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Abstract 

 

The paper addresses the in-plane free vibration analysis of rotating beams using an exact 

dynamic stiffness method. The analysis includes the Coriolis effects in the free vibratory 

motion as well as the effects of an arbitrary hub radius and an outboard force. The 

investigation focuses on the formulation of the frequency dependent dynamic stiffness matrix 

to perform exact modal analysis of rotating beams or beam assemblies. The governing 

differential equations of motion, derived from Hamilton’s principle, are solved using the 

Frobenius method. Natural boundary conditions resulting from the Hamiltonian formulation 

enable expressions for nodal forces to be obtained in terms of arbitrary constants. The 

dynamic stiffness matrix is developed by relating the amplitudes of the nodal forces to those 

of the corresponding responses, thereby eliminating the arbitrary constants. Then the natural 

frequencies and mode shapes follow from the application of the Wittrick-Williams algorithm. 

Numerical results for an individual rotating beam for cantilever boundary condition are given 

and some results are validated. The influences of Coriolis effects, rotational speed and hub 

radius on the natural frequencies and mode shapes are illustrated.  
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1. Introduction 

 

There are numerous engineering applications of rotating beams. Helicopter, compressor and 

turbine blades are some examples for which evaluation of natural frequencies and mode 

shapes is very important. In general, the cross-sections of these structures are very complex, 

but researchers have often made simplifying assumptions in order to carry out preliminary 

assessments and establish behavioural trends. Such simplified models often ignore the 

coupling between various modes of elastic deformations. For example, the free vibration 

behaviour of rotating beams has often been studied by considering only the bending 

deformation which generally dominates the behaviour of helicopter and wind turbine blades. 

Research based on this simplifying assumption that the beam deforms only in bending is, 

without doubt, restrictive. Nevertheless, there is some justification in doing such analysis 

which can give considerable insight into the problem and thus provides a useful basis for 

further research. The literature on the free vibration behaviour of rotating beams using only 

bending theory is surprisingly voluminous and has continued to grow to this day. The authors 

have compiled a selective sample of recent papers [1-16] which provide background 

information and useful cross-references on the subject. 

 

Several of these publications rely on classical methods based on the solution of the governing 

differential equations and the subsequent imposition of boundary conditions, leading to the 

frequency equation [5, 11]. There are, however, some exceptions where finite element 

method (FEM) based solutions have also been reported [6, 13] along with the application of 

other methods such as the differential transform method [14, 15]. A significant contribution 

in recent years is the application of the dynamic stiffness method (DSM) [1, 4, 9] which 

extends the analysis to a much wider context, while at the same time ensuring exact results. 

The DSM is indeed a versatile tool because it has all the essential features of the FEM such as 

coordinate transformation, assembly procedure, sub-structuring, etc., but importantly, unlike 

the FEM, it permits exact eigenvalue analysis. 

 

Although the DSM has been successfully applied to rotating beams [1, 4, 9], the important 

influence of the Coriolis effects arising from the in-plane rotational motion has not been 

included to date. However, it should be recognised that a handful of researchers [5, 11, 16] 

have included the Coriolis terms when investigating the free vibration behaviour of individual 

beams using the classical method, but without applying the DSM. These earlier studies have 

highlighted the effect of the Coriolis terms, particularly at high rotational speeds. Lin and 
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Hsiao [5] used d’Alembert’s principle and the principle of virtual work to formulate the 

eigenproblem, whereas Lee and Sheu [11] used Hamilton’s principle as a precursor to an 

exact power solution of the same problem. A notable contribution came from Huang et al. 

[16], who investigated the free vibration problem of a rotating Bernoulli-Euler beam inclined 

at an arbitrary angle to the axis of rotation. Their study included the influence of Coriolis 

effects, rotational angular velocity and slenderness ratio on the natural frequencies and mode 

shapes. 

 

The current paper is partly motivated by these investigations, and fills an irritating gap in the 

DSM literature by providing free vibration solutions for rotating beams, including the 

Coriolis terms which essentially couple the axial and in-plane flexural deformations during 

the free vibratory motion. The dynamic stiffness matrix of a rotating beam exhibiting 

coupling between in-plane (lagwise) bending and axial deformations that occurs due to 

Coriolis terms is developed to investigate the free vibration characteristics. The investigation 

is carried out in the following steps. 

(i) Hamilton’s principle is applied to derive the governing differential equations of 

motion for in-plane free vibration of a rotating uniform beam with the inclusion of 

the Coriolis effects. 

(ii) As a consequence of the Hamiltonian formulation the natural boundary conditions 

are recovered to obtain expressions for forces and moments. 

(iii) The differential equations are solved by the Frobenius method of series solution. 

(iv) Expressions for nodal responses (i.e. displacements and rotations) and loads (i.e. 

forces and moments) are obtained in explicit analytical form. 

(v) Boundary conditions are imposed in algebraic form and the constants of the 

solution are eliminated to relate the amplitudes of nodal loads and responses, 

leading to the development of the frequency dependent dynamic stiffness matrix 

of the rotating beam. 

(vi) The well-established algorithm of Wittrick and Williams [17] is applied to the 

dynamic stiffness matrix to solve the (transcendental) eigenvalue problem, 

yielding the natural frequencies and enabling the subsequent recovery of mode 

shapes. 

(vii) A detailed parametric study is undertaken to compute numerical results by varying 

significant parameters, with particular emphasis on the rotational speed in order to 

capture the influence of the Coriolis effects. 
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(viii) Results for natural frequencies and mode shapes of some illustrative examples are 

discussed and wherever possible compared with published ones, and significant 

conclusions are drawn. 

 

2. Dynamic Stiffness Formulation 

 

Figure 1 shows the axis system of a typical rotating Bernoulli-Euler beam element of length   

with its left-hand end at a distance    from the axis of rotation. Note that    may or may not be 

equal to the hub radius   , and also   may differ from the total length    of the beam, as 

shown in the figure. The beam is assumed to be rotating at a constant angular velocity  and 

has a doubly symmetric cross-section such as a rectangle or a circle etc. so that the bending 

and torsional motions as well as the in-plane and out-of-plane motions are uncoupled. In the 

right-handed Cartesian coordinate system, the origin is taken to be at the left-hand end of the 

beam element as shown, with the  -axis coinciding with the neutral axis of the beam in the 

undeflected position. The  -axis is taken to be parallel to (but not necessarily coincident 

with) the axis of rotation while the  -axis lies in the plane of rotation. Thus the principal axes 

of the beam cross-section are parallel to the   and   directions. The free vibratory motion of 

the beam is considered to occur in the  -  plane (i.e. lag-wise motion). The flexure in the 

 -direction is coupled with the axial motion in the  -direction through Coriolis effects. A 

schematic plan view of this element is shown in Figure 2 in which the  ,   and   axes are 

fixed within the element, with the origin at its left-hand end. (Note that the out-of-plane free 

vibration of a rotating beam with no coupling between the flexural (or bending) motion with 

the axial (or extensional) motion has been dealt with by the first author by using the DSM in 

an earlier publication [1].) The axial and flexural rigidities of the beam are assumed to be    

and    respectively, whereas the density of beam material is  and its cross-sectional area is 

 . In order to allow for the centrifugal forces developed in adjacent beam elements, the 

theory is generalised by including an outboard axial force    at the outer end of the element, 
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as shown in Figure 2. For the element at the extreme outer end of the whole beam, see Figure 

1, this force is clearly zero. 

 

Referring to Figure 2, the time-independent centrifugal tension T(x) at a distance x from the 

origin is given by [1, 4] 

 ( )    ∫   (    )
 

 

           [  (   )  
 

 
(     )]     (1) 

The governing differential equations of motion of the rotating beam can be derived using 

Hamilton’s principle for which the expressions for kinetic ( ) and potential ( ) energies are 

fundamental prerequisites. Referring to Figure 2, it can be shown that   and   are given by 

[1, 5]  
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where   and   are (elastic) displacements of a point at a distance   from the origin in the   

and   directions respectively, an over dot represents differentiation with respect to time   and 

a prime denotes differentiation with respect to  . 

 

Hamilton’s principle states  

 ∫ (   )
  

  

     (4) 

where    and    are the time intervals in the dynamic trajectory, and   is the usual variational 

operator.  

 

Substituting the expressions for   and   from equations (2) and (3) into equation (4), using 

the variational operator and then carrying out integration by parts in the usual way yields the 

following governing differential equations of motion of the rotating beam.  
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         ̈       ̇          (5) 

           ̈       ̇        (   )    (6) 

 

The natural boundary conditions generated by the Hamiltonian formulation give the 

following time-dependent expressions for axial force ( ) with tensile force positive, bending 

moment ( ), with hogging moment positive and shear force ( ), with clockwise shear 

positive [18]. 

                                 (7) 

Assuming harmonic oscillation of the form 
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(8) 

and writing 
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equations (5) and (6) can be written with the help of equation (1) as 
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Substituting for   from equation (10) into equation (11) gives  

     
       {  ( 

    )      [  (   )  
 

 
(     )]    

  

  
}      

           (    )     (     ) {  [  (   )  
 

 
(     )]     

  

  
}    

   (     )(    )   [      (     ) ]    

(12) 

Making a change of variable from   to   where 

         ⁄                   (13) 

equation (12) becomes 
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Similarly, substituting for   from equation (10) into equation (11) leads to 

[   (          
 )   (  ̅    ̅ ) 

  (  ̅         
 )   (       ) 

    ]    
(16) 

where 

  ̅          ̅          ̅         (17) 

Equations (14) and (16) are solved using the Frobenius method of series solution. Thus, by 

assuming 

 ( )  ∑     
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(19) 

where     ,     , the starting indices   and  ̅ are determined from the indicial equations 

as follows. 

 

Substituting equation (18) into equation (14) gives 
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Multiplying both sides by        and expanding in powers of   gives 
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(21) 

Relationships between the coefficients      are found by equating the coefficients of    to 

zero in equation (21).  First, considering the coefficient of    gives the inidicial equation 

   (   )(   )(   )(   )(   )    (22) 

Because the roots of equation (22) differ by integer values, the general solution can be 

obtained simply by considering the lowest root    , see [19], so that    is arbitrary.  Next, 

substituting     into the coefficients of  ,   ,   ,    and    in equation (21) shows, 

respectively, that   ,   ,   ,    and    are also arbitrary.  Finally, considering the coefficient 

of    for     gives the following recurrence relationship. 
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A similar procedure, by substituting equation (19) into equation (16), leads to  ̅    and thus 

proceeding in the same way as above, it can be shown that the first six coefficients   ,   ,   , 

  ,    and    of equation (19) are arbitrary, while for    , 
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Supposing that the infinite series of equations (18) and (19) are each truncated to their first   

terms, one can write 
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In this way, all the coefficients of the series in equations (18) and (19) can be expressed in 

terms of the arbitrary ones, i.e. 

      ;       (26) 

where the first six rows of    and    each form a unit matrix, and the remaining rows are 

obtained from the recurrence relations  of equations (23) and (24), respectively. 

 

Now, from equation (10),  

     ( 
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(27) 

 

where 
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and so, by comparing the coefficients of the first six powers of  , one obtains 
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Referring to the sign conventions of Figure 3 and the boundary conditions of the beam shown 

in Figure 4, the displacement and force vectors at ends 1 and 2 of the beam can be written as  
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 (31) 

Now the boundary conditions for displacements and forces can be applied at the two ends of 

the beam where     (i.e.    ) and     (i.e.    ), respectively in order to develop the 

dynamic stiffness matrix. 

 

Boundary conditions for responses are 

At     :                   ( )      
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These boundary conditions are now applied to equations (18) and (19) to give 
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The following boundary conditions for loads are obtained by applying equations (7) and 

noting that        ,         and         where  ,   and   are the amplitudes of 

axial force, shear force and bending moment. 

At     :           
  

  
    ( )          

  

  
   ( )       

}
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Thus the above boundary conditions for forces give 
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Equations (33) and (35) can be expressed in matrix form as follows. 

                      (36) 

Substituting equations (26) into equations (36) and using equation (29) gives 

            (37) 

where 

                                  (38) 

The dynamic stiffness matrix   for the rotating beam, which relates the amplitudes of the 

forces   to those of the displacements   can now be obtained by eliminating the constant 

vector   from equation (37) to give 

      (39) 

where 
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        (40) 

is the required dynamic stiffness matrix. Clearly   is a complex Hermitian matrix comprising 

pure real and pure imaginary elements in the following form. Thus 

  

[
 
 
 
 
 
          
              

              

          
              

              ]
 
 
 
 
 

  

[
 
 
 
 
 

              

           
           

                

            
            ]

 
 
 
 
 

 (41) 

where each term     is real.  In other words,   is a real symmetric stiffness matrix in which 

the axial and flexural components are uncoupled, augmented by an imaginary Hermitian 

matrix coupling these behaviours. 

 

3. Application of the Dynamic Stiffness Matrix 

 

The dynamic stiffness matrix   of equation (41) can now be used to compute the natural 

frequencies and mode shapes of either an individual rotating beam or an assembly of them. 

Once the overall dynamic stiffness matrix of the final structure consisting of rotating beams is 

assembled, the Wittrick-Williams algorithm [17] is applied in the following manner to 

determine the natural frequencies of the structure. 

 

(i) For an arbitrarily chosen trial frequency   , the dynamic stiffness matrix   ( 
 ) of the 

final structure is computed first and then the matrix is triangulated into upper diagonal form 

  
  by using Gauss elimination. Then the number of negative elements on the leading 

diagonal of   
  is counted. This so-called sign count  {  } is an integral part of the algorithm 

which gives an indication of the number of natural frequencies lying below the trial 

frequency   . 

 

(ii) Since the DSM for free vibration analysis is exact, it allows an infinite number of natural 

frequencies to be accounted for when all nodes of the structures are fully clamped so that one 
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or more individual elements in the structure can still vibrate freely on their own between the 

nodes. This happens when the displacement vector   to which   ( 
 ) corresponds is null, 

and gives rise to the so-called    count of the algorithm, which is essentially the number of 

clamped-clamped natural frequencies of all individual elements in the structure exceeded by 

the trial frequency   . The    count is an important part of the algorithm and is not always a 

peripheral issue. However, for most practical applications, the clamped-clamped natural 

frequencies of individual elements are generally very high, and thus they are not usually 

exceeded by any practical trial frequency   , so that    is zero. As a consequence, the 

analysis is predominantly based on the sign count  {  } of (i) above. One of the ways to 

avoid the computation of    is to split the elements into a number of smaller elements for 

which the clamped-clamped natural frequencies will be exceptionally high, resulting into zero 

values for    at all frequencies of interest. 

 

  When the integer numbers given by  {  } and    of (i) and (ii), respectively, are added 

together to give  , it can be stated with certainty [17] that   is the total number of natural 

frequencies of the structure lying below the trial frequency   . It should thus be noted that 

the Wittrick-Williams algorithm does not give the numerical values of the natural frequencies 

directly, but it shows how many of them exist below an arbitrarily chosen trial frequency. 

This simple feature of the algorithm can be exploited to advantage by choosing successive 

trial frequencies to bracket any natural frequency to any desired accuracy. The algorithm, 

unlike its proof, is thus very simple to implement in a computer program. For a known 

natural frequency, the mode shapes are subsequently computed by choosing one displacement 

component of a node and then determining the rest of the displacements in terms of the 

chosen one. 
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4. Numerical Results and Discussion 

 

In order to make the application sufficiently general, numerical results are presented in non-

dimensional forms, particularly by defining the following non-dimensional parameters. 

     √
    

  
 √(       )   

       √
    

  
 √          √

  

  
 (42) 

where      the non-dimensional rotational speed,    is the non-dimensional natural frequency 

and   is the slenderness ratio of the beam, with     and    defined in equation (9). The non-

dimensional hub radius       ⁄  of equation (15) has also been used as a parameter when 

obtaining the results using the present theory. Results with and without the inclusion of 

Coriolis effects have been designated as Case A and Case B, respectively. The Case B results 

were obtained using the earlier dynamic stiffness theory developed by the first author [1]. 

 

The first five non-dimensional natural frequencies    (         ) of the rotating beam for 

cantilever boundary condition are shown in Table 1 for a wide range of the non-dimensional 

speed parameter  , when the slenderness ratio   is set to 100 and the hub radius parameter    

is set to zero. Clearly for Case B when the Coriolis effects are ignored, the flexural and axial 

motions are uncoupled. Thus the natural frequencies corresponding to the flexural motion 

will always increase due to the centrifugal stiffening effect from the rotational speed, whereas 

those corresponding to axial motion will remain unaltered, as expected. This is evident from 

the results shown in Table 1 where           (i.e.   ⁄ ) corresponds to the fundamental 

axial natural frequency of the beam with cantilever boundary condition. In the Case B results, 

the numerical values of these axial natural frequencies are unaffected as a result of the 

centrifugal action, but their positions in terms of the order of the natural frequencies are 

altered when the rotational speed increases because of the increase in the bending natural 

frequencies. Focusing on the results given in Table 1, it is clear that when the Coriolis effects 

are included (i.e. the Case A results), both the bending and the axial natural frequencies 

change, particularly at high rotational speeds because the two motions are coupled through 

Coriolis effects.  The results indicate that the influence of the Coriolis effects on the natural 

frequencies is pronounced only at high rotational speeds ( exceeding 0.5).  Comparison of 

Case A and Case B results in Table 1 shows that the Coriolis effects diminish the natural 

frequencies, as observed by other researchers [5, 16]. 
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The next set of computations was carried out to validate the DSM theory of this paper and to 

illustrate its predictable accuracy. This is achieved by comparing results from the present 

theory with those available in the literature. Table 2 shows the first five non-dimensional 

natural frequencies of a rotating cantilever beam with the inclusion of Coriolis effects for 

three different values of slenderness ratio   alongside the results of Huang et al [16] when 

      and     . The results are in complete agreement as can be seen.  

 

In order to demonstrate the effect of hub radius, Table 3 shows the first three non-

dimensional natural frequencies of the cantilever rotating beam when        and   

     for which some comparative results using Timoshenko beam theory are available in 

the literature [5]. Clearly for such a high value of the slenderness ratio  , the results are 

expected to be close and indeed, they are really very close as can be seen in Table 3.  

 

The next set of results was obtained to illustrate the mode shapes of the rotating beam with 

the inclusion of the Coriolis effects. Figure 5 shows the first five modes of the beam with 

cantilever boundary condition when       ,      and      . It is evident that the first 

four modes are essentially bending modes whereas the fifth mode is an axial one with a small 

amount of bending displacement present. The effect of coupling between the bending and 

axial modes is not so pronounced in this particular case.  

 

It is interesting to note from the Case A results in Table 1 that allowing for the Coriolis 

effects, and hence coupling the axial and bending behaviour, appears to counterbalance the 

stiffening effect arising from the rotating action. Thus, for exceptionally high rotational 

speeds ( ), the lowest in-plane natural frequency of the rotating beam begins to decrease with 

increasing rotational speed. In order to capture this effect and its trend, Figure 6 shows the 

variation of the lowest natural frequency (   of the rotating beam against   when      and 

      for the cantilever boundary condition. For small values of  ,    increases and it 

peaks at around       for this particular case. Then    gradually decreases and becomes 

zero when  is close to   ⁄ . This phenomenon does not occur for the Case B results in Table 

1, in which the coupling effects of the Coriolis terms are excluded so that 1 illustrates purely 

bending behavior. It is therefore consistent with the apparent axial instability at     ⁄  

previously observed by Hodges and Bless [20], which they explained to be a consequence of 

the use of linear small deflection theory at strain levels well beyond the limits of linear 
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theories for practical engineering materials. Allowing for non-linear strain terms would 

reverse this trend and hence avoid the prediction of instability, but it is believed that such a 

refinement is not necessary for many practical applications of beams rotating at realistic 

speeds. 

 

The results shown in Table 1 also reveal some interesting modal interchanges or modal flip-

over phenomena where bending and axial modes switch (cross) over. The fourth and fifth 

natural frequencies (   and   ) of the rotating cantilever beam switch over at around       

which is illustrated in Figure 7. Below      , the fourth mode is predominantly bending 

and the fifth one is axial whereas above this rotational speed at      , the fourth mode is 

predominantly axial and the fifth one is bending. At      , the modes are somewhat 

coupled in bending and axial motion, particularly the fourth mode. In order to gain some 

insight, the fourth and the fifth modes for      , 0.2 and 0.3 are plotted in Figure 8. The 

modal interchanges as a consequence of the inclusion of the Coriolis effects are clearly 

evident.  

 

5. Scope and Limitations of the Theory 

 

The dynamic stiffness theory presented in this paper is based on Bernoulli-Euler beam model 

which does not take into account the effects of shear deformation and rotatory inertia. To 

account for these effects, the application of the Timoshenko beam theory will be more 

appropriate. To this end the dynamic stiffness development of a rotating Timoshenko beam 

with the inclusion of Coriolis effects will be an enormously difficult, but a challenging task, 

constituting the subject matter of future research. This useful extension will be of great value 

in predicting accurately the free vibration behaviour of rotating beams with the inclusion of 

Coriolis effects. Also the present theory considers in-plane flexural free vibration of the 

rotating beam and the axial deformation is assumed to be coupled only through Coriolis 

effects with no other forms of coupling effects are present. Obviously the out of plane flexure 

and torsional deformations are disregarded in the analysis.  

 

Furthermore, as a consequence of using linear small deflection theory when formulating the 

dynamic stiffness matrix, all nonlinear effects arising from the coupling between various 

modes of deformation, particularly the axial-bending nonlinear coupling and the stiffening 

effect due to rotation, have been ignored. In order to explore the effects of nonlinearities of 
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both geometric and dynamic origin when investigating the free vibration characteristics of 

rotating beams, interested readers are referred to the works of Turhan and Bulut [21], 

Lacarbonara et al [22], Arvin et al [23], Kim et al [24] and Sotoudeh and Hodges [25, 26]. 

 

6. Conclusions 

 

By using Hamilton’s principle, the governing differential equations of motion of a rotating 

beam for its lag-wise motion which couples the flexural and axial deformations through 

Coriolis effects have been derived and solved using the Frobenius method of series solution. 

Then a systematic procedure has been devised to derive the dynamic stiffness matrix of the 

rotating beam. The ensuing dynamic stiffness matrix has been used through the application of 

the Wittrick-Williams algorithm to investigate its free vibration characteristics with cantilever 

boundary condition. Results are given for a wide range of rotational speeds and hub radius 

ratios. The effect of each of these parameters on the free vibration behaviour has been 

examined and demonstrated. At high rotational speed, the coupling between bending and 

axial deformations can be significant. An instability which shows how the natural frequency 

diminishes due to Coriolis effects has been captured. Some representative mode shapes are 

also presented. The investigation has shown that for high rotational speeds modal 

interchanges due to the Coriolis effects occur, affecting the order and magnitude of the 

natural frequencies. The proposed dynamic stiffness theory is accurate and computationally 

efficient and can be used to analyse a non-uniform rotating beam by modelling it as a 

collection of uniform beams with different properties, but with collinear neutral axes. The 

theory can also be used as an aid to validate finite element and other approximate methods. 
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Table 1. Effect of rotational speed on the in-plane natural frequencies of a rotating cantilever 

beam for      and      . Case A: Coriolis effects included, Case B: Coriolis effects 

excluded 

 

 




i 

 

Case A 

 

Case B 

 

 

0.0 

1 0.03516 0.03516 

2 0.22035 0.22035 

3 0.61697 0.61697 

4 1.20902 1.20902 

5 1.57080 1.57080 

 

 

0.02 

1 0.03621 0.03622 

2 0.22525 0.22526 

3 0.62240 0.62241 

4 1.21479 1.21480 

5 1.57118 1.57080 

 

 

0.05 

1 0.04066 0.04074 

2 0.24942 0.24950 

3 0.65006 0.65013 

4 1.24459 1.24466 

5 1.57319 1.57080 

 

 

0.1 

1 0.05010 0.05049 

2 0.32084 0.32120 

3 0.73946 0.73976 

4 1.34483 1.34513 

5 1.58039 1.57080 

 

 

0.5 

1 0.08693 0.10447 

2 1.13276 1.16182 

3 1.79799 1.57080 

4 2.02547 2.04618 

5 3.04221 3.05895 

 

 

1.0 

1 0.07632 0.14666 

2 2.01515 1.57080 

3 2.39141 2.27118 

4 3.66494 3.87019 

5 5.16886 5.56470 

 

 

1.5 

1 0.02769 0.17919 

2 2.57842 1.57080 

3 3.12602 3.38605 

4 4.82897 5.71927 

5 6.16571 8.11300 
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Table 2. Comparison of results with published literature for a rotating cantilever beam 

including Coriolis effects for different values of slenderness ratio   when      and        

 







i 

 

Present theory 

 

Ref. [16] 

 

 

20 

1 0.17972 0.17972 

2 1.12413 1.12413 

3 1.58132 1.58132 

4 3.11043 3.11043 

5 4.71617 4.71617 

 

 

50 

1 0.08086 0.08086 

2 0.49836 0.49836 

3 1.29965 1.29965 

4 1.58046 1.58046 

5 2.48885 2.48885 

 

 

100 

1 0.05010 0.05010 

2 0.32084 0.32084 

3 0.73946 0.73946 

4 1.34483 1.34483 

5 1.58039 1.58039 
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Table 3. Effect of hub radius on the natural frequencies of rotating cantilever beam when 

      ,       . Case A: Coriolis effects included, Case B: Coriolis effects excluded 

 

 

 

r0 

 

 



Case A 

 

Case B 

 

Present theory 

 

Ref. [5] 

 

Present theory Ref. [5] 

 

0 

 

1 0.010427 0.010416 0.010447 0.010437 

2 0.116156 0.116148 0.116182 0.116175 

3 0.204599 - 0.204618 - 

 

1 

 

1 0.061469 0.061463 0.061590 0.061584 

2 0.181795 0.181780 0.181839 0.181824 

3 0.303544 - 0.303574 - 

 

2 

1 0.086094 - 0.086264 - 

2 0.228787 - 0.228843 - 

3 0.375370 - 0.375407 - 
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Figure 1. Coordinate system and notation for a rotating Bernoulli–Euler beam 
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Figure 2. In-plane free vibration of a rotating beam element of length L. 
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Figure 3. Sign convention for positive axial force (F), shear force (S) and bending moment (M) 
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Figure 4. Boundary conditions for displacements and forces of the beam element 
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Figure 5. Mode shapes of rotating beam with cantilever boundary condition including Coriolis 

effects for      ,       and      .                        U ;                    V  
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Figure 6. The effect of rotational speed on the fundamental natural frequency of a cantilever 

rotating beam with the inclusion of Coriolis effects for       and       
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Figure 7. Variation of the fourth and fifth natural frequencies of rotating cantilever beam with 

rotational speed including Coriolis effects for the case when       and       
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Figure 8. (a) Fourth and (b) fifth modes of the cantilever beam for different rotational speeds. 
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