glucose of an accuracy that will be 

acceptable by the clinical experts.  

Further developmental (software and hardware) and experimental (in vitro) stages are 

suggested to support the successful implantation of the proposed adaptive modelling scheme. 
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