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a b s t r a c t

A combined unbiased finite impulse response (UFIR) and Kalman filtering algorithm is pro-
posed for mobile robot localization via triangulation utilizing noisy measurements. We
consider a mobile robot travelling on an indoor floorspace with three nodes in a view.
Under the not well-known initial robot state and noise statistics, the extended Kalman
filter (EKF) may produce unacceptable estimates. The iterative extended UFIR (EFIR) filter
ignores the noise statistics, but requires N initial points of linear measurements which are
unavailable. The combined EFIR/Kalman algorithm utilizes N first EKF estimates with
approximately set initial conditions and noise statistics as linear measurements for EFIR
filter. It is shown that the combined algorithm is more accurate than EKF in robot localiza-
tion under the real operation conditions. Simulations are provided for piecewise and circu-
lar robot trajectories.

! 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Mobile robot applications require automatic localiza-
tion or self-localization often in a way fast, accurate and
low cost. Although the problem has been solved during
decades by various methods [1,2], the traditional triangula-
tion is still used in many cases. If a robot has a direction
indicator such as a compass, then at least two nodes (bea-
cons or landmarks) with known coordinates are required
in order to localize a robot and determine its pose (head-
ing) via triangulation. Otherwise, at least three nodes are
required.

For the three-node triangulation, two methods are
available. The first method implies that all stationary
nodes are active (beacons) and the robot has a rotating re-
ceiver [3,4]. The approach has been adopted from ships and
airplanes navigation where it is most common. Since the
beacons can be mounted and installed very accurately,

the method guarantees accurate positioning information
with minimal processing [1], provided that the beacons
are detected reliably in a robot view. Because the environ-
ment can be particularly structured for applications [5],
this method can be implemented in different ways. Bea-
cons (active landmarks) based systems can be organized
using sonar [4], optical beams [6], radio frequency propa-
gation [7] and interferometry [8], and cameras [9] sensitive
to infrared emission [10].

The second method implies using passive landmarks or
reflectors and rotating transmitter–receiver. A typical
implementation of this method use maintained on robot
a laser scanner that revolves in a horizontal plane and
three or more stationary retroreflectors mounted at known
locations in the environment [1]. Infrared emission is also
used [11]. In recent years, has gained currency a scheme in
which cameras placed on robot board trace several passive
landmarks [12] available on a known or unknown map.
One more approach implies measuring distances between
a robot and several passive or active radio frequency iden-
tification (RFID) tags [13].
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In the three-node triangulation system, three angles are
often measured between the robot heading and the direc-
tions to the nodes. These angles are coupled with the robot
plane coordinates and heading by nonlinear equations. The
equations can be solved for unknown robot coordinates
and heading. However, accuracy is commonly insufficient
in noisy environments and optimal estimators are re-
quired. The estimation theory offers several useful meth-
ods to solve the triangulation problem. One of the most
common approaches is the extended Kalman filter (EKF)
proposed by Cox [14] and others. It suggests expanding
the nonlinear functions to the first-order Taylor series
and then using linear Kalman filtering. The EKF was used
in tracking and robotics extensively [1–3,15,16] and has
become a tool for moving vehicular navigation, tracking,
localization, and self-localization [17,18]. The benefit of
the EKF resides in the following facts:

! It solves the nonlinear equations while providing opti-
mal denoising.
! Its fast recursive algorithm requires small memory and

is thus low-cost.
! It practically does not demonstrate divergence under

the normal conditions of triangulation.

However, EKF has also several widely recognized flaws:

! Biased estimates, because noise is nonadditive in the
robot dynamics formulation.
! Divergence under the conditions of large nonlinearities

and large noise [19] that is typical for boundaries of the
floorspace area.
! High sensitivity to noise statistics; that is, the perfor-

mance of EKF may be poor if the noise covariance matri-
ces and initial errors are not well known [20].
! Large errors under the industrial uncertainties and

when noise is nonwhite Gaussian (heavy-tailed or
Gaussian with outliers) [20].

Referring to these drawbacks, several alternative ap-
proaches have been developed in recent decades. The
deterministic technique called the unscented transform
was used in [21] to transfer the mean and variance through
nonlinearities. A relevant filter called the unscented Kal-
man filter (UKF) has demonstrated better performance
than EKF when the state-space models is highly nonlinear.
The unscented transform is also applicable to high order
statistics. For continuous-time state-space models decom-
posed into ‘‘cells,’’ a grid-based method can be used to
approximate the posterior probability density function
(pdf) of the process. The approach has resulted in the hid-
den Markov model (HMM) filters [22] useful for tracking
[23]. A sequential Monte Carlo (SMC) method also known
as a particle filter (PF) [24] was developed to estimate
Bayesian models associated with Markov chains in dis-
crete-time domain. Note that SMC is akin to HMM that
was developed for continuous models. Because PFs are
based on point mass (‘‘particle’’) representations of the
process pdf, they were successfully applied to nonlinear
state-space models and were shown to be especially useful
for robot self-localization [25]. Another alternative to the

EKF that has an infinite impulse response (IIR) is the ex-
tended finite impulse response (EFIR) filter recently pro-
posed in [26]. Unlike the EKF, UKF, and optimal FIR
(OFIR) filters[27,28], the EFIR filter totally ignores the noise
statistics and initial error statistics. Similarly to PFs, the
EFIR filter exploits most recent past measurements which
number is required to be optimal Nopt [29]. Note that scalar
Nopt can be ascertained by using test reference measure-
ments, so in a way easier than that to determine the noise
statistics.

Although the above listed advanced methods have im-
proved the Kalman estimate and generated interest of
designers, some flaws still remain. The UKF relies on noise
statistics such as the mean and variance which are not al-
ways known to the engineer [20] especially when a system
is time-varying. On the other hand, the PFs, SMC method,
and EFIR filters often need big data in order to outperform
EKF.

In this paper, we propose a combined EFIR/Kalman
algorithm that implies using N first EKF estimates as linear
measurements for the EFIR filter under the real operation
conditions when the initial robot state and noise statistics
are not well-known. The rest of the paper is organized as
follows. Section 2 discusses the triangulation problem in
state space. Section 3.2 presents the extended Kalman
and FIR filtering algorithms. Examples of robot localization
using the EKF and EFIR/Kalman algorithms are given in
Section 4. Finally concluding remarks can be found in
Section 5.

2. Triangulation and filtering problem

Various triangulation methods can be applied to indoor
robot localization. Giving no preference to any of those
methods, we suppose that three nodes A, B, and C (beacons
or passive marks) are mounted in an indoor space as
shown in Fig. 1. A robot travels in the direction d with all
three nodes in a view. A detailed schematic two-dimen-
sional geometry of a moving robot is given in Fig. 2. It is
supposed that a node B(0,0) is placed in the corner that
is a center of the indoor space planar Cartesian coordinates
and two other nodes have coordinates A(0,y1) and C(x3,0).
A robot travels in its own planar Cartesian coordinates

Fig. 1. A mobile robot platform traveling on an indoor floorspace in the
direction d with the three nodes A, B, and C in a view.
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ðxr; yrÞ with a center at M(x,y); that is, the robot direction
always coincides with axis xr. We suppose that all nodes
are observable by a robot or otherwise the nodes can ob-
serve a robot. The angles u1;u2, and u3 between axis xr

and the directions to the relevant nodes are supposed to
be measurable by commercially available means. The robot
behavior is controlled by left and right wheels installed at a
distance b and the stabilizing wheel is not shown. The
incremental distances robot travels by these wheels are
dL and dR, respectively.

The incremental distance dn at the mid-axis point and
the incremental change un in pose can be found at discrete
time index n from the robot odometry as

dn ¼
1
2
ðdRn þ dLnÞ; ð1Þ

un ¼ arctan
dRn & dLn

b
ffi 1

b
ðdRn & dLnÞ: ð2Þ

In turn, the unknown coordinates xn and yn and pose Un

can be obtained by the robot kinematics with equations

f1n ¼ xn ¼ xn&1 þ dn cos Un&1 þ
1
2
un

! "
; ð3Þ

f2n ¼ yn ¼ yn&1 þ dn sin Un&1 þ
1
2
un

! "
; ð4Þ

f3n ¼ Un ¼ Un&1 þun; ð5Þ

in which the values xn&1; yn&1, and Un&1 at time n& 1 are
projected to time n by the time-variant incremental dis-
tances dLn and dRn via (1) and (2). Note that all the values
in (3)–(5) are practically not exact and have some additive
random components.

In the triangulation problem illustrated in Fig. 2, state
variables xn; yn, and Un are observable indirectly via the
measured angles u1n;u2n, and u3n as

uin ¼ hin &Un; ð6Þ

where i = 1, 2, 3 and the exactly known mod 2p angles
h1n; h2n, and h3n existing from &p to p are given by

hin ¼
arctan Qin

Iin
; Iin P 0

arctan Qin
Iin
( p; Iin < 0;

Q in P 0
Q in < 0

#

8
><

>:
; ð7Þ

where Q in ¼ yi & yn; Iin ¼ xi & xn, and the node known coor-
dinates yi and xi are: y1 – 0; y2 ¼ y3 ¼ 0; x1 ¼ x2 ¼ 0, and
x3 – 0.

A solution to (6) gives us the robot location, ~xn and ~yn,
and pose eUn corrupted by noise:

tg eUn ¼
An cos u1n & sin u3n

An sin u1n þ cos u3n
; ð8Þ

~xn ¼
x3 tg ðu3n þ eUnÞ

tg ðu3n þ eUnÞ & tg ðu2n þ eUnÞ
; ð9Þ

~yn ¼ ~xn tg ðu2n þ eUnÞ; ð10Þ

where

An ¼
y1

x3

sinðu3n &u2nÞ
sinðu2n &u1nÞ

ð11Þ

and eUn is the mod 2p angle specified similarly to (7). Be-
cause ~xn; ~yn, and eUn are not always available for arbitrary
node coordinates, we use (8)–(10) in this paper only as ref-
erence noisy ‘‘linear’’ measurements.

2.1. Triangulation state-space model

We now introduce a state vector xn ¼ ½xn yn Un*T of un-
known variables and an input vector un ¼ ½dLn dRn*T of
incremental distances. We suppose that random compo-
nents in these values are zero mean white Gaussian and
uncorrelated. We unite these components in a state noise
vector wn ¼ ½wxn wyn wUn*T and in an input noise vector
en ¼ ½eLn eRn*T . Following (3)–(5), the robot nonlinear state
equation can thus be written as

xn ¼ fnðxn&1;un;wn; enÞ; ð12Þ

where fn ¼ ½f1n f 2n f 3n*
T has components given by (3)–(5).

Noise vectors wn and en are zero mean, Efwng ¼ 0 and
Efeng ¼ 0, have the covariances, Q ¼ E wnwT

n

$ %
and

L ¼ E eneT
n

$ %
, and a property E wieT

j

n o
¼ 0 for all i and j.

Next, we introduce an observation vector
zn ¼ ½u1n u2n u3n*

T , nonlinear function vector
hnðxnÞ ¼ ½h1n &Un h2n &Un h3n &Un*T , and measurement
additive noise vector vn ¼ ½v1n v2n v3n*, and write the state
observation equation as

zn ¼ hnðxnÞ þ vn; ð13Þ

in which noise vn is also supposed to be white Gaussian
with zero mean Efvng ¼ 0, the covariance R ¼ E vnvT

n

$ %
,

and properties E viwT
j

n o
¼ 0 and E vieT

j

n o
¼ 0 for all i and

j. The robot stochastic dynamics is thus represented with
the state-space model (12) and (13).

2.2. Expanded state-space model

In order to apply Kalman filtering, the nonlinear state-
space model (12) and (13) needs to be expanded to the
first-order Taylor series. With respect to (12), such an
expansion can be provided at n& 1 as

fn ffi fnðx̂n&1;un;0;0Þ þ Fnðxn&1 & x̂n&1Þ þWnwn þ Enen

¼ Fnxn&1 þ !un þWnwn þ Enen; ð14Þ

Fig. 2. Schematic two-dimensional geometry of a robot traveling on an
indoor floorspace Fig. 1.
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where x̂n is the estimate1 of xn. Here, Fn ¼ @fn
@x

&&
x̂n&1

;Wn ¼
@fn
@w

&&
wn&1 ;x̂n&1

, and En ¼ @fn
@e

&&
en&1 ;x̂&n

are Jacobian and !un ¼ fn

ðx̂n&1;un;0;0Þ & Fnx̂n&1 is known. An expansion (14) implies
that an incremental difference un & un&1 is insignificant on
a unit time step and can thus be neglected. Yet, because
all of the values are supposed to be known exactly at
n& 1, we set wn&1 ¼ 0 and en&1 ¼ 0.

For the triangulation Eqs. (3)–(5), matrix Fn ¼ @fn
@x

&&
x̂n&1

can be written as

Fn ¼
1 0 &dn sinðÛn&1 þ un

2 Þ
0 1 dn cosðÛn&1 þ un

2 Þ
0 0 1

2

64

3

75; ð15Þ

where dn is given by (1), un by (2), and Ûn&1 is the pose
estimate at n& 1.

Because noise wn is additive with respect to the compo-
nents of xn in (3)–(5) and wn&1 ¼ 0, we also have

Wn ¼ Fn ð16Þ

and transform the input matrix En ¼ @fn
@e

&&
en&1 ;x̂&n

to

En ¼
E11n E12n

E21n E22n

& 1
b

1
b

2

64

3

75; ð17Þ

where E11n ¼ 1
2 cos Û&n þ

un
2

' (
þ dn

2b sin Û&n þ
un
2

' (
; E12n ¼ 1

2 cos

Û&n þ
un
2

' (
& dn

2b sin Û&n þ
un
2

' (
; E21n ¼ 1

2 sin Û&n þ
un
2

' (
& dn

2b cos

Û&n þ
un
2

' (
, and E22n ¼ 1

2 sin Û&n þ
un
2

' (
þ dn

2b cos Û&n þ
un
2

' (
.

Reasoning similarly, we expand hnðxnÞ at n as

hnðxnÞ ffi hnðx̂&n Þ þ
@hn

@x

&&&&
x̂&n

ðxn & x̂&n Þ ¼ Hnxn þ !zn; ð18Þ

where Hn ¼ @hn
@x

&&
x̂&n

is Jacobian,

Hn ¼

y1&ŷ&n
ðx̂&n Þ

2þðy1&ŷ&n Þ
2

x̂&n
ðx̂&n Þ

2þðy1&ŷ&n Þ
2 &1

&ŷ&n
ðx̂&n Þ

2þðŷ&n Þ
2

x̂&n
ðx̂&n Þ

2þðŷ&n Þ
2 &1

&ŷ&n
ðx3&x̂&n Þ

2þðŷ&n Þ
2

&x3þx̂&n
ðx3&x̂&n Þ

2þðŷ&n Þ
2 &1

2

66664

3

77775
; ð19Þ

and !zn ¼ hnðx̂&n Þ &Hnx̂&n is known.
The expanded state-space model associated with

the problem illustrated in Figs. 1 and 2 is thus the
following:

xn ¼ Fnxn&1 þ !un þ ~en þ ~wn; ð20Þ
zn ¼ Hnxn þ !zn þ vn; ð21Þ

where the zero mean noise vectors ~wn and ~en have the
covariances, respectively,

~Q n ¼ FnQFT
n; ð22Þ

~Ln ¼ EnLET
n: ð23Þ

The prior estimation error P&n and estimation error Pn

are specified by

P&n ¼ Efðxn & x̂&n Þðxn & x̂&n Þ
T
; ð24Þ

Pn ¼ Efðxn & x̂nÞðxn & x̂nÞ
T
; ð25Þ

where x̂&n and x̂n can be either EFIR or EKF estimate.

3. Extended filtering algorithms

For the expanded state-space model (20) and (21), be-
low we give the EKF and EFIR algorithms and discuss the
combined EFIR/Kalman algorithm.

3.1. Extended KF algorithm

Provided (20) and (21), the EKF algorithm is listed in Ta-
ble 1, in which the initial state estimate x̂0 as well as the
covariances P0;R;Q , and L are supposed to be known in or-
der for EKF to be suboptimal. In this algorithm, n does not
exceed some constant M. Since the fully known x̂0;P0;R;Q ,
and L is not the case for industrial applications, we admit
that the approximations of these values may cause unac-
ceptable estimation errors.

3.2. Extended unbiased FIR filtering

Unlike the recursive EKF, the iterative EFIR filter [26]
utilizes measurements zn available on an interval of N past
neighboring points from m ¼ n& N þ 1 to n. The EFIR filter
totally ignores the covariances R;Q ; L, and P0. Instead, it
requires an optimal averaging interval Nopt in order for
the performance to be suboptimal. A standard way to
determine Nopt is to provide test measurements for a
known (reference) robot trajectory and minimize MSE gi-
ven by (25).

The EFIR filtering estimate has the Kalman form

x̂l ¼ x̂&l þ Kl½zl & hlðx̂&l Þ*; ð26Þ

in which l ranges from mþ K to n, where K is the number
of the states. For each time index n, the output is taken
when l ¼ n. The bias correction gain

Kl ¼ GlHT
l ; ð27Þ

is defined here iteratively via the generalized noise power
gain

Gl ¼ ½HT
l Hl þ ðFlGl&1FT

l Þ
&1
*
&1
; ð28Þ

involving known matrices Hn and Fn and ignoring the
covariances.

Table 1
Extended Kalman filtering algorithm.

Input: zn; x̂0; P0; R; Q ; L
1: for n ¼ 1 : M do
2: x̂&n ¼ fnðx̂n&1;un;0;0Þ
3: P&n ¼ FnðPn&1 þ Q ÞFT

n þ EnLET
n

4: Kn ¼ P&n HT
nðHnP&n HT

n þ RnÞ
&1

5: x̂n ¼ x̂&n þ Kn½zn & hnðx̂&n Þ*
6: Pn ¼ ðI& KnHnÞP&n
7: and for

Output: x̂n
1 x̂njk means the estimate at n via measurement from the past to k. Below,

we use the following notations: x̂n , x̂njn and x̂&n , x̂njn&1.
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To avoid singularities, iterative calculation of (28) starts
with mþ K and values at s ¼ mþ K & 1 are computed in
short batch forms [30]. In the case of triangulation
(K ¼ 3), values x̂s and Gs can be found as

x̂s ¼ FsFs&1Ks;mHT
s;mYs;m; ð29Þ

Gs ¼ FsFs&1Ks;mFs&1Fs; ð30Þ

where Ks;m ¼ ðHT
s;mHs;mÞ

&1
and

Ys;m ¼ yT
mþ2 yT

mþ1 yT
m

) *T
; ð31Þ

Hs;m ¼
Hmþ2Fmþ2Fmþ1

Hmþ1Fmþ1

Hm

2

64

3

75: ð32Þ

However, linear measurement yn is generally unavail-
able for (31) and Ys;m can be specified only in particular
cases, like in (8)–(10). Therefore, in the EFIR/Kalman algo-
rithm we substitute yn with the EKF estimates.

The iterative EFIR filtering algorithm is finally listed in
Table 2, in which ~xn is an iterated estimate. As can be seen,
this algorithm needs only N and K to start computing and
updating all the matrices, provided zn and yn. No noise sta-
tistics are involved. The required Nopt will be determined in
Section 4.

4. Estimation of robot location

In this section, we apply the EKF and combined EFIR/
Kalman filter that is the EFIR filter in which yn is substi-
tuted with the EKF estimate x̂EKF

n to the triangulation prob-
lem specified in Fig. 2. For zero mean white Gaussian noise
having variances r2

x ;r2
y , and r2

U in coordinates xn and yn

and heading Un, we specify the noise matrix Q as

Q ¼
r2

x 0 0
0 r2

y 0

0 0 r2
U

2

64

3

75: ð33Þ

Assuming that noise in the incremental distances dLn

and dRn has the variances r2
L and r2

R, matrix L is specified as

L ¼
r2

L 0
0 r2

R

" #
: ð34Þ

Finally, for the measurement noise having variances
r2

u1;r2
u1, and r2

u1, we specify matrix R as

R ¼

r2
u1 0 0

0 r2
u2 0

0 0 r2
u3

2

664

3

775: ð35Þ

Provided the initial error P0 and state x0, the EKF algo-
rithm (Table 1) can be run.

In order to find Nopt for the EFIR filter, below we test it
by a reference robot trajectory implying known (test) mod-
el xn. Optimal Nopt can then be found at a minimum of the
estimation error Pn given by (25) for the EFIR filtering esti-
mate x̂n.

4.1. Indoor robot localization

We now consider a mobil robot travelling stepwise on
an indoor floorspace. In our simulation, the noise standard
deviation in coordinates xn and yn is allowed to be 1 sm and
in heading Un to be 0.5". Accordingly, we set r2

x ¼ r2
y ¼

10&4 m2 and r2
U ¼ 7:62+ 10&5 rad2 in matrix Q given by

(33). We also allow the noise standard deviation of 1 sm
in the incremental distances dLn and dRn and set
r2

L ¼ r2
R ¼ 10&4 m2 in matrix L given by (34). Assuming

that measurements of all angles are provided with the
noise standard deviation of 0.5,, we finally set
r2

u1 ¼ r2
u1 ¼ r2

u1 ¼ 1:218+ 10&3 rad2 in matrix R given by
(25). Note that these deviations and covariance matrix
structures (matrices should not obligatorily be diagonal)
are typically not well known to the engineer. Therefore,
further we will suppose that Q ; L, and R as well as the ini-
tial state x0 and initial error P0 are known approximately.

In order to determine Nopt for the EFIR filter, we set a
test reference trajectory yn ¼ xn in the algorithm (Table 2)
and minimize MSE (25) by changing N. The estimation root
MSEs (RMSEs) related to coordinates xn and yn are sketched
in Fig. 3. Here, we also show the N-invariant RMSEs pro-
vided by the EKF under the ideal conditions of exactly

Ro
ot

 m
ea

n 
sq

ua
re

 e
rr

or

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
0.04

0.06

0.08

0.10

0.12

N

EFIR Estimate of xn

EFIR Estimate of yn

EKF Estimate of xn

EKF Estimate of ynN = 27opt

Fig. 3. RMSEs in the EFIR estimates as functions of N. Values Nopt ¼ 30
and Nopt ¼ 23 correspond to xn and yn , respectively, with the mean
Nopt ¼ 27 for the EFIR filter. RMSEs in the N-invariant EKF estimates are
dashed.

Table 2
Extended UFIR filtering algorithm.

Input: zn; yn;K;N
1: for n ¼ N & 1 : M do
2: m ¼ n& N þ 1, s ¼ mþ K & 1
3:

~xs ¼
ys; if s < N & 1
x̂s; if s P N & 1

#

4: Gs ¼ FsFs&1ðHT
s;mHs;mÞ

&1
Fs&1Fs

5: for l ¼ mþ K : n do
6: ~x&l ¼ f lð~xl&1;ul;0;0Þ
7:

Gl ¼ ½HT
l Hl þ ðFlGl&1FT

l Þ
&1
*
&1

8: Kl ¼ GlH
T
l

9: ~xl ¼ ~x&l þ Kl½zl & hlð~x&l Þ*
10: and for
11: x̂n ¼ ~xn

12: and for
Output: x̂n

240 J. Pomárico-Franquiz et al. / Measurement 50 (2014) 236–243
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known Q ; L;R; x0, and P0. Fig. 3 reveals that Nopt ¼ 30 cor-
responds to xn and Nopt ¼ 23 to yn so that we accept their
mean Nopt ¼ 27 for the EFIR filter. Fig. 3 also demonstrates
that suboptimal EKF produces lower MSEs than the unbi-
ased EFIR one. Such a discrepancy is predictable for these
filters, although the difference between the estimates is
not large at Nopt.

Next, we investigate the case when the EFIR filter oper-
ates at Nopt, but Q ; L, and R are not fully known for EKF. We
thus introduce a correcting coefficient p and substitute
these matrices with p2Q ; L=p2, and R=p2. Fig. 4 shows what
goes on with the RMSEs if to change p from 0.1 to 10. As
can be seen, that is only when 0:6 < p < 1:4 that EKF out-
performs the EFIR filter. Note that errors in the EKF can be
significantly larger if the initial state x0 and errors P0 are
set incorrectly.

To show a consistency of EKF and EFIR estimates under
the ideal conditions of fully know noise statistics, initial
values, and Nopt, we sketch in Fig. 5 the estimates of mobil
robot location on an indoor floorspace. Here, we also show
the location coordinates ~xn and ~yn obtained by (8)–(10).

Even a quick look at this figure shows that the direct esti-
mates are too rough for applications and that the filters
produce consistent although slightly different estimates
x̂n and ŷn. In the time domain, the behaviors of x̂n; ŷn, and
Ûn are sketched in Fig. 6.

In order to learn discrepancies between the EKF and
EFIR/Kalman estimates in more detail, Fig. 7 shows errors
computed as differences between the actual model coordi-
nates and their estimates. Here, we suppose that the noise
statistics are unknown and let p ¼ 5. Also, we admit a 10%
error in the initial robot state. Note that this error can be
larger in applications. To run the EFIR/Kalman algorithm,
we substitute in Table 2 the unknown linear measurement
yn with the EKF estimate x̂EKF

n computed using Table 1. Typ-
ical results shown in Fig. 7 reveal the following. The com-
bined EFIR/Kalman filter is more accurate for the robot
location coordinates. However, even with the admitted er-
rors in the noise statistics and initial state, the EKF has ap-
peared to be more successful in the estimation of robot
heading.

4.2. Robot crossing the indoor boundaries

Although the model shown in Fig. 2 strictly restricts the
floorspace, the structured environments may weaken the
restrictions in some directions. We therefore end up with
investigations of the cases when a robot may cross the
indoor boundaries and temporary travels beyond the
floorspace.
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Fig. 8 shows what may happen if a robot temporary
crosses the floorspace lower boundary (Fig. 8a) and left
boundary (Fig. 8b). Although these cases do not cover all
feasible situations, they give an impression about possible
errors. As can be seen in Fig. 8a, when a robot crosses a
lower boundary, both filters demonstrate brightly pro-
nounced divergence and cannot be useful anymore. How-
ever, through some time both filters return back to the
actual trajectory and their estimates can be used even be-
yond the floorspace. One can also observe in Fig. 8b that
there is no divergence in the filters outputs when a robot
temporary crosses the left boundary. This situation, how-
ever, is not regular and divergence can be watched in both
filters at each of the boundaries.

5. Conclusions

We can now summarize some trade-off between the
combined EFIR/Kalman algorithm and the EKF (Table 1)
and EFIR filter (Table 2) in applications to the triangulation
problem specialized by Fig. 2. The iterative EFIR filter
ignores the noise statistics and the initial error statistics
that is a distinctive advantage against the EKF which re-
quires all these measures as well as the initial state. If these
measures are unknown or not well-know as it usually is in
industrial applications than EKF may produce unaccept-
able errors. On the other hand, the iterative EFIR filter
needs N initial linear measurements which are unavailable.
In this regard, a combined EFIR/Kalman algorithm utilizing
N first EKF estimates as linear measurements while
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ignoring the noise statistics is a good compromise. Note
that if yn is available or the inverse problem is soluble as
in (8)–(10), then the EFIR filter can be used directly with-
out the EKF.

We finally give useful recommendations to users of the
combined EFIR/Kalman filtering algorithm:

! Set approximately the required noise and initial
error covariance matrices along with the approxi-
mate initial state to the EKF and run the algorithm
(Table 1) to produce the estimate x̂EKF

n .
! Use the output of the EKF x̂EKF

n as linear measurement
yn and run the EFIR filtering algorithm (Table 2) to
produce the estimate x̂EFIR

n .
! Check the difference between x̂EKF

n and x̂EFIR
n . If it is

insignificant, then the covariances were specialized
more or less correctly.

Although the combined EFIR/Kalman filtering algorithm
has proved its advantage against the EKF under the real
operation conditions, some questions still remain. There
must be found a solution to overcome the boundary diver-
gence (8)a. Also, the algorithms needs to be tested by other
methods of localization and real measurements. We plan
to report a progress in these investigations in near future.
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