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1 Committed budget refers to the budgeted amount of resources reserved for a unit or organization at the

beginning of a period of operations. Owing to uncertain factors, it usually differs from the actual amount of

resources used in the period, or the expected amount anticipated at the beginning of the period. 

In US federal budget terms, the committed budget that sets aside the amount of money an agency is allowed

to incur obligations and make payments is called appropriation (US GAO [2005], US OMB [2006], and Coven

and Kogan [2006]). For example, US IRS was approved appropriations of $9,998 million and $10,461 million for

tax administration and operations for fiscal years 2005 and 2006, respectively. These, however, were not fully

used, with rescissions of unobligated balances amounting to $80.6 million and $104.6 million in those years,

respectively (US Treasury [2005; 2006]). 

2 I use auditor-auditing-auditees or inspector-inspection-inspectees interchangeably to represent strategic

relationships such as those between tax collector and taxpayers, insurer and policyholders, auditor and clients,

regulator and banks, environmental protection agency and polluters, welfare agency and welfare recipients, cartel

and member producers, multilateral treaty monitoring agency and member states, etc. See footnote 4 for citations

of related studies.

3 Obviously, there are opportunity costs associated with unnecessarily reserved resources. Tying up of

unneeded funds is a serious concern of administrators, even though unobligated balances of previously committed

budgets may later be rescinded for other uses. For example, US Government Accountability Office (GAO)

routinely conducts reviews to identify unobligated balances that could be rescinded. In a review report, it concludes

that “regularly tracking [information about highway projects] … to identify unneeded unobligated balances, and

submitting it to Congress could result in more timely rescissions of  unobligated balances that the states no longer

need, freeing funds for other purposes. ” (US GAO [2004]).
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EFFICIENT COMMITTED BUDGET FOR 

IMPLEMENTING TARGET AUDIT PROBABILITY FOR MANY INSPECTEES

1.  Introduction

Private-sector organizations often begin a period of operations with the allocation of a budget

to each business unit. The budget committed to a unit limits its activities and thereby imposes a

constraint on its operational scale. Under extraordinary circumstances, a unit might be able to obtain

extra budget with special approval. But usually the committed budget is a “hard” constraint that has

to be met. Similarly, public-sector and international organizations, such as US Internal Revenue

Service (IRS) and International Atomic Energy Agency (IAEA), plan their activities according to the

committed budget of a period.1

If the unit in concern or the organization itself is an auditor responsible for performing audits

to many inspectees, the committed budget restrains the audit sampling plan that can be implemented

to attain a target level of audit probability.2 An overly-committed audit budget ties up resources that

could have been allocated for better alternative uses.3 When randomized audits are desirable, the



4 Such models have been formulated to study financial audits, insurance claim investigations, environmental

regulation / pollution control, multilateral treaty monitoring, deterrence theory / law enforcement, optimal tax

policy / tax compliance, etc. For example, (a) financial audits: Chatterjee, Morton, and Mukherji [2006] and minor

modifications of Newman, Patterson, and Smith [2001] and Patterson and Noel [2003]; (b) insurance claim

investigations: Mookherjee and Png [1989] and Picard [1996]; (c) environmental regulation / pollution control:

Bontems and Bourgeon [2005] and minor modification of Florens and Foucher [1999]; (d) multilateral treaty

monitoring: minor modifications of Avenhaus, von Stengel, and Zamir [2002] and Hohzaki [2007]; (e) deterrence

theory / law enforcement: Kaplow and Shavell [1994], Polinsky and Shavell [1998; 2000], and Polinsky [2007];

(f) optimal tax policy / tax compliance: Border and Sobel [1987], Sanchez and Sobel [1993], Cremer and Gahvari

[1995], Sansing [1993], Rhoades [1997; 1999], Mills and Sansing [2000], and Feltham and Paquette [2002]. 

Related empirical studies that assume randomized audits include Dubin, Graetz, and Wilde [1987], Alm, Bahl,

and Murray [1993], Chang, Steinbart, and Tuckman [1993], Mete [2002], and Alm, Blackwell, and McKee [2004].

5 This audit sampling plan is generalized directly from the standard analysis by independently selecting each

inspectee into a sample according to the optimal or equilibrium audit probability, as if the auditor is playing many

independent one-to-one games. Poisson sampling, which generates samples with stochastic sizes, was first studied

by Hajek (see Chapter 15 of his collected works [1998]). An application of (unequal-probability) Poisson sampling

is called Sieve sampling, which is a selection method for obtaining monetary-unit samples for auditing (Wurst,

Neter, and Godfrey [1989] and Horgan [1997; 2003]).

6 Loosely speaking, proportional SRS means randomly selecting a constant proportion of the suspicious

inspectees for audit.

7 For example, some research suggests tax collectors pay attention to “red flags” such as book-tax differences

in reported income (Mills [1998] and Cho, Wong, and Wong [2006]). Official documentations and anecdotal

2

auditor can conserve the committed budget for implementing an audit probability by proper selection

of an audit sampling plan.  

Models of an inspection game with randomized audits usually are analyzed in terms of the

one-to-one interaction between the auditor and an inspectee.4 The optimal or equilibrium audit

probability determined from the standard analysis renders an audit sampling plan, namely Poisson

sampling, that obviously solves the many-inspectee extension of the one-to-one game.5 But this

obvious solution is neither a realistic description of the actual practice nor analytically an efficient

one, in terms of the committed budget it demands. The audit probability determined from the

standard analysis has also been interpreted as doing proportional simple random sampling (SRS).6

While this reduces the committed budget required, it remains far from efficient.

A main objective of this paper is to study the minimum committed budget required to

implement a target audit probability when (i) the audit sample can be contingent on “red flags” due

to signals of inspectees’ private information (e.g., from self-reporting) and (ii) the number of

inspectees is large.7 I propose an audit sampling plan called bounded SRS, which requires no more



observations also indicate that US IRS uses the Discriminant Index Function (DIF) score and the newly designed

Unreported Income (UI) DIF score to “red-flag” tax returns for further audit selection decisions (Rogers [1999],

US IRS [2004; 2006], IRS Audit [n.d.], and Gutkin [n.d.]). See Pentland and Carlile [1996] for additional

information about US IRS’s practice of tax auditing.

3

committed budget to support than proportional SRS or Poisson sampling. Simply put, bounded SRS

chooses an audit sample from the population of “red-flagged” inspectees, with the sample size

bounded by a ceiling whenever the population size exceeds a threshold, or otherwise proportional

to the population size. In contrast, proportional SRS always has the sample size proportional to the

population size. Unlike proportional SRS or Poisson sampling, bounded SRS is asymptotically

efficient. That means, when the number of inspectees is large enough, the sampling plan is nearly

as good as any efficient sampling plan, which demands the lowest committed budget necessary to

implement the target audit probability.

The multiple-inspectee formulation studied here differs from the one-to-one game in three

interesting aspects:

(i) The auditor has more latitude to formulate an audit strategy, which becomes an audit

sampling plan conditional on the number of “red flags” observed. Each plan requires possibly a

different level of committed budget to support, leading to the interesting issue of identifying

strategies that attain the minimum level. This issue does not exist in the one-to-one game.

(ii) Unlike the auditor, an inspectee cannot observe the total number of “red flags” that might

trigger a different level of audit sampling. However, if he turns the “red flag” on by violating the

regulation, he knows that the number of “red flags” observed by the auditor is at least one because

he knows his type and action. This information is strategically important, so long as the population

size is not as low as one, which would return to the one-to-one game.

(iii) The auditor needs not reserve an overly-committed budget to prepare for auditing all

inspectees. She can wisely reduce the committed budget to the minimum level required to support

an equilibrium. This is in stark contrast to the one-to-one game where the auditor must always be

ready to do a full audit.
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Using the multiple-inspectee formulation of this paper, I clarify the difference between

committed budget and expected audit cost. The formulation is consistent with the commonly used

budgeting practice in public- and private-sector organizations. By including the opportunity cost of

reserving a committed budget in the model, the auditor’s objective function changes to one that is

consistent with the concept of residual income. With this formulation, I characterize in closed form

a class of optimal audit strategies with a “ceiling” structure. Specifically, it means: Audit all  “red-

flagged” inspectees when the total is no more than the maximum number of audits allowed by the

committed budget, and merely this maximum otherwise. I call this the “kernel” bounded SRS rule.

Owing to the discrete nature of conducting each extra audit, I am unable to provide a direct

characterization of the optimal committed budget. Instead, I examine the class of bounded SRS

strategies that generalizes the “kernel” rule. The budget-related characteristics of bounded SRS are

compared to those of proportional SRS and Poisson sampling. The committed budget required to

support bounded SRS is the lowest among the three and is also asymptotically efficient.

This study makes three contributions. First, it formulates a multiple-inspectee extension of

the classic one-to-one game with three interesting differences as explained earlier. Second, by

characterizing a class of optimal audit strategies and examining the properties of a generalization of

this class, the paper addresses an important implementation issue long neglected in the literature. My

results offer insights on how audit strategies may be formulated to reduce inefficiency and what

budget usage ratios should be expected accordingly. These findings are novel in the literature. Third,

the study provides a connection between the strategic auditing literature and the practitioner-oriented

audit sampling literature. Results in the strategic auditing literature are predominantly based on one-

to-one analyses that do not involve audit sampling, or they are about sampling for multiple

observations of an agent’s performance. Neither of these has drawn substantial attention in the

practitioner-oriented audit sampling literature, which cares more about how to draw audit samples

efficiently from a population.

For ease of exposition, the ideas of my study are explained using a multiple-taxpayer

extension of the classic tax compliance game introduced by Graetz, Reinganum, and Wilde [1986].



8 For example, Rhoades [1999], Mills and Sansing [2000], and Feltham and Paquette [2002]. A recent review

of theoretical models on tax compliance is McCubbin [2003]. Related discussions can also be found in Andreoni,

Erard, and Feinstein [1998], Franzoni [2000], Slemrod and Yitzhaki [2002], Cowell [2004], and Sandmo [2005].

9 Such relationships are those mentioned in footnotes 2 and 4. The results, however, are not relevant to auditor-

inspectee models with only non-randomized audits, exogenous or endogenous. Examples of such models are

Baiman and Demski [1980a; 1980b], Beck and Jung [1989], and Fuente and Marin [1996].

10 This is a simplified version of Graetz, Reinganum, and Wilde’s model. In their original setup, the taxpayer

population contains four types of individuals based on combinations of two aspects: (i) “strategic non-compliers”

versus “habitual compliers;” (ii) “high income class” versus “low income class.” The results here can be easily

modified to allow for habitual compliers.
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Some recently formulated tax compliance models continue to build upon the basic structure of their

model.8 Though falling outside the scope of this paper, generalization of the results to other auditor-

inspectees relationships should be straightforward.9

The rest of the paper is organized as follows. In the next section, I review the classic tax

compliance game and the equilibrium derived with the one-to-one standard analysis. Directly

replicating the one-to-one equilibrium audit probability to a multiple-taxpayer setting yields the

Poisson sampling audit strategy. Alternatively, the equilibrium audit probability can be implemented

with the proportional SRS audit strategy. The ideas of the “kernel” and generalized bounded SRS

are also introduced at the end of the section. I include there a numerical example illustrating the key

features of bounded SRS and how it conserves the committed budget and yet maintains the induced

audit probability at the same level. Section 3 explains how the decisions of the tax collector and

taxpayers differ in the multiple-taxpayer and one-to-one formulations. A characterization of optimal

audit strategies and a discussion of the optimal committed budget are given in Section 4. In Section

5, I examine properties of bounded SRS, comparing its budget-related characteristics to those of

proportional SRS and Poisson sampling. Section 6 contains concluding remarks that summarize the

results, contributions, and limitation of my analysis. Technical proofs and derivations are relegated

to the appendix.

2.  Classic Tax Compliance Game

2.1.  One-to-one Analysis

Consider a taxpayer population constituted of high-income and low-income taxpayers.10 Both
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groups are strategic players driven purely by economic interests without any inherent preference for

honesty or similar values. Each taxpayer privately knows his true taxable income and independently

files a tax return to report whether he has “high income” or “low income.” Based on the reported

income, the tax collector decides whether to conduct an audit. Taxpayers are weakly risk-averse

expected utility maximizers. The von-Neumann-Morgenstern utility function u of a taxpayer is

increasing in his disposable income, which equals his after-tax income minus the fine for non-

compliance, if any. The tax collector is an expected net tax revenue maximizer with the net tax

revenue equal to the tax revenues and fines collected minus the audit costs incurred.

Below is a list of the notations used in the model:

q = the ex ante probability of a taxpayer having high income (0 < q < 1);

$ = the under-reporting probability (of a high-income taxpayer), i.e., the probability

of a high income taxpayer filing a “low-income” tax return (0 # $ # 1); 

<($) = the probability that a taxpayer reporting low income actually has high taxable

income; by Bayes’ rule, <($) = $/($ + q!1 ! 1);

" = the audit probability (for a “low-income” tax return), i.e., the probability of

auditing a taxpayer filing a “low-income” tax return (0 # " # 1);

c = the cost per audit (c $ 0);

I
H

= the income of a high-income taxpayer;

I
L

= the income of a low-income taxpayer (0 < I
L
 < I

H
);

T
H

= the tax owed by a high-income taxpayer;

T
L

= the tax owed by a low-income taxpayer (0 # T
L
 < T

H
 and T

L
 # I

L
);

F = the fine for tax evasion (0 < F # I
H
 ! T

H
).

It is assumed that if a high-income taxpayer always files a “low-income” tax return (i.e., $ = 1 so that

<($) = q), the expected gain from conducting an audit will exceed the audit cost, i.e., q(F + T
H
 ! T

L
)

> c. Otherwise, it is never gainful to do any audit, and the equilibrium is not interesting. 

Since a low-income taxpayer can never gain by reporting untruthfully, compliance is his

dominant strategy. So there is no point in auditing a “high-income” tax return, for it must have come

from a high-income taxpayer reporting honestly. Consequently, no auditing is the tax collector’s



11 For simplicity, N is assumed to be publicly known by all parties.
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unique best response to a “high-income” tax return. Considering these points, we may simply use

the under-reporting probability $ (of a high-income taxpayer) and the audit probability " (for a

questionable tax return, i.e., a “low-income” tax return) to characterize the interaction between the

tax collector and an individual taxpayer.

Given a conjecture " on the tax collector’s strategy, a high-income taxpayer’s expected utility

from choosing an under-reporting probability $ is

$["u(I
H
 !T

H
 !F) + (1!")u(I

H
 !T

L
)] + (1!$)u(I

H
 !T

H
).

Similarly, given a conjecture $ on a high-income taxpayer’s strategy, the tax collector’s expected

net tax revenue from choosing an audit probability " is

"[<($)(T
H
 + F ! c) + (1!<($))(T

L
 ! c)] + (1!")T

L
.

The interaction between the tax collector and an individual taxpayer has a unique equilibrium

characterized by the following under-reporting probability b and audit probability a:

b = (1!q)c/q(F + T
H
 ! T

L
 ! c)     and

a = [u(I
H
 !T

L
) ! u(I

H
 !T

H
)]/[u(I

H
 !T

L
) ! u(I

H
 !T

H
 !F)].

The probability of the tax collector receiving a “low-income” return from a taxpayer thus equals p

= 1 ! q(1!b) in equilibrium. The game tree in Figure 1 summarizes the one-to-one interaction

discussed here.  

 
Insert Figure 1 around here.

2.2.  Multiple-taxpayer Setting: Poisson Sampling and Proportional SRS

Unless the taxpayer population has only one individual, (b,a) strictly speaking is not an

equilibrium of the game between the tax collector and the whole taxpayer population. To generalize,

assume that the size N of the taxpayer population is at least two.11 An equilibrium audit strategy of

the tax collector for the whole game (i.e., the game against the whole taxpayer population) can be

obtained simply by independently replicating the one-to-one strategy, characterized by a. This

strategy for the whole game is referred to as a Poisson sampling audit strategy. Because this is like



12 If aL is not an integer, the number of “low-income” tax returns audited will be set to jaLk with probability

aL!laLm, and laLm with probability jaLk!aL, where jaLk and laLm are the integers rounded up and rounded down

from aL, respectively.

13 This will be clear shortly in Section 3.2 below. 

14 This is implied by Lemma 1 to be stated in Section 3.1 below.
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playing N independent one-to-one games against the taxpayers, the probability pair (b,a) now

describes an equilibrium for the whole game that is essentially an N-time replication of the (b,a)

equilibrium for the one-to-one game.

Though simple, the Poisson sampling audit strategy has an undesirable feature. To implement

the strategy, the tax collector must prepare to audit possibly every tax return, even though the

expected number of audits to be conducted is much smaller. Unless the tax collector has a committed

audit budget of at least cN, the strategy is not implementable.

The standard analysis has focused on the one-to-one interaction between the tax collector and

an individual taxpayer. Nonetheless, the taxpayer is often interpreted as representing the whole

population of taxpayers in a multiple-taxpayer setting. With this interpretation, a may be viewed as

a non-contingent sampling rate used by the tax collector to determine the audit sample size for any

realization of the number L of “low-income” tax returns received. That means, she will always

randomly audit a fraction a of the L “low-income” tax returns received.12 This strategy, with its

structure illustrated in Figure 2, is referred to as the proportional SRS audit strategy with sampling

rate a. Formally, it may be expressed as follows:  

s(L) = a for L = 1, 2, ..., N, 

where s(L) is referred to as the sampling rate contingent on L.

Insert Figure 2 around here.

Given this strategy, the chance of being audited remains a from a non-compliant high-income

taxpayer’s perspective.13 So b is still a high-income taxpayer’s equilibrium under-reporting strategy.

Given b, the proportional SRS strategy is a best response of the tax collector.14 Thus, the probability

pair (b,a) continues to describe an equilibrium of the whole game, though with a now standing for



15 More precisely, it is at most jaNk, where jaNk is the integer rounded up from aN. For notational simplicity,

rounding is ignored in presenting/discussing results when this is not crucial to conveying the main insights. 

16 First of all, independent distribution of types and choices of action imply that L, the number of “low-income”

tax returns received, follows the binomial distribution. To see this, first note that “low-income” tax returns may

come from low-income taxpayers, who have no incentive to mis-report and always file truthfully with probability

1. Alternatively, a “low-income” tax return could come from a non-compliant high-income taxpayer. If each high-

income taxpayer under-reports with probability $, the chance of seeing a “low-income” tax return filed by a

taxpayer is (1 ! q) + q$. There are N individuals in the population. Thus, L follows the binomial distribution

Bin(1!q(1!$),N).

Under proportional SRS, s(L) is simply a, and thus E[s(L)L | b] = E[aL | b]  = Npa. Under Poisson sampling,

s(L)L is equivalent to the expectation, when conditional on L, of the audit sample size A that follows the binomial

distribution Bin(a, L) with mean La. Hence, E[s(L)L | b] = E[La | b] = Npa as well.

9

the constant sampling rate of the equilibrium audit strategy.

Note that the audit sample size determined with the equilibrium proportional SRS strategy

is at most aN even when L = N.15 Therefore, the committed audit budget necessary to support the

strategy is caN. This is merely a fraction a of the committed budget cN required by the equilibrium

Poisson sampling strategy. 

Although the two strategies differ in the committed budgets necessary to support them, they

have identical expected audit costs incurred, which equal cNpa, where p = 1!q(1!b). This follows

from the simple fact that under either strategy, the mean audit sample size is given by E[s(L)L | b]

= Npa.16 Intuitively, the amount cNpa is simply a consequence of the following facts. Note that there

are a total of N individuals in the taxpayer population, of which a fraction p is expected to file “low-

income” tax returns. On average a fraction a of these questionable tax returns will be selected for

audit, with each conducted at the cost of c. Therefore the expected audit cost is cNpa. Budget-related

characteristics of the proportional SRS and Poisson sampling audit strategies are summarized as

follows:

Audit Probability = a Proportional SRS Poisson Sampling

Committed Budget Necessary to Support caN cN

Expected Audit Costs Incurred cpaN cpaN

Expected Budget Usage Ratio p pa

Expected Unused Percentage 1 ! p 1 ! pa



17  The example was constructed with a precision of eight decimal places; for brevity, only up to four

significant digits are reported in the table.

18 I assume a power-expo utility function suggested by recent research measuring risk preferences with

laboratory experiments (Holt and Laury [2002]). This functional form subsumes the CARA and CRRA utility

functions commonly seen in theoretical studies. 

10

2.3.  Bounded SRS: Numerical Example

The innovation of this paper is the bounded SRS audit rule that implements the same target

audit probability but requires no more committed budget to support than the level necessary under

the proportional SRS or Poisson sampling rule. Additionally, when the size of the taxpayer

population is sufficiently large, this rule is nearly as good as the best available in attaining the

efficient level of committed budget. 

Insert Table 1 around here.

The key features of bounded SRS are illustrated with a numerical example given in Table 1.17

Panel A of the table contains the parameter choices consistent with a target audit probability of a =

0.55.18 This is the equilibrium audit probability suggested by the one-to-one analysis. It can be

implement by Poisson sampling or proportional SRS. In the latter case, it means regardless of the

total number L of “low-income” returns received, the tax collector audits 55% of them. Note that

55% of L in general is not a whole number. Thus, a sampling rate of 55% essentially means if L =

6, with a probability 0.3 a random sample of size 4 will be drawn and with a probability of 0.7 a

sample of size 3 will be drawn. As a result, on average a total of 0.3 × 4 + 0.7 × 3 = 55% × 6 of the

“low-income” returns received are audited when L = 6. Changes are made analogously for other

values of L. The committed budget required to support proportional SRS with a sampling rate of

55% must allow conducting at least 4 audits, which is the whole number rounded up from 55% ×

6. Any committed budget less than this will force the tax collector to audit less than the constant

sampling rate of 55% prescribed by the proportional SRS rule considered here.

In contrast, implementing a = 0.55 by bounded SRS requires no more than 2 audits. This is

in stark contrast to 4 audits required by the proportional SRS rule. The difference represents a
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substantial reduction of at least 33% of resources set aside, even when taking the conservative view

that the 4th audit required by proportional SRS is largely due to indivisibility. Panel B illustrates how

a bounded SRS rule with a “committed budget” of K = 2 accomplishes the mission. The sampling

rate prescribed by this rule can be formally expressed as

sK(L) = min{ K/L, 1 } for L = 0, 1, ..., N.

Intuitively, it says: Audit all L received when its value is no more than the tax collector’s “audit

capacity,” namely K = 2, and merely 2 when L exceeds 2. The audit sample size, sK(L)L, for different

contingencies is given in the second row in Panel B, with the corresponding sampling rate given in

the third row.

The bounded SRS rule in this example illustrates in general three distinct regions of L that

may have strategic implications to a high-income taxpayer deciding to underreport:

a. If he files a “low-income” return while at most one of the others file “low-income”

returns as well, his return will surely trigger an audit under this rule;

b. If he is among the only three taxpayers filing “low-income” returns, the chance of being

selected for audit is not certainly 100% but still higher than 55%, the sampling rate under

proportional SRS.

c. If he files a “low-income” return and including him there are a total of 4 to 6 taxpayers

doing so, the chance of being selected for audit is lower than 55%.

Compared to proportional SRS, the sampling effort for the contingencies with larger values of L is

reallocated to those with smaller values, yet leaving the overall deterrence power unchanged. So

under the bounded SRS rule larger values of L do not trigger audits, allowing the committed budget

to be smaller without affecting the audit probability induced.

To see exactly how bounded SRS works, consider first q = 0.5. Given the conjectured b =

0.1818 and accordingly p = 1 ! q(1 !b) = 0.59, the audit probability to a non-compliant higher-

income taxpayer is determined by averging the sampling rates, sK(L), under different contingencies

of L, weighted by the chances Pr{LN!1 = L ! 1}. The number of “low-income” returns filed by other

taxpayers, LN!1, matters here because a non-compliant high-income taxpayer knows for sure that L
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= 1+LN!1. The audit probability induced by the bounded SRS rule is provided in the rightmost

column of Panel B. As shown, bounded SRS with K = 2 indeed implements the same audit

probability, just like proportional SRS with a sampling rate of 55%.

Because K is a whole number, bounded SRS of the form sK(L) in general may “over-audit.”

To avoid this, the following generalized form of bounded SRS is also considered: 

s(L) = 9
2

2K/L

for L = 1, 2, ..., K;

for L = K+1, K+2, ..., N,

where 0 # 2 # 1. Setting the parameter 2 below 1 can tune down the deterrence power of the

“kernel” bounded SRS rule sK(L). The bottom part of Panel B demonstrates that when q = 0.61 and

the conjectured b = 0.1162, the “kernel” rule sK(L) induces an audit probability of 0.66, which cannot

constitute an equilibrium. However, the generalized rule s(L) with 2 = 5/6 can.

In the next section, I introduce the audit strategy in a multiple-taxpayer setting as a

randomized sampling plan. Then I analyze the decision problems facing the tax collector and an

individual taxpayer. In Section 4, I show that a strategy characterized by the “kernel” rule sK(L) is

optimal to the tax collector. The rest of the paper shows that the generalized rule s(L) with 2 0 [0,1]

implements the same target audit probability as proportional SRS or Poisson sampling but requires

no more committed budget to support. Moreover, bounded SRS is asymptotically efficient in terms

of the committed budget required.

3.  Decisions of the Tax Collector and Taxpayers in the Multiple-taxpayer Setting

3.1.  Tax Collector’s Decisions

With a population of taxpayers, the tax collector actually has greater latitude to formulate an

audit strategy than simply conducting independent randomized audits. Different sampling plans may

be used to draw an audit sample from the taxpayer population. Since the tax collector knows the set

of taxpayers filing “low-income” tax returns before drawing the audit sample, her choice of an audit

sampling plan can be contingent on the set. However, the taxpayers in the set all look the same to

the tax collector. Therefore, what matters is only the number of “low-income” tax returns received,
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i.e., L 0 {1, 2, .., N}, rather than the exact composition of the set. For the same reason, the size rather

than the composition of the audit sample is what actually affects the level of deterrence induced by

an audit strategy. Consequently, an audit strategy of the tax collector may be defined as follows:

 
DEFINITION 1: An audit strategy, denoted by g = [g(i | m)]

i=0,1,...,N; m=0,1,...,N, is a (probabilistic)

plan of determining the audit sample size A contingent on the number L of “low-income” tax returns

received, where g(i | m) is the probability of setting A = i given L = m, with 0 # g(i | m) # 1, 3m

i =0

g(i | m) = 1, and hence g(i | m) = 0 for i > m.

An organization, whether in the public or private sector, typically requires its units to have

their budget plans approved before they can spend money on activities of the following year.

Resources set aside for a unit’s activities have an opportunity cost to the organization that is not

embedded in the “unit variable cost” c of conducting an audit. If the resources set aside were just

enough to do a maximum of K audits but not a single audit was conducted during a year, the

“operating cost” of the year would be zero. However, the opportunity cost on each dollar reserved,

denoted by r > 0, would not be avoided, and the total amounts to r(cK). Suppose, for example, a

committed budget of only c(K ! 1) is enough to support an audit strategy in equilibrium. Setting a

committed budget of any amount above that, e.g. cK, is thus inefficient. 

Before moving on, below summarizes the sequence of events in this multiple-taxpayer

setting:

1. The tax collector chooses a committed budget K to set aside resources that may be

used to support audits done in the current period.

2. Each individual in the population of size N has a chance of q to be a high-income

taxpayer, and the number of high-income taxpayers, N
H
, is realized.

3. Each high-income taxpayer chooses to under-report with probability $, and the

number of non-compliant high-income taxpayers, L
H
, is realized. With no incentive

to mis-report, low-income taxpayers always file “low-income” tax returns.

4. All tax returns are received. The number of “low-income” tax returns, L =



19 It suffices to consider only committed budgets in the multiple of c, for any amount in between is obviously

inefficient.

20 In the one-to-one analysis of the classic tax compliance game, c is assumed to be sufficiently small so that

the more interesting mixed-strategy equilibrium exists. Similarly, I assume the per-dollar opportunity cost r is

sufficiently small so that K > 0 in equilibrium.
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N ! N
H
 + L

H
, is realized. The tax collector observes L but not its components N

H
 and

L
H
 separately.

5. Contingent on L, the tax collector chooses a probabilistic audit sampling plan

[g(i | L)]
i=0,1,...,N to determine the audit sample size A.

6. An audit sample of size A is drawn from the “low-income” tax returns for audits. The

number of “violators caught,” V, is realized, and the tax collector and taxpayers

receive their payoffs accordingly.

Usually units of an organization are competing for resources. Assume a unit only competes

for resources that add value to the fulfillment of its functions. A shortcut way to model this incentive

to conserve resources, even though the opportunity cost is not directly borne by the tax collector, is

by assuming the following “residual” net revenue payoff function for her:

R(g; $) ! r(cK).

The tax collector sets a committed budget characterized by the maximum number K of audits

allowed and chooses an audit strategy g to maximize the payoff subject to the constraint that g is

implementable under K.19 The first component R(g; $) of the payoff function is the expected net

revenue collected with g, given the conjecture $ on the taxpayers’ under-reporting probability. The

second component r(cK) is analogous to the capital charge in the residual income concept in

accounting.20 In other words, the reserving of a committed budget is viewed as an investment that

ties up resources in this formulation of the tax compliance game with multiple taxpayers.

More specifically, the tax collector’s decision problem can be represented by the following

two-step optimization problem, given any conjecture $ on the taxpayers’ under-reporting probability:

(CB-$) Max 
K

R(gK; $) ! r(cK),

where for any given K, gK is an optimal audit strategy and R(gK; $) is the maximized expected net
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revenue from the program below:

(AS-$) Max 
g

R(g; $)

subject to

P0: g $ 0, 

P1: 3N

i=0 g(i | m) = 1 for all m,

FS: g(i | m) = 0 for all i > m, 

BG: g(i | m) = 0 for all i, m with K+1 # i # m,

where i, m = 0, 1, ..., N. Constraints P0 and P1 are standard requirements on [g(i | m)]
i=0,1,...,N as a

valid vector of probabilities from a probability distribution. Constraints FS recognize that a sampling

plan is not feasible if it ever requires drawing an audit sample with a size greater than the number

of “low-income” tax returns received. Finally, constraints BG recognize that only sampling plans

consistent with the committed budget characterized by K are implementable. 

Given any number L of “low-income” tax returns received, suppose A of them are selected

for audits, with V of them being “violators caught” (i.e., discovered to be non-compliant high-income

taxpayers). Then the net revenue of the tax collector is as follows:

RV(A, L) = V(F + T
H
 ! T

L
) ! Ac + LT

L
.

Accordingly, the expected net revenue collected with an implementable audit strategy g is

R(g; $) = 3N

m=0 3
N

i=0 E[RV(A, L) | A = i, L = m, $] g(i | m) Pr{L = m | $}.

To better understand how g affects the expected net revenue R(g; $), a discussion of the

“constituents” of L and their probability distributions is useful. Let N
H
 denote the number of high-

income taxpayers. Since q is the ex ante probability of a taxpayer having a high income, N
H
 follows

the binomial distribution Bin(q,N). Denote by L
H
 the number of non-compliant high-income

taxpayers (i.e., high-income taxpayers filing “low-income” tax returns). Given the conjecture on the

taxpayers’ under-reporting probability $, L
H
 follows the binomial distribution Bin($,N

H
). When

conditional on L, it has a mean as provided in the lemma below:

LEMMA 1 (POSTERIOR EXPECTED NUMBER OF “VIOLATORS”):  Given the conjecture $ on the



21 The derivation is given in the appendix.
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taxpayers’ under-reporting probability,

E[L
H
 | L, $] = L$/($ + q!1 ! 1).

Catching non-compliant high-income taxpayers from an audit sample of size A drawn from

“low-income” tax returns is like trying to find red balls by drawing A balls out of an urn that contains

L balls with L
H
 of them being red. Note that N ! L is the number of “high-income” tax returns

received. Only compliant high-income taxpayers would have filed these tax returns. So the number

of such taxpayers must be the same as the number of high-income taxpayers minus that of non-

compliant high-income taxpayers, i.e., N ! L = N
H
 ! L

H
. Conditional on L

H
 and N

H
 (and thus also on

L = N ! N
H
 + L

H
), the number V of “violators caught” from an audit sample of size A follows the

hypergeometric distribution Hyp(V; A, L
H
, L). The mean of this distribution is E(V | A, L

H
, L) =

A(L
H
/L), provided L > 0. If L = 0, L

H
 = A = V = 0 with certainty.

By Lemma 1 and other properties of the “constituents” of L, the expected net revenue

collected with strategy g can be expressed as follows:21

R(g; $) = E[sg(L)L | $] [(F + T
H
 ! T

L
)$/($ + q!1 ! 1) ! c] + E[L | $]T

L
,

where sg(L) = 3N

i=0 i g(i | L)/L for L > 0 and sg(L) = 0 for L = 0. In the first component of the

expression, inside the expectation operator is 

sg(L)L = 3N

i=0 i g(i | L) = E[A | L]. 

In other words, it is the (conditional) mean audit sample size induced by strategy g; accordingly, for

L > 0, sg(L) is the mean sampling rate specified by g. 

The remaining part of the first component of R(g; $) is the following difference:

(F + T
H
 ! T

L
)$/($ + q!1 ! 1) ! c.

Note that F + T
H
 ! T

L
 is the incremental “revenue” collected from a violator caught, and $/($ + q!1

! 1) is the probability of catching a violator by auditing a “low-income” tax return. So the difference

is simply the incremental expected net revenue from doing one extra audit. The last component of

R(g; $) is the baseline tax revenue that would be expected from “low-income” return filers should
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the tax collector do no audit at all.

With the conjecture b = (1!q)c/q(F + T
H
 ! T

L
 ! c), the tax collector’s expected net revenue,

R(g; b) = E[L | b]T
L
, is independent of her choice of the audit strategy g. Consequently, any

implementable audit strategy is a best response to b. This finding is stated as Lemma 2 below.

LEMMA 2 (IMPLEMENTABLE AUDIT STRATEGIES AS OPTIMAL RESPONSES TO EQUILIRBIUM

UNDER-REPORTING PROBABILITY): Any audit strategy implementable by the tax collector’s

committed budget is a best response to the conjecture b = (1!q)c/q(F + T
H
 ! T

L
 ! c) on the

taxpayers’ under-reporting probability.

When the tax collector starts to deal with the whole taxpayer population rather than each

taxpayer individually, the knowledge of L might convey information about the number of non-

compliant high-income taxpayers, denoted by L
H
 (i.e., the number of high-income taxpayers filing

“low-income” tax returns). As L changes, the conditional distribution of L
H
 given L might also

change. Since different distributions of L
H
 stand for different expected net gains from conducting

audits, the tax collector might have a preference for certain audit sample size depending on the L

observed. However, given the conjecture b on the taxpayers’ under-reporting probability, audit

samples of different sizes turn out to be equally good to the tax collector, regardless of L.

Consequently, any implementable audit strategy is an optimal response to b.

3.2.  Taxpayer’s Decision

While only the tax collector can directly observe the number of “low-income” tax returns

received, a taxpayer may also know something about it. If a high-income taxpayer chooses to be non-

compliant, he knows that the realized value of L observed by the tax collector must be 1 + LN!1,

where LN!1 is the number of “low-income” tax returns filed by the remaining N!1 taxpayers.

Independent distribution of types and choices of action imply that given any conjecture $ on other

taxpayers’ under-reporting probability, LN!1 follows the binomial distribution Bin(1!q(1!$), N!1).

Viewing himself as a “white ball” in an urn with L balls, a non-compliant high-income
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taxpayer worries only about the audit probability he is facing, regardless of other details of the tax

collector’s audit strategy. If the tax collector draws an audit sample of size A from all “low-income”

tax returns received, the chance of including the “white ball” in the sample is A/(1+LN!1). So given

any conjecture g on the audit strategy, the audit probability facing a non-compliant high-income

taxpayer is

3N

l

!

=
1
0 Pr{“selected for audit” | L = 1+l}Pr{LN!1 = l | $}

= 3N

l

!

=
1
0 [ 3N

i=0 [i/(1+l)] g(i | 1+l) ] Pr{LN!1 = l | $}

= 3N

l

!

=
1
0 s

g(1+l) Pr{LN!1 = l | $}

= E[sg(1+LN!1) | $].

In other words, as long as two audit strategies have the same mean sampling rate E[sg(1+LN!1) | $],

their deterrence effects are identical. Hence, a high-income taxpayer will under-report with certainty

if E[sg(1+LN!1) | $] < a, where a is the equilibrium audit probability defined in Section 2. Similarly,

he will be compliant with certainty if E[sg(1+LN!1) | $] > a, with any under-reporting probability $

being a best response to a conjecture g on the audit strategy that has E[sg(1+LN!1) | $] = a.

To conclude this section, Table 2 summarizes the distribution properties of variables

affecting and/or affected by the decisions of the tax collector and taxpayers.

Insert Table 2 around here.

4. Optimal Audit Strategy and Committed Budget

Characterizing in closed form the optimal solution for the tax collector’s two-step decision

problem is not straightforward. The difficulty is partly due to the choice variable K that represents

the committed budget. Instead of entering as a parameter of some given set of constraints, K affects

the number of constraints to be included in the second-stage decision. In the following, I will

characterize an optimal audit strategy for a given K, through the mean sampling rates the strategy

induces under different realizations of L.

First of all, note that for any conjecture $ with (F + T
H
 ! T

L
)$/($ + q!1 ! 1) < c, the “no
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audit” strategy with g(0 | m) = 1 is obviously optimal. Secondly, if the conjecture $ is b, where b is

the equilibrium underreporting probability defined in Section 2, then (F + T
H
 ! T

L
)$/($ + q!1 ! 1)

= c, and any implementable audit strategy is optimal. Therefore, it suffices to consider below only

a conjecture with (F + T
H
 ! T

L
)$/($ + q!1 ! 1) > c. Under such circumstances, the tax collector’s

objective is simply to maximize E[sg(L)L | $], i.e., the mean audit sample size induced by an

implementable strategy g. 

Clearly, what matters is only the conditional mean audit sample size for each L, namely

sg(L)L = [ 3N

i=0 i g(i | L) ], 

which is characterized by the mean sampling rate sg(L). Therefore, to identify an optimal audit

strategy, it suffices to solve for an optimal sampling (rate) plan of the program below.

SR-$ Max 
s
3N

l=0 [ s(l)l ] Pr{L = l | $} 

subject to

S0: s(l) $ 0, for all l, 

S1: s(l) # 1, for all l, 

BC: s(l)l # K, for all l, 

where l = 0, 1, ..., N. Constraints S0 and S1 ensure a sampling rate is between 0 and 1. Constraints

BC rule out sampling rates that yield a mean sample size greater than K, which are obviously

inconsistent with audit strategies implementable under K. 

Because there is no tradeoff between sampling rates for different L, an optimal plan will have

s(L) set to the maximum feasible level, which is

sK(L) = min{ K/L, 1 } for L = 0, 1, ..., N.

An audit strategy implementable under K that induces this optimal sampling plan is as follows:

gK(min{K, L} | L) = 1 for L = 0, 1, ..., N.

Consequently, this is an optimal audit strategy for the the committed budget characterized by K. This

finding is the first main result of the paper.



22 To see this, note that AN($) = E[min{N, L} | $] = E[L | $] = E[L | L # N!1] Pr{L # N!1 | $} + N Pr{L =

N | $}. Thus, AN($) ! AN!1($) = Pr{L = N | $}.
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 PROPOSITION 1 (“KERNEL” BOUNDED SRS AS A CLASS OF OPTIMAL AUDIT STRATEGIES):

Given a conjecture on the taxpayers’ under-reporting probability $ with (F + T
H
 ! T

L
)$/($ + q!1 !

1) $ c, and a committed budget characterized by K, an audit strategy that always draws an audit

sample of size min{K, L} for any realization L of the number of “low-income” tax returns received

is a best response to $.

By the results above, for any conjecture $ with (F + T
H
 ! T

L
)$/($ + q!1 ! 1) > c, the tax

collector’s first-stage decision problem is equivalent to the following:    

Max 
K
   AK($)[(F + T

H
 ! T

L
)$/($ + q!1 ! 1) ! c] ! r(cK),

where 

AK($) = E[min{K, L} | $] = E[L | L # K] Pr{L # K | $} + K Pr{L > K | $} 

is the expected audit sample size induced by the optimal audit strategy gK. Obviously, AK($) is

increasing in K, with A0($) = 0 and AN($) = N[1!q(1!$)]. Note that AN($) ! AN!1($) = Pr{L = N

| $}.22 Therefore, setting K = N is suboptimal if 

Pr{L = N | $}  <  rc/[(F + T
H
 ! T

L
)$/($ + q!1 ! 1) ! c].

Intuitively, if the chance of seeing L = N is sufficiently small, reserving a committed budget large

enough to audit possibly all tax returns is likely to be a pure waste. This finding is stated as the

following proposition:

 PROPOSITION 2 (CONDITION FOR SUBOPTIMALITY OF FULL-AUDIT COMMITTED BUDGET):

Given a conjecture on the taxpayers’ under-reporting probability $ with (F + T
H
 ! T

L
)$/($ + q!1 !

1) $ c, a committed budget with K = N is suboptimal if 

Pr{L = N | $}  <  rc/[(F + T
H
 ! T

L
)$/($ + q!1 ! 1) ! c].

Fully characterizing the optimal K is not easy owing to the discrete nature of AK($). A full

characterization, however, is unnecessary if the focus is to understand only the optimal K in



23 If 2L or 2K is not an integer, the exact size of the sample drawn with this strategy will be determined in the

fashion described in footnote 12.
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equilibrium. In particular, I will in the following focus on the equilibrium characterized by the

probability pair (b,a), i.e., the pair of equilibrium underreporting and audit probabilities defined in

Section 2. A committed budget, characterized by K, cannot constitute such an equilibrium unless,

given the conjecture b, an optimal strategy g supported by the budget yields an audit probability

equal to a, i.e.,. 

E[sg(1+LN!1) | b] = a.

If I restrict only to “kernel” bounded SRS characterized by sK discussed earlier, there is no

guarantee that the equation below has an integer solution for K: 

E[ min{ K/(1+LN!1), 1 } | b ] = a.

Therefore, considering the following generalized form of bounded SRS is useful: 

s(L) = 9
2

2K/L

for L = 1, 2, ..., K;

for L = K+1, K+2, ..., N,

where 0 # 2 # 1. Figure 3 illustrates the structure of this type of plans. In words, it entails randomly

selecting a fraction 2 of all the “low-income” tax returns to audit if L # K and a fraction 2K/L if L

> K.23 

 
Insert Figure 3 around here.

From the taxpayers’ perspective, bounded SRS strategies with different 2’s induce different

audit probabilities. Depicted in Figure 4 is the strategy for different values of 2. With 2 < a, the

strategy lies everywhere below the equilibrium proportional SRS strategy. As a result, the strategy

provides less deterrence to taxpayers and cannot constitute an equilibrium. By increasing 2 beyond

a, the audit probability induced by the strategy may be raised to a level closer to a or even above it.

If 2 = 1, the induced audit probability will reach the maximum level attainable by the K that

characterizes the committed budget. 

Insert Figure 4 around here.



22

In the next section, I will discuss further some properties of bounded SRS, followed by a

comparison of its budget-related characteristics with those of proportional SRS and Poisson

sampling.

5.  Equilibrium Bounded SRS

So long as the committed budget characterized by K is not too restrictive, an audit strategy

consistent with the bounded SRS can constitute an equilibrium, if 2 is set at the right level. This

second main result of the paper is stated as the proposition below. 

 
PROPOSITION 3 (SUFFICIENCY FOR BOUNDED SRS AUDIT STRATEGY TO CONSTITUTE AN

EQUILIBRIUM):  Suppose the number of audits K that characterizes the tax collector’s committed

budget satisfies the condition 8(K) $ a, where

8(K) =
E[ min{K, L} | b ]

Np

and p = 1!q(1!b). Then there exists an equilibrium such that bounded SRS with parameter 2 =

a/8(K) is an equilibrium audit strategy.

 
The ratio 8(K) defined above may be interpreted as the audit probability induced by a

bounded SRS strategy with parameter 2 = 1 under a committed budget characterized by K. For K

= 0, 8(K) = 0, meaning that the chance of being audited has to be zero when the committed budget

is insufficient to conduct even a single audit. By contrast, 8(N) = E(L)/Np = 1. When the committed

budget is big enough to audit even the whole taxpayer population, a bounded SRS strategy with 2

= 1 means a constant 100% sampling rate, regardless of the L observed. Suppose K > 0 but 8(K) <

a. In words, the committed budget allows some audits to be done but is not large enough to ensure

8(K) $ a. If so, even setting the sampling rate parameter to its maximum value (i.e., 2 = 1) will not

be high enough to implement the equilibrium audit probability a.

Proposition 3 says the parameter 2 for implementing an equilibrium bounded SRS strategy

should be set to a/8(K) in order to fix the induced audit probability at a. What is the intuition behind



24 There may exist a committed budget large enough to support an equilibrium bounded SRS strategy but not

an equilibrium proportional SRS strategy. The following is an example. Consider a setting with N = 2, q = 1/2, b

= 1/3, a = 9/16, and a committed budget with K = 1. Then p = 2/3, K < jaNk = 2, and 

            8(K) = [E(L | L # K) Pr{L # K} +K Pr{L > K}]/Np

= [E(L | L # 1) Pr{L # 1} + Pr{L = 2}]/2p

= [Pr{L = 1} + Pr{L = 2}]/2p

= [2p(1!p) + p2]/2p

= 2/3

> a.

So the committed budget can support an equilibrium bounded SRS strategy with parameter 2 = 27/32 but not the

proportional SRS strategy with sampling rate a = 9/16.
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this? Note that 8(K) is the audit probability induced by the “most deterrent” bounded SRS strategy

(i.e., with 2 set to 1) allowed by the committed budget characterized by K. When this budget is not

too small (i.e., 8(K) $ a), such a strategy will audit too often and fail to constitute an equilibrium.

To form an equilibrium, 2 must be reduced from 1 to some appropriate level so that the induced

audit probability equals a exactly. The simple structure of the model ensures that the adjustment can

be achieved proportionally; that is, the correct choice of 2 is given by the equation: 2/1 = a/8(K).

Of course, this equation will have no solution if 8(K) < a, i.e., when the condition in Proposition 3

is violated. Can the condition ever be met? The following corollary gives an instance where it is met.

 

COROLLARY 1 (COMMITTED BUDGET SUFFICIENT TO IMPLEMENT BOUNDED SRS AUDIT

STRATEGY IN EQUILIBRIUM): If the tax collector has a committed budget characterized by K > aN,

then 8(K) $ a and hence bounded SRS with parameter 2 = a/8(K) is an equilibrium audit strategy.

 

This corollary implies that if a committed budget is big enough to support the equilibrium

proportional SRS strategy with sampling rate a, it will also be sufficient to implement the

equilibrium bounded SRS strategy with parameter 2 = a/8(K). The reverse, however, is not true.24

Similarly, the committed budget cN necessary to support a Poisson sampling strategy will also

support the equilibrium proportional SRS strategy. However, a committed budget with K 0 {jaNk,

jaNk+1, ..., N!1} that can support proportional SRS in equilibrium will not support Poisson

sampling. The efficiency ranking of the three audit strategies, based on the committed budgets

necessary to support them, is stated formally as the proposition below:



25 Consider any committed budget with K < Npa. By definition, any equilibrium audit strategy it supports must

have a sampling plan s such that s(L)L # K for all L = 0, 1, ..., N. This implies s(1+l)# K/(1+l)  for all l = 0, 1, ...,

N!1. Sum up both sides with probability weights of the binomial distribution Bin(p, N!1). It follows that the audit

probability is less than a:

E[s(1+LN!1) | b] = K 3N

l

!

=
1
0 (1+l)!1(N!l

1)pl(1!p)N!1!l] = K/Np < a,

which means the strategy with s cannot constitute a (b,a) equilibrium. Therefore, the K of any committed budget

that supports an equilibrium audit strategy must be at least Npa.
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PROPOSITION 4 (RELATIVE EFFICIENCY OF BOUNDED SRS, PROPORTIONAL SRS, AND

POISSION SAMPLING AUDIT STRATEGIES): In terms of the committed budget necessary to support an

equilibrium audit strategy, bounded SRS is weakly more efficient than proportional SRS, which in

turn is weakly more efficient than Poisson sampling. In other words, a bounded SRS strategy will

constitute an equilibrium whenever the committed budget can implement proportional SRS in

equilibrium, but not vice versa; a proportional SRS strategy will constitute an equilibrium whenever

the committed budget can implement Poisson sampling in equilibrium, but not vice versa.

Some preparation is needed before providing the last main result of the paper. First of all,

note that the K of any committed budget that supports an equilibrium audit strategy must be at least

Npa, which is the expected number of audits done under proportional SRS and Poisson sampling.

Intuitively, if this is not satisfied, there is no way to audit sufficiently often so that the audit

probability facing each non-compliant high-income taxpayer is maintained at a, the equilibrium

level.25

Let _K denote the number of audits that characterizes the committed budget necessary to

support an equilibrium bounded SRS strategy, i.e., _K = min{ K | 8(K) $ a }, or equivalently,

_K = min{ K | E[ min{K, L} | b ] $ Npa }.

With this K, the parameter of the equilibrium bounded SRS strategy would be set to 2 = a/8(_K).

Since the minimum committed budget must exceed the expected audit cost, implying that _K $ Npa,

pa sets a lower bound on the ratio _K/N. If any equilibrium audit strategy, including bounded SRS,

manages to get arbitrarily close to this lower bound, it must be nearly as good as an efficient

equilibrium audit strategy.
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To determine the limiting value of _K/N, an upper bound is needed. Corollary 1 says a

committed budget with K = jaNk can implement an equilibrium bounded SRS strategy. Therefore, _K

must be weakly below jaNk < 1 + aN, or equivalently, _K/N < 1/N + a. The lemma below helps to

derive a tighter upper bound on the ratio _K/N, which is used to establish Proposition 5 that follows.

LEMMA 3 (UPPER BOUND ON _K):  Let _K = min{ K | 8(K) $ a }, i.e., the number of audits

characterizing the committed budget necessary to support the bounded SRS audit strategy with

parameter 2 = a/8(_K) in equilibrium. There exists an N* such that for any N > N*, _K # (N!1)p.

 

With this lemma, the ratio _K/N can be shown to reach nearly its lower bound pa, which may

only be attained by an efficient equilibrium audit strategy, if ever. In other words, if the taxpayer

population is large enough, the committed budget necessary to support an equilibrium bounded SRS

audit strategy will be nearly as low as cNpa. 

By definition, even an efficient equilibrium audit strategy requires at least this level of

committed budget to support. Moreover, the strategy must require no more committed budget to

support than the level required by an equilibrium bounded SRS strategy. Therefore, cNpa is

asymptotically the efficient committed budget for implementing the audit probability a with some

equilibrium audit strategy, including a bounded SRS strategy. The asymptotic efficiency of bounded

SRS with parameter 2 = a/8(_K) is stated in the proposition below, in terms of expected budget usage

ratio, i.e., expected audit cost incurred as a percentage of the committed budget.

PROPOSITION 5 (ASYMPTOTIC EFFICIENCY OF BOUNDED SRS AUDIT STRATEGY): Let _K =

min{ K | 8(K) $ a }. The equilibrium bounded SRS audit strategy with parameter 2 = a/8(_K) is

asymptotically efficient. In contrast, the equilibrium proportional SRS audit strategy is

asymptotically less efficient, whereas the equilibrium Poisson sampling audit strategy is

asymptotically least efficient among the three. Specifically, the limiting values of the expected budget

usage ratios of the three equilibrium audit strategies are as follows:
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Expected Budget Usage Ratio at the Limit

Bounded SRS lim
N84 E[s(L)L | b] / _K  =  1

Proportional SRS lim
N84 E[s(L)L | b] / aN  =  p

Poisson Sampling  lim
N84 E[s(L)L | b] / N  =  pa

 
This proposition tells us that when the taxpayer population is large, on average nearly all of

the committed budget c_K necessary to support the equilibrium bounded SRS strategy with parameter

2 = a/8(_K) will actually be incurred for conducting audits. To see the intuition, note that when the

population size is sufficiently large, the number L of “low-income” tax returns received is highly

likely to be somewhere around Np. This is an implication of the law of large numbers. It also means

nearly all of the time the audit sample size s(L)L = min{2K, 2L} is around 2min{K, Np}.

Consequently, the audit probability E[s(1+LN!1) | b] is around 2min{K, Np}/Np. For the bounded

SRS to constitute an equilibrium, this audit probability needs to be set at a, or equivalently, it

requires that 2min{K, Np} = Npa. The most efficient way to do this is by setting 2 to 1 and K to

Npa. Doing this is possible when N is sufficiently large so that Npa is very close to the integer jNpak,

which allows 2 to be set to almost 1. As a result, the committed budget characterized by the K is at

a level almost equal to the expected audit cost cE[s(L)L | b] . cNpa.

6.  Concluding Remarks

The virtue of the bounded SRS audit rule stems from its simplicity and the substantial

reduction in the committed budget required, compared to rules suggested by the traditional analysis.

Research in this direction has practical relevance to issues like audit staff planning and compliance

enforcement efficiency. Despite the importance, there has been no discussion in this direction in the

literature. 

Using a multiple-taxpayer extension of the classic tax compliance game, I study the important

but neglected implementation issue. Audit sampling plans inducing the same target audit probability

can differ significantly in the committed budgets necessary to support the strategies. Because there



26 Examples of recent studies on tax compliance include Alm and McKee [2004], Fisman and Wei [2004],

Besim and Jenkins [2005], and Feldman and Slemrod [2007].
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is an opportunity cost associated with the committed budget, how it can be conserved to free

unneeded resources for better uses is often a serious concern of administrators (see, e.g., US GAO

[2004]). In this paper, I discuss how an audit sampling plan can be formulated efficiently to conserve

the committed budget necessary for implementing the target audit probability.

Proportional SRS and Poisson sampling are audit rules generalized naturally from the

traditional, one-to-one analysis. They can implement the equilibrium audit probability in the

multiple-taxpayer setting but demand inefficient committed budgets to support. By contrast, the

bounded SRS rule never needs more committed budget to support than the levels required by the

other rules. Moreover, the committed budget it requires can be nearly as low as the efficient

committed budget, i.e., the lowest attainable by any equilibrium audit strategies. 

Thirty-five years after Allingham and Sandmo [1972] published the first model of tax

evasion, tax compliance issues continue to draw researchers’ attention.26  One of the growing

interests in this area concerns tax audit selection decisions and assessments. As Andreoni, Erard, and

Feinstein [1998] have pointed out, “[i]mproved understanding of the audit process is likely to

provide guidance in a number of policy areas, including the comparison and evaluation of alternative

tax administration systems and the development of better audit selection methods.” I contribute to

this literature by examining different audit sampling plans and their efficiencies in terms of the

committed budgets necessary to support them. The results offer novel insights on how audit

strategies may be formulated to reduce inefficiency and what budget usage ratios should be expected

accordingly.

This paper also contributes to a new perspective on audit sampling issues. Traditional audit

sampling research takes the perspective of the acceptance sampling literature (see, e.g., Kinney and

Warren [1979], Adcock [1988], and Guy, Carmichael, and Whittington [2002]). It concerns how

sampling plans should be formulated so as to optimally accept or reject reported balances, with the



27 Such risks are also called Type-I and Type-II error risks or alpha and beta risks.

28 For example, in the context of statistical sampling for process control, Bushman and Kanodia [1996] point

out that “in strategic settings, where the stochastic process is significantly impacted by the actions of human agents,

deterrence rather than ex post detection is the main issue.” (emphasis added). 
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false-positive and false-negative risks properly controlled.27 By contrast, the concern in strategic

settings can be quite different.28 In the stylized tax compliance setting examined here, controlling

false-positive and false-negative risks is not an issue. Instead, the concern is about how a target level

of audit probability can be implemented with a sampling plan that needs only the minimum

committed budget to support. 

In other contexts like financial audits, the analysis of this paper may or may not apply,

depending on the nature of the issue in concern. For instance, from an audit firm’s point of view, my

analysis about determining the efficient “audit capacity” has obvious relevance to audit staff

planning issues. The analysis may also be relevant to an audit client’s strategic decision to choose

between a Big4 auditor and a smaller one, in addition to considerations like deep-pocket insurance.

For example, the committed-budget constraint of a Big4 auditor might be “softer” than a smaller

auditor’s. As a result, the audit quality might also be different. 

My analysis can be adapted to study independent employee thefts and embezzlements that

may exist in different segments of a large corporation. An analogy between auditor-employees and

tax collector-taxpayers can be easily drawn. However, the analysis is not applicable to orchestrated

financial frauds by an executive or a gang of managers. In such circumstances, whether a transaction,

out of the many related to a fraud, would ultimately become a red flag is not an independent event.

An important assumption of my analysis is thus violated.

Mainly because of Lemma 2, proving the dominance of bounded SRS over proportional SRS

or Poisson sampling is not a formidable task in my analysis. The lemma says any audit sampling plan

implementable by the committed budget is optimal. Therefore I can reallocate the sampling rates for

different contingencies on the number of “low-income” returns received, without making the strategy

sub-optimal. I only need to ensure that the induced audit probability remains the same. To guarantee

this, I consider the generalized bounded SRS with an additional parameter, rather than only the



29 See the derivation of the tax collector’s expected net revenue function in the appendix.
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“kernel” bounded SRS. By tuning the parameter appropriately, the induced audit probability can be

fixed at the right level. The equilibrium suggested by the one-to-one analysis can thus be

implemented using bounded SRS with a lower committed budget.

Lemma 2 relies heavily on the additive separability of the tax collector’s linear payoff

structure.29  While such a structure appears reasonable in tax compliance situations or when audits

are conducted by larger firms, it is an open question as to how the results would generalize to other

settings. I conjecture that a multiplicatively separable payoff function would still yield a result

analogous to that of Lemma 2, although it may not be possible to establish that every implementable

audit strategy is optimal. Additional explorations along these lines would go a long way to expanding

the applicability of the results in this paper.

I have used the notion of opportunity cost to model the waste of an overly-committed budget.

This actually understates the severity of the problem. For example, in the context of audit staff

planning for financial audits, audit firms must hire enough college graduates during the summer to

prepare for the peak demand near the end of the year. In the context of tax compliance, the IRS must

have enough trained tax auditors in order to support the work in the upcoming year. In other words,

professionals qualified for the job typically are in short supply. So the issue is not simply about

budget money left unused. “Overly-committed budget” discussed here may actually mean outlay

costs spent to build up excessive capacity because qualified people cannot be hired instantaneously.

This is a waste substantially higher than merely the opportunity cost of unused budget money,

making the implementation issue discussed in this paper even more important. 
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Appendix:  Proofs and Derivations

PROOF OF LEMMA 1: Let HH = NH ! LH, which is the number of compliant high-income taxpayers.

Since N ! L = NH ! LH = HH, conditioning on L is equivalent to conditioning on HH. Therefore, E[LH | L, $]

= E[LH | HH, $] = E[E(LH | NH, HH, $) | HH, $]. For notational simplicity, I will in the following omit $ from

the information set indicated in conditional means and probabilities. 

First of all, let me consider the conditional mean E(L
H | NH, HH) and the conditional probability

distribution Pr{NH = j | HH = h}. By definition, E(LH| NH, HH) = NH ! HH and Pr{NH = j | HH = h} = Pr{NH = j,

HH = h}/ Pr{HH = h}. Recall that NH is distributed with the binomial distribution Bin(q,N), i.e., Pr{NH = j} =

(N
j)q

j(1!q)N!j. Moreover, given the conjecture $ on the taxpayers’ under-reporting probability, LH is

distributed with the binomial distribution Bin($,NH), i.e., Pr{HH = h | NH = j} = ( j
h)$

 j!h(1!$)h.

Therefore, Pr{NH = j, HH = h}

= Pr{HH = h | NH = j} Pr{NH = j}

= ( j
h)$

 j!h(1!$)h (N
j)q

j(1!q)N!j

= [($!1!1)h/h!][N!/(N!j)!(j!h)!](1!q)N!j(q$)j

for j $ h and Pr{NH = j, HH = h} = 0 otherwise. As a result, 

Pr{HH = h}

= 3N
j=h Pr{NH = j, HH = h}

= [($!1!1)h/h!] 3N
j=h [N!/(N!j)!(j!h)!](1!q)N!j(q$)j

= [N!/(N!h)!h!](q$)h($!1!1)h 3N
i
!

=
h
0 [(N!h)!/(N!h!i)!i!](1!q)N!h!i(q$)i

= [N!/(N!h)!h!](q$)h($!1!1)h(1!q + q$)N!h.
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Similarly, 3N
j=h E(LH| j, h) Pr{NH = j, HH = h}

= 3N
j=h (j!h) Pr{NH = j, HH = h}

= [($!1!1)h/h!] 3N
j=h+1[N!/(N!j)!(j!h!1)!](1!q)N!j(q$)j

= [N!/(N!h!1)!h!](q$)h+1($!1!1)h 

× 3N
i
!

=
h
0
!1 [(N!h!1)!/(N!h!1!i)!i!](1!q)N!h!1!i(q$)i

= [N!/(N!h!1)!h!](q$)h+1($!1!1)h(1!q + q$)N!h!1.

Thus, E(LH|HH) 

= E[E(LH | NH, HH) | HH]

= [3N
j=h E(LH| j, h) Pr{NH = j, HH = h}]/Pr{HH = h}

= [N!/(N!h!1)!h!](q$)h+1($!1!1)h(1!q + q$)N!h!1

/ [N!/(N!h)!h!](q$)h($!1!1)h(1!q + q$)N!h

= (N!h)(q$)/(1!q + q$)

= (N ! HH)$/($ + q!1 ! 1)

= L$/($ + q!1 ! 1). �

 DERIVATION OF TAX COLLECTOR’S EXPECTED NET REVENUE FUNCTION: Conditional on (i) the audit

sample size A, (ii) the number of “low-income” tax returns received L, with L > 0, and (iii) the conjecture

on the taxpayers’ under-reporting probability $, the expected net revenue of the tax collector can be

expressed as follows:

E[RV(A, L) | A, L, $] 

= E[V | A, L, $](F + TH ! TL) ! Ac + LTL

= E[LH/L | A, L, $]A(F + TH ! TL) ! Ac + LTL

= E[LH/L | L, $]A(F + TH ! TL) ! Ac + LTL.

The last equality follows from the fact that LH and L are realized before A is determined. If L = 0, obviously

E[RV(A, L) | A, L, $] = 0. Thus, 

R(g; $) 

    = E[ E[RV(A, L) | A, L, $] | $ ] 

    = E[ E[RV(A, L) | A, L, $] | L > 0, $ ] Pr{L > 0 | $} 

    = E[ E[LH/L | L, $]A(F + TH ! TL) ! Ac + LTL | L > 0, $ ] Pr{L > 0 | $} 

    = E[ E[LH/L | L, $]E[A | L, $] | L > 0, $ ] Pr{L > 0 | $}(F + TH ! TL) ! E[ E[A | L, $] | $ ]c 

+ E[L | $]TL

    = E[ E[LH/L | L, $]E[A | L] | L > 0, $ ] Pr{L > 0 | $}(F + TH ! TL) ! E[ E[A | L] | $ ]c + E[L | $]TL
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The fourth inequality follows from the fact that E[! Ac + LTL | L = 0, $] = 0. The last equality follows from

the fact that although $ affects the probability distribution of L, when conditional on L the sampling plan

[g(i | L)]i=0,1,...,N completely determines the audit sample size A. 

By Lemma 1, E[LH/L | L, $] = $/($ + q!1 ! 1) for L > 0. Therefore, 

R(g; $) = E[ E[A | L] | $ ] [(F + TH ! TL)$/($ + q!1 ! 1) ! c] + E[L | $]TL.

Let sg(L) = 3N
i =0 i g(i | L)/L for L > 0 and sg(L) = 0 for L = 0. Since sg(L)L = 3N

i=0 i g(i | L) = E[A | L], the

expected net revenue can be expressed as

R(g; $) = E[sg(L)L | $] [(F + TH ! TL)$/($ + q!1 ! 1) ! c] + E[L | $]TL.

�

PROOF OF PROPOSITION 3: Since 0 < a # 8(K), 2 = a/8(K) 0 [0,1]. Therefore, the bounded SRS

strategy with parameter 2 is an implementable audit strategy. When a high-income taxpayer chooses to be

non-compliant, he knows that the realized value of L observed by the tax collector must be 1 + LN!1, where

LN!1 is the number of “low-income” tax returns filed by the remaining N!1 taxpayers. Independent

distribution of types and choices of action imply that LN!1 follows the binomial distribution Bin(p, N!1),

where p = 1!q(1!b). So given 2, the audit probability facing a non-compliant high-income taxpayer is

3N
l
!

=
1
0 Pr{“selected for audit” | L = 1+l}Pr{LN!1 = l}

= 3K
l
!

=
1
0 2 Pr{LN!1 = l} + 3N

l
!

=
1
K [2K/(1+l)] Pr{LN!1 = l}

= 2 [3K
l
!

=
1
0 Pr{LN!1 = l} + K 3N

l
!

=
1
K (1+l)!1 Pr{LN!1 = l}]

= 2 [3K
l
!

=
1
0 (

N!
l
1)pl(1!p)N!1!l + K 3N

l
!

=
1
K (1+l)!1(N!

l
1)pl(1!p)N!1!l]

= (2/Np)[3K
l=1 l Pr{L = l} + K 3N

l=K+1 Pr{L = l}]

= (2/Np)[3K
l=0 l Pr{L = l} + K Pr{L > K}]

= (2/Np)[E(L | L # K)Pr{L # K} + K Pr{L > K}]

= a.

This audit probability makes him indifferent between being non-compliant and compliant. Thus, b is a best

response to 2. By Lemma 2, any 2 0 [0,1] is a best response to b. Hence, (b,a/8(K)) is an equilibrium with

the induced audit probability equal to a. �

PROOF OF COROLLARY 1: It suffices to prove that K $ aN implies 8(K) $ a. The rest then follows

immediately from Proposition 3. If K $ aN, 

    8(K) = [E(L | L # K)Pr{L # K} + K Pr{L > K}]/Np

= 3K
l
!

=
1
0 Pr{LN!1 = l} + 3N

l
!

=
1
K [K/(1+l)] Pr{LN!1 = l} 

$ 3K
l
!

=
1
0 Pr{LN!1 = l} + a3N

l
!

=
1
K [N/(1+l)] Pr{LN!1 = l} 
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$ 3K
l
!

=
1
0 Pr{LN!1 = l} + a3N

l
!

=
1
K Pr{LN!1 = l} 

$ a. �

PROOF OF LEMMA 3:  Suppose to the contrary that there does not exist such an N*. This means for

any N*, there exists _K > (N!1)p for some N > N*. Let _KN denote the _K satisfying this condition for any such

an N. For any sufficiently small g > 0, _KN > (N!1)(p+g) as well. 

Now for any N with the _KN, consider K = _KN, which has

    8(K) = [E(L | L # K)Pr{L # K} + K Pr{L > K}]/Np

= 3K
l
!

=
1
0 Pr{LN!1 = l} + 3N

l
!

=
1
K [K/(1+l)] Pr{LN!1 = l} 

$ 3K
l
!

=
1
0 Pr{LN!1 = l} + (p+g)3N

l
!

=
1
K [N/(1+l)] Pr{LN!1 = l} 

$ 3K
l
!

=
1
0 Pr{LN!1 = l} + (p+g)3N

l
!

=
1
K Pr{LN!1 = l} 

= 1 ! [1!(p+g)]Pr{LN!1 $ K}

$ 1 ! [1!(p+g)]Pr{LN!1 $ (N!1)(p+g)}.

Following the reasoning of the law of large numbers (e.g., see Feller [1968], p. 152), Pr{LN!1 $ (N!1)(p+g)}

goes to zero as N goes to infinity. Therefore, 8(_KN) must be arbitrarily close to 1 for some N > N*. This,

however, implies that for some N > N*, _KN is arbitrarily close to N and hence _KN !1 > aN. Analogous to the

Proof of Corollary 1, this in turn implies 8(_KN !1) $ a, a contradiction to the definition that _KN is the

minimum K satisfying 8(K) $ a for the given N. 

Consequently, there must exist an N* such that for any N > N*, _K # (N!1)p. �

PROOF OF PROPOSITION 5: By definition, _K is the smallest number in {1, 2, ..., N} that allows the

existence of an equilibrium (b, a/8(_K)) with the induced audit probability 28(_K) equal to a. This implies 0

# 2 = a/8(_K) # 1 < a/8(_K!1). Because 8(K) = AK(b)/Np, where 

AK(b) = E[min{K, L} | b] = E[L | L # K] Pr{L # K | b} + K Pr{L > K | b}, 

it follows that 

A_K(b) = E(L | L # _K)Pr{L # _K} + _K Pr{L > _K} $ Npa

A_K!1(b) = E(L | L # _K!1)Pr{L # _K!1} + (_K!1)Pr{L > _K!1} < Npa.

Note that the difference

    A_K(b) ! A_K!1(b)

= E(L | L # _K)Pr{L # _K} + _K Pr{L > _K}

! E(L | L # _K!1)Pr{L # _K!1} ! (_K!1)Pr{L > _K!1}

= _K(N
K_)p

_K(1!p) N!_K ! _K [ Pr{L > _K!1} ! Pr{L > _K}] + Pr{L > _K!1}

= Pr{L > _K!1}.
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Thus, limN84 [A_K(b) ! A_K!1(b)]/N = 0. Consequently, it must be that limN84 A_K(b)/N = limN84 A_K!1(b)/N = pa.

In the following, I will show that limN84 _K/N = pa.  By definition

A_K(b) = E(L | L # _K)Pr{L # _K} + _K Pr{L > _K}

= E(L) ! E(L ! _K | L > _K)Pr{L > _K}.

For any given g > 0, I can break the second term on the right into two for L above or below N(p+g) and then

divide all terms on both sides by N to obtain

A_K(b)/N = p ! E[L ! _K | _K < L # N(p+g)] Pr{_K < L # N(p+g)}/N 

! E[L ! _K | L > N(p+g)] Pr{L > N(p+g)}/N.

By Lemma 3, there exists an N* such that for any N > N*, _K # (N!1)p. Hence, for any N > N*,

0 #E[L ! _K | L > N(p+g)] Pr{L > N(p+g)}/N # Pr{L > N(p+g)}.

Following the reasoning of the law of large numbers (e.g., see Feller [1968], p. 152), Pr{L > N(p+g)} goes

to zero as N goes to infinity. Therefore, limN84 E[L ! _K | L > N(p+g)] Pr{L > N(p+g)}/N = 0. Consequently,

limN84 E[L ! _K | _K < L # N(p+g)] Pr{_K < L # N(p+g)}/N

= p ! limN84 A_K(b)/N 

= p(1!a).

Since for any N > N*, 0 #E[L ! _K | _K < L # N(p+g)] # N(p+g) ! _K for any given g > 0, it follows that

p(1!a) = limN84 E[L ! _K | _K < L # N(p+g)] Pr{_K < L # N(p+g)}/N

 # [limN84 N(p+g)/N ! limN84 _K/N] limN84 Pr{_K < L # N(p+g)}

 # [p + g ! limN84 _K/N].

Because this holds for any g > 0, limN84 _K/N # pa. However, _K $ Npa. I conclude that limN84 _K/N = pa.

By definition, s(L)L # _K for all L. Additionally, note that 

E[s(L)L | b] $ E[min{2_K, 2L} | b] = 2E[min{_K, L} | b] = [a/8(_K)]E[min{_K, L} | b] = Npa.

Therefore, 

pa # limN84 E[s(L)L | b]/N # limN84 _K/N = pa,

which implies the limiting expected budget usage ratio for the bounded SRS is limN84 E[s(L)L | b]/_K = 1.

Recall that for the proportional SRS and Poisson sampling strategies, the minimum K required is

jaNk and N, respectively. According to footnote 16, both have E[s(L)L | b] = Npa. Therefore, their expected

budget usage ratios for a sufficiently large N are close to p and pa, respectively.

�



 

Table 1  Numerical Example Illustrating a Bounded SRS Rule 

Panel A: Parameter Choices 
Taxpayer population size   N = 6 
Committed budget for bounded SRS rule  K  = 2 
Cost per audit   c  = 2.12 
Income of H taxpayer  IH  = 23.17 
Income of L taxpayer  IL  = 9.27 
Tax for an (honest) H taxpayer  TH = 11.59 
Tax for an (honest) L taxpayer                 TL = 3.24 
Fine for a dishonest H taxpayer caught  F = 5.42 

Power-expo utility function 
a

1
a ]exp[1)(

r

�
� ����

�
wwu

Constant absolute risk aversion (when �r = 0)                 �a = 0.029 
Constant relative risk aversion (when �a = 0)  �r = 0.269 
Target audit probability   a = 55% 

Panel B: Audit Probability Induced by Bounded SRS Rule 

L = 0 1 2 3 4 5 6  

sK(L)L 0 1 2 2 2 2 2  

sK(L)  100% 100% 100% 66.7% 50% 40% 33.3%  

Audit 
prob. 

induced

q = 0.5        
With conjectured b = 18.18% and 1–q(1–b) = 0.59,     
Pr{LN-1=L–1}  0.011 0.083 0.239 0.345 0.249 0.072   
sK(L)Pr{LN-1=L–1} 0.011 0.083 0.159 0.173 0.100 0.024  55% 

q = 0.61          
With conjectured b = 11.62% and 1–q(1–b) = 0.46,     
Pr{LN-1=L–1}  0.046 0.195 0.333 0.284 0.122 0.021   
sK(L)Pr{LN-1=L–1} 0.046 0.195 0.222 0.142 0.049 0.007  66% 
For � = 5/6,         
�sK(L)Pr{LN-1=L–1} 0.038 0.162 0.185 0.119 0.041 0.006  55% 

 
 



Table 2  Distributional Properties of Selected Variables

N
H
 - Bin(q,N) Number of high-income taxpayers.

L
H
 - Bin($,N

H
) Number of non-compliant high-income taxpayers,

given the conjectured underreporting probability $. 

L = N ! N
H
 + L

H
 

   - Bin(1!q(1!$),N) 

Number of “low-income” tax returns received by

the tax collector, given the conjectured $. 

A - g(A | L) Audit sample size, given the probabilistic audit

sampling plan [g(i | L)]
i=0,1,...,N chosen by the tax

collector contingent on L.

V - Hyp(A, L
H
, L) Number of “violators caught”

LN!1 - Bin(1!q(1!$), N!1) Number of “low-income” tax returns filed by the

remaining N!1 taxpayers, given any conjecture $
on other taxpayers’ under-reporting probability

1 + LN!1 Value of L to be observed by the tax collector if a

high-income taxpayer chooses to be non-compliant.

E[sg(1+LN!1) | $] Audit probability facing a non-compliant high-

income taxpayer, given any conjecture g on the tax

collector’s audit strategy and the conjectured $. 

Note.  Bin = Binomial; Hyp = Hypergeometric



Figure 1.  Moves in the Classic Tax Compliance Game



Figure 2.  Proportional SRS Audit Strategy



Figure 3.  Bounded SRS Audit Strategy



Figure 4. Bounded SRS Audit Strategies with 2 Ranging from 0 to 1




