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Abstract 

 

The dynamic stiffness matrix of a rectangular plate for the most general case is developed by solving the bi-

harmonic equation and finally casting the solution in terms of the force-displacement relationship of the freely 

vibrating plate. Essentially the frequency dependent dynamic stiffness matrix of the plate when all its sides are 

free is derived, making it possible to achieve exact solution for free vibration of plates or plate assemblies 

with any boundary conditions. Previous research on the dynamic stiffness formulation of a plate was restricted 

to the special case when the two opposite sides of the plate are simply supported. This restriction is quite 

severe and made the general purpose application of the dynamic stiffness method impossible. The theory 

developed in this paper overcomes this long-lasting restriction. The research carried out here is basically 

fundamental in that the bi-harmonic equation which governs the free vibratory motion of a plate in harmonic 

oscillation is solved in an exact sense, leading to the development of the dynamic stiffness method. It is 

significant that the ingeniously sought solution presented in this paper is completely general, covering all 

possible cases of elastic deformations of the plate. The Wittrick-Williams algorithm is applied to the ensuing 

dynamic stiffness matrix to provide solutions for some representative problems. A carefully selected sample 

of mode shapes is also presented. 
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Nomenclature 

 

w transverse displacement 

h, 2a, 2b thickness and dimensions of the rectangular plate 

ω, Ω circular frequency and frequency parameter 

E,  ,  , D Young’s modulus, Poisson ratio, density and bending stiffness of the plate 

W, 
y , x  amplitudes of transverse displacement and bending rotations on the boundaries 

Vx, Vy, Mx, My amplitudes of shear forces and bending moments on the boundaries 

d
~

, f
~

 amplitudes of boundary displacement and force vectors  

n,n  , wave numbers for the symmetric components of displacements 

nn

~
,~  , wave numbers for the antisymmetric components of displacements 

nnnn q,q,p,p 2121  roots of the characteristic equation 

(k,j) indicators of symmetric/antisymmetric components with k,j{0,1} 

nnnn DCBA ,,,  unknown coefficients of the general solution 

W ,φ , M , V  sequence vectors of Fourier coefficients for displacements, rotations, bending 

moments and shear forces at the boundaries 

QPA ,,  coefficient matrices in the mixed formulation 

d , f  Fourier coefficients of the amplitudes of displacement and force vectors  

K  dynamic stiffness matrix 

jG  asymptotic constant in limitant analysis 

j  number of eigenvalues between zero and a trial frequency 

0j ,  
fs K  parameters needed in the application of Wittrick-Williams algorithm 
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1. Introduction 

 

The free vibration analysis of plates and plate assemblies is a topic which has continually inspired researchers 

for well over two centuries. From an engineering perspective, the importance of this topic cannot be over 

emphasized, particularly for its applications in aeronautical industry where the top and bottom skins of an 

aircraft wing are generally idealised as plate assemblies during the structural design. Researchers who laid the 

foundation for the current state of the art on the subject include Chladni [1], Poisson [2], Lord Rayleigh [3], 

Ritz [4], Timoshenko [5] and Iguchi [6], amongst others. These early pioneers developed analytical methods, 

later referred to as classical methods, at a time when the finite element method (FEM) was not even invented 

and the computer power was almost non-existent. Then with the advent and rapid growth of powerful digital 

computers, the FEM emerged in the 1960s as a breakthrough in solid mechanics and it became possible to 

obtain approximate solutions for static and dynamic problems of structures such as beams, plates and their 

assemblies through the use of assumed shape functions. During this period, interest in classical methods 

continued and in fact was growing steadily to validate and importantly, to give due recognition and 

importance to the FEM and to put it on a reliable, but secure foundation. It was natural and understandable 

that classical methods which rely on the solution of the governing differential equations were 

comprehensively used at the time to validate the FEM. Logically the classical methods provided the ultimate 

benchmark to the solution of the plate vibration problem and thus became an indispensable aid to validate the 

FEM which is basically a numerical method. For a better insight into the problem, Leissa [7, 8] recognised the 

continuing need for the development of the classical methods and provided a comprehensive coverage of the 

free vibration analysis of rectangular plates. By and large his methods relied on the solution of the differential 

equation governing the plate motion undergoing free vibration, but they were not sufficiently general to cover 

all possible boundary conditions of the plate in an exact sense when arriving at the solution. Other notable 

contributors who used analytical approach, but applied different methods other than the FEM, are Warburton 

[9], Gorman [10], Azimi et al [11], Bhat [12], Cheung and Kong [13], and Xing and Liu [14, 15]. There are 

some excellent texts which elucidate the classical theories of plates [16-18]. 

 

Against the above background, it is useful to note that an elegant and powerful alternative to the FEM and 

classical methods in free vibration analysis exists, but relatively unknown which is notably the dynamic 

stiffness method (DSM). The method gives exact results like some of the classical methods, but has the added 

advantage of handling complex structures for which individual element stiffness matrices comprising the 

structure can be assembled to provide solutions for the whole structure. The basic building block in the DSM 

is the frequency dependent dynamic stiffness (DS) matrix of a structural element. The DS matrix is generally 

obtained from the exact solutions of the governing differential equations of the structural element undergoing 

free vibration. The solutions are essentially exact shape functions which, unlike the FEM, are not based on 

assumed interpolation polynomials to define the element deformation. Thus the accuracy achieved in the DSM 

is independent of the number of elements used in the analysis so that any number or order of natural 
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frequencies can be computed, even from a single structural element to any desired accuracy which of course, 

is impossible in the FEM or in any other approximate methods. When dissimilar elements are used in the 

DSM to model a complex structure, the DS elements are assembled in the usual way like the FEM, leading to 

an eigenvalue solution procedure for computing natural frequencies and mode shapes. In such cases, there will 

be no loss of accuracy, and the results from the DSM for the complex structure will still be exact. This is in 

sharp contrast to FEM for which the results are not exact because of the assumptions made in the shape 

functions.  

 

For beam elements, the DSM is well established [19-21] and notably software based on the DSM is available 

[22, 23] for exact free vibration analysis of skeletal structures. For a plate element, the DSM was first 

developed by Wittrick and Williams [24] for plates and plate assemblies in the early seventies by using 

classical theory. This was a significant achievement at that time and the theory was implemented in a program 

called VIPASA [24]. However, their work was restricted to thin plates for which two opposite sides must be 

simply supported. Thus the deflection of the plate was assumed to vary sinusoidally in the longitudinal 

direction. In 1983, Williams and Anderson [25] made significant extension to the work of Wittrick and 

Williams [24] by introducing Lagrangian multipliers to deal with rigid and/or elastic point supports on the 

plate and they produced an enhanced computer code VICON [26]. Following this work, optimum design 

features were added to form a new version of the program, called VICONOPT [27]. Two decades later, 

Boscolo and Banerjee [28-30] extended the DS plate theory by including the important effects of shear 

deformation and rotatory inertia. Their investigations cover both isotropic plates [28] and composite plates 

[29, 30] and were based on the first-order shear deformation theory. Fazzolari et al took a step further to 

develop the dynamic stiffness theory for anisotropic plates [31] using higher order shear deformation theory. 

Later, Boscolo and Banerjee [32] developed DSM using sophisticated first-order layer-wise theory for the 

analysis of laminated composite plates. However, all these investigations were limited to simple support 

boundary condition of opposite sides of the plate. The DSM development for a plate with all sides free, i.e. 

without any restriction on boundary conditions is very difficult. The difficulty arises from the basic 

requirement that the development of the DS matrix of a structural element is dependent on the exact solution 

of its governing differential equations of motion in free vibration, see Banerjee [33]. In the case of a thin plate, 

the governing differential equation is essentially the well-known bi-harmonic equation which is generally not 

amenable to a general solution. The equation has been known for nearly two centuries, but was mainly of 

mathematical interest before its application to solve plate vibration problems became apparent [34]. Over the 

past two decades, there have been significant advances in seeking solution for the bi-harmonic equation in an 

engineering or elastodynamic context. Meleshko [35] and Papkov and Meleshko [36] made ground-breaking 

contributions to the study of the free vibration and static bending problems of rectangular plates. This was 

achieved by seeking the general solution of the bi-harmonic equation. However, their investigations were 

focused on a plate with completely free or completely clamped boundary conditions at all edges, and they did 

not approach the problem from a dynamic stiffness standpoint. Nevertheless, their research on an individual 
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plate has opened up novel, but potential possibilities and has become an important catalyst for the present 

research.  

 

As stated earlier, the fundamental basis of the dynamic stiffness formulation for a rectangular plate originates 

from the quest for a general solution of the free vibratory motion of the plate represented by the bi-harmonic 

equation. This is achieved in this paper in a robust, elegant and exact manner. To this end, the proposed theory 

characterises any arbitrary (asymmetric) transverse displacement of the plate in a novel way by using four 

sub-solutions of the bi-harmonic equation. Appropriate choices are made for their representations as even and 

odd functions so as to include all possible solutions. This is one of the most important steps taken during the 

theoretical development. Once the exact solution for the bi-harmonic equation is obtained, the expressions for 

bending rotation, shear force and bending moment are formulated. Finally the force displacement relationship 

on the plate boundaries is constructed by deriving the frequency dependent dynamic stiffness matrix whilst 

eliminating the unknown coefficients from the general solutions of the free vibratory motion. Although the 

steps leading to the dynamic stiffness matrix are explained above in a simple manner, the implementation of 

these steps is of huge complexity as will be shown later. It should be recognised that the solutions of the bi-

harmonic equation as well as the expressions for transverse displacements, rotations, shear forces and bending 

moments are all in series form and the number of terms to be considered in the series to achieve desired 

accuracy can be decided in advance and as such there is no limitation in computer implementation of the 

theory developed. 

 

2. Theory 

 

2.1. Classical plate theory (CPT) and a general outline of the dynamic stiffness development 

 

In a right-handed Cartesian coordinate system, Fig. 1 shows a uniform rectangular plate of length 2a, width 2b 

and thickness h, respectively. The origin ‘O’ is chosen at the mid-plane and centre of the plate so that the 

symmetry of the plate about xy, yz and zx planes is maintained. In the derivation that follows, Kirchhoff’s thin-

plate assumptions [5] are adopted so that the displacement of the mid-plane is uniquely described by the 

transverse or flexural displacement w which is a function of the x and y coordinates only, and not of the 

thickness coordinate z. 
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Fig. 1 Coordinate system and notations for displacements and forces for a thin plate 

 

The governing differential equation of motion of a thin plate, as shown in Fig. 1 undergoing free vibration is 

well established in [7, 8] or can be derived using standard texts [16-18]. For harmonic oscillation, i.e. when 

tieyxWtyxw ),(),,(  , W being the amplitude of transverse displacement and   the circular (or angular) 

frequency of oscillation, the differential equation is given by [7, 8] 
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where Dh /24   is the frequency parameter, )]1(12/[ 23  EhD  is the plate bending or flexural rigidity, E 

the Young’s modulus,   the Poisson ratio and   the density of the plate material.  

 

The expressions for the amplitudes of the bending rotations 
y and x , the shear forces Vx and Vy and bending 

moments Mx and My per unit length in the usual notation are given by [7, 8] 
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It should be noted that the signs for the amplitudes of bending rotations, shear forces and bending moments in 

Eqs. (2)-(4) are chosen to be consistent with the sign convention shown in the right-handed coordinate system 

in Fig. 1. 
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Next, the displacement vector d
~

 comprising the amplitudes of transverse displacements and bending rotations 

on the four sides of the plate, and the corresponding force vector f
~

 which represents the amplitudes of shear 

force and bending moment, are written in the following form 
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It is now necessary to outline broadly the mathematical process of dynamic stiffness formulation to relate the 

vectors d
~

and f
~

of Eq. (5). A general procedure to develop the dynamic stiffness matrix of a structural 

element can be briefly summarized as follows 

 

(i) Seek a closed form general solution of the governing differential equations describing the free 

vibratory motion of the structural element in an exact sense in terms of the unknown 

coefficients appearing in the general solution. 

(ii) Apply general boundary conditions (BCs) in algebraic form for the amplitudes of both 

displacements and forces at the boundaries of the element. 

(iii) Eliminate the unknown coefficients by relating the amplitudes of the harmonically varying 

forces to those of the corresponding displacements and thereby generating the frequency 

dependent dynamic stiffness matrix. 

 

As it is well known, the closed form solution for free vibration analysis of a rectangular thin plate has been 

widely reported only for the special case when the opposite sides of the plate are simply supported. This is the 

so-called Levy solution [7, 8] which simplifies the problem drastically because it reduces the number of 

unknown coefficients to just four. However, for the general case when the plate is completely free to deform 

in any arbitrary shape, the problem becomes immensely more difficult. Therefore for the general case, it is 

necessary to seek the solution of the governing differential equation with sufficiently large number of 

unknown coefficients (which ideally extends to infinity) to satisfy any combinations of boundary conditions. 

Using the theory presented in this paper, such a solution can be achieved and the results can be accurate even 

up to machine accuracy. 

 

2.2. General solution for free vibration of a rectangular plate 

 

Since Eq. (1) is a linear homogeneous partial differential equation with constant coefficients, the classical 
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method of separation of variables allows the general solution of the type 

 

 
qypxCeyxW ),(  (6) 

 

where p and q are wave parameters. Substituting the above equation into Eq. (1) yields the characteristic 

equation 
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Therefore, any combination of p, q and   satisfying Eq. (7) represents a solution of Eq. (1). Following the 

work of Gorman [10], an infinite series of base solutions are sought by introducing
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n
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  depending upon the symmetric or 

antisymmetric forms of deformation of the plate which will be explained later. An inspection of Eq. (6) 

indicates that the deformation in the x direction can be represented by one symmetric (even) and one anti-

symmetric (odd) harmonic equations, namely 
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which applies also for n
~ . 

Inserting 
nn ip   into Eq. (7) gives  

 

 222  nnq   (9) 

 

where the roots of nq  must appear either in real or in purely imaginary pairs. In the same way, the 

corresponding function in y can be separated into symmetric and anti-symmetric pairs as well. A second 

infinite series of base solutions can be generated by letting 
nn iq  or 

n

~
i  in the y direction with  
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  following an analogous procedure as above. To this end, 

the resulting two infinite series of base solutions are added together to form the general solution W of Eq. (1). 

The solution can be partitioned into a sum of the four sub-solutions in each of which the function W is either 

even or odd. Thus letting 
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where the first index k denotes the symmetry relating to x and second index j denotes the symmetry relating to 
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y. The index ‘0’ denotes an even function whereas ‘1’ denotes an odd function. For example, 00W  means W is 

even in both x and y whereas 01W means W is even in x, but odd in y and so on and so forth. Thus, the four 

sub-solutions describe the symmetric and anti-symmetric deformations of the plate about the mid-planes. Note 

that it follows from the fact that if a structure possesses a plane or planes of symmetry, any asymmetric (or un-

symmetric) motion can be described by the superposition of symmetric and anti-symmetric motions. By 

making use of the symmetry of the structure (see Fig. 1) we can construct solution of the differential equation 

(1) for each of the four component cases in Eq. (10) as follows 
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and the unknown coefficients 
nnnn DCBA ,,,  (n =0, 1, 2,…) are different for each of the four component cases 

in W. Note that trigonometric and hyperbolic functions in cosine and sine exhibit even and odd characteristics 

which are exploited here to advantage. The symmetric (k or j=0) and antisymmetric (k or j=1) trigonometric 

functions with the first several wavenumbers nn  ,  and nn

~
,~   taken as in Eq. (16) are depicted in Fig. 2. 

Due to the properties of orthogonal functions, the general solution composed from Eqs. (11)-(14) can 

represent any prescribed transverse displacements, bending rotations/moments and shear forces on the plate 
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boundaries. It is quite obvious to understand this for transverse displacements because all the trigonometric 

functions taking the values of either 1 or 1 on the boundaries at x=±a or y=±b as shown in Fig. 2 where L=a 

or b. It can be easily deduced that for any other arbitrary boundary conditions, such as the bending rotations, 

bending moments and shear forces defined in Eqs. (2)-(4) can be represented by the set of general solutions by 

looking at the second- and third-order derivatives of the solutions (11)-(14).  

 

 

Fig. 2 The first four symmetric/antisymmetric trigonometric functions (L=a or b) 

Therefore the general solution given by Eq. (10) when considered as the sum of the sub-solutions given by 

Eqs. (11)-(14) satisfies the governing differential equation (see Eq. (1)) a priori. The unknown coefficients 

nnnn DCBA ,,, need to satisfy any given boundary conditions of the plate. The fulfilling of boundary conditions 

leads to infinite systems of linear algebraic equations relating the Fourier coefficients of the boundary 

conditions (both displacements and forces). In the current work, the derived infinite system of linear algebraic 

equations is used to develop the dynamic stiffness matrices. We mention in passing that for a plate when all 

the edges are either clamped or free, the infinite systems can be solved by using limitants theory [35]. This 

particular aspect was investigated by Meleshko [35] and Papkov and Meleshko [36] in recent years. 
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components so that the sum of the four sub-vectors in each case represents the net displacement and net force 

acting on the boundaries of the plate. In this way one can write  
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Now with the help of Eq. (10), the net displacement vector d
~

 and the force vector f
~

 of Eq. (5) can be written 

as follows: 
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Once the dependency between sub-vectors 
kj

d
~

 and kj
f
~

 is determined, which defines the dynamic stiffness 

matrix 
kj

K  for each case arising from the symmetry, it becomes possible with the help of Eq. (18) to derive 

the overall dynamic stiffness matrix K  for the complete plate, which relates the vectors d
~

 and f
~

.  

 

2.3. Dynamic stiffness development 

 

In total, four dynamic stiffness (DS) matrices 
kj

K  should be formulated for four different symmetric and 

antisymmetric cases. Here for the purposes of illustration, the procedure to develop the DS matrix 
00

K  for 

the component quarter plate representing the symmetry about both the x and the y axes of the whole plate is 

presented. The procedure for DS development for the other three cases follows similarly. 

 

The DS matrix 
00

K  can be formulated using two steps based on the elimination of the unknown coefficients 

in the general solution in Eq. (11), namely, nnn CBADCBA ,,,,,, 0000  and nD . First, the unknown 

coefficients nnn CBADCBA ,,,,,, 0000  and nD  are obtained by equating the Fourier series of the boundary 

conditions for rotations and shear forces to the corresponding expressions obtained from the general solution 

and its differentiations. Secondly, the expressions of these unknowns are substituted into the boundary 

transverse displacements and bending moments to form an infinite system of algebraic equations which 

eventually leads to the DS matrix 
00

K .  

Thus as the first step, it will be shown how the unknowns nnn CBADCBA ,,,,,, 0000  and nD  can obtained. 

Clearly the symmetric behaviours of the vectors 
00~

d  and 00~
f  can be represented by Fourier series of the 

prescribed boundary conditions as follows 
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Alternatively, 
00~

d  and 00~
f   can be obtained by evaluating the two-dimensional functions of Eq. (17) (all 

derived from general solution Eq. (11)) on the plate boundaries. From the general solution for displacement 

00W  (see Eq. (11)), the bending rotations 00

y , 00

x , the shear forces 00

xV , 00

yV
 
and the bending moments 

0000, yx MM  can be obtained with the help of Eqs. (2)-(4) and they are expressed as follows: 
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A close inspection on Eqs (20)-(25) reveals that the expressions with odd order derivatives of 00W  (rotation 

and shear forces) are of simpler forms on the boundaries which can be used to determine all of the unknown 

coefficients in terms of the Fourier coefficients of the boundary rotations and shear forces only. For example, 

in Eqs. (20) and (22), the terms including x
n

sin  vanish on the boundary at ax   since 0sin a
n

 . 

Similarly, the conditions 0sin y
n

  in Eqs. (21) and (23) on the boundary at by   will be valid. Based on 

this observation, the following equalities can be obtained by equating Eqs. (20)-(23) on the boundaries to the 

corresponding terms of Fourier series in Eq. (19). 
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The Eqs. (26) and (27) lead to the following systems of equations 
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Similarly, Eqs. (28) and (29) yield  
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The solutions of system of Eqs. (30)-(33) can be written as: 
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Thus all unknown coefficients are now expressed by Fourier coefficients for boundary rotations and shear 

forces.  

 

In the next step, an infinite system of linear algebraic equation is obtained by substituting the already 

determined unknowns nnn CBADCBA ,,,,,, 0000  and nD  given by Eqs. (34) and (35) into the boundary 

conditions for transverse displacements and bending moments in Eqs. (11), (24) and (25) so that the infinite 

system relates the Fourier coefficients of the boundary displacements and forces. The derivations were 

complex but carried out both manually as well as by using symbolic computation package Mathematica and 

they were checked against each other. The expressions are recorded in Appendices A-C. Then the dynamic 

stiffness matrices are formulated from this infinite system by using some further steps of matrix manipulation. 

Note that the following matrix reorganisations are applicable only to the doubly-symmetric component case 

(k=j=0), but for the remaining three component cases the procedure is analogous. The infinite system of 

equations (A.5)-(A.12) can now be rewritten in the following matrix form: 
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where the sequences of Fourier coefficients for boundary displacements, rotations, bending moments and 

shear forces are 
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and the frequency dependent elements of the infinite order matrices 
21,,, mixmixfreeclamped AAAA  of Eq. (36) 

can be easily obtained from the system of Eqs. (A.5)-(A.12). The elements are given in explicit algebraic form 

in Appendix D. 

 

For a plate with free boundary condition on all sides, one requires 0VM   in Eq. (36) which gives 
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Therefore natural frequencies for a plate with all sides free can be obtained from the equation 
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In an analogous way, the natural frequencies for an all-round clamped plate can be obtained by substituting 

0φW   in Eq. (36) leading to the following determinant to give the frequency equation 

 

 0det clamped
A  (40) 

 

The displacement sequences W and φ  can now be expressed with the help of Eq. (36) as 

 

 










MPVPφ

MPVPW

2221

1211

 (41) 
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This approach is based on the inverse of matrix 
1)( free

A  and it allows the construction of the inverse of the 

dynamic stiffness matrix in the following manner 
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Here the dynamic stiffness matrix 
00

K  relates 
00

f  and 
00

d  
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dKf   (44) 

 

in which  

 

    TT
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The vectors φWMV ,,,  in Eq. (45) have already been defined earlier in Eq. (37). Clearly that 
00

f  and 
00

d  

are the Fourier coefficient vectors of the boundary force and displacement vectors 00~
f  and 

00~
d  respectively. 

 

The accuracy of the dynamic stiffness elements of Eq. (43) will greatly depend on the accuracy of the inverse 

of the matrix 
free

A . This matrix corresponds to quasi-regular operator in space of limited sequences   that 

makes an accurate inverse of the matrix possible on the basis of the method of reduction. The main advantage 

of such an approach is the provision of obtaining practically almost exact inverse of the matrix 
free

A . If 

elements of the matrix are defined as 



  0,

1 }{)( nmmn

free zA  (starting index used is 0 for convenience), then the 

following matrix equality must be satisfied 
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 (46) 

 

where I  and O  are respectively the identity matrix and null matrix of the same order as 
free

A . 

 

Equation (46) leads to the following infinite system for each column of matrix 
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where m = 0, 1, 2, …, N. 

 

Following the methodology outlined by Meleshko [35] one can now evaluate the coefficients of the system of 

Eqs. (47)-(50) by using the following limits 
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Clearly the infinite system of Eqs. (47)-(50) is quasi-regular. Thus there exists some number NR such that the 

sum of the off-diagonal elements of each row m (m > NR) of the infinite coefficient matrix of the right-hand 

side of Eqs. (47)-(50)  is less than the corresponding diagonal element which will always have a positive 

value. According to the general theory of Kantorovich and Krylov [39], the system of Eqs (47)-(50) will have 

unique solution in the space of bounded sequences   for frequencies which are different from natural 

frequencies.  

 

Using the limitants theory which was originally proposed by Koialovich [37] and generalised by Papkov [38], 

one can prove that the bounded solution of this system can be described by asymptotic formula ( m ) as 

follows: 

 

 
 




2,2

)1(

m

j

m

jm

bG
z

 
 




2,12

)1(

m

j

m

jm

aG
z

 (52) 

 

where 
jG  is some constant and )1,0(  is a root of the following transcendental equation 
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Based on the knowledge of the asymptotic behavior described by Eq. (52) it is now possible to use the method 

of improved reduction [35, 36] for constructing the matrix 
1)( free

A . For each infinite column of the resultant 

matrix on the left hand side of Eqs. (47)-(50), one can determine 2N+2 unknowns 
jNjNjj zzzz ,12,210 ,,...,, 
 

(i.e., the first 2N+2 elements of the jth column of matrix 
1)( free

A ) and one asymptotic constant 
jG , which 

leads to the following reduced system with 2N + 3 equations to provide the solutions  
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where m = 0, 1, 2,…, N. 

 

Obviously, if a similar system is analysed in terms of the rows of matrix 
1)( free

A  from Eq. (46), the same 

results can be obtained. Therefore the solution of the system of Eqs. (47)-(50) enables the inversion of the 

matrix 
free

A  with vastly improved accuracy. Furthermore, it should be recognised that the values of 

asymptotic formula for all elements have been successfully achieved.  

 

An alternative way to constructe the dynamic stiffness matrix would be to seek expressions for the force 

sequences V  and M  instead. This is based on the system of Eqs. (36) to give 
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The 22  block dynamic stiffness matrix for the symmetric case can thus be represented by 
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However, the asymptotic formula for obtaining 1)( clampedA  is extremely difficult and therefore, it is preferable 
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to derive the dynamic stiffness matrix by using Eq. (43). 

 

By using Eq. (43), one can obtain the stiffness matrix 
00

K  and similarly, 
kjK for the three other component 

cases can be formulated. Relevant expressions for the remaining three cases other than 
00

K  are recorded in 

Appendix C. Finally, with the help of Eq. (18), the overall DS matrix K  of the entire plate can be 

constructed from the four component cases 
kjK . Thus, the final DS matrix K  relating d  and f  is given in 

the form 

 

 Kdf   (62) 

 

where the vectors f  and d  are the Fourier coefficient vectors of the arbitrarily prescribed boundary force and 

displacement vectors f
~

 and d
~

 respectively. 

 

It is often instructive to partition the overall dynamics stiffness matrix K  according to commonly used 

specified boundary conditions of the plate. Suppose that the displacement vector d can be partitioned into two 

sub-vectors ad  and bd  such that the displacement sub-vector bd  (which corresponds to 
bf ) and the force 

sub-vector af  (which corresponds to ad ) are known from the prescribed boundary conditions. Then Eq. (62) 

can be recast in the following form 
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where T

baab KK  . For many practical applications of free vibration analysis, af  and bd  are taken as zero 

vectors. In such cases, Eq. (63) is reduced to 

 

 0dK aaa  (64) 

 

Thus the natural frequencies can be computed through searching for the zeros of the determinant of the above 

reduced DS matrix 
aaK . Note that the case of a fully clamped plate cannot be accommodated in this 

procedure, but the problem for this case can be solved using the determinant of Eq. (40). Any arbitrarily 

prescribed mixed boundary conditions such as line and/or point supports on the boundaries can be represented 

by the Fourier coefficient vectors d  and f  through Fourier transforms. In particular, for constraints involving 

point supports, an alternative approach incorporating Lagrangian multipliers can be used [25]. Application of 

such point constraints using Lagrangian multipliers is beyond the scope of the present paper, but provides 

scope for future research. Natural frequencies and mode shapes computation follows from an adapted 

application of the Wittrick-Williams algorithm [40] which has been explained in some detail in Appendix E. 

For interested readers, the complete procedure of the dynamic stiffness development and its implementation is 
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illustrated in Fig. 3. 

 

 
 

Fig. 3 Flowchart showing the procedure for the DSM development and its implementation. 

3. Results and discussion 

 

The theory developed above has been implemented in a MATLAB program to compute the natural 

frequencies and mode shapes of rectangular plates with different boundary conditions. The accuracy and 

convergence of the results using the current method are confirmed first, which was aided by published results.  

 

First the results for a square (a/b=1) and then for a rectangular (a/b=2) plate are computed for three types of 

boundary conditions. These are: (i) free all-around edges (F-F-F-F), (ii) all-around clamped edges (C-C-C-C), 

and (iii) opposite edges are clamped and free (C-F-C-F), respectively. It is worth emphasising that for all these 

three cases, either symmetric or anti-symmetric displacement and force boundary conditions with respect to x 

and y axes are clearly apparent. Therefore, it is expected that the corresponding mode shapes will be either 

symmetric or antisymmetric. That is to say, the mode shapes can be represented by one of the four sub-

solutions of the general solution given in Eq. (10). If the set of boundary conditions on the four edges is 

asymmetric (neither symmetric nor antisymmetric), the corresponding mode shapes will be naturally 

asymmetric. 

 

The first ten natural frequencies of a completely free (F-F-F-F) square plate (a/b=1, ν=0.3) have been 

computed by the proposed DSM theory and are shown in Table 1. This particular example is relevant to the 

historic work by Chladni [1] who was the first to attempt the problem. In order to check the convergence of 

the current method, the dimensionless natural frequencies 4 2 / Dh  have been computed for two 
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different values of N where the infinite series is truncated at a given value, e.g., n=N in the reduction, see Eqs. 

(54)-(58) and the matrices in Appendix D. For the first ten natural frequencies, N=4 leads to results with 

satisfactory accuracy for all practical purposes, and the results with N=10 give accuracy up to six significant 

figures. Table 1 also shows excellent agreement between the results from the present theory with those 

obtained by the analytical method proposed by Papkov and Meleshko [36] who did not use the dynamic 

stiffness method, but made use of the regularity analysis of the infinite system of algebraic equations. Clearly, 

the use of the current approach offers the advantage to achieve any desired accuracy. Representative mode 

shapes are shown in Fig. 4. These are some of the typical Chladni figures for a square plate [1]. The symmetry 

of the mode shapes are indicated in the second column of Table 1, where the notation (k,j) corresponds to the 

‘kj’ notation defined in Eq. (10). The symmetric/anti-symmetric properties of the first ten mode shapes agree 

with those reported in the literature [1, 4, 7, 36]. The sixth and tenth mode shapes, illustrated in Figs. 2 (a) and 

(d) respectively, are doubly symmetric whereas the seventh mode shape (Fig. 4(b)) is doubly antisymmetric. 

By contrast, the ninth mode Figs. 2 (c) is symmetric in one direction and antisymmetric in the other direction, 

namely, symmetric in x and antisymmetric in y, or symmetric in y and antisymmetric in x (the two natural 

frequencies should be the same because it is a square plate). For consistency and ease of comparison, the 

natural frequency parameter with another dimensionless quantity 24  for the same problem as above are 

compared with the classical solutions of Leissa [7] who used Rayleigh-Ritz method, see Table 2. It can be 

seen that the DSM results are in good agreement with those of the Rayleigh-Ritz method, but of course, the 

former are more accurate than the latter.  
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Table 1 

Natural frequencies for an isotropic F-F-F-F square plate (a/b=1, ν=0.3).  

 

frequency 

No. 
(k,j) 

4 2 / Dh  

N = 4 N =10 
Papkov and 

Meleshko [36] 

1 (1,1) 1.83499 1.83495 1.8350 

2 (0,0) 2.21337 2.21337 2.2134 

3 (0,0) 2.46326 2.46324 2.4633 

4 (0,1)/(1,0) 2.94988 2.94961 2.9496 

5 (0,1)/(1,0) 3.90811 3.90816 3.9081 

6 (0,0) 3.99119 3.99020 3.9902 

7 (1,1) 4.16138 4.16129 4.1613 

8 (1,1) 4.39284 4.39239 4.3924 

9 (0,1)/(1,0) 5.13540 5.13472 5.1347 

10 (0,0) 5.42267 5.41083 5.4108 
 

 
 

Fig. 4 Representative mode shapes with a/b=1 , ν=0.3 for an isotropic plate with completely free boundary 

conditions (F-F-F-F). (a), (b), (c) and (d) are respectively for the sixth, seventh, ninth and tenth mode shapes. 
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Table 2 

Natural frequency parameter   for an isotropic F-F-F-F square plate (a/b=1, ν=0.3). 

 

frequency 

No. 
(k,j) 

4

2
2 44

D

h
   

N = 10 Leissa [7] 

1 (1,1) 13.4682 13.4728 

2 (0,0) 19.5960 19.5961 

3 (0,0) 24.2702 24.2702 

4 (0,1)/(1,0) 34.8008 34.8011 

5 (0,1)/(1,0) 61.0949 61.0932 

6 (0,0) 63.6868 63.6870 

7 (1,1) 69.2653 69.5020 

8 (1,1) 77.1724 77.5897 

9 (0,1)/(1,0) 105.461 105.463 

10 (0,0) 117.108 117.109 

 

Next, the natural frequencies of the F-F-F-F rectangular plate with a/b=2 have been computed using the 

proposed DSM and are compared with results based on the analytical method put forward by Papkov and 

Meleshko [36], see Table 3. The comparison suggests that the agreement is almost total.  Again, a high rate of 

convergence can be observed in terms of number of terms N used in the series expansion. A comparison 

between Table 1 and Table 3 results reveals that the dimensionless natural frequencies of the rectangular plate 

(a/b=2) are lower than those of the square plate (a/b=1) which due to the nondimensionalisation used, is 

expected. Some representative mode shapes for this rectangular plate are illustrated in Fig. 5, which highlights 

different symmetric/anti-symmetric deformation behaviour similar to those of the square plate. The sixth 

mode shape (see Fig. 5(a)) is clearly doubly antisymmetric. On the other hand, the ninth mode is doubly 

symmetric (see Fig. 5(c)). By contrast, the seventh mode shape is symmetric (Fig. 5(b)) in y direction, but 

antisymmetric in x direction whereas the tenth one is symmetric in x but antisymmetric in y, see Fig. 5(d).  

 
Table 3 

Dimensionless natural frequencies  for an isotropic F-F-F-F rectangular plate with a/b=2, ν=0.3. 

 

frequency 

No. 
(k,j) 

4

2

D

h
  

N = 4 N =10 
Papkov and 

Meleshko [36] 

1 (0,0) 1.15821 1.15821 1.1582 

2 (1,1) 1.28880 1.28877 1.2888 

3 (0,1) 1.91185 1.91132 1.9113 

4 (1,0) 1.93014 1.93012 1.9301 

5 (0,0) 2.34538 2.34534 2.3453 

6 (1,1) 2.51932 2.51873 2.5187 

7 (1,0) 2.54960 2.54954 2.5495 

8 (0,0) 2.73240 2.72404 2.7240 

9 (0,0) 3.00405 3.00190 3.0019 

10 (0,1) 3.12925 3.16428 3.1642 
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Fig. 5 Representative mode shapes of an isotropic plate with a/b =2, ν=0.3 for completely free boundary 

conditions (F-F-F-F). (a), (b), (c) and (d) are respectively for the sixth, seventh, ninth and tenth mode shapes. 

 
Table 4 

Non-dimensional natural frequencies for square and rectangular isotropic С-С-С-С plates with N =10. 

 

frequency 

No. 

4

2

D

h
  

a/b=1 a/b=2 

1 2.99937 2.47878 

2 4.28351 2.82071 

3 5.20117 3.34550 

4 5.73543 3.97882 

5 5.74901 3.99948 

6 6.42227 4.21531 

7 7.25449 4.56256 

8 7.79612 4.67044 

9 8.60721 5.01918 

10 8.78778 5.39345 
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Table 5 

Comparison of calculated frequency parameter   for the doubly-symmetric modes of isotropic С-С-С-С square plate 

with a/b=1 with lower and upper bounds by Bazley, et al [42]. 

 

frequency 

No. 

24  

N = 10 lower Bounds upper Bounds 

1 35.9849 35.976 35.985 

2 131.581 131.50 131.58 

3 132.204 132.13 132.21 

4 220.031 219.08 220.06 

5 308.900 308.60 308.91 

6 309.162 308.99 309.17 

7 392.761 388.74 392.85 

8 393.896 391.40 393.98 

9 562.107 544.75 562.38 

10 565.536 564.99 565.40 
 
Table 6 

Natural frequencies for square and rectangular plates (ν=0.3) with С-F-С-F boundary conditions. 

 

frequency 

No. 

4

2

D

h
  

a/b=1 a/b=2 

1 2.35358 1.17339 

2 2.56910 1.49878 

3 3.30110 1.94881 

4 3.91051 2.26837 

5 4.09764 2.61525 

6 4.46685 2.73200 

7 4.67927 3.00721 

8 5.47793 3.15171 

9 5.57778 3.75078 

10 5.62793 3.77386 
 
Table 7 

Comparison of natural frequency parameter   for the doubly symmetric modes of a square and rectangular plate (ν=0.3) 

with С-F-С-F boundary conditions with those of Claassen and Thorne [43]. 

 

frequency No. 
24  

N = 10 Claassen & Thorne [42] 

a
/b

=
1
 

1 22.165 22.17 

2 43.589 43.6 

3 120.09 120.1 

4 136.89 136.9 

5 149.29 149.3 

a
/b

=
2
 

1 5.5074 5.51 

2 27.358 27.3 

3 29.855 29.9 

4 56.968 56.9 

5 73.968 74.0 
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To demonstrate the method, further results with other boundary conditions were computed. Table 4 shows the 

first ten natural frequencies 4 2 / Dh  of both the square plate (a/b=1) and the rectangular plate (a/b=2) 

but with all round clamped edges (C-C-C-C). The number of terms N included in the series expansion was 

fixed at 10. For similar reason as explained for the F-F-F-F case, it is expected that the dimensionless natural 

frequencies of a rectangular plate are lower than those of a square one. In Table 5, the results for the 

frequency parameter 24  are validated by the lower and upper bounds of this particular problem given by 

Bazeley et.al. [42]. Results from the present theory are between the lower and upper bounds of Ref. [42] in 

almost all cases. 

 

Following the validation of results (see Table 3, and 5), Table 6 shows the next set of results for a square 

(a/b=1) and a rectangular plate (a/b=2) with C-F-C-F boundary conditions. Similar results for this set of 

boundary conditions are shown in Table 7 alongside the results of Claassen and Thorne [43] for a direct 

comparison. 

 

The results for both square and rectangular plates with completely free edges clearly demonstrate rapid 

convergence with respect to the number of terms used in the series, see Table 1 and 3. This is in accord with 

the assertion made by Kantorovich and Krylov [39] who concluded that Fourier series will be rapidly 

convergent if the function itself and a certain number of its first derivatives are continuous and periodic. This 

is surely the case for the free vibration analysis of plates for most of the practical cases where the deflection 

and its first three derivatives are generally continuous functions and essentially periodic. (For a plate with 

combined and piecewise displacement and force boundary conditions, the approximation in the discontinuities 

can be avoided by partitioning the plate into two-dimensional assembly of plate elements, which will facilitate 

the application of the boundary conditions considerably.) 

 

The comparison of results with published results shows the high accuracy and computational efficiency of the 

proposed method. Excellent agreement for the free vibration of thin plates with completely free edges (F-F-F-

F) was achieved when compared with regularity analysis of infinite system by Papkov [36], and the Rayleigh-

Ritz method by Lessia [7]. The mode shape computation of a square plate with F-F-F-F boundary conditions 

using the present method gives results that are in accord with the well-known Chaldni figures [1] exhibiting 

both symmetric and anti-symmetric properties of the plate’s dynamic behaviour. For C-C-C-C and C-F-C-F 

boundary conditions, the results computed using the proposed method are in excellent agreement with 

published results [42, 43].  

 

Any possible numerical inaccuracy in the current study has been effectively eliminated significantly in that the 

unknown coefficients are eliminated from the boundary conditions for rotations and shear forces, rather than 

eliminating them by the matrix inversion, i.e., using the formulation 
1 RAK  which is commonly used by 

researchers in the dynamic stiffness formulation [33]. (The inverse of the matrix A  may cause numerical ill-
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conditioning and thus can introduce errors in the results of computation [44].) The high accuracy of the 

current method also stems from the improved reduced system of infinite system by using the generalised 

limitant theory proposed by Papkov [37]. The truncation of the infinite system due to the introduction of 

general solution in series form can introduce error in the computed results. This type of error has been 

diminished, if not practically eliminated in the present method by the use of the limitant theory [37] when 

developing the DS matrix. 

 

4. Conclusions 

 

An exact dynamic stiffness (DS) matrix has been developed for a rectangular plate for the most general case. 

This has been achieved by obtaining an infinite series general solution which satisfies the governing 

differential equations exactly. Following lengthy symbolic manipulations (both by hand and by symbolic 

computation), the frequency dependent DS matrix has been obtained by eliminating the unknown coefficients 

in the general solution when the plate is free on all its edges. Even though series solution has been used in the 

formulation, to all intents and purposes, the DS matrix is nevertheless, exact or almost exact because of the 

use of the generalised limitant theory [37] which eliminates the truncation errors. The formulated DS matrix 

represents the force-displacement relationship of a thin plate for the general case when the plate is undergoing 

free vibration. The prescribed boundary conditions for displacements and forces are represented by Fourier 

series to give any arbitrarily chosen accuracy. The well-established Wittrick-Williams (WW) algorithm was 

applied as solution technique to compute the natural frequencies. The corresponding mode shapes are 

recovered from the usual eigensolution procedure. The cumbersome j0 count of the WW algorithm is resolved 

by taking advantage of the nature of the series-form solution to ensure that the j0 count is always zero for a 

given trial frequency. The natural frequencies and representative mode shapes for both square and rectangular 

plates for a wide range of boundary conditions have been computed and a substantial amount of results are 

validated against published results. The high accuracy and elegance of the proposed method have been 

demonstrated. 

 

This investigation has removed the previous restriction of the dynamic stiffness method applications which 

was confined to plates with at least two opposite sides simply supported. The development of general purpose 

computer programs using the DSM is now possible as a result of the current investigation. Such programs will 

be vastly more accurate and computationally efficient in computer-aided structural analysis and design when 

compared with the traditional finite element method. It is envisaged that the research reported in this paper 

will spark a paradigm change in solving complex elastodynamic problems in an accurate and computationally 

efficient manner. 
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Appendix A.  Infinite system of algebraic equations for the doubly symmetric component case (k=j=0). 

 

This appendix shows the procedure for generating the infinite system of linear algebraic equation for the 

doubly symmetric component case, i.e., k=j=0 of Eq. (10). By substituting Eqs. (34)-(35) into Eqs. (11), (24) 

and (25), the following equalities are obtained after some algebraic manipulation using symbolic computation. 
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Expanding the ratios of the hyperbolic functions in Eqs. (A.1)-(A.4) into Fourier series form (see Appendix B) 

and changing the order of summation lead to an infinite system of linear algebraic equations relating Fourier 

coefficients of the boundary displacements 
nxnnyn

WW  ,,, 21
 and the boundary forces 

nynynxnx MVMV ,,, as 

follows: 
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where the expressions for 
jm  (j = 1, 2, 3…8) are given below. 
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Note that this appendix only for the doubly-symmetric component case. The equivalent expressions for the 

remaining three cases are recorded in Appendix C.  
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Appendix B.  Fourier series relationships of hyperbolic and trigonometric functions.  

 

Some well-known expansions of ratios of hyperbolic and trigonometric functions for expanding Eqs. (A.1)-

(A.4) into Fourier series are given below in order to make the paper self-contained. 
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Parallel expressions can be obtained for the hyperbolic functions in the Eqs. (B.1)-(B.7) by interchanging the 

symbols and following the scheme shown below 
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Appendix C.  Infinite system of algebraic equations for the remaining symmetric and anti-symmetric 

component cases.  

 

The boundary sub-vectors of displacements and forces for other component cases of symmetry are connected 

by similar relationships like Eqs. (19)- (29). In particular, for even function in direction Ox and odd function 

in direction Oy, these sub-vectors can be expanded as 
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where Fourier coefficients are connected by follow equations as  
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Here sequences 
01

jm  (j=1, 2, …, 8) can be obtained from 
jm  (see appendix B) by interchanging the 

symbols following the scheme  
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In the odd function cases for both coordinates boundary displacements and forces can be expanded as 

 

 ;

~sin

~sin

~
sin

~
sin

1

1

2

1

1

1

11



























































n

nx

n

n

n

ny

n

n

x

xW

y

yW

n

n

n

n









d   



























































1

1

1

1

11

~sin

~sin

~
sin

~
sin

n

ny

n

ny

n

nx

n

nx

xM

xV

yM

yV

D

n

n

n

n









f  (C.9) 

 

The infinite system relating the Fourier coefficients in such cases can be written as 
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where sequences 
11

jm  (j =1, 2, …, 8) can be obtained from 
jm  (see appendix B) by interchanging the 

symbols following the scheme  
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Appendix D.  Coefficient matrices for the force-displacement relationships of the doubly-symmetric 

component case (k=j=0).  
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where mn  is Kronecker's symbol. 
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Appendix E.  The Wittrick-Williams algorithm and its implementation.  

 

The dynamic stiffness (DS) matrix of this paper is used for free vibration analysis of plate-like structures. A 

reliable method to achieve this, i.e., to compute the natural frequencies is to apply the well-known algorithm 

of Wittrick and Williams (often referred to as WW algorithm) [40] which has featured in literally hundreds of 

papers. Before applying the algorithm, the DS matrices of all individual elements in a structure are to be 

assembled (in the same way as the finite element method except that there are no separate mass and stiffness 

matrices) to form the overall DS matrix 
fK  of the final structure, which may, of course, consist of a single 

element, as a special case. For instance, the reduced DS matrix aaK  of Eq. (64) may be considered as the 

overall DS matrix 
fK . The algorithm monitors the Sturm sequence properties of 

fK  in such a way that there 

is no possibility of missing any natural frequency. This is, of course, not possible in the conventional finite 

element or in any other approximate methods. Another point needs to be emphasised before going into the 

details of WW algorithm is that a new procedure which will be explained later has been introduced when 

applying the WW algorithm, which provides an added advantage to its application. But first the essential 

features of the WW algorithm are briefly explained below.  

 

Suppose that ω denotes the circular (or angular) frequency of a vibrating structure. Then according to the WW 

algorithm, j, the number of natural frequencies passed, as ω is increased from zero to ω
*
, is given by 

 

  fsjj K 0
 (E.1) 

 

where 
fK , the overall DS matrix of the final structure whose elements all depend on ω  is evaluated at ω= ω

*
; 

 fs K  is the number of negative elements on the leading diagonal of 

fK , 

fK
 
is the upper triangular matrix 

obtained by applying the usual form of Gauss elimination to 
fK , and j0 is the number of natural frequencies 

of the structure still lying between ω=0 and ω= ω
*
 when the displacement components to which 

fK  

corresponds are all zeros. (Note that the structure can still have natural frequencies when all its nodes are 

clamped because exact member equations allow each individual member to displace between nodes with an 

infinite number of degrees of freedom, and hence infinite number of natural frequencies between nodes.) Thus 

 

 mjj 0  (E.2) 

 

where jm is the number of natural frequencies between ω=0 and ω= ω
*
 for an individual component member 

with its ends fully clamped, while the summation extends over all members. Now with the knowledge of 

equations (E.1) and (E.2), it is possible to ascertain how many natural frequencies lie below an arbitrarily 

chosen trial frequency ω
*
. This simple feature of the algorithm (with the fact that successive trial frequencies 

can be chosen) can be used to converge on any required natural frequency to any desired accuracy.  
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It should be noted that j0 count is an essential part of the algorithm which can sometimes becomes a difficult 

task to compute when applying the algorithm. The difficulty in computing j0 can be circumvented either by an 

indirect method [41] or by using a sufficiently finer mesh to ensure that j0 is always zero within the frequency 

range of interest [26-32]. The first approach works for simple problems, e.g., when using beam structures, 

whilst the latter approach understandably increases the computational time.  

 

The cumbersome issue of resolving the j0 count problem is successfully addressed in this paper by virtue of 

the usefulness of the rich degrees of freedom arising from the nature of the formulation. It is well-known that 

the WW algorithm is based on the Rayleigh theorem [39] in which the sign count is related to the number of 

constraints and the degrees of freedom of the system. Specifically, for a fixed trial frequency ω
*
, the sign 

count remains unchanged or increases by one when one constrain is removed from the structure, or in other 

words, this will happen when one extra degree of freedom is added to the structure. The strategy of using 

sufficiently finer mesh in the structure essentially increases the number of degrees of freedom and thus 

providing enough degrees of freedom to allow the removal of constraints and thereby making the algorithm 

dependent only on the sign count  
fs K  of Eq. (E.1). In the present case, the degrees of freedom in the 

displacement vector are actually the (Fourier) coefficients of the sine and cosine functions which are 

superposed to form the displacement/rotation functions on the boundaries. To put it another way, for each line 

node (boundary), there are more than one degree of freedom for each displacement function in terms of 

Fourier coefficients. Therefore, when applying WW algorithm, enough number of terms in the series 

expansion can be included so that the j0 count becomes zero for a given trial frequency ω
*
. This is similar, in a 

way, to the other strategy of using sufficiently finer mesh to increase the degree of freedom. Nevertheless, the 

difference between the present method and the former method lies in the fact that sufficient number of degrees 

of freedom is already embedded in the series-form of the general solutions used, and thus there is no need to 

increase the number of elements artificially to create a finer mesh. From a general but qualitative perspective, 

a numerical simulation suggests that even when only two or three terms of the series expansions are included 

in the formulation, the sign count can capture the first few natural frequencies of a plate without the need to 

compute the j0 term of Eq. (E.1). However, this is simply an indicative guidance, not a prescriptive solution to 

the j0 problem and caution must be exercised and each case has to be treated on its merits.  

 

The mode shape computation is a bit more complicated than the usual procedure generally adopted for other 

problems because of the use of the Fourier series and the mixed formulation for the present problem. Here we 

start by using the reduced dynamic stiffness matrix of Eq. (64) and once an arbitrary value to a carefully 

chosen degree of freedom is assigned, the rest of the values in the displacement vector can be determined in 

terms of the given one by solving the algebraic system. The displacement, rotation, moment and shear force 

functions on the four boundaries of the plate can then be recovered by substituting these values into Eq. (17) 

to obtain the vectors kjd  and kj
f . Then the unknown coefficients can be calculated using Eqs. (34) and (35) 

which in turn when substituted into Eq. (10) will recover the mode shapes.  
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