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Layer wise dynamic stiffness solution for free vibration

analysis of laminated composite plates

M. Boscolo∗, J. R. Banerjee

School of Engineering and Mathematical Sciences, City University London, Northampton

Square, London, EC1V 0HB

Abstract

The dynamic stiffness method has been developed by using a sophisticated

layer wise theory which complies with the C0
z requirements and delivers high

accuracy for the analysis of laminated composite plates. The method is ver-

satile as it derives the dynamic stiffness matrix for plates with any number of

layers in a novel way without the need to re-derive and re-solve the equations

of motion when the number of layers has changed. This novel procedure to

manipulate and solve the equations of motion has been referred to as the

L-matrix method in this paper. The Carrera unified formulation (CUF) is

employed to derive the equations of motion of a plate through the use of a

first order layer wise assumption for a plate with a single layer first. The

method is then generalised and extended to multiple layers. Essentially by

writing the equations of motion of one single layer in the L-matrix form,

the system of equations of motion of a laminated plate with any number of

layers is generated in an efficient and automatic way. A significant feature of

the subsequent work is to devise a method to solve the system of differential
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equations automatically in closed analytical form and then obtain the ensu-

ing dynamic stiffness matrix of the laminated plate. The developed dynamic

stiffness element has been validated wherever possible by analytical solutions

(based on Navier’s solution for plates simply supported at all edges) for the

same displacement formulation. Furthermore, the dynamic stiffness theory

is assessed by 3D analytical solutions (scantly available in the literature) and

also by the finite element method using NASTRAN. The results have been

obtained in an exact sense for the first time and hence they can be used as

benchmark solutions for assessing approximate methods. This new develop-

ment of the dynamic stiffness method will allow free vibration and response

analysis of geometrically complex structures with such a level of computa-

tional efficiency and accuracy that could not be possibly achieved using other

methods.

Keywords: Dynamic stiffness method, benchmark solutions, Layer-wise

theory, composites, free vibration analysis, Carrera Unified Formulation.

1. INTRODUCTION

Multilayered composite structures are increasingly being used in aircraft

and other industries because of their high specific strengths and ability to be

tailored for stiffness properties to satisfy specific design requirements. Over

the past decades, the use of composite materials has been confined mostly to

secondary (small or non-load carrying) structures such as aircraft ailerons,

fins and rudders. The situation has changed in recent years and there have

been significant inroads and progresses made in that composites have stead-

fastly made headways to primary structures. As a consequence, the develop-
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ment of more advanced and accurate theories for modelling thick multilay-

ered plates has been the focus of attention of many researchers during the

past few years. A vast amount of literature is now available on the subject.

The technique generally used to model a multilayered composite structure

(constructed in the form of a laminate) is based on the classical lamination

theory (CLT) [1]. This is a natural extension of the classical theory used

for traditional single layer structure such as a plate. In CLT a multi-layered

structure is thought to behave as a single layer having equivalent properties

obtained by the superposition of all single layers. For this reason the theory

is also called equivalent single layer (ESL) theory. Since a multi-layer struc-

ture is reduced to an equivalent single layer, classical plate theories, such as

Kirchhoff classical plate theory (CPT), Reissner [2]-Mindlin [3] (first order

shear deformation theory, FSDT) or higher order shear deformation theo-

ries (HSDT) [4], can be used to examine the static or dynamic behaviour.

Although ESL theory based on either FSDT or HSDT has proved to be rea-

sonably accurate to describe the macro behaviour of multilayered structures,

it should be recognised that for thicker plates of in-plane dimension over

thickness ratio ≤ 50 (often required in the design of primary structures),

more advanced theories are needed to provide accurate results for the en-

hancement of existing design. One of the main problems of ESL theory is

that C0
z requirements are not satisfied at the interface [5] which is a well

known anomaly in the mechanics of laminated composites. The C0
z require-

ments have earlier been demonstrated by 3D exact solutions [6] and they can

be summarised as follows:

(i) Continuous displacements but discontinuous derivatives at the inter-
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faces;

(ii) Continuous normal and surface shear stresses (σT
n =

[

σzx, σzy, σzz

]

)

at the interfaces.

It is clear that displacements must be continuous at the interfaces between

layers if the interface has to remain intact. In the same way the normal

stresses must be continuous to ensure equilibrium. In order to have contin-

uous normal stresses and the continuity of displacements at the interface,

the first derivative of displacements (strains) must be discontinuous since

the material properties can be different from one layer to the other. This

has meant that the in-plane stresses must be discontinuous without violating

the equilibrium condition. Typical fields of stresses and displacements which

comply with C0
z requirements are shown in Figure (1). In the ESL theory,

Figure 1: Example of real stress and displacement fields for multilayered structures [5]

an equivalent layer is studied and consequently, the displacements are con-

sidered continuous and differentiable through the interface, which no-doubt

violates the C0
z requirements (Figure (2)). A method to overcome this prob-

lem is to add additional unknowns to model the zig-zag behaviour of the

displacement field. These are referred to as zig-zag theories such as the ones

published in [7–10] (Figure (2)). More accurate theories have been developed

where each single layer is modelled as a plate and then connected through
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thickness by using a suitable assembly procedure. This leads to the so-called

layer-wise (LW) theory [5, 11–17]. Each single layer can be modelled using

classical plate theory, FSDT or HSDT. The displacement functions are cho-

sen appropriately so that the continuity of displacements can be imposed at

the interfaces during the assembly procedure. The change in the slope at the

interfaces is routinely obtained by solving the problem. The assumed dis-

placement field through the thickness for an LW theory is illustrated in Figure

(2). It is evident that if LW theory is used, the displacement field is more

Layer 1

Layer 2

Layer 3

u , v , w1 1 1

u , v , w2 2 2

u , v , w3 3 3

u , v , w4 4 4

Layer 1

Layer 2

Layer 3

u , v , w

,

0 0 0

fx f fy z,

u , v , w
zz zz zz

u, v, w

Layer 1

Layer 2

Layer 3

u , v , w

, ,

0 0 0

f f fx y z

ESL Zig-Zag LW

Figure 2: Example of first order ESL, Zig-Zag and LW displacement distributions through

the thickness

accurately represented (see Figures (1) and (2)), and therefore, the results

of the analysis will be more accurate. This is not only true for stress analy-

sis, but also for displacement and modal analysis. The improvement in the

accuracy of results will inevitably be significant for thick plates, particulary

when the difference in properties from one layer to the other is considerable.

A detailed review on the historical development of the above theories can be

found in an exhaustive article published by Carrera [5] and also in [17–20]

when dealing with the free vibration analysis of multilayered composite and

sandwich plates. It was shown in these articles that the use of ESL theories

could lead to large discrepancies when compared with the exact 3D results [6]
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especially for large orthotropic and thickness ratios. Even for thin plates with

typical width to thickness ratio of 50, the error on the fundamental frequency

can be as high as 10% [18–20] or 30% for multifield problems [12], and com-

pletely wrong even by a order of magnitude for sandwich plates [17]. The

need to use of a layer wise theory for obtaining accurate results cannot be

overstated. Understandably the layer wise theory requires a large number

of degrees of freedom which of course, depends on the number of layers.

At present the problem is solved generally in exceptional circumstances by

using the finite element method (FEM) [21] requiring a huge number of el-

ements, thus embarking on an excessively large number of nodes to model

the structure. This is probably the main reason why the layer wise the-

ory is not favoured and often overlooked and, as an alternative, less accurate

zig-zag theories are sought instead. Apparently the layer wise based finite ele-

ments are mainly (if not solely) used for modelling delamination in ABAQUS

software (called continuous shell elements) requiring large computational re-

sources.

Against this background, a first order layer wise theory based on the Car-

rera’s Unified Formulation (CUF) [12, 14, 16–20, 22, 23] is proposed in this

paper. Instead of using the finite element solution, which requires exorbi-

tantly large number of nodes, or a restricted analytical Navier type solution

that is suitable only for a rectangular plate with all four sides simply sup-

ported, the Dynamic Stiffness Method (DSM) because of its elegant applica-

tion and powerful modelling capability is considered here to be the best way

forward. [24–46]. The DSM requires the closed form analytical solution of

the free vibration problem of the structural element, and then, by applying

6



general boundary conditions, a dynamic stiffness matrix which contains all

the natural frequencies of the element can be developed. This element for a

plate has the shape of a strip that can be rotated and assembled to form a

geometrically complex structure and yet the exactness of the solution can be

retained. The results, in fact, will be mesh independent and with very few

elements any number of required natural frequencies and mode shapes can

be obtained to any desired accuracy for a structure that can be modelled or

idealised as plate assemblies. The use of the DSM will allow an efficient use

of LW theories because of the limited number of degrees of freedom required

by the DSM unlike the FEM. The DSM has no limitation on the number

of natural frequencies that can be computed. Thus it is significantly more

computational efficient than the FEM.

The DSM has been largely developed for bars and beams [24–31] and im-

plemented and validated in programs such as BUNVIS-RG [47] and PFVI-

BAT [48].

The extension of the DSM to plate elements is essential to model complex

aeronautical structures accurately. Wittrick and Williams [32–35] appear to

be the first who attempted the extension of the DSM to plate elements and

they achieved significant success. They implemented their dynamic stiff-

ness theories into a program called VIPASA [35, 38, 39]. In the engineer-

ing literature, this program made considerable impact at the time and it

was subsequently developed further. Foremost amongst these developments

are VICON [38], PASCO [36, 37] and VICONOPT [31, 40–42] which are all

well documented. The authors of this paper improved the DS plate theory

developed by Wittrick and Williams by including the important effects of
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shear deformation and rotatory inertia but their investigation was focused

on isotropic plates [43]. In a parallel investigation, the authors also devel-

oped the corresponding DSM for inplane free vibratory motion of isotropic

plates [44] wherein a set of previously missed inplane modes was identified.

Following these earlier investigations, the DSM was extended by the authors

to composite plates using the first order shear deformation theory (FSDT)

see [45,46] and Reddy’s high order shear deformation theory in [49]. Some ap-

plication of the theory to aeronautical structures have been reported in [50].

These developments by the authors have been implemented in a computer

program called DySAP.

In this paper, the extension of the DSM using a first order layer wise theory

based on the CUF is presented, the results from the theory are validated and

the superior accuracy is demonstrated. In Section (2) the fundamental equa-

tions of solid mechanics relevant to the investigation are presented. Next,

CUF is used to derive the equations of motion and boundary conditions for

one orthotropic layer in explicit form in the first instance. In section (3), a

novel method, called the L-matrix method has been presented to obtain au-

tomatically the equations of motions and boundary condition of a plate with

Nl number of layers. This is achieved through the use of a matrix L which

can be conveniently expanded and assembled. This is one of the most impor-

tant contributions made by this paper because this novel method to write the

equations of motion can be used for any problem for which the equation of

motions depends on the analysis parameters. Subsequently, an algorithm to

simultaneously solve the system of second order differential equations in an

automatic way has been devised and presented. In section (4), the DSM for
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the formulated problem is developed and the dynamic stiffness matrix of the

element is obtained (section (4.1)). Assembly and boundary conditions are

dealt with in sections (4.2) and (4.3) respectively. The Wittrick and Williams

algorithm has been summarised in section (4.4) and an efficient procedure

to obtain the mode shapes from as few as one element is presented in sec-

tion (4.5). Given the complexity of the problem, a step by step procedure

to obtain the DSM matrix for a layer wise formulation is given in section

(5). In section (6), the developed formulation is first validate against Navier

type solutions and then used to obtain closed form solution of multilayered

composite plates with different boundary conditions which hitherto have not

been obtained. These results can be used as benchmark for validating finite

element and other approximate models. In the last section, some conclusions

are drawn.

2. PRELIMINARIES: FROM PLATE MODEL TO GENERALISED

EQUATIONS OF MOTION BY THE CARRERA’S UNIFIED

FORMULATION (CUF)

The Carrera’s Unified Formulation (CUF) [12, 14, 16, 17, 22, 23] has been

used in this section to obtain the equations of motion and boundary con-

ditions for a multilayered plate. The prerequisites needed to formulate the

problem in the CUF notation can be summarised as:

(i) Displacement assumptions (section (2.1));

(ii) Geometrical equations (section (2.2));

(iii) Constitutive equations (section (2.3));
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The above details are substituted into Hamilton’s principle to give a 3×3

matrix, often called the nucleus (section (2.4)), which can be conveniently

expanded to the required plate theory depending on its order and assembled

across the layers for composites to give either the FE stiffness matrix or the

Navier’s type analytical stiffness matrix of the system [12, 14, 16, 17, 22, 23].

The CUF nucleus, different from previously published, has been used to

obtain the differential equations of motion of the system in this paper (section

(2.5)).

2.1. Displacement formulation

The displacement field is formulated by using thickness functions Fτ (z) in

order to reduce the 3D problem where the unknown displacements u(x, y, z, t) =

{u, v, w} are function of x, y, z and t to a 2D problem for which the displace-

ments are only function of 2 independent variables (x, y and t). By using

the CUF, plate theories of any order (NCUF ) can be formulated by using a

unified notation.

uk(x, y, z, t) = Fb(z)uk
b (x, y, t) + Fr(z)uk

r(x, y, t) + Ft(z)uk
t (x, y, t) (1)

for r = 2, . . . , NCUF − 1 where NCUF is the order of the plate theory to be

used and the superscript k refer to the layer number. Eq.(1) can be rewritten

in a more compact form by making use of Einstein’s notation where a double

subscript stands for the usual summation

uk = Fτ uk
τ (2)

The choice of the Fτ determines the type of theory to be used [12,14,16,17,

22,23]. In this study, a layer-wise formulation needs to be adopted, thus the
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thickness function Fτ take the form of Legendre’s polynomials

Ft =
P0 + P1

2
, Fb =

P0 − P1

2
, Fr = Pr − Pr−2 r = 2, . . . , N (3)

where Pi(ζk) is the i-order Legendre polynomial in the domain −1 ≤ ζk ≤ 1

and ζk = z/hk. The first five Legendre polynomials are:

P0 = 1 P1 = ζk P2 =
3ζ2

k − 1

2
P3 =

5ζ3
k − 3ζk

2
P4 =

35ζ4
k − 30ζ2

k + 3

8
(4)

The choice of these functions is not arbitrary but they must satisfy the fol-

lowing fundamental properties:

ζk =







1 : Ft = 1, Fb = 0, Fr = 0

−1 : Ft = 0, Fb = 1, Fr = 0
(5)

which implies that. uk
t and uk

b are in fact the displacements at the top and

bottom of the kth layer (see Eq. (1)). This is important to ensure com-

patibility at the interfaces between layers without the need to use Lagrange

multipliers but by simply assembling the stiffness terms (or differential equa-

tions) in the right order noting that:

uk
t = u

(k+1)
b , with k = 1, . . . , NL − 1 (6)

2.2. Geometrical equations: strain-displacement relationships

The strain ε for the kth layer can written as

εkT =
[

εxx, εyy, εzz, εyz, εxz, εxy

]k

=
[

ε1, ε2, ε3, ε4, ε5, ε6

]k

(7)

The above vector can be split into two, showing inplane strain εp = [εxx, εyy, εxy]

and out of plane or normal strain εn = [εxz, εyz, εzz]. Their relation to the

displacements u = [u, v, w] can be written as

εk
p = Dp uk , εk

n = (Dnp + Dnz)u
k (8)
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where the differential or partial derivative matrices can be written as:

Dp =











∂x 0 0

0 ∂y 0

∂y ∂x 0











, Dnp =











0 0 ∂x

0 0 ∂y

0 0 0











, Dnz =











∂z 0 0

0 ∂z 0

0 0 ∂z











(9)

with ∂x = ∂/∂x, ∂y = ∂/∂y, ∂z = ∂/∂z.

2.3. Constitutive equations: stress-strain relations

The complete 3D constitutive equations are used since thickness locking

is generally not present for layer wise theories [51]. The stresses σk are

σkT =
[

σxx, σyy, σzz, σyz, σxz, σxy

]k

=
[

σ1, σ2, σ3, σ4, σ5, σ6

]k

(10)

are related to the strain in the global reference system for orthotropic mate-

rials by

σk
p = Ck

ppε
k
p + Ck

pnε
k
n , σk

n = Ck
pn

T
εk

p + Ck
nnε

k
n (11)

where

Ck
pp =











C11 C12 C16

C12 C22 C26

C16 C26 C66











k

Ck
pn =











0 0 C13

0 0 C23

0 0 C36











k

Ck
nn =











C55 C45 0

C45 C44 0

0 0 C33











k

(12)

σkT
p =

[

σ1, σ2, σ6

]k

σkT
n =

[

σ5, σ4, σ3

]k

(13)

εkT
p =

[

ε1, ε2, ε6

]k

εkT
n =

[

ε5, ε4, ε3

]k

(14)

The explicit expressions of the material properties for an orthotropic material

in the lamina reference system and the rotation matrices to obtain the ones

in the global coordinate system are presented in (APPENDIX A).
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2.4. Developing CUF nucleus K

Once the model and the governing equation have been formulated, Hamil-

ton’s principle can now be used to obtain the equations of motion. The

principle can be written by using the matrix form of the equations as

Nl
∑

k=1

∫

Ak

∫

hk

{

δεk
pG

T
σk

pC + δεk
nG

T
σk

nC

}

dAk dz = δLe − δLin (15)

where Lin is the work done by the inertia forces and Le by the external forces.

In order to obtain the fundamental nucleus the following substitution into

Eq. (15) should be made:

(i) Constitutive relations Eq. (11) ;

(ii) Geometric relations Eq. (8);

(iii) Displacement formulation Eq. (2);

Finally by developing the matrix products and integrating by part equations

of motion and natural boundary conditions are obtained. For the sake of

brevity each single step is not reported here. The final result is a system of

equations in matrix form so that

Kkτs uk
s + M kτs ük

s = 0 (16)

and the natural boundary conditions

uk
τ = ūk

τ or Πkτs
d uk

s = F̄
k
τ (17)

where τ and s are indexes which go from 1 to the order of the chosen formu-

lation, i.e. the order of expansion of the displacement polynomials.

The matrix Kkτs is the CUF fundamental nucleus, i.e. a 3×3 matrix which,
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when properly assembled through the thickness for different layers, gives the

equations of motion of the plate.

Kkτs =

∫

Ak

{

− DT
p Ck

ppDpIEτs − DT
p Ck

pnDnpIEτs − DT
p Ck

pnIEτs,z

− DT
npC

kT

pnDpIEτs − DT
npC

k
nnDnpIEτs − DT

npC
k
nnIEτs,z

+ CkT

pnDpIEτ,zs + Ck
nnDnpIEτ,zs + Ck

nnIEτ,zs,z

}

dz

(18)

The matrix M kτs is the mass matrix (shown below), which needs to be

assembled across the layers just like the stiffness matrix Kkτs.

M kτs =

∫

Ak

{

ρkIEτs

}

dz (19)

The boundary conditions are formulated by 3 × 1 vector which needs to be

assembled as well.

Πkτs =

∫

Ak

{

IT
p Ck

ppDpIEτs + IT
p Ck

pnDnpIEτs + IT
p Ck

pnIEτs,z

+ IT
npC

kT

pnDpIEτs + IT
npC

k
nnDnpIEτs + IT

npC
k
nnIEτs,z

}

dz

(20)

With regard to the boundary condition equations which come from the inte-

gration by part, it is necessary to develop a method to keep track of the edge

on which they need to be computed (either x = 0, b or y = 0, L). Two coef-

ficients Γb and ΓL are used to represent ∂x and ∂y respectively. By putting

one of the coefficient to 1 and the other to 0, the boundary conditions on the

two different edges can be obtained from the same formulation. In order to
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achieve this, the following matrices are used:

I =











1 0 0

0 1 0

0 0 1











, Ip =











Γb 0 0

0 ΓL 0

ΓL Γb 0











, Inp =











0 0 Γb

0 0 ΓL

0 0 0











(21)

The integrals through the thickness are written as:

Eτs = ∫
hk

FτFs dz Eτ,zs = ∫
hk

Fτ,z Fs dz

Eτs,z = ∫
hk

Fτ Fs,z dz Eτ,zs,z = ∫
hk

Fτ,z Fs,z dz
(22)

Thus the explicit terms of the fundamental nucleus can be written as

Kkτs
11 = (−Ck

11∂
2
x − 2Ck

16∂x∂y − Ck
66∂

2
y)Eτs + Ck

55Eτ,zs,z

Kkτs
12 = (−Ck

16∂
2
x − (Ck

12 + Ck
66)∂x∂y − Ck

26∂
2
y)Eτs + Ck

45Eτ,zs,z

Kkτs
13 = (Ck

55∂x + Ck
45∂y)Eτ,zs − (Ck

13∂x + Ck
36∂y)Eτs,z

Kkτs
21 = (−Ck

16∂
2
x − (Ck

12 + Ck
66)∂x∂y − Ck

26∂
2
y)Eτs + Ck

45Eτ,zs,z

Kkτs
22 = (−Ck

66∂
2
x − 2Ck

26∂x∂y − Ck
22∂

2
y)Eτs + Ck

44Eτ,zs,z

Kkτs
23 = (Ck

45∂x + Ck
44∂y)Eτ,zs − (Ck

36∂x + Ck
23∂y)Eτs,z

Kkτs
31 = (Ck

13∂x + Ck
36∂y)Eτ,zs − (Ck

55∂x + Ck
45∂y)Eτs,z

Kkτs
32 = (Ck

36∂x + Ck
23∂y)Eτ,zs − (Ck

45∂x + Ck
44∂y)Eτs,z

Kkτs
33 = (−Ck

55∂
2
x − 2Ck

45∂x∂y − Ck
44∂

2
y)Eτs + Ck

33Eτ,zs,z

(23)

Kkτs
11 = Kkτs

22 = Kkτs
33 = ρk Eτs

Kkτs
12 = Kkτs

13 = Kkτs
21 = Kkτs

23 = Kkτs
31 = Kkτs

32 = 0

(24)
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and the boundary conditions are:

Πkτs
11 = (∂x(ΓbC

k
11 + ΓLCk

16) + ∂y(ΓbC
k
16 + ΓLCk

66))Eτs

Πkτs
12 = (∂x(ΓbC

k
16 + ΓLCk

66) + ∂y(ΓbC
k
12 + ΓLCk

26))Eτs

Πkτs
13 = (ΓbC

k
13 + ΓLCk

36)Eτs,z

Πkτs
21 = (∂x(ΓLCk

12 + ΓbC
k
16) + ∂y(ΓLCk

26 + ΓbC
k
66))Eτs

Πkτs
22 = (∂x(ΓLCk

26 + ΓbC
k
66) + ∂y(ΓLCk

22 + ΓbC
k
26))Eτs

Πkτs
23 = (ΓLCk

23 + ΓbC
k
36)Eτs,z

Πkτs
31 = (ΓLCk

45 + ΓbC
k
55)Eτs,z

Πkτs
32 = (ΓLCk

44 + ΓbC
k
45)Eτs,z

Πkτs
33 = (∂x(ΓLCk

45 + ΓbC
k
55) + ∂y(ΓLCk

44 + ΓbC
k
45))Eτs

(25)

2.5. General equations of motion for first order layer wise plate theory, LD1

By using the CUF, any order of expansion, i.e. any higher order plate

theory can be obtained by suitably expanding the indexes τ and s in Eq.

(23). In this study, the expansion is limited to the first order and thus,

the indexes τ and s will simply refer to the bottom b and top t interfaces

of the kth layer. This formulation is usually refereed to in the literature as

LD1 [12, 14, 16, 17, 22, 23]. The displacement functions, by referring to Eq.

(1), can be written as

uk(x, y, z, t) = Fb(z)uk
b (x, y, t) + Ft(z)uk

t (x, y, t) (26)

where the thickness functions (see Eq. (3)) can be written as

Ft =
1

2
−

z

h
, Fb =

1

2
+

z

h
, (27)

and

uk
b =

[

uk
b , v

k
b , w

k
b

]T
, uk

t =
[

uk
t , v

k
t , w

k
t

]T
(28)
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Once the displacement formulation has been chosen as the one related to Eq.

(26) and (27) the nuclei can obtained by using equations (18) and (23) by

computing the integrals in Eq. (22). For the kth layer, the nucleus can be

split into four 3×3 submarines which will be referred to as Kk
bb, Kk

bt, Kk
tb,

Kk
tt. Also the mass matrix can be computed form Eq. (19) and (24) in the

same way to give M k
bb, M k

bt, M k
tb, M k

tt.

Kkτs uk
s + M kτs ük

s = 0 (29)

Equation (29) can be written explicitly as 6 differential equations of motion.

These 6 differential equations describe the behaviour of only 1 layer using a

first order layer wise plate formulation called LD1.

+
(

Ck
55

hk − 1
3
hk

(

Ck
11

∂2

∂x2 + 2Ck
16

∂2

∂x∂y
+ Ck

66
∂2

∂y2

))

uk
b

−
(

Ck
55

hk + 1
6
hk

(

Ck
11

∂2

∂x2 + 2Ck
16

∂2

∂x∂y
+ Ck

66
∂2

∂y2

))

uk
t

+
(

Ck
45

hk − 1
3
hk

(

Ck
16

∂2

∂x2 + (Ck
12 + Ck

66)
∂2

∂x∂y
+ Ck

26
∂2

∂y2

))

vk
b

−
(

Ck
45

hk + 1
6
hk

(

Ck
16

∂2

∂x2 + (Ck
12 + Ck

66)
∂2

∂x∂y
+ Ck

26
∂2

∂y2

))

vk
t

+1
2

(

(Ck
13 − Ck

55)
∂
∂x

+ (Ck
36 − Ck

45)
∂
∂y

)

wk
b

−1
2

(

(Ck
13 + Ck

55)
∂
∂x

+ (Ck
36 + Ck

45)
∂
∂y

)

wk
t

+1
3
hkρk ∂2uk

b

∂t2
+ 1

6
hkρk ∂2uk

t

∂t2
= 0

(30)

+
(

Ck
45

hk − 1
3
hk

(

Ck
16

∂2

∂x2 + (Ck
12 + Ck

66)
∂2

∂x∂y
+ Ck

26
∂2

∂y2

))

uk
b

−
(

Ck
45

hk + 1
6
hk

(

Ck
16

∂2

∂x2 + (Ck
12 + Ck

66)
∂2

∂x∂y
+ Ck

26
∂2

∂y2

))

uk
t

+
(

Ck
44

hk − 1
3
hk

(

Ck
66

∂2

∂x2 + 2Ck
26

∂2

∂x∂y
+ Ck

22
∂2

∂y2

))

vk
b

−
(

Ck
44

hk + 1
6
hk

(

Ck
66

∂2

∂x2 + 2Ck
26

∂2

∂x∂y
+ Ck

22
∂2

∂y2

))

vk
t

+1
2

(

(Ck
36 − Ck

45)
∂
∂x

+ (Ck
23 − Ck

44)
∂
∂y

)

wk
b

−1
2

(

(Ck
36 + Ck

45)
∂
∂x

+ (Ck
23 + Ck

44)
∂
∂y

)

wk
t

+1
3
hkρk ∂2vk

b

∂t2
+ 1

6
hkρk ∂2vk

t

∂t2
= 0

(31)
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+1
2

(

(Ck
55 − Ck

13)
∂
∂x

+ (Ck
45 − Ck

36)
∂
∂y

)

uk
b

−1
2

(

(Ck
55 + Ck

13)
∂
∂x

+ (Ck
45 + Ck

36)
∂
∂y

)

uk
t

+1
2

(

(Ck
45 − Ck

36)
∂
∂x

+ (Ck
44 − Ck

23)
∂
∂y

)

vk
b

−1
2

(

(Ck
45 + Ck

36)
∂
∂x

+ (Ck
44 + Ck

23)
∂
∂y

)

vk
t

+
(

Ck
33

hk − 1
3
hk

(

Ck
55

∂2

∂x2 + 2Ck
45

∂2

∂x∂y
+ Ck

44
∂2

∂y2

))

wk
b

−
(

Ck
33

hk + 1
6
hk

(

Ck
55

∂2

∂x2 + 2Ck
45

∂2

∂x∂y
+ Ck

44
∂2

∂y2

))

wk
t

+1
3
hkρk ∂2wk

b

∂t2
+ 1

6
hkρk ∂2wk

t

∂t2
= 0

(32)

−
(

Ck
55

hk + 1
6
hk

(

Ck
11

∂2

∂x2 + 2Ck
16

∂2

∂x∂y
+ Ck

66
∂2

∂y2

))

uk
b

+
(

Ck
55

hk − 1
3
hk

(

Ck
11

∂2

∂x2 + 2Ck
16

∂2

∂x∂y
+ Ck

66
∂2

∂y2

))

uk
t

−
(

Ck
45

hk + 1
6
hk

(

Ck
16

∂2

∂x2 + (Ck
12 + Ck

66)
∂2

∂x∂y
+ Ck

26
∂2

∂y2

))

vk
b

+
(

Ck
45

hk − 1
6
hk

(

Ck
16

∂2

∂x2 + (Ck
12 + Ck

66)
∂2

∂x∂y
+ Ck

26
∂2

∂y2

))

vk
t

+1
2

(

(Ck
13 + Ck

55)
∂
∂x

+ (Ck
36 + Ck

45)
∂
∂y

)

wk
b

−1
2

(

(Ck
13 − Ck

55)
∂
∂x

+ (Ck
36 − Ck

45)
∂
∂y

)

wk
t

+1
6
hkρk ∂2uk

b

∂t2
+ 1

3
hkρk ∂2uk

t

∂t2
= 0

(33)

−
(

Ck
45

hk + 1
6
hk

(

Ck
16

∂2

∂x2 + (Ck
12 + Ck

66)
∂2

∂x∂y
+ Ck

26
∂2

∂y2

))

uk
b

+
(

Ck
45

hk − 1
3
hk

(

Ck
16

∂2

∂x2 + (Ck
12 + Ck

66)
∂2

∂x∂y
+ Ck

26
∂2

∂y2

))

uk
t

−
(

Ck
44

hk + 1
6
hk

(

Ck
66

∂2

∂x2 + 2Ck
26

∂2

∂x∂y
+ Ck

22
∂2

∂y2

))

vk
b

+
(

Ck
44

hk − 1
3
hk

(

Ck
66

∂2

∂x2 + 2Ck
26

∂2

∂x∂y
+ Ck

22
∂2

∂y2

))

vk
t

+1
2

(

(Ck
36 + Ck

45)
∂
∂x

+ (Ck
23 + Ck

44)
∂
∂y

)

wk
b

−1
2

(

(Ck
36 − Ck

45)
∂
∂x

+ (Ck
23 − Ck

44)
∂
∂y

)

wk
t

+1
6
hkρk ∂2vk

b

∂t2
+ 1

3
hkρk ∂2vk

t

∂t2
= 0

(34)
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+1
2

(

(Ck
55 + Ck

13)
∂
∂x

+ (Ck
45 + Ck

36)
∂
∂y

)

uk
b

−1
2

(

(Ck
55 − Ck

13)
∂
∂x

+ (Ck
45 − Ck

36)
∂
∂y

)

uk
t

+1
2

(

(Ck
45 + Ck

36)
∂
∂x

+ (Ck
44 + Ck

23)
∂
∂y

)

vk
b

−1
2

(

(Ck
45 − Ck

36)
∂
∂x

+ (Ck
44 − Ck

23)
∂
∂y

)

vk
t

−
(

Ck
33

hk + 1
6
hk

(

Ck
55

∂2

∂x2 + 2Ck
45

∂2

∂x∂y
+ Ck

44
∂2

∂y2

))

wk
b

+
(

Ck
33

hk − 1
3
hk

(

Ck
55

∂2

∂x2 + 2Ck
45

∂2

∂x∂y
+ Ck

44
∂2

∂y2

))

wk
t

+1
6
hkρk ∂2wk

b

∂t2
+ 1

3
hkρk ∂2wk

t

∂t2
= 0

(35)

and the boundary condition can be written explicitly by using Eqs. (20) and

(25) and putting ΓL = 0 and Γb = 1 to limit our focus to the sides at x = 0

and x = b.

Fub
= +1

3
hk

(

Ck
11

∂
∂x

+ Ck
16

∂
∂y

)

uk
b +1

6
hk

(

Ck
11

∂
∂x

+ Ck
16

∂
∂y

)

uk
t

+1
3
hk

(

Ck
16

∂
∂x

+ Ck
12

∂
∂y

)

vk
b +1

6
hk

(

Ck
16

∂
∂x

+ Ck
12

∂
∂y

)

vk
t

−
Ck

13

2
wk

b +
Ck

13

2
wk

t

(36)

Fvb
= +1

3
hk

(

Ck
16

∂
∂x

+ Ck
66

∂
∂y

)

uk
b +1

6
hk

(

Ck
16

∂
∂x

+ Ck
66

∂
∂y

)

uk
t

+1
3
hk

(

Ck
66

∂
∂x

+ Ck
26

∂
∂y

)

vk
b +1

6
hk

(

Ck
66

∂
∂x

+ Ck
26

∂
∂y

)

vk
t

−
Ck

36

2
wk

b +
Ck

36

2
wk

t

(37)

Fwb
= −

Ck
55

2
uk

b +
Ck

55

2
uk

t −
Ck

45

2
vk

b +
Ck

45

2
vk

t

+1
3
hk

(

Ck
55

∂
∂x

+ Ck
45

∂
∂y

)

wb
k + 1

6
hk

(

Ck
55

∂
∂x

+ Ck
45

∂
∂y

)

wk
t

(38)

Fub
= +1

6
hk

(

Ck
11

∂
∂x

+ Ck
16

∂
∂y

)

uk
b +1

3
hk

(

Ck
11

∂
∂x

+ Ck
16

∂
∂y

)

uk
t

+1
6
hk

(

Ck
16

∂
∂x

+ Ck
12

∂
∂y

)

vk
b +1

3
hk

(

Ck
16

∂
∂x

+ Ck
12

∂
∂y

)

vk
t

−
Ck

13

2
wk

b +
Ck

13

2
wk

t

(39)
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Fvb
= +1

6
hk

(

Ck
16

∂
∂x

+ Ck
66

∂
∂y

)

uk
b +1

3
hk

(

Ck
16

∂
∂x

+ Ck
66

∂
∂y

)

uk
t

+1
6
hk

(

Ck
66

∂
∂x

+ Ck
26

∂
∂y

)

vk
b +1

3
hk

(

Ck
66

∂
∂x

+ Ck
26

∂
∂y

)

vk
t

−
Ck

36

2
wk

b +
Ck

36

2
wk

t

(40)

Fwb
= −

Ck
55

2
uk

b +
Ck

55

2
uk

t −
Ck

45

2
vk

b +
Ck

45

2
vk

t

+1
6
hk

(

Ck
55

∂
∂x

+ Ck
45

∂
∂y

)

wk
b +1

3
hk

(

Ck
55

∂
∂x

+ Ck
45

∂
∂y

)

wk
t

(41)

Sign convention for forces and displacements are shown in Figure (3).

The above system of quadratic, fully coupled, constant coefficient partial

differential equations needs to be solved simultaneously along with the BC

to obtain the solution for 1 layer.

If the solution for 2 layers is sought, the equations need to be recalculated

and rewritten from the beginning and thus making it a very difficult task.

For two layers, 9 equations (3 for each interface) would be obtained. For this

reasons the author devised a method, inspired by the CUF, to automatically

assemble the differential equation of motions (not the stiffness matrices) and

BCs for any number of layers and automatically solve them. This method

has been called the L matrix method which makes use in a particular way

to write the equations for 1 layer so that they can be assembled for several

layers and solved automatically. Before tackling that problem though, the

partial derivatives need to be transformed to ordinary derivatives in order to

be able to solve them simultaneously.
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Figure 3: Coordinate system and notations for displacements and forces for a multilayered

plate.

2.6. From partial to ordinary differential equations for plates with two oppo-

site sides simply supported

The system of partial differential equations for 1 layer can be reduced to

a set of ordinary ones (one for each m) by making use of sin waves in the y

direction and the exponential function for the time t. Thus

uk
b (x, y, t) =

∞
∑

m=1

Uk
b (x)sin(αmy)eiωt ; uk

t (x, y, t) =
∞

∑

m=1

Uk
t (x)sin(αmy)eiωt

vk
b (x, y, t) =

∞
∑

m=1

V k
b (x)cos(αmy)eiωt ; vk

t (x, y, t) =
∞

∑

m=1

V k
t (x)cos(αmy)eiωt

wk
b (x, y, t) =

∞
∑

m=1

W k
b (x)sin(αmy)eiωt ; wk

t (x, y, t) =
∞

∑

m=1

W k
t (x)sin(αmy)eiωt

(42)

where ω is an arbitrary circular or angular frequency, αm = mπ
L

and m =
1, 2, . . . ,∞. This is also refereed to in the literature as Levy’s solution and
complies with the boundary condition associated to a plate where the two
sides a y=0 and y=L are simply supported (SS) (i.e. uk

b = wk
b = uk

t = wk
t = 0

at y = 0 and y = L). By substituting Eq. (42) into the Eqs. (30)-(35), and
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assuming to study a material for which, Ck
16 = Ck

26 = Ck
36 = Ck

45 = 01 (i.e.
either 0 or 90 degree ply for composite plates) the following system of fully
coupled, quadratic, ordinary differential equations can be written as























































a1+3Ck

55
)

3hk
Ub +

a1−6Ck

55

6hk
Ut + a2

3hk
V ′

b + a2

6hk
V ′

t + a3

6hk
W ′

b + a4

6hk
W ′

t −
1
3
Ck

11hkU ′′

b −
1
6
Ck

11hkU ′′
t = 0

−
2a5−6Ck

44
)

6hk
Vb −

a5+6Ck

44

6hk
Vt + a7

6hk
Wb + a6

6hk
Wt −

a2

3hk
U ′

b −
a2

6hk
U ′

t −
1
3
Ck

66hkV ′′

b −
1
6
Ck

66hkV ′′
t = 0

a7

6hk
Vb −

a6

6hk
Vt −

2a8−6Ck

33

6hk
Wb −

a8+6Ck

33

6hk
Wt −

a3

6hk
U ′

b + a4

6hk
U ′

t −
1
3
Ck

55hkW ′′

b −
1
6
Ck

55hkW ′′
t = 0

a1−6Ck

55
)

3hk
Ub +

a1+3Ck

55

6hk
Ut + a2

6hk
V ′

b + a2

3hk
V ′

t −
a4

6hk
W ′

b −
a3

6hk
W ′

t −
1
6
Ck

11hkU ′′

b −
1
3
Ck

11hkU ′′
t = 0

−
a5+6Ck

44
)

6hk
Vb −

2a5−6Ck

44

6hk
Vt −

a6

6hk
Wb −

a7

6hk
Wt −

a2

6hk
U ′

b −
a2

3hk
U ′

t −
1
6
Ck

66hkV ′′

b −
1
3
Ck

66hkV ′′
t = 0

a6

6hk
Vb −

a7

6hk
Vt −

a8+6Ck

33

6hk
Wb −

2a8−6Ck

33

6hk
Wt −

a4

6hk
U ′

b + a3

6hk
U ′

t −
1
6
Ck

55hkW ′′

b −
1
3
Ck

55hkW ′′
t = 0

(43)

where the prime or upper suffix ′ denotes the ordinary derivative d/dx and

ak
1 = hk2

(α2
mCk

66 − ω2ρk) , ak
2 = αmhk2

(Ck
12 + Ck

66)

ak
3 = 3hk(Ck

13 − Ck
55) , ak

4 = −3hk(Ck
13 + Ck

55)

ak
5 = hk2

(ω2ρk − α2
mCk

22) , ak
6 = −3αmhk(Ck

23 + Ck
44)

ak
7 = 3αmhk(Ck

23 − Ck
44) , ak

8 = 2hk2
(ω2ρk − α2

mCk
44)

(44)

and the boundary conditions are























































F k
Ub = −1

6
αmhkCk

12(2V
k
b + V k

t ) − 1
2
Ck

13(W
k
b − W k

t ) + 1
6
Ck

11h
k(2U ′k

b + U ′k
t )

F k
V b = +1

6
αmhkCk

66(2U
k
b + Uk

t ) + 1
6
Ck

66h
k(2V ′k

b + V ′k
t )

F k
Wb = −1

2
Ck

55(U
k
b − Uk

t ) + 1
6
Ck

55h
k(2W ′k

b + W ′k
t )

F k
Ut = −1

6
αmhkCk

12(V
k
b + 2V k

t ) − 1
2
Ck

13(W
k
b − W k

t ) + 1
6
Ck

11h
k(U ′k

b + 2U ′k
t )

F k
V t = +1

6
αmhkCk

66(U
k
b + 2Uk

t ) + 1
6
Ck

66h
k(V ′k

b + 2V ′k
t )

F k
Wt = −1

2
Ck

55(U
k
b − Uk

t ) + 1
6
Ck

55h
k(W ′k

b + 2W ′k
t )

(45)

1This is a necessary condition in order for the trigonometric function to be a solution

of the differential equations and comply with the SS BCs
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3. THE L-MATRIX METHOD

3.1. Use of the L matrix for systematic generation of the equations for N

layers

The above equations are valid for only one layer. If more than one layer

is used, the fundamental CUF nucleus K (Eq. (18)) should be assembled

across the new number of layers and the new equations of motion which

will be coupled (layer by layer) should be developed all over again. For

this reason a way of assembling directly the differential equations of motion

and boundary conditions starting sequentially from layer 1 (Eqs. (43) and

(45)) has been devised. This method hereafter is referred to as the L-matrix

method. The method can find its applications in a multitude of problems

where the number of differential equations to solve changes from one case

to the other due to external factors (such as number of layers, order of the

displacement models, etc...). It is inconvenient to rewrite the equations and

solve the system for each case. This method uses a matrix L to represent the

system of differential equations. The matrix L has a number of rows equal

to the number of differential equations. In the present case, the number is 6

because Uk
b = [Uk

b , V k
b ,W k

b ] and Uk
t = [Uk

t , V k
t ,W k

t ]. The number of columns

is equal to the number of unknowns 6 in this case (Uk
b = [Uk

b , V k
b ,W k

b ] and

Uk
t = [Uk

t , V k
t ,W k

t ]) times the number of derivative orders which is 3, namely

derivative 0, first order and second order for a total of 18 columns for 1 layer.

The L matrix can be split into 4 sub-matrices which will refer to the bottom

layer, and top layer of each ply. e.g. the kth ply.

The system for differential equation of Eq. (43) can thus be written in matrix
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form as




Lk

BB
Lk

BT

Lk

TB
Lk

TT









Ũk

B

Ũk

T



 =





0

0



 (46)

where

Ũk

B
= [Uk

B, U ′k
B , U ′′k

B , V k
B , V ′k

B , V ′′k
B ,W k

B,W ′k
B ,W ′′k

B ]T

Ũk

T
= [Uk

T , U ′k
T , U ′′k

T , V k
T , V ′k

T , V ′′k
T ,W k

T ,W ′k
T ,W ′′k

T ]T
(47)

and

L
k

BB
=











ak

1
+3Ck

55

3hk
0 −

Ck

11
hk

3
0

ak

2

3hk
0 0

ak

3

6hk
0

0 −
ak

2

3hk
0 −

ak

5
−3Ck

44

3hk
0 −

Ck

66
hk

3

ak

7

6hk
0 0

0 −
ak

3

6hk
0

ak

7

6hk
0 0 −

ak

8
−3Ck

33

3hk
0 −

Ck

55
hk

3











(48)

L
k

BT
=











ak

1
−6Ck

55

6hk
0 −

Ck

11
hk

6
0

ak

2

6hk
0 0

ak

4

6hk
0

0 −
ak

2

6hk
0 −

ak

5
+6Ck

44

6hk
0 −

Ck

66
hk

6

ak

6

6hk
0 0

0
ak

4

6hk
0 −

ak

6

6hk
0 0 −

ak

8
+6Ck

33

6hk
0 −

Ck

55
hk

6











(49)

L
k

T B
=











ak

1
−6Ck

55

6hk
0 −

Ck

11
hk

6
0

ak

2

6hk
0 0 −

ak

4

6hk
0

0 −
ak

2

6hk
0 −

ak

5
+6Ck

44

6hk
0 −

Ck

66
hk

6
−

ak

6

6hk
0 0

0 −
ak

4

6hk
0

ak

6

6hk
0 0 −

ak

8
+6Ck

33

6hk
0 −

Ck

55
hk

6











(50)

L
k

BB
=











ak

1
+3Ck

55

3hk
0 −

Ck

11
hk

3
0

ak

2

3hk
0 0 −

ak

3

6hk
0

0 −
ak

2

3hk
0 −

ak

5
−3Ck

44

3hk
0 −

Ck

66
hk

3
−

ak

7

6hk
0 0

0
ak

3

6hk
0 −

ak

7

6hk
0 0 −

ak

8
−3Ck

33

3hk
0 −

Ck

55
hk

3











(51)

In this manner, the matrix L can be assembled layer by layer just like a

stiffness matrix assembly (see Figure (4) for details). Using L, the system of

differential equations can be written and subsequently solved for any number

of layers in an automatic way.
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Figure 4: Schematic of how to assemble the L matrices for each layer to obtain the global

L, i.e. the global system of differential equations

The global system of second order differential equations can be written

then by using the global matrix L in the following form























L1

BB
L1

BT
0 . . . 0

L1

TB
L1

TT
+ L2

BB
L2

BT
. . . 0

0 L2

TB
L2

TT
. . . 0

...
...

...
. . .

...

0 0 0 . . . L
Nl

TT













































Ũ1

Ũ2

Ũ3

...

ŨNI























=























0

0

0
...

0























(52)

or,

LŨ = 0 (53)

where the number of rows of the global L is equal to the number of unknown

displacements per interface (DOF = 3, i.e. Uk, V k, W k) times the number

of interfaces (NI), i.e. DOF × NI and the number of columns is equal to the

DOF × NI × 3 (number of derivatives, i.e. derivative 0, first and second).
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The boundary conditions in Eq. (45) can also be written in matrix form as





F k

B

F k

T



 =





Bk

BB
Bk

BT

Bk

TB
Bk

TT









Ûk

B

Ûk

T



 (54)

where

Ûk

B
= [Uk

B, U ′k
B , V k

B , V ′k
B ,W k

B,W ′k
B ]T

Ûk

T
= [Uk

T , U ′k
T , V k

T , V ′k
T ,W k

T ,W ′k
T ]T

(55)

and

B
k

BB
=











0
Ck

11
hk

3
−

αmCk

12
hk

3
0 −
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hk
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0
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hk
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hk

3
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−
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hk

2
0 0 0 0

Ck
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hk

3











(56)

B
k

BT
=











0
Ck

11
hk

6
−

αmCk

12
hk

6
0
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hk

2
0
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hk

6
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hk

6
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hk

2
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









(57)

B
k

T B
=











0
Ck

11
hk

6
−

αmCk

12
hk

6
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Ck

13
hk

2
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hk

6
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hk

6
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−
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55
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2
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



(58)

B
k

T T
=











0
Ck
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hk

3
−

αmCk
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hk

3
0

Ck
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hk

2
0
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hk

3
0 0

Ck
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hk

3
0 0

Ck
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hk

2
0 0 0 0

Ck
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hk
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









(59)

As before, the matrix B can be assembled layer by layer as a normal stiffness

matrix see Figure (5). Using B,the equations of the boundary conditions can

be written for any number of layers in an automatic form.
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Figure 5: Schematic of how to assemble the B matrices for each layer to obtain the global

B, i.e. the global equations of the boundary conditions
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
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ÛNI
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(60)

or,

F = BÛ (61)

where rows of the global B are equal to the number of forces per interface

which is equal to the number of displacements per interface (DOF = 3, i.e.

F k
U , F k

V , F k
W ) times the number of interfaces (NI=Nl + 1), i.e. DOF × NI

and the number of columns is equal to the DOF × NI × 2 derivatives, i.e.

derivative 0 and first.
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3.2. Solution of the differential equations with the L matrix method

The procedure to solve a system of ordinary differential equation of the

second order with constant coefficients is given in (APPENDIX B). Once

the matrix S̃ (see Eq. (B.3)) is known, the matrix S (see Eq. (B.7)) can

then be consequently obtained via a change of variables . As explained in

(APPENDIX B) a change of variable to reduce the second order system to

a first order system is sought in the following form:

Z = [Z1, Z2, . . . , ZN ]T = Û =

= [U1, U
′

1, V1, V
′

1 ,W1,W
′

1, U2, U
′

2, V2, V
′

2 ,W2,W
′

2, . . . , V
′

NI ,WNI ,W
′

NI ]
T

(62)

where N = 3×NI × 2 is the dimension of the unknown vector as well as the

number of differential equations.

The main task now is to find an algorithm to transform the assembled L (Eq.

(53)) matrix into the matrix S̃. In fact, by looking at Eq. (B.2) it could be

seen that only second derivatives should be on the left hand side (LHS) of

the differential equations while, by looking at Eq. (43) for layer 1 and then

looking at the system of equations written in compact form for Nl layers (see

Eq. (53)). Thus for each equations more than one second derivative appears.

In order to obtain the matrix S from the global L matrix decoupling between

the second derivatives is necessary and should be done row by row and only

one second derivative should appear in each row. In this context the matrix

L is devised so that every third column shows the value of the coefficient of

a second derivative which makes decoupling of the second derivatives easier.

In fact, in order to decouple the equations, these coefficients should be: (i)

−1 for line 1 column 3 and zero for column 6, 9, . . . , N ; (ii) −1 for line 2

column 6 and zero for column 3, 9, . . . , N ; (iii) and so on till −1 for line N
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column N and zero for column 3, 6, 9, . . . , N − 3.

Once this is achieved, only one second derivative appears in each row and by

setting the value of the coefficient to −1, is equivalent to moving that term

on the LHS of the equation so that if these columns are removed from the

transformed L, which is called L̂, only the right hand side of the equation is

left, that is the matrix of the coefficient of the differential equations called

S̃ from which S can be obtained by adding rows with 0’s and 1’s to include

the change of variables (see (APPENDIX B), Eq. (B.3) and (B.7)). The

algorithm to transform the L to the S̃ is named by the authors forward and

backward partial Gauss elimination (FBPGE) and is explained in details in

(APPENDIX C).

Once the matrix S̃ (Eq. (B.3)) is obtained, and subsequently transformed

to S (B.7), by following the procedure (explained in detail in (APPENDIX

B)) the solution can be written in matrix form as:
















Z1

Z2

...

ZN

















=

















δ11 δ21 . . . δN1

δ12 δ22 . . . δN2

...
...

. . .
...

δ1N δ2N . . . δNN

































C1e
λ1x

C2e
λ2x

...

CNeλNx

















(63)

where λi is the ith eigenvalue of the S matrix, δij is the jth element of the

ith eigenvector and Ci are the integration constants which needs to be deter-

mined by using the boundary conditions.

The above equation can be written in matrix form as:

Z = δCeλx (64)

It should be recognised that the vector Z does not only contain the dis-

placements but also their first derivatives which will come at hand when

29



computing the boundary conditions. If only the displacements are needed,

by remembering Eq. (62) only the rows 1, 3, 5, . . . , N should be taken, giving

a solution in the following form:

U1(x) = C1δ11e
λ1x + C2δ21e

λ2x + . . . + CNδN1e
λNx

V1(x) = C1δ13e
λ1x + C2δ23e

λ2x + . . . + CNδN3e
λNx

W1(x) = C1δ15e
λ1x + C2δ25e

λ2x + . . . + CNδN5e
λNx

...

WNI(x) = C1δ1(N−1)e
λ1x + C2δ2(N−1)e

λ2x + . . . + CNδN(N−1)e
λNx

(65)

Once the displacements and their first derivatives are known, the boundary

conditions can be easily obtained by recalling that the global Û is equal to

Z (Eq. (62)) and by substituting the solution (Eq. (64)) into the boundary

conditions (Eq. (61)). This leads to

F = BδCeλx = ΛCeλx (66)

where the matrix Λ contains the coefficients for the calculating the boundary

conditions and has dimensions (3 DOF × NI) × (N) where N is equal to 3

DOF × NI × 2 derivatives. The boundary conditions can be written in

explicit form as

FU1(x) = C1Λ11e
λ1x + C2Λ12e

λ2x + . . . + CNΛ1NeλNx

FV1(x) = C1Λ21e
λ1x + C2Λ22e

λ2x + . . . + CNΛ2NeλNx

FW1(x) = C1Λ31e
λ1x + C2Λ32e

λ2x + . . . + CNΛ2NeλNx

...

FWNI
(x) = C1Λ(N/2)1e

λ1x + C2Λ(N/2)2e
λ2x + . . . + CNΛ(N/2)NeλNx

(67)
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Although resorting to the L matrix seems extremely convoluted and compli-

cated, it is in fact the simplest way to solve a problem of such complex nature.

The matrix L is simply a different way to write the differential equations for

one layer. The greatest advantage is that it allows an automatic assembly

of the differential equations for different layers (and if needed for different

plate theories with increasing orders). In contrast to the structural problems

in the literature, where by using a Navier type solution, the system becomes

algebraic, or by using Levy’s solution the equations are written for one config-

uration and then solved, by using L matrix method the differential equations

can be written automatically, thus allowing the solution of the problem for

any number of layer in an automatic way. Earlier attempts to assemble di-

rectly the S matrix instead of using the L-matrix method failed due to the

fact that more than one second derivative appears in each equation and then

decoupling on the second derivatives was needed. This decoupling, physi-

cally, represents the connection between each and every interface through

the thickness and not only for the adjacent one but also for the subsequent

ones. In fact, after decoupling of the second derivatives, unknowns coming

from all the interfaces appear in each equation.

4. DYNAMIC STIFFNESS FORMULATION

4.1. Dynamic stiffness matrix

Once the boundary conditions and displacements are found in terms of

the N integration constants, the classical method to solve the problem would

be to put N displacements and/or forces to zero in order to simulate the

boundary condition [4, 52, 53]. These would translate into following possible
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scenarios (i) free boundary: forces equal zero at x = 0 and x = b; (ii)

clamped boundary: displacements equal zero at x = 0 and x = b; (iii) simply

supported: a combination of displacements and forces equal to zero at x = 0

and x = b. A limitation to the classical method is that it can only be applied

to study simple individual plates. By contrast, the solution obtained thus

far, can be used to obtain the dynamic stiffness matrix of an element (similar

to spectral elements [54]) which can be assembled to obtain the closed form

exact results for geometrically more complex structures.

The procedure to obtain the DS matrix for any structural element can be

summarised as:

(i) Seek a closed form solution of the governing differential equations of

motion for a structural element in free vibration.

(ii) Apply a number of general boundary conditions equal to twice the

number of integration constants in algebraic form; these are usually

nodal displacements and forces.

(iii) Eliminate the constants by relating the harmonically varying nodal

forces to the corresponding displacements which generates the frequency

dependent dynamic stiffness matrix connecting the nodal forces to the

nodal displacements.

The procedure to obtain closed form solution has already been explained

in the previous section. This should now be followed by the imposition of

generic boundary conditions on each interface for displacements and forces

(see Fig. (6)).

Starting from the displacements boundary conditions (see Fig. (6)), we can
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write:

At x = 0 :

U1(0) = −U11 , V1(0) = −V 11 , W1(0) = −W11

U2(0) = −U12 , V2(0) = −V 12 , W2(0) = −W12

...

UNI(0) = −U1NI , VNI(0) = −V 1NI , WNI(0) = −W1NI

(68)

At x = b :

U1(b) = U21 , V1(b) = V 21 , W1(b) = W21

U2(b) = U22 , V2(b) = V 22 , W2(b) = W22

...

UNI(b) = U2NI , VNI(b) = V 2NI , WNI(b) = W2NI

(69)

By formulating Eqs. (65) for x = 0 and x = b and applying the BC in Eqs.

(68) and (69), the following matrix relation for the nodal displacements is

obtained:
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


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
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−δ15 −δ25 . . . −δN5
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The above equation can be written in more compact form as

U = AC (71)

Also for the forces, general nodal forces are used as boundary conditions (see

Fig. (6)):

At x = 0 :

FU1(0) = −F1U1 , FV1(0) = −F1V1 , FW1(0) = −F1W1

FU2(0) = −F1U2 , FV2(0) = −F1V2 , FW2(0) = −F1W2

...

FUNI
(0) = −F1UNI

, FVNI
(0) = −F1VNI

, FWNI
(0) = −F1WNI

(72)

At x = b :

FU1(b) = F2U1 , FV1(b) = F2V1 , FW1(b) = F2W1

FU2(b) = F2U2 , FV2(b) = F2V2 , FW2(b) = F2W2

...

FUNI
(b) = F2UNI

, FVNI
(b) = F2VNI

, FWNI
(b) = F2WNI

(73)

By calculating Eqs. (67) in x = 0 and x = b and applying the BC in Eqs.

(72) and (73), the following matrix relation for the nodal displacements is
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obtained:
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(74)

The above equation can be written in more compact for as

F = RC (75)

Layer 1

Layer 2

Interface 1

Interface NI

Interface 3

Interface 2

U11 V1 W1

F1 F1 F1
1 1

U1 V1 W1

U12 V1 W1

F1 F1 F1
2 2

U2 V2 W2

U13 V1 W1

F1 F1 F1
3 3

U3 V3 W3

U1NI V1 W1

F1 F1 F1
NI NI

UNI VNI WNI

Line node 1

Line node 2
U21 V2 W2

F2 F2 F2
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U1 V1 W1
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F2 F2 F2
2 2

U2 V2 W2

U23 V2 W2
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W2

F2U

F2V

F2W

Figure 6: Edge conditions of the plate element and sign conventions
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The constant vector C from Eqs. (71) and (75) can now be eliminated

to give the dynamic stiffness matrix of one element:

F = KU (76)

where

K = RA−1 (77)

4.2. Assembly of the DS elements

The dynamic stiffness matrix given by Eqs. (77) is the basic building

block to compute the exact natural frequencies and mode shapes of a plate

which is simply supported on at least two of their opposite sides and for such

individual plate problems no coordinate transformation or offset connections

are needed. As the DSM has many of the general features of the FEM,

it has thus the capability to assemble element stiffness matrices to form

the overall dynamic stiffness matrix of complex structures consisting of plate

elements (see Figure (7)). For instance, plates with stringers connected at any

arbitrary orientations can be analysed and yet exact results can be achieved.

Figure 7: Assembly of dynamic stiffness matrices

The global dynamic stiffness matrix can be written as

F G = KGUG (78)
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where KG is a square matrix of dimensions: DOF × NI × NN (total number

of nodes in the structure).

4.3. Boundary conditions

The boundary conditions can be applied by using the well-known penalty

method (often used in the FEM) or by simply removing rows and columns of

the dynamic stiffness matrix corresponding to the degrees of freedom which

need to be constrained. Due to the presence of degrees of freedom at each in-

terface (see Figure (6)), a multitude of boundary condition can be applied at

the required line nodes. A choice on whether or not to constrain the interface

nodes at the boundaries has also to be addressed. As a matter of fact, layer

wise plate models allow for constrains to be applied through the thickness

differently from classical plate theories, having a quasi-3D representation.

Although there are multiple possibilities, the implemented constrain types

the associated degrees of freedom that are penalised are:

• Free end (F): no penalty

• Clamped end (C): penalty applied to Uk, V k, W k at each and every

interface

• Simply supported (S): penalty applied to V k, W k at each and every

interface thought the thickness

4.4. The Wittrick-Williams algorithm

For free vibration analysis of structures, the FEM generally leads to a

linear eigenvalue problem. By contrast, the DSM leads to a transcendental

(non-linear) eigenvalue problem for which the Wittrick-Williams algorithm
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[55] is recognisably the best available solution technique at present.

The algorithm can be briefly summarised in the following steps:

(i) A trial frequency ω∗ is chosen to compute the dynamic stiffness matrix

K∗ of the final structure;

(ii) K∗ is reduced to its upper triangular form by Gauss elimination to

obtain K∗
4

and the number of negative terms on the leading diago-

nal of K∗
4

is counted; this is known as the sign count s(K∗) of the

triangulated matrix;

(iii) The number (j) of natural frequencies (ω) of the structure which lie

below the trial frequency (ω∗) is then given by:

j = j0 + s(K∗) (79)

where j0 is the number of natural frequencies of all individual elements

with clamped-clamped (C-C) boundary conditions on their opposite

sides which still lie below the trial frequency ω∗.

Assuming that j0 is known, and s(K∗) can be obtained by counting the num-

ber of negative terms in the diagonal of K∗
4

, a suitable procedure can be

devised, for example the bi-section method, to bracket any natural frequency

between an upper and lower bound of the trial frequency ω∗ to any desired

accuracy.

However, the computation of j0 can be cumbersome and may require ad-

ditional sub-analysis to compute the C-C frequencies of the single elements

composing the structure. For this reason the algorithm has been modified

to avoid the computation of j0. The procedure involves computing the first
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C-C frequency of the largest element in the global structure by running a

sub-analysis. The largest element has also the lower C-C frequency of the

whole structure. This frequency can be called omega limit ω∗

L and its limits

the trial omega for which j0 = 0. Thus, if the trial omega exceeds the omega

limit, the structure is split automatically into smaller elements, for which,

the new omega limit will be higher, and in this way additional frequencies

can be computed.

4.5. Mode shape computation

Once natural frequencies have been computed, by using the global dy-

namic stiffness matrix of Eq. (78) and a random force vector FG, the nodal

displacements corresponding to the given natural frequencies can be com-

puted. So far, in the literature, the nodal displacements UG are used to plot

the mode shapes [24–39, 43–46]. In order to have a detailed plot, a large

number of elements is required. In fact, this is not necessary in DSM. A new

procedure to obtain the modal displacement as a function of x, y, z has been

devised and can be summarised in the following steps.

(i) The global nodal displacement UG is split into the element by element

displacement vector to give U . A cycle on the elements will be needed.

The ith element is analysed in the following steps.

(ii) By using the nodal displacements U the integration constants C of the

element can be computed by using Eq. (71).

(iii) By using Eq. (65), the unknown displacements can be computed as a

function of x.

(iv) By using Eq. (42), the unknown displacements can be computed as a

function of x, y and the time t (if an animated plot is needed).
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(v) By using Eqs. (26) and (27) the 3D plot of the required mode and

required element can be visualised.

By following the above procedure, with only 1 element, the exact mode shapes

can be obtained.

5. SUMMARY OF THE DSM FORMULATION FOR A LAYER

WISE MODEL

Due to the complicated and convoluted steps required for developing this

advanced dynamic stiffness element, a summary of the required steps is pre-

sented below.

(i) Calculate the L (Eq. (46)) and B (Eq. (54)) matrices for each layer

(ii) Assemble theL matrix and B matrix across the thickness layer by layer

as explained in Figure (4) and (5) and Eqs. (52) and (60)

(iii) Apply FBPGE (see (APPENDIX C)) to obtain the matrix S̃ and then

transform it to reduce the order (see (APPENDIX B)) to obtain S (Eq.

(B.7))

(iv) Solve the reduced order system of differential equations to obtain the

displacements and boundary conditions (integration constants are still

unknown), i.e. calculate δ and λ to find the displacements (Eq. (64))

and Λ to find the boundary conditions (Eq. (66))

(v) Calculate the matrix A (Eq. (70)) for the displacements and the matrix

R (Eq. (74)) for the forces

(vi) Calculate the DS matrix of the single multilayered element as K =

A−1R
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(vii) Once the DS matrix of the single element is obtained, it is then pos-

sible to rotate and assemble the elements to study complex structures

(section (4.2))

(viii) Apply the required boundary conditions to the global structure (section

(4.3))

(ix) Solve the matrix by using the classical Wittrick and Williams algorithm

(section (4.4)) to calculate the natural frequencies

(x) Compute the mode shapes (section (4.5))

By following the above procedure, closed form analytical results for structures

which can modelled as strip assemblies can be obtained by conducting a layer-

wise analysis which increases the accuracy of result very considerably. The

proposed method allows the investigation of sandwich plates with various

interfaces, and can be used for modelling even delamination which is indeed

a very difficult problem.

6. RESULTS

The layer wise dynamic stiffness elements developed above, have been val-

idated, assessed and used to obtain a number of benchmark solutions. The

plate geometry, material properties and staking sequences used in this paper

are those used by Noor at al. [56] to obtain the closed form 3D analytical so-

lutions for simply supported square plates. The same plate parameters have

been used by Carrera [57] when assessing a large number of plate theories

based on the CUF. The closed form results available in the literature are

obtained by using a Navier type solution, thus they are valid only for plates

which are simply supported on its four edges.
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The plate studied has a side over thickness ratio a/h of 5 and has a square

geometry. The material properties are as follow: G12/E2 = G13/E2 = 0.5,

G23/E2 = 0.35, ν12 = ν13 = 0.3, ν23 = 0.49. Four different staking sequences

are investigated: two skew-symmetric [0/90] and [0/90]5 and two symmetric

[0/90/90/0] and [0/90/0/90/0]S. The total thickness of the 0 degree layers is

equal to the total thickness of the 90 degree layers for all the configurations.

Furthermore, 2 stiffness ratios are used, namely E1/E2 = 3 and E1/E2 = 30.

The frequencies are given in non-dimensional form as ω∗ = ωh
√

ρ/E2.

6.1. Validation and assessment for simply supported plates

Tables (1) and (2) show the results obtained for a plate simply sup-

ported on all its four sides (SSSS) by using the new dynamic stiffness ele-

ment (DySAP LD1). They are compared with Navier type solutions based

on different plate theories such has CUF LD1, CUF ED1d χ=5/6, and CUF

ED1d χ=∞. In the table, LD1 refers to a first order layer wise theory which is

equivalent to the one implemented in the paper, ED1d χ=5/6 refers to a first

order equivalent single layer theory with a shear correction factor of χ = 5/6,

and ED1d χ=∞ is the equivalent of a classical lamination theory CLT [57].

It can be seen that the results based on a layer wise theory of the first order

(LD1) obtained here by DySAP and by a Navier type solution (CUF LD1)

by Carrera [57] are in exact agreement. The results are also compared with

the exact 3D solution obtained by Noor et al. [56]. It can be seen that the

error incurred by the LD1 theory is consistently lower than that made by

equivalent single layers theories ED1 (such as CLT). It should also be noted

that LD1 shows a larger error when the single ply of the laminate have a

larger thickness ratio (such as for the [0/90]). This shows that, different
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from isotropic plates where the total thickness compared to the side length

would define if a plate is “thin” or “thick”, for composite plates, the thick-

ness of the single ply is more important than the total thickness of the plate.

For thicker plies, higher order theories should be used not to compromise

the accuracy of results. Furthermore, the level of anisotropy, which can be

defined by the stiffness ratio E1/E2, also influences the accuracy of the re-

sults. Plates with higher stiffness ratio should be studied with more advance

theories.

Table 1: Fundamental dimensionless bending frequencies ω∗ = ωh
√

ρ/E2 for a square

SSSS plate with 2 different skew-symmetric staking sequences and stiffness ratio. Com-

parison of different theories with the 3D exact results and percentage error.

Lay-up 0/90 [0/90]5

E1/E2 3 30 3 30

Formulation ω∗ % ω∗ % ω∗ % ω∗ %

Exact 3D [56] 0.2392 0.3117 0.2530 0.4027

DySAP LD1 0.2478 3.6 0.3210 3.0 0.2534 0.2 0.4042 0.4

CUF LD1 [57] 0.2478 3.6 0.3210 3.0 0.2534 0.2 0.4042 0.4

CUF ED1d χ=5/6 [57] 0.261 9.1 0.3264 4.7 0.2723 7.6 0.4118 2.3

CUF ED1d χ=∞ [57] 0.2972 24.2 0.4066 30.4 0.3150 24.5 0.6435 59.8
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Table 2: Fundamental dimensionless bending frequencies ω∗ = ωh
√

ρ/E2 for a square

SSSS plate with 2 different symmetric staking sequences and stiffness ratio. Comparison

of different theories with the 3D exact results and percentage error.

Lay-up 0/90/90/0 [0/90/0/90/0]S

E1/E2 3 30 3 30

Formulation ω∗ % ω∗ % ω∗ % ω∗ %

Exact 3D [56] 0.2516 0.3739 0.2535 0.4040

DySAP LD1 0.2556 1.6 0.3808 1.8 0.2540 0.2 0.4058 0.4

CUF LD1 [57] 0.2556 1.6 0.3808 1.8 0.2540 0.2 0.4058 0.4

CUF ED1dχ=5/6 [57] 0.2717 8.0 0.3871 3.5 0.2726 7.5 0.4118 1.9

CUF ED1d χ=∞ [57] 0.3157 25.5 0.6519 74.4 0.3157 24.5 0.6519 61.4

In order to improve the accuracy even further, more than one layer of

LD1 element can be used within the same ply, i.e. a number of fictitious

interfaces can be placed within the same physical ply to allow for a spline

displacement distribution. Thus, LD1-1 means that one LD1 element is

used through the thickness for each single ply of material (i.e. one straight

displacement line for each ply), LD1-2 means that two elements have been

used through the thickness of each single ply of material (i.e. a 2 line spline

is used to describe the displacement within each layers) and so on. In Tables

(3) and (4) the convergence of the layer wise theory to the exact 3D solution

can be observed. The number of degree of freedom (DOF) used for each

theory is also reported. Two dynamic stiffness elements have been used in

the plane of the plate, while for LD1-1 only one layer for each ply through the

thickness, i.e. 3 interfaces are employed. The number of DOF is computed

by considering 3 DOF per interface (u, v, w) times the number of interfaces

through the thickness, times the number of nodes of the plate elements. For
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instance, for LD1-4, 3 DOF times 9 interfaces, times 3 nodes (2 elements)

gives 81 DOF.

It can observed that a lower number of fictitious interfaces are needed to

obtain results close to the 3D exact solution for thin plies. This confirm that

the important parameter when deciding how to model a composite plate is

the thickness ratio of the single plies rather than the thickness ratio of the

whole plate. Thicker plies and higher stiffness ration require more interfaces,

i.e. higher order theories.

Table 3: Fundamental dimensionless bending frequencies ω∗ = ωh
√

ρ/E2 and percent-

age error for a square SSSS plate with 2 different skew-symmetric staking sequences and

stiffness ratio. Convergence of the LD theory to the 3D exact solution by increasing the

number of interfaces.

Lay-up 0/90 [0/90]5

E1/E2 3 30 3 30

Formulation DOF ω∗ % ω∗ % DOF ω∗ % ω∗ %

Exact 3D [56] 0.2392 0.3117 0.2530 0.4027

DySAP LD1-1 27 0.2478 3.6 0.3210 3.0 99 0.2534 0.2 0.4042 0.4

DySAP LD1-2 45 0.2398 0.3 0.3169 1.7 189 0.2531 0.0 0.4031 0.1

DySAP LD1-4 81 0.2398 0.3 0.3135 0.6 369 0.2531 0.0 0.4028 0.0
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Table 4: Fundamental dimensionless bending frequencies ω∗ = ωh
√

ρ/E2 and percentage

error for a square SSSS plate with 2 different symmetric staking sequences and stiffness

ratio. Convergence of the LD theory to the 3D exact solution by increasing the number

of interfaces.

Lay-up 0/90/90/0 [0/90/0/90/0]S

E1/E2 3 30 3 30

Formulation DOF ω∗ % ω∗ % DOF ω∗ % ω∗ %

Exact 3D [56] 0.2516 0.3739 0.2535 0.4040

DySAP LD1-1 45 0.2556 1.6 0.3808 1.8 90 0.2540 0.2 0.4058 0.4

DySAP LD1-2 81 0.2522 0.2 0.3758 0.5 171 0.2536 0.0 0.4045 0.1

DySAP LD1-4 153 0.2517 0.1 0.3744 0.1 333 0.2535 0.0 0.4041 0.0

The accuracy and efficiency of the finite element method is compared

with the novel layer wise DS element implemented in DySAP. These are

shown in Table (5) for the fundamental natural frequency. The two layer

skew-symmetric [0/90] square plate with a/h = 5 and E1/E2 = 30 used pre-

viously is further examined. Both 3D and 2D finite element models have been

constructed. The 3D models make use of 8-node brick elements (CHEXA)

and are solved using NASTRAN. Two different meshes are used. A “coarse”

mesh which uses 2 elements per ply where each element is a regular cube of

dimension a/20. The total number of DOF is 13230. The “fine” mesh uses 10

elements per ply and a regular mesh of dimension a/100 which gives a total of

1285326 DOF. The 2D FE model uses 4-node laminate elements (CQUAD)

and a fine regular mesh with a dimension of a/50. The total number of DOF

for this mesh is 15606. A Ritz solution based on LD1 theory obtained by

following the procedure in [58] is reported and makes use of 1296 DOF. Ritz

solutions show a better spectral convergence when compared with FEM but
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it is still an approximate method and requires a rather large number of DOF.

DySAP LD1 on the other hand, with only 45 DOF, gives a closed form solu-

tion, thus no loss of accuracy at higher frequencies. Furthermore, the DySAP

LD1-8 model with 8 fictitious interfaces for each ply, i.e. a total of 153 DOF,

show the same accuracy of the 3D FEM model with a fine mesh which has

4 order of magnitude more DOF (see Table (5)). It should also be observed

that the 2D FE model show a relatively good accuracy for such a thick plate.

This is surprising because the theory used in the 2D FE model should be an

equivalent single layer (ESL) first order shear deformation theory (FSDT),

equivalent to the one called CUF ED1d χ=5/6 in Table (1), which gives an

error of 4.7% when compared with the results using 3D theory. The use of

FSDT for composites raises some concerns about the shear correction factor

χ to be used. By changing that shear correction factor, the results can be

changed rather significantly. For this plate material and stacking sequence

it seems that the 2D results give a small error, but for other laminates, the

error could be much higher [18–20, 57]. Layer wise theory (as well as high

order ESL) do not need any shear correction factor and thus can be consid-

ered much more reliable.

In Table (6), the same comparison is made for the first 10 natural frequen-

cies. No 3D exact solution is available for higher frequencies thus the 3D fine

mesh FE results are used for comparative purposes. It can be observed that

DySAP LD1-8 shows a maximum error of 0.1 for all the frequencies with

153 DOF while, 2D FE result error increases for higher frequencies with a

maximum error of 5% with 15606 DOF.

It should also be noted that the inplane modes called m = 0 by the authors
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in [44] (which have been quite often, if not always overlooked during previ-

ous studies in the literature) have not been implemented in DySAP for the

presented LD1 element. This modes are indicated with a ∗ in the tables.

More details on this particular frequencies and mode shapes can be found

in [44]. Some characteristic and representative mode shapes have been shown

in Figure (8) where they are compared against the ones obtained by 3D FE

models. For the DySAP mode shapes, only the interfaces are plotted. It can

be see that the mode shape are in excellent agreement.

Table 5: Fundamental frequency ω∗ = ωh
√

ρ/E2 and percentage error for a SSSS square

plate: 0/90 E1/E2 = 30. Comparison between the FEM, Ritz and the Dynamic Stiffness

method.

Theory Exact 3D [56] FEM 3D fine FEM coarse FEM 2D DySAP LD1-8 DySAP LD1 Ritz LD1 [58]

DOF 1285326 13230 15606 153 45 1296

ω∗ 0.3117 0.3120 0.3159 0.3088 0.3122 0.3210 0.3210

error% / 0.1 1.3 -0.9 0.2 2.9 2.9
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Table 6: First 10 frequencies ω∗ = ωh
√

ρ/E2 and percentage error for a SSSS square plate:

0/90 E1/E2 = 30. Comparison between the FEM and the dynamic stiffness method.

Theory FEM 3D fine FEM 3D coarse FEM 2D Ritz LD1 [58] DySAP LD1-1 DySAP LD1-8

DOF 1285326 13230 15606 1296 27 153

Mode ω∗ ω∗ % ω∗ % ω∗ % ω∗ % ω∗ %

1 0.3120 0.3159 1.2 0.3088 -1.0 0.3210 2.9 0.3210 2.9 0.3122 0.1

2 0.4443 0.4438 -0.1 0.4442 0.0 0.4443 0.0 0.4443 0.0 0.4443 0.0

3∗ 0.4443 0.4438 -0.1 0.4442 0.0 0.4443 0.0 / / / /

4 0.6369 0.6480 1.7 0.6200 -2.6 0.6618 3.9 0.6618 3.9 0.6376 0.1

5 0.6370 0.6481 1.7 0.6200 -2.7 0.6618 3.9 0.6618 3.9 0.6376 0.1

6 0.8540 0.8624 1.0 0.8213 -3.8 0.8860 3.7 0.8860 3.7 0.8552 0.1

7 0.8884 0.8849 -0.4 0.8880 0.0 0.8886 0.0 0.8886 0.0 0.8886 0.0

8∗ 0.8884 0.8849 -0.4 0.8880 0.0 0.8886 0.0 / / / /

9 1.0197 1.0323 1.2 0.9687 -5.0 1.0637 4.3 1.0637 4.3 1.0212 0.1

10 1.0198 1.0325 1.2 0.9687 -5.0 1.0637 4.3 1.0637 4.3 1.0212 0.1
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8: Comparison of some representative mode shapes obtained by DySAP or FEM

(NASTRAN) for a SSSS plate. (a) DySAP mode 1, (b) FEM mode 1, (c) DySAP mode

2, (d) FEM mode 2, (e) DySAP mode 4, (f) FEM mode 4, (g) DySAP mode 6, (h) FEM

mode 6.
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6.2. Benchmark solutions for different boundary conditions

The plate studied in the previous section with SSSS boundary condi-

tions is further examined with different boundary conditions such as SCSC,

SSSC,SCSF,SSSF,SFSF (note that the dynamic stiffness method solutions

can only be obtained when at least two opposite sides are simply supported).

The results are reported in Tables (7)-(11). The DySAP LD1-8 solution is

taken as benchmark results as it showed to be the most accurate one in the

previous section (3D exact solution cannot be obtained for these boundary

condition because a closed form solution of the 3D equation of motion with

general conditions cannot be found in the literature). It can be seen that the

error incurred by the 3D FEM is consistently below 2% for any of the chosen

boundary conditions. On the other hand, the 2D FE error depends on the

chosen boundary conditions. The largest error is for the clamped-clamped

boundary. The superiority of the layer wise dynamic stiffness element in

DySAP, particularly in terms of computationally efficiency can be seen by

the number of degree of freedom needed to ascertain the benchmark solution.

In Figure (9), three representative modes can be seen for the SFSF compos-

ite plate. Mode 3 and mode 9 show an “inplane” mode. Due to the skew

symmetric lay-up the in-plane mode is coupled with out of plane one. For

illustration, Mode 5 has been chosen because it clearly shows at the two free

boundaries the change in slope of the displacements at the middle interface.

The modes have been compared with the ones obtained by the FEM and

they are in excellent agreement.
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Table 7: First 10 frequencies ω∗ = ωh
√

ρ/E2 and percentage error for a SCSC square

plate: 0/90 E1/E2 = 30. Benchmark solution and comparison with the FEM.

Theory DySAP LD1-8 FEM 3D coarse FEM 2D Ritz LD1 [58] DySAP LD-1

DOF 153 13230 15606 1296 27

Mode ω∗ ω∗ % ω∗ % ω∗ % ω∗ %

1 0.3830 0.3903 1.9 0.3676 -4.0 0.3967 3.6 0.3967 3.6

2∗ / 0.4438 / 0.4442 / 0.4443 / / /

3 0.6706 0.6826 1.8 0.6457 -3.7 0.6967 3.9 0.6967 3.9

4 0.6908 0.7007 1.4 0.6480 -6.2 0.7163 3.7 0.7163 3.7

5 0.8924 0.8849 -0.8 0.8417 -5.7 0.9242 3.6 0.9242 3.6

6∗ / 0.8994 / 0.8880 / 0.8860 / / /

7 1.0400 1.0522 1.2 0.9816 -5.6 1.0838 4.2 1.0838 4.2

8 1.0592 1.0685 0.9 0.9818 -7.3 1.0997 3.8 1.0997 3.8

9 1.2005 1.2015 0.1 1.1187 -6.8 1.2451 3.7 1.2451 3.7

10 1.2061 1.2058 0.0 1.1216 -7.0 1.2483 3.5 1.2483 3.5

Table 8: First 10 frequencies ω∗ = ωh
√

ρ/E2 and percentage error for a SSSC square

plate: 0/90 E1/E2 = 30. Benchmark solution and comparison with the FEM.

Theory DySAP LD1-8 FEM 3D coarse FEM 2D Ritz LD1 [58] DySAP LD1-1

DOF 153 13230 15606 1296 27

Mode ω∗ ω∗ % ω∗ % ω∗ % ω∗ %

1 0.3456 0.3512 1.6 0.3371 -2.5 0.3568 3.2 0.3568 3.2

2∗ / 0.4438 / 0.4442 / 0.4443 / / /

3 0.6527 0.6638 1.7 0.6321 -3.2 0.6778 3.8 0.6778 3.8

4 0.6659 0.6763 1.6 0.6354 -4.6 0.6910 3.8 0.6910 3.8

5 0.8746 0.8819 0.8 0.8322 -4.9 0.9061 3.6 0.9061 3.6

6∗ / 0.8849 / 0.8880 / 0.8886 / / /

7 1.0298 1.0414 1.1 0.9748 -5.3 1.0729 4.2 1.0728 4.2

8 1.0394 1.0496 1.0 0.9749 -6.2 1.0808 4.0 1.0808 4.0

9 1.1605 1.1618 0.1 1.1129 -4.1 1.1979 3.2 1.1979 3.2

10 1.1881 1.1892 0.1 1.1148 -6.2 1.2323 3.7 1.2323 3.7
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Table 9: First 10 frequencies ω∗ = ωh
√

ρ/E2 and percentage error for a SCSF square

plate: 0/90 E1/E2 = 30. Benchmark solution and comparison with the FEM.

Theory DySAP LD1-8 FEM 3D coarse FEM 2D Ritz LD1 [58] DySAP LD1-1

DOF 153 13230 15606 1296 27

Mode ω∗ ω∗ % ω∗ % ω∗ % ω∗ %

1∗ / 0.2221 / 0.2221 / 0.2221 / /

2 0.2336 0.2369 1.4 0.2318 -0.8 0.2393 2.4 0.2393 2.4

3 0.4313 0.4360 1.1 0.4222 -2.1 0.4445 3.1 0.4445 3.1

4 0.5964 0.6092 2.2 0.5810 -2.6 0.6200 4.0 0.6200 4.0

5∗ / 0.6649 / 0.6662 / 0.6664 / /

6 0.7153 0.7227 1.0 0.6929 -3.1 0.7400 3.4 0.7400 3.4

7 0.7813 0.7890 1.0 0.7577 -3.0 0.8103 3.7 0.8103 3.7

8 0.9766 0.9786 0.2 0.9357 -4.2 1.0096 3.4 1.0096 3.4

9 0.9927 1.0077 1.5 0.9415 -5.2 1.0360 4.4 1.0360 4.4

10 1.0779 1.0838 0.5 1.0219 -5.2 1.1107 3.0 1.1194 3.8

Table 10: First 10 frequencies ω∗ = ωh
√

ρ/E2 and percentage error for a SSSF square

plate: 0/90 E1/E2 = 30. Benchmark solution and comparison with the FEM.

Theory DySAP LD1-8 FEM 3D coarse FEM 2D

DOF 153 13230 15606

Mode ω∗ ω∗ % ω∗ %

1 0.2077 0.2113 1.8 0.2071 -0.3 0.2133 2.7

2 0.2446 0.2467 0.9 0.2438 -0.3 0.2498 2.2

3 0.4123 0.4131 0.2 0.4128 0.1 0.4146 0.6

4∗ / 0.4438 / 0.4442 / / /

5 0.5144 0.5166 0.4 0.5190 0.9 0.5280 2.6

6 0.5825 0.5963 2.4 0.5681 -2.5 0.6065 4.1

7 0.6140 0.6241 1.7 0.5997 -2.3 0.6365 3.7

8 0.7816 0.7840 0.3 0.7645 -2.2 0.8052 3.0

9 0.8458 0.8460 0.0 0.8510 0.6 0.8510 0.6

10 0.8769 0.8812 0.5 0.8802 0.4 0.9120 4.0
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Table 11: First 10 frequencies ω∗ = ωh
√

ρ/E2 and percentage error for a SFSF square

plate: 0/90 E1/E2 = 30. Benchmark solution and comparison with the FEM.

Theory DySAP LD1-8 FEM 3D coarse FEM 2D DySAP LD1-1

DOF 153 13230 15606 27

Mode ω∗ ω∗ % ω∗ % ω∗ %

1 0.2183 0.2215 1.5 0.2174 -0.4 0.2239 2.5

2∗ / 0.2221 / 0.2221 / / /

3 0.3998 0.4028 0.7 0.3992 -0.1 0.4085 2.2

4 0.4322 0.4328 0.1 0.4313 -0.2 0.4355 0.8

5 0.5909 0.6037 2.2 0.5763 -2.5 0.6145 4.0

6∗ / 0.6649 / 0.6662 / / /

7 0.6996 0.7064 1.0 0.6812 -2.6 0.7232 3.4

8 0.7572 0.7654 1.1 0.7463 -1.4 0.7860 3.8

9 0.8669 0.8653 -0.2 0.8689 0.2 0.8699 0.4

10 0.9607 0.9627 0.2 0.9283 -3.4 0.9936 3.4

7. CONCLUSION

The dynamic stiffness method has been developed for a composite plate

based on a first order layer wise formulation. The Carrera’s Unified Formu-

lation (CUF) has been used to obtain the equations of motions. A method

has been devised to write the equation of motions of a single layer so that

they can be assembled automatically for any number of layers . The method

has been called the L matrix method. This method can find its applica-

tion in any problem for which the number of equations to solve depends on

external parameters (such the number of layers or the order of the formula-

tion). An automatic method to solve the differential equations represented

by the assembled L matrix has also been devised and eventually the dy-

namic stiffness method is developed. The dynamic stiffness element matrix
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Comparison of some representative mode shapes obtained by DySAP or FEM

(NASTRAN) for a SFSF plate. (a) DySAP mode 3, (b) FEM mode 3, (c) DySAP mode

5, (d) FEM mode 5, (e) DySAP mode 9, (f) FEM mode 9.
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of a layer wise composite element of n layers has been obtained. This new

elements have been validated first against results in the literature for simply

supported plates and then compared with 3D and 2D finite element models.

The superiority of the dynamic stiffness elements in term of accuracy and

computational efficiency has been demonstrated. Exact solutions for layer

wise formulation for plates with different boundary conditions, rather than

simply supported on the four sides, have been presented for the first time

in the literature. These solutions can be used as benchmark to assess other

approximate solution methods such as the FEM.

The dynamic stiffness element developed can be rotated, offset and assembled

to model more complex structures and yet the exactness of the solution can

be retained. The theory presented opens the possibility of carrying out high

fidelity free vibration and response analysis of complex composite structures.

Acknowledgements

The authors wish to thank the EPSRC (grant ref: EP/I004904/1) which

made this work possible. The authors are also grateful to Prof John Wills

(Oxford University), Prof John Fitch (Bath University), Dr Stefanos Giannis

(MERL Ltd) and Christopher Morton (SAMTECH) for many stimulating

discussions.

56



APPENDIX A. LAMINATE CONSTITUTIVE EQUATIONS

The constitutive equation for an orthotropic material in the global or laminate

reference system can be written as





























σ1

σ2

σ3

σ4

σ5

σ6





























k

=





























C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0

0 0 0 C45 C55 0

C16 C26 C36 0 0 C66
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




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











k 




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















ε1
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ε4
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











k

(A.1)

where

C11 = C̃11 c4 + 2
(

C̃12 + 2C̃66

)

c2s2 + C̃22 s4 ,

C12 =
(

C̃11 + C̃22 − 4C̃66

)

c2s2 + C̃12 (c4 + s4)

C13 = C̃13 c2 + C̃23 s2 , C16 = − C̃22 cs3 + C̃11 c3s −
(

C̃12 + 2C̃66

)

cs (c2 − s2)

C22 = C̃11 s4 + 2
(

C̃12 + 2C̃66

)

c2s2 + C̃22 c4 , C23 = C̃13 s2 + C̃23 c2

C33 = C̃33 , C26 = − C̃22 c3s + C̃11 cs3 +
(

C̃12 + 2C̃66

)

cs (c2 − s2)

C36 =
(

C̃13 − C̃23

)

cs , C44 = C̃44 c2 + C̃55 s2

C45 =
(

C̃55 − C̃44

)

cs , C55 = C̃55 c2 + C̃44 s2

C66 =
(

C̃11 + C̃22 − 2C̃12

)

c2s2 + C̃66 (c2 − s2)2

(A.2)

c and s are

c = cos(Ψ) s = sin(Ψ) (A.3)

where Ψ is the angle from the global or laminate reference system to the lamina

or local reference system with coincide with the fibre direction.
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The C̃ are the material coefficients in the lamina reference system that can be

written as

C̃11 = Y11
(1 − ν23ν32)

∆
, C̃22 = Y22

(1 − ν31ν13)

∆
, C̃33 = Y33

(1 − ν12ν21)

∆

C̃44 = G23 , C̃55 = G13 , C̃66 = G12

C̃12 = Y11
(ν21 + ν31ν23)

∆
, C̃13 = Y22

(ν13 + ν12ν23)

∆
, C̃23 = Y33

(ν23 + ν21ν13)

∆

(A.4)

where ∆ = 1 − ν12ν21 − ν23ν32 − ν31ν13 − 2ν21ν32ν13 and remembering also:

νij

Yii
=

νji

Yjj
(i, j = 1, 2, 3) (A.5)

and Y is the elastic modulus, G the shear modolus, nu the poisson ratio, direction

1 the direction of the fibre, 2 the direction perpendicular to the fibre in the plate

plane, 3 the out of plane direction perpendicular to the previous two.

APPENDIX B. SOLUTION OF A SYSTEM OF DIFFERENTIAL

EQUATION OF THE SECOND ORDER

A system of differential equations of the second order in x can be written as

d2y(x)

dx2
= ÿ(x) = f (y(x), ẏ(x)) (B.1)

where y(x) = [y1, y2, ..., yn]T are the n unknown functions. This can be written in

matrix form as

ÿ(x) = S̃[y(x), ẏ(x)]T (B.2)

where S is the matrix of coefficient whose dimension is n× 2n and can be written

as:

S̃ =

















S11 S12 S13 S14 . . . S1(2n−1) S1(2n)

S21 S22 S23 S24 . . . S2(2n−1) S2(2n)

...
... . . . . . .

. . .
...

...

Sn1 Sn2 Sn3 Sn4 . . . Sn(2n−1) Sn(2n)

















(B.3)
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By a simple change of variables, the system of second order differential equations

can be transformed to a system of first order differential equations. The change of

variables is

Z1(x) = y1(x) , Z2(x) = ẏ1(x)

Z3(x) = y2(x) , Z4(x) = ẏ2(x)

...

Z(2n−1)(x) = yn(x) , Z(2n)(x) = ẏn(x)

(B.4)

By doing this, a number of first order differential equations will be added to the

system in Eq (B.1), such as Ż1 = Z2, Ż3 = Z4 and ˙Zn−1 = Zn, in addition to the

original equations in (B.2) which will now be all first order.

If it is linear and the coefficients are constant it can be re-written in matrix form

as

Ż(x) = SZ(x) (B.5)

where the unknown functions are now:

ZT = [Z1, Z2, Z3, z4 . . . , Z2n−1, Z2n] = [y1, ẏ1, y2, ẏ2, . . . , yn, ẏn] (B.6)

and the new matrix of coefficients S, whose dimension now is 2n × 2n can be

written as:

S =





































0 1 0 0 . . . 0 0

S11 S12 S13 S14 . . . S1(2n−1) S1(2n)

0 0 0 1 . . . 0 0

S21 S22 S23 S24 . . . S2(2n−1) S2(2n)

...
... . . . . . .

. . .
...

...

0 0 0 0 . . . 0 1

Sn1 Sn2 Sn3 Sn4 . . . Sn(2n−1) Sn(2n)





































(B.7)
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The solution of first order differential equations in (B.5) can be written as

Zi =
2n
∑

j=1

Cjδjie
λjx (B.8)

where Cj are the constant of integration, λj is the jth eigenvalue of the matrix S

and δji is ith value in the jth eigenvector of the matrix S. For the sake of simplicity,

the solution for Z1, i.e. y1 (see Eq (B.4)) is given in explicit form

y1(x) = C1δ11e
λ1x + C2δ21e

λ2x + . . . + C2nδ(2n)1e
λ2nx (B.9)

if the eigenvectors are written as a matrix δ in the following form:

δ =

















δ11 δ21 . . . δ(2n)1

δ12 δ22 . . . δ(2n)2

...
...

. . .
...

δ1(2n) δ2(2n) . . . δ(2n)(2n)

















(B.10)

where for δji j is the eigenvector number and i is the position in the eigenvector,

and the eigenvalues with the constants in the following form:

Ceλx = [C1e
λ1x, C2e

λ2x, . . . , C2neλ2nx]T (B.11)

then the solution in Eq. (B.8) can be written in a more compact matrix form as

Z = δCeλx (B.12)

APPENDIX C. FORWARD AND BACKWARD PARTIAL GAUSS

ELIMINATION (FBPGE)

The coefficients of the second derivatives are located in the columns which are

multiple of 3. In order to decouple the equations, the first row should have -1 in

the third column and zero below it, the second row should have -1 in the sixth
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column and zeros above and below that and so on. This matrix has been called

L̂.

Let us examine a 3 by 9 L matrix which is fully populated. The algorithm can

easily be extended to a matrix of N by N times 3 dimension. The matrix L̂ and

subsequently the matrix S̃ (see Eq. (B.3)) can be obtained by following four steps.

L =











l11 l12 l13 l14 l15 l16 l17 l18 l19

l21 l22 l23 l24 l25 l26 l27 l28 l29

l31 l32 l33 l34 l35 l36 l37 l38 l39











(C.1)

(i) Forward Gauss elimination. Gauss elimination is carried out on entries below

l13, l26. This is achieved by the following algorithm for the third column

l2i = l2i −
l23
l13

l1i for i = 1, . . . , 9

l3i = l3i −
l33
l13

l1i for i = 1, . . . , 9

(C.2)

and for the sixth column2

l3i = l3i −
l36
l26

l2i for i = 1, . . . , 9 (C.3)

note that the name of the new element has not been changed for sake of

brevity.

The results would be a new L matrix in the following form

L =











l11 l12 l13 l14 l15 l16 l17 l18 l19

l21 l22 0 l24 l25 l26 l27 l28 l29

l31 l32 0 l34 l35 0 l37 l38 l39











(C.4)

(ii) Backward Gauss Elimination. As before but starting from the third row,

ninth column and eliminating everything that is above that element in order

2this algorithm can be generalised for any matrix dimension in a couple of lines
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to obtain the following new L matrix

L =











l11 l12 l13 l14 l15 0 l17 l18 0

l21 l22 0 l24 l25 l26 l27 l28 0

l31 l32 0 l34 l35 0 l37 l38 l39











(C.5)

(iii) Factorisation. It is required to have -1 on the coefficient corresponding to

the second derivative so to imply that if that coefficient were to be moved

on the other side of the differential equation, its value would be 1. In order

to do that the first row is divided by −l13, the second by −l26and the third

by −l39. in this way, the matrix L̂ can be obtained and it has the following

form

L̂ =











l11 l12 −1 l14 l15 0 l17 l18 0

l21 l22 0 l24 l25 −1 l27 l28 0

l31 l32 0 l34 l35 0 l37 l38 −1











(C.6)

(iii) Eliminate the columns. By eliminating the columns corresponding to the

position 3 and it multiples, is equal to move the term containing the second

derivatives on the other side of the equations and give the matrix of coeffi-

cients associated to the second order differential equation. This matrix has

been called S̃ (see Eq. (B.3)) and following the notation in Eq. (C.6) can

be written as

S̃ =











l11 l12 l14 l15 l17 l18

l21 l22 l24 l25 l27 l28

l31 l32 l34 l35 l37 l38











(C.7)
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