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Abstract 

 

Active portfolio management is driven by the trade-off between the expected 
return and the associated risks. In light of the most recent extensions of Black-
Litterman model, we stick to a Bayesian approach for the construction of active 
fixed income portfolios. Within the investment grade universe, the equilibrium 
returns are approximated by the yield levels implied by the market prices and 
these are blended together with investment views. In parallel, risk factors are 
preferred over asset class risk modelling. Affinity towards risk factors rather 
than asset classes is primarily linked with two elements; the reduction of the 
dimensionality of the risk estimation problem and the intuitive way in which 
portfolio exposures per risk factor can be expressed as performance drivers. 
The first empirical part of the thesis deals with the optimisation of a relative to 
an index portfolio where the centre of gravity is the chosen benchmark. The 
first ingredient of the optimisation is the blend of the yield advantage over the 
index and the expectations for excess returns over the index emanating from 
the investment views. The second ingredient is the risk estimated by a 
multifactor risk model. Then, a set of relative to the index investment grade 
portfolios is constructed. The second empirical part investigates whether there 
is scope to blend the multifactor risk framework with more sophisticated risk 
estimation techniques such as resampling. Tail risk estimated by block 
bootstrapping on the risk exposures of real actively managed portfolio 
exposures vs. the Barclays Capital US Aggregate index is compared with the 
parametric and exponentially weighted moving average risk model findings. 
The multifactor risk estimate using block bootstrapping exhibits better 
performance than the alternatives tested but struggles to capture the out of 
sample extremes. Finally, the third empirical part aims to enhance the 
allocation model by taking advantage of the findings of the second empirical 
part. The blending mechanism of equilibrium returns and investment views, 
which are expressed as optimisation constraints, is performed with the aid of a 
numerically approximated returns’ distribution. The resampled distribution 
deviates from the normality assumption imposed initially in the Black-
Litterman model and forms a more realistic basis for the evaluation of 
investment views and for the portfolio construction against tail risk measures 
such as value at risk and conditional value at risk.  
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1 Introduction 

 

1.1 Motivation and Objectives 

 

The aim of this PhD thesis is to bring to surface problems in fixed income asset 

allocation which cannot be addressed via the existing toolset designed for 

different asset classes, and propose feasible solutions for the identification of 

both the equilibrium returns and the associated risks. Markowitz (1952) and his 

mean-variance approach revolutionized the portfolio management world and 

set the stage for further elaboration on the main themes of asset allocation: 

evaluation of the expected returns, evaluation of the risk and combination of 

the two into a consolidated portfolio. Failure to successfully respond to the 

asset pricing question gave birth to the Black-Litterman model (1992) which 

extracts the market equilibrium returns from the CAPM framework and allows 

the investment manager to incorporate his own views on the allocation 

procedure. Tempting as several of its features may be, the Black-Litterman 

model was abandoned by most practitioners because of disliking the notion of 

“CAPM Equilibrium”. Since then a decent amount of research has been 

conducted to enhance the original model.  

 

This thesis aims to fill in the gap in the literature of the lack of focus on fixed 

income markets, the dynamics of which differ from the other asset classes. The 

bond market exhibits very different characteristics both in terms of return 

profile and risk profile. Would it be possible for an allocation tool such as the 

Black-Litterman model to be used in fixed income markets? To what extent are 

the model assumptions realistic when it comes to bond portfolios risk 

modelling? Could we improve the existing framework to better accommodate 

the tail behaviour and dependence structure of financial data? And finally, 

what lesson could be drawn out of the bond market regarding the estimation 

of equilibrium returns of the other asset classes? 
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1.2 Outline of the Thesis 

 

As mentioned, the purpose of this PhD thesis is to assist in the portfolio 

construction process specific to fixed income. Each of the Chapters 3, 4 and 5 in 

this PhD thesis can be regarded as a standalone research paper dealing with a 

set of research questions which are though part of the broader asset allocation 

problem.  

 

Chapter 2 concentrates on the main concepts that this PhD thesis touches upon 

in relation to fixed income portfolio construction decisions. Namely, how the 

starting point of the portfolio allocation can be formed and what is a proper 

representation of the market portfolio. Given the amount of investable assets, 

portfolio construction vacillates between more passive or more active 

investment strategies. A way of implementing and measuring the efficiency of 

outstanding portfolios is by the use of a benchmark index. Additionally, a 

critical point from a modelling and investment perspective is the identification 

of the expected returns. Their demystification entails an enormous amount of 

resources employed into the financial system and determines the success of 

institutions and individuals alike. That is the reason why the way of measuring 

and monitoring the associated risks is further elaborated and has a major role 

in the allocation process. All in all Chapter 2 focuses on the role of the utility 

function which may alter the mix and the analogy of the assets within a 

formulated portfolio.  

 

Specifically in Chapter 3 we propose a re-evaluation of the Black-Litterman 

model both in terms of equilibrium returns and in terms of risk estimation. 

More specifically, we focus on the fixed income investment grade universe. The 

choice for this investment universe enables to approximate the equilibrium 

returns by the bonds’ yield to maturity which is juxtaposed against the 

equilibrium returns, implied by the Black-Litterman model and the observed 

market capitalisations. The second step is to challenge the (equities 



Introduction 

3 

 

compatible) risk model that Black-Litterman originally employs. Using time 

series data for specific bonds would not make much sense as the yield curve 

dynamics change across different tenors and the bonds’ tenors change as the 

time to maturity decays. Instead, we propose using a multifactor risk model 

which is more representative of the structure of fixed income markets. 

 

The multifactor model is not only useful in the estimation of the aggregated 

risk and risk exposures but also serves as a tool to express investment views. 

The investment manager may express his views in terms of expected changes 

in yield and spread levels. Then this is converted through a risk factor loadings 

matrix into estimated asset classes’ returns. The final step is to start forming 

portfolios. The initial allocation is the benchmark index and then the relative 

portfolio is optimized for several risk levels.  

 

In Chapter 4 several variations of multifactor risk models are tested for the 

monitoring and risk estimation of actively managed portfolios against their 

index. In detail, a set of broad risk factor exposures is used for twelve real 

actively managed portfolios vs. the Barclays Capital US Aggregate Index. The 

Value at Risk estimates are back tested and compared using a Variance 

covariance matrix, exponentially weighted moving average, ex post tracking 

error and resampling via block bootstrapping. Given the risk factors available 

there is scope for improving the risk model by relaxing the normality 

assumption implied by the parametric Value at risk framework.  

 

In Chapter 5 the evidence in the literature for the existence of excess kurtosis 

and skewness in financial data is taken into account. In light of this we test how 

the Black-Litterman assumption can be relaxed in practice by introducing 

resampling techniques for the estimation of the portfolio risk profile. It is 

illustrated how investment views can be blended together with the equilibrium 

returns, which are extracted directly from the bond valuations to assess the 

expected performance of assets relative to the chosen benchmark. It also 

enables the financial analyst to evaluate the effect of his views on the major 
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segments of the market and how this would potentially affect the portfolio’s 

performance and risk profile. Once the investment views are established, and 

the posterior distributions finalized, the portfolio construction process can kick 

off either it terms of return to volatility base or in terms of return to tail risk 

base.  

 

In this thesis we seek to cast light on the three elements which drive the 

portfolio construction process, the expected returns, the risk and the 

dependence structure between portfolio components.  

 

1.3 Summary of findings and contribution to the literature 

 

This PhD thesis contributed to several segments of the literature. Initially, it 

elaborates on how the blending of equilibrium results and investment views 

can be formulated to assist in the construction of investment grade fixed 

income portfolios. Second, it evaluates the accuracy of a series of risk models 

for the estimation of portfolios’ risk profile. Third, it takes into account the 

asymmetric and fat tailed distribution of financial data to improve the 

allocation process while using a multifactor model and allowing for investment 

views to be taken into account. 

 

One major issue the Black-Litterman model tried to address is the making sense 

of the final allocation vs. the market portfolio.  Provisional on our ability to 

specify the market portfolio in its full breadth and on the accuracy of the 

underlying asset pricing model, an allocation tool such as the Black-Litterman 

model would provide accurate estimates of the equilibrium returns and also a 

reasonable final allocation. In practice, it is difficult both to capture the entire 

market portfolio and to pick up an asset pricing model which would generate 

the true equilibrium returns. In reality, the starting point has been the market 

portfolio or a subset of it in guise of a chosen benchmark index, which reflects 

the strategy to which the investor is willing to be tied. For that purpose, Black-

Litterman uses the initial benchmark portfolio as the market portfolio and from 
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there the equilibrium returns can be modelled. In fact, this would, by 

definition, lead to the benchmark allocation but would not necessarily 

correspond to the true equilibrium returns. As such, equilibrium returns do not 

strictly represent the actual consensus of the market on future returns but 

rather have instrumental value in that they lead to the allocation of the 

selected portfolio.   

 

The first contribution of this PhD thesis is that the CAPM equilibrium returns 

are challenged for fixed income portfolios. The occurring yield to maturity is an 

accurate representation of the expected return on each bond provided a credit 

event does not happen. The yields implied by market valuations are not 

compatible with the CAPM equilibrium returns. Additionally, a multifactor risk 

model is used to capture the risk dynamics of fixed income portfolios. In that 

sense, the epicentre of the risk analysis is moved from asset classes to risk 

factors, where the overall risk of the portfolio, becomes a function of the 

overall risk factor loadings, the riskiness of each risk factor and the way the risk 

factors are correlated. In order to implement the Black-Litterman model in the 

investment grade universe, the market portfolio is set to be the (any) chosen 

benchmark. This constitutes the starting point for the allocation of the 

portfolio. Then the actual portfolio is optimized on a relative to the index basis. 

The main drivers of the optimization are the yield advantage over the yield of 

the benchmark, the investment views and the associated risk. If no excess risk 

is undertaken the portfolio will bear no difference to the benchmark. 

Depending on the risk budget, the allocation is shifted towards the higher 

yielding assets, and those with the highest investment conviction. 

 

 Furthermore, a goal of this thesis is to test the validity of risk factor risk 

modelling and the scope for deviating away from the normality assumption as 

part of the portfolio construction process. For that purpose, several 

alternatives are attempted to judge the tail behaviour of twelve real portfolios, 

actively managed against the Barclays Capital US Aggregate Index. The data are 

sourced from a leading investment management institution. The findings are 
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supportive of the idea to deviate away from Black-Litterman’s normality 

assumption and incorporate resampling techniques to better capture the risk 

dynamics of those portfolios.  

 

In light of the above findings, and given the evidence provided in the literature 

that financial data exhibit skewness and excess kurtosis, risk factor modelling is 

employed using simulated marginal distributions per risk factor. The simulated 

risk profile of the portfolio is then tweaked after the inclusion of investment 

views and that enables restarting the allocation process not only against 

standard deviation of relative to the index returns, but tail risk measures as 

well, such as the value at risk and the expected shortfall. The process per se of 

blending the views into the resampled distributions is also insightful for 

scenario analysis and stress testing. 
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2 Background Material: Portfolio Theory and Portfolio 

Risk Management  

 

2.1 Introduction 

 

In this chapter we introduce some of the main concepts of portfolio theory and 

portfolio risk management. In section 2.2 we describe the barbell relationship 

between active and passive portfolio management depending on the level of 

trading activity as a reflection of active implementation of investment outlook.  

In sections 2.3, 2.4 and 2.5 we focus on the indexation and how this would 

determine the key allocation decisions of actively managed portfolios. Section 

2.6 elaborates on the main risk sources, driving the uncertainty in a fixed 

income portfolio. Finally, section 2.7 highlights in brief the role of 

benchmarking in the portfolio construction process, the quantification of fixed 

income risk via specific risk measures, their aggregation on portfolio level and 

their interdependence. 

 

2.2 Active vs. Passive Portfolio Management 

 

Two options are available for a fixed income investor; to invest in passive or 

active portfolio management. Passive portfolio management relies on investing 

in an index, with specified risk characteristics whose particular weights should 

be rebalanced regularly so that they remain relatively unchanged over time. 

The advantage of such a decision is that the investor can allocate money to a 

diversified portfolio in order to capture a particular opportunity identified in 

the market. The main drawback is that the passive manager as implied by the 

word “passive” is not actively trading the portfolio but rather maintaining it, 

even if the market conditions are changing.  

 

On the other hand side, active portfolio management offers the manager the 

flexibility to continuously and actively trade the portfolio in order to add some 
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extra value. Needless to say that active portfolio management requires extra 

skill from the portfolio manager in order to generate performance. The 

manager is not only responsible for the strategic allocation i.e. investing in 

Investment Grade Credit on the belief that credit spreads will tighten, or in a 

short duration portfolio expecting that central banks will ease monetary policy 

and yield curves will become steeper but for tactical moves as well. Tactical 

moves include all opportunistic trades, intended to benefit from a particular 

dislocation of the market, with the strategic goal of the portfolio being 

unaffected i.e. sector allocation within credit portfolios on the back of 

expectations that financials will outperform utilities. 

 

2.3 Benchmarking: the Relative to Index Portfolio 

 

It is not hard to imagine that active portfolio management is more demanding 

than passive because more resources are required to continuously monitor the 

portfolio and the market. In addition, higher discretion is required as the role of 

the manager is active. That is the reason why clients transitioning to active 

management pay higher fees vs. the fees charged by passive management. But 

what matters at the end of the day is whether active management can deliver 

superior performance to passive investment management therefore justifying 

higher fees.  

 

Bond portfolios are benchmarked against their relative index portfolios. For 

example an Investment Grade Credit portfolio may be benchmarked against 

the Barclays Capital or the Merrill Lynch Global Investment Grade Index. These 

indices are largely diversified and contain a big number of securities. Hence, 

the portfolio should be designed to outperform its benchmark in a way that it is 

both adequately diversified and keeps transaction costs to the lowest possible 

level. The relative performance of an actively managed portfolio vs. a 

benchmark portfolio is known as alpha. And the portfolio defined as the 

difference between the managed portfolio and its benchmark will be referred 

to from now onwards as the relative portfolio.  
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Benchmark portfolio weights: 
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Relative Portfolio weights: 
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As the portfolio and the benchmark are fully invested the sum of weights is the 

unity. In terms of relative positioning if the portfolio bears positive weight on a 

particular security this means that the portfolio’s excess investment to this 

security against the benchmark is equal to the weight. On aggregate level, the 

relative portfolio weights are zero implying that in order to finance an over-

weighted position relative to benchmark there should be at least one 

underweighting position. These deviations from the benchmark are what can 

generate alpha.  Performance wise the above relations are becoming: 

 

Portfolio return: 
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Benchmark portfolio return: 
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Where: 

PTFr           is the return of the portfolio 

iPTFw        is the weight of security i in the portfolio 

BMKr          is the return of the benchmark 

iBMKw        is the weight of security i in the portfolio 

alpha       is the alpha return 

 

Proof: 

 

  
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But
 
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1 1 , because the benchmark is a fully 

invested portfolio i.e. 

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, therefore: 
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2.8 

 

 

This is the main building block to decompose performance on a security level. 

The intuition behind this is that the relative to the benchmark portfolio 

performance is attributed to each security. Each security held within the 

portfolio contributes positively or negatively to the overall portfolio 

performance. This depends on the performance of the security itself relative to 

the performance of the entire index and also on the relative weighting of the 

security within the portfolio against the index. For instance, if the security is 

over-weighted by 1% in the portfolio versus the benchmark and it has 
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outperformed the benchmark by 100bps, the overall contribution of this 

particular ith security to the alpha is: 

 

bps

bps
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By summing up all n securities held within the portfolio and the benchmark 

portfolio (i.e. all the over weights and all the under weights), we should have a 

clear view on how performance is attributed per each line item held within the 

portfolio. It is noteworthy that for all securities that are off-benchmark 

investments, the overweight is equal to the weight of the security in the 

portfolio. Equivalently, the underweight for all the securities that the portfolio 

is not invested in but are held in the benchmark is equal to the weight of the 

position in the benchmark. As explained later on it is meaningful that the 

benchmark is not replicated on a security by security basis by the portfolio 

manager for various reasons. Due to this fact it is important to understand the 

two cases of securities which are not being part of the portfolio however are 

included in the benchmark and also the off-benchmark positions. 

  

Equivalently the volatility of the relative portfolio, also known as Tracking Error 

is measured as follows: 

 

T

BMKPTFBMKPTFREL wwww )()(2   

2.10 

 

 

Where: 

2

REL      is the relative portfolio variance 

BMKPTF ww     is the vector of relative to the index weights  

Σ             is the variance covariance matrix 
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Here the tracking error or the relative to the benchmark portfolio risk is an ex 

post measure as it is calculated based on relative weights and on realised vol.  

At one side of spectrum there are passive portfolios that are targeted to match 

the benchmark risk profile as closely as possible. At the other end there are 

very active portfolios that can largely deviate from benchmark and use it only 

as a nonbinding reference point. In most cases the portfolios managed fall 

somewhere in the area between these two extremes. A portfolio identical to 

the benchmark bears no risk from a portfolio manager’s point of view. The 

goodness of the portfolio manager is evaluated on the dual basis of assessing 

both performance and risk. The measure designed to distinguish the lucky 

manager from the skilful one is very similar to the Sharpe Ratio and is called 

Information Ratio. Information Ratio measures the alpha delivered per unit of 

risk undertaken relative to the benchmark. 

 

rorTrackingEr

alpha
RationInformatio _  
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2.4 Choosing the right Benchmark 

 

Unless there is a bias in a given sector leading to significant portfolio deviation 

from the benchmark, portfolio performance should be away from benchmark 

performance. That is the reason why the choice of the right benchmark is so 

vital for managing a portfolio. There is a very wide variety of benchmarks 

available in the market place. To make sure that the index is reflective of the 

investment opportunity and the discretion provided to the manager by the 

client, an existing index may need to be tailored. In some cases there are some 

very highly customised indices that are constructed. The choice of a good 

benchmark is crucial because it establishes the risk and return profile for 

managing the portfolio.  

 

Typically, a benchmark should tie out to the following criteria: 
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 Unambiguous and transparent- securities held in the index should be 

clearly defined.  

 Investable- the securities that a benchmark is invested in should be 

tradable so that the index can be potentially replicated by an investor.  

 Priced daily- to allow for daily monitoring. 

 Availability of historical data- to allow for statistical analysis on returns’ 

history. 

 Low turnover- benchmarking against an index that is constantly changing 

would prove both difficult and costly. 

 Specified in advance- the benchmark should be set up before a portfolio is 

invested. 

 Published risk characteristics- Risk metrics of the benchmark should be 

available allowing the portfolio manager to actively manage the portfolio 

on a relative to index basis.  

 Reflect liabilities- Match closely the liabilities that should be met during the 

life of the portfolio if the investment is in a liability driven space. 

 Constraints imposed on the portfolio reducing its opportunity set should 

also be reflected in the benchmark. 

 

2.5 Benchmark Replication 

 

Many indices hold hundreds or even thousands of securities making it tough for 

the investment manager to replicate the benchmark. It would not be feasible 

to match the benchmark on security by security basis as many securities might 

be highly illiquid or even non available. In the treasury market the security by 

security match might be feasible but is not necessarily desirable. However, full 

replication would be reasonably hard to implement in agency, mortgage, or 

corporate bond markets. The existence of transaction costs makes it extremely 

costly to attempt such a type of benchmark replication even if it is theoretically 

feasible. These facts are pushing portfolio management towards a new 

approach; the extensive use of quantitative methods. Passive portfolio 

managers, or “indexers,” seek to replicate the returns of a broad market index. 
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They use risk models to help keep the portfolio closely aligned to the index 

across all risk dimensions. Active portfolio managers attempt to outperform 

the benchmark by positioning the portfolio to capitalize on market views. 

For the economy of this PhD thesis the investment universe will be considered 

to be the Barclays Capital US Aggregate Index. The potential benchmarks which 

can be used here are the Barclays Capital US Aggregate Index or a subset of it. 

The reason is that the benchmark cannot be broader than the investment 

universe used to form the portfolio.  

 

2.6 Multifactor Risk Models 

 

In the plethora of data available in today’s marketplace, an investment 

manager might be tempted to build a risk model directly from the historical 

return characteristics of individual securities. The standard deviation of a 

security’s return in the period to come can be projected to match its past 

volatility; the correlation between any two securities can be determined from 

their historical performance. Despite the simplicity of this scheme, the 

multifactor approach bears important advantages.  

 

First of all, the number of risk factors in the model is much smaller than the 

number of securities in a typical investment universe. This greatly reduces the 

matrix operations needed to calculate portfolio risk. This increases the speed of 

computation (which is becoming less important with gains in processing power) 

and, more importantly, improves the numerical stability of the calculations. A 

large covariance matrix of individual security volatilities and correlations is 

likely to cause numerical instability. This is especially true in the fixed income 

world, where returns of many securities are very highly correlated. Risk factors 

may also exhibit moderately high correlations with each other, but much less 

so than for individual securities. Some practitioners insist on a set of risk factors 

that are uncorrelated to each other. Dynkin et al. (2005) have found it more 

useful to select risk factors that are intuitively clear to investors, even at the 

expense of allowing positive correlations among the factors. 
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 A more fundamental problem arising from relying on individual security data is 

that not all securities can be modelled adequately in this way. For illiquid 

securities, pricing histories are either unavailable or unreliable; for new 

securities, histories do not exist. For still other securities, there may be plenty 

of reliable historical data, but changes in security characteristics make this data 

irrelevant to future results. For instance, a ratings upgrade of an issuer would 

make future returns less volatile than those of the past. Moreover a change in 

interest rates can significantly alter the effective duration of a callable bond. 

As any bond ages, its duration shortens, making its price less sensitive to 

interest rates. A multi-factor model estimates the risk from owning a particular 

bond based not on the historical performance of that bond, but on the 

historical returns of all bonds with characteristics similar to those currently 

pertaining to the bond. 

 

Bhansali (2009) stresses that beyond simplification from the reduced 

dimensionality of the problem a major contribution of factor analysis is that 

factors’ behaviour can be mapped to economic variables. It is more intuitive to 

the asset allocator to make forecasts and express his views on economic 

variables that will determine portfolio performance rather than having 

particular views on each asset class. In that sense factor analysis goes one step 

ahead in comparison to only focusing on asset classes, because it goes straight 

to causalities identification.  Apart from helping to analyse portfolios from an 

allocation and management perspective, factor based framework enables the 

investment managers to articulate their stories vis-à-vis their clients and make 

arguments on the particular views that are driving portfolio construction and 

portfolio performance. 

 

Quantitative analysis tried to fill in the gap in portfolio construction in terms of 

identifying portfolio risks and replicating benchmarks at a much lower cost. The 

idea is to move away from asset classes and stress on risk analysis. The relative 

portfolio total risk should be approximated via a multifactor model on ex ante 
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basis. This approach has gained ground in the market place against ex post risk 

analysis because it allows to judge what the risk of a relative portfolio should 

be based on how it is exposed to the various risk factors. The methodology is 

fairly straightforward. A variance covariance matrix is calculated for the set of 

risk factors specified in the model. Then according to the way the relative 

portfolio is positioned against them the total portfolio risk is derived. This is 

stated to be an ex ante analysis which can be extended to the analysis of 

scenarios as well.  

 

The notion of applying a multifactor model goes back to the basics of portfolio 

theory. Portfolio theory suggests that when a number of securities are added in 

a portfolio non-systematic or specific risk is eliminated due to the 

diversification effect. That means practically that there would be no risk left in 

the portfolio associated to specific issues. In this case, idiosyncratic risk 

emanating from high concentrations and lack of diversification would be 

eliminated. What would be left is only market risk which should be explained 

by a set of risk factors driving the entire market. According to Dynkin et al. 

(2009) these risk factors for bond portfolios can be movements of the key 

rates, credit sector spreads or volatility. Bhansali (2009) indicates that a 

reasonable set of fundamental risk factors for fixed income can be level, curve, 

spread durations and convexity risk.  

 

2.6.1 Interest Rate Risk 

 

The prices of bonds in the secondary market are determined by supply and 

demand dynamics. They are not priced using a formula. Of course, brokers 

might use the below formula if the market is not very liquid, but in general they 

set their prices by supply and demand. The present value of a bond is the sum 

of the discounted future cash flows.  
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Where: 

iT      is the maturity of i-th cash flow 

iTC
   is the cash flow paid at iT  

iTR
   is the discount rate, the yield 

 

As the yield is not observable in the market, prices only are observed as 

determined by trading activity i.e. supply and demand. The yield can be implied 

or backward engineered by the market price using the above formula. iTR
is the 

yield that the market requires in order to invest in this particular security. The 

market tends to price all the risk characteristics of a bond into its yield. If the 

market consensus on the yield of a bond changes so does its price. The first 

order sensitivity of a bond price to yield changes is measured by duration. 

Convexity is the second order sensitivity of a bond price to yield changes, or the 

rate of change of duration itself when yield changes. Duration is a more robust 

figure for small changes in yield and should be better adjusted by convexity 

when jumps in yield occur. Taylor Series expansion should be used to 

approximate change in price. As a general rule, regular fixed coupon bonds 

have positive duration (expressed in years because duration is a time function). 

In most cases the minus sign is added in front of the duration figure to indicate 

that for any change in yield price is moving to the opposite direction. In terms 

of convexity it refers to the convex nature of the cash flow discounting 

function.  

 

Convexity is positive for all “plain vanilla” bonds. But it is becoming negative 

when optionality is introduced into the bond. Typical examples are mortgage 

securities. These securities are both callable and extendible bearing both 
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prepayment and extension risk. That is the reason why convexity is negative 

across any possible yield level.  

 

2.6.2 Spread Risk 

 

Several types of securities fall under the umbrella of Fixed Income instruments: 

Treasuries, Corporate bonds, Mortgages, Agencies or derivatives such as 

Interest rate Swaps or Credit Default Swaps. Expanding too much on the details 

of each instrument is beyond the scope of this study. It is however essential to 

note that different types of securities despite having exactly the same cash 

flow structure may exhibit substantial discrepancies in yields. The reason is 

that, as mentioned before, the market tends to price all types of risks. Different 

issuers may be of completely different risk profiles. This is causing corporate 

bonds to trade at a higher yield vs. treasuries or corporates. The lower the 

credit quality of the issuer the higher the reward required by the market in 

order to invest in a particular security and not in the risk-free alternative. 

According to Blanco et al. (2005) the market consensus about the risk free rate 

of interest is to take either Treasury or Swap rates.  

 

This implies that for all the securities, not only corporates, which trade at a 

spread over the risk free rate, there is one new form of risk introduced. This is 

spread risk. Spread risk reflects the excess yield required by the market due to 

Credit risk, Prepayment and Extension risk, Liquidity risk, Counterparty risk etc. 

A rational investor would never undertake more risks without expecting higher 

reward. As shown earlier, the sensitivity of each security to yield changes is 

measured by duration. From now onwards the yield of each security will be 

broken down in two main constituents. Firstly, an interest rate component 

corresponding to the changes of the risk free rate i.e. treasuries curve. 

Secondly, a spread risk component is used to accommodate the excess yield 

required by the market per asset class, as highlighted by Leibowitz et al. (1990). 

Duration refers to the interest rate risk component and an additional risk 

measure, the spread duration, refers to the spread risk component.  
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2.6.3 Risk Factor Sensitivities on Portfolio Level 

 

Yields normally incorporate a term premium. Bonds of different maturities 

have a different yield. This is associated with interest rates’ term structure. 

When aggregating duration to portfolio level the weighted average is used.  
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Where 

iw
              is the weight of security i 

iDur           is the Duration of security i  

PTFDur       is the portfolio Duration   

 

Obviously, to evaluate the change in yields at portfolio level by solely counting 

on duration might be misleading. Different maturity bonds have different 

underlying yields. Hence considering only one yield change for the entire 

portfolio and ignoring different yield changes occurring across the yield curve 

may cause severe problems. The aggregation mechanism is the same for 

spread duration measures and other risk measures as well. Consolidating the 

key risk exposures into a handful of sensitivities measures for the entire 

portfolio is intuitive but can disguise the actual risk profile of the portfolio. This 

is the problem of using averages at a time when different maturities, countries, 

sectors and credit quality exposures are crucial to the behaviour of financial 

assets.    

 

2.6.4 Other risk types 

 

Apart from interest rate, yield curve risk and credit risk, there are other forms 

of risk which may occur in a fixed income portfolio. These include but are not 

limited to sector risk linked to the exposure towards different industry groups 
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of securities, volatility risk linked to the convexity profile of the instruments, 

prepayment risk linked to callable bonds and mortgage backed securities and 

currency risk linked to various currencies of issues which differ from the 

portfolio’s base currency. Finally, issue specific risk can be another form of risk 

which may appear into the portfolio if it is not adequately diversified.  

 

2.7 Conclusion 

 

Two basic options are available for the fixed income investor, passive and 

active portfolio management. The degree and magnitude of activity may differ 

from one portfolio to another but a measure of success for active 

implementation of trading ideas is by using a chosen benchmark index. An 

adequate benchmark index, should describe the nature of the strategy to be 

followed and the risk appetite as well. In a sense, the benchmark is the 

opportunity cost for being invested in active portfolio management and sets 

the bar for the desired initial allocation. In order for the investment manager to 

outperform the index, relative risk should be undertaken vs. the benchmark, in 

line with the investor’s risk tolerance. If the strategy is correct the investor 

should be rewarded for the relative risk undertaken by excess returns. 

 

In order to achieve proximity to the benchmark, in terms of returns and risk, 

multifactor risk models are often employed for both benchmark replication and 

active risk management. A key component of the allocation process is the 

understanding of the risk factors driving portfolio performance and how they 

are aggregated on portfolio level. The impact of diversification should also not 

be neglected when it comes to the combination of all individual risks into a 

portfolio structure. In particular, when monitoring a portfolio, attention should 

be paid into the effect of averaging up risk exposures, which are similar but not 

identical in nature. 
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3 Fixed Income Portfolio Construction: A Bayesian 

Approach for the Allocation of Risk Factors 

 

3.1 Introduction 

 

A main theme in every portfolio construction problem is the estimation of the 

set of expected returns and risk. How exactly the expected returns and the risk 

are formulated is the differentiating factor from both a modelling and an asset 

allocation perspective. After the returns and risk are estimated it comes down 

to put the two together in order to construct an optimum portfolio.   

 

Black-Litterman pioneering work has been pivotal in a sense of i) providing an 

intuitive starting point based on CAPM and ii) allowing for investment views to 

be used as part of the allocation process. Black-Litterman model backward 

engineers the equilibrium returns based on CAPM and the calculated variance 

covariance so that the chosen portfolio/benchmark becomes optimum and 

corner solutions are avoided. When choosing a different benchmark as an 

allocation starting point the equilibrium returns do change as well. Therefore, 

CAPM equilibrium returns are of instrumental value rather than true 

representations of the market expected returns as both the validity of CAPM 

and the extent to which the market portfolio is observable are arguable. In this 

doctoral thesis, the equilibrium returns are approximated by the occurring 

yields to maturity for investment grade bonds and the risk is estimated through 

a multifactor model which is essential for capturing the dynamics of the fixed 

income market. 

 

Fixed Income markets are by nature different to equities markets. Different 

bonds issued by a particular issuer are likely to display different risk 

characteristics from each other as the time to maturity and the coupons may 

differ. For example a 30 year bond is likely to have little in common with a 2 

year bond issued by the same issuer. Additionally as opposed to equities, in the 
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fixed income space most transactions take place OTC (over the counter) which 

implies less price transparency and limited data availability. Considering the 

case of a newly issued bond; there will be not enough price history to feed into 

the variance covariance calculator as this bond has only in existence from 

issuance to date. On the other hand side, even when history is available this 

might not be enough to calculate the variance covariance matrix. Every day 

there is a decline in the time left to maturity of a bond, implying that a 10 year 

bond will become eventually a two year bond after eight years. Using the price, 

yield or return history of this bond will be misleading in what the risk profile of 

the 2 year bond is. The reasoning is that the term of the bond changes with the 

passage of time and so does its risk profile. This is why data providers such as 

Bloomberg have constructed generic yield indices with fixed maturity to better 

reflect the risk dynamics of a particular point on the yield curve. 

 

In fact, fixed income securities exhibit high correlations, implying that there are 

underlying factors driving their behaviour. Bonds are exposed to various risk 

factors such as interest rate, spread and currency risks. A bond’s price is a 

function of the yield and the spread which account for interest rate, credit and 

liquidity risk respectively. Individual exposures to those risks are coming 

straight from the bond pricing models. The use of multifactor risk models as an 

investment management tool is widely used in the industry as it reduces the 

dimensionality of the risk estimation problem and provides more stable results. 

It is also highly intuitive as it can be linked to a quite straightforward economic 

interpretation. The roots of using multifactor models for portfolio management 

go back to the Arbitrage Price Theory.  Once the portfolio can be mapped onto 

a set of risk factors we are well positioned to start thinking of the allocation 

decision.  

 

As mentioned, the construction of a portfolio depends on the expected returns 

and risk. Largely speaking using a multifactor model should resolve most of the 

problems linked to the risk estimation in the fixed income space. It is time 

therefore to focus on the other pillar driving the allocation process: the 
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returns. In Black-Litterman world the equilibrium returns are implied by the 

CAPM from the market capitalizations i.e. the weights of the market portfolio 

and the estimated volatility. This is a smart way to construct better diversified 

portfolios, more aligned to the market portfolio than what the mean variance 

optimization would result to. Then the equilibrium returns will be blended 

together with the portfolio manager’s view to form the Black-Litterman returns 

and variance covariance matrix.  

 

Our goal here is to provide a framework for active fixed income portfolio 

construction. This goal is setting a dual target: (i) to construct a portfolio 

against an index ensuring the performance and risks are measured vs. a 

benchmark which represents the market and as such offers a high level of 

diversification and (ii) to construct the portfolio taking into account the 

investment manager’s views in order to outperform the index portfolio for a 

given level of risk undertaken relative to the index. 

 

As mentioned earlier, instead of using the Black-Litterman equilibrium returns 

as best proxy for the bonds’ expected total return, the selected total return will 

be the one implied by the current price levels; the yield to maturity. In order to 

make this statement valid this analysis is strictly limited to the investment 

grade universe, which is not prone to heavy default losses, if vulnerable to 

default losses at all. Moreover, the allocation will only be on a relative to index 

basis, implying that even if there are some names defaulting in the portfolio 

the same names will be part of the benchmark portfolio muting out the total 

effect in relative terms. Using the yields as a starting point for the returns’ 

estimation is linked to the market efficiency hypothesis which should hold in its 

semi-strong form in order for the Black-Litterman model to be meaningful.  

 

That told, the equilibrium returns can be extracted and the risk can be 

estimated as long as there is access to an index provider where this type of 

data is normally available. The next step is to incorporate the investment views 
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by applying the Black-Litterman model in order to estimate the blended returns 

and the new variance covariance matrix.  

 

The views to be specified are in the form of risk factors. Fixed income portfolio 

managers express their views on the main macroeconomic indicators affecting 

the returns of their portfolios. Therefore the views are on risk factor terms 

rather than on asset class terms.   

 

The bond portfolio should consist of a mix of the sub-indices of Barclays Capital 

US Aggregate Index modelled in POINT. The breakdown of the index is 

designed to capture (i) the main key rate durations and (ii) the main credit 

sectors. The risk factors consist of the Duration and Convexity measures for the 

interest rate risk and the spread Duration and Convexity measures for the 

spread risk. 

 

The yields are used to form the market implied return vector and the Variance 

Covariance Matrix. The risk factor sensitivities per sub-index are loaded in a 

matrix F that enables the transfer from asset class space to risk factor space 

and vice versa. Once the views are set based on matrix F the views on risk 

factors are converted into returns of the asset classes. The calculations are on a 

relative to the benchmark basis. The relative to the index weights (the 

overweight and the underweight) is what is targeted. If the portfolio is invested 

exactly as the benchmark the relative weights would be zero, there would be 

no excess yield, no performance caused of market movements and no risk 

relative to the benchmark.  

 

The index can be the Bar Cap US Aggregate or any subset of it. It is essential 

that the index is not broader than the investment universe set up in the 

beginning. Here the investment universe is the US bond market.  
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3.2 Literature Review 

 

A milestone to address the portfolio construction problem was the Markowitz 

(1952) Mean Variance approach.  The concept of the model is that the investor 

prefers higher expected return than lower and dislikes risk. The Prior 

knowledge of the expected return is required for the mean variance optimiser 

to work. The calculation of expected return might be a problematic area as its 

computation, based on historic prices, takes as granted that the historic means 

are the best future estimate. That is the reason why the Mean-Variance 

approach, although very intuitive, has been characterized by Michaud (1998) as 

“Error maximisation”. The extent to which Markowitz efficiency is in line with 

the expected utility maximization should be questioned. If the answer is no, 

then optimisation of specific utility functions should replace Markowitz 

efficiency. 

 

The capital asset pricing model (CAPM) presented by Sharpe (1964) can be 

seen as a consequence of mean-variance portfolio theory. It defines the 

required return level by a rational investor in order to hold any particular risky 

asset. Markowitz Mean Variance efficiency and CAPM is a single period model.  

 

To accommodate investment decisions made on longer time horizon, Merton 

(1973) published an “Intertemporal Capital Asset Pricing Model” showing how 

to generalize the capital asset pricing model to a comprehensive intertemporal 

equilibrium model. Merton’s intertemporal CAPM with stochastic investment 

opportunities indicated that the expected excess return on any asset is given by 

a multi-beta version of the CAPM. 

 

According to Fama (1996) the ICAPM generalizes the idea of the CAPM. In 

practice, if borrowing and lending is free and if short selling of risky asset is 

allowed, market prices imply that market portfolio is multifactor efficient. 

Moreover, multifactor efficiency establishes a link between expected return 
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and beta risks but it requires additional betas apart from the market beta for 

the explanation of expected returns. 

 

Fama and French (1993) state that size and book-to-market equity are not state 

variables but the higher average returns are on small stocks and high book-to- 

market stocks should be unidentified state variables responsible for non-

diversifiable risks in returns. These risks are priced separately from market 

betas. 

 

Frankel and Lee (1998), Dechow, Hutton and Sloan (1999), Piotroski (2000) 

highlighted that in portfolios constructed on price ratios such as book to 

market equity, stocks with higher expected cash flows have higher average 

returns  that are not captured by the three-factor model or the CAPM. The 

conclusion reached there is that prices are irrational to the degree they do not 

incorporate available information about profitability expectations. 

 

Lew and Vassalou (2000) state that annual returns on the SMB and HML hedge 

portfolios forecast growth in several countries. Vassalou (2002) states that a 

portfolio set to track news on the future growth of GDP captures much of the 

explanatory power of the Fama and French portfolios. 

 

Studies such as Berk, Green and Naik (1999) and Gomes, Kogan and Zhang 

(2000) develop models explaining the Fama and French results in problems 

related to the measurement of beta. 

 

The market portfolio should in theory include all types of assets that are held 

by any investor as an investment. In practice, such a market portfolio is 

unobservable and usually a stock index is used as a proxy for the true market 

portfolio. According to Roll (1977) CAPM might not be empirically testable due 

to the true market portfolio not being observable.  
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Goltz and Le Sourd (2011) highlighted that CAPM is frequently used to 

advocate passive index investing. Other studies including Roxburgh et al (2011) 

and Doeswijk et al (2012) have further explored the investable assets universe 

forming the market portfolio. 

 

Black and Litterman (1992) considered market equilibrium return as the 

starting point for the allocation problem. For the estimation of the excess 

equilibrium returns, reverse optimisation was used, under the CAPM 

assumption. Then equilibrium returns were blended with the investment views 

to form the posterior set of expected returns. 

 

Regarding the blending process Black and Litterman (1992), He and Litterman 

(2002), Idzorek (2004) considered the set of equilibrium returns as the prior; 

whilst Satchel and Scowcroft (2000) considered the investor views as the prior 

distribution and the equilibrium returns as the likelihood.   

 

Krishman and Mains (2005) re-derived the Black-Litterman model on the basis 

of a two factor risk framework. They have added a recession risk factor to the 

traditional single factor model to better capture the actual risk dynamics into 

the utility function.  

 

According to Giacometti (2007) the Black-Litterman model generates those 

equilibrium returns to replicate the allocation of the chosen market portfolio, 

and the equilibrium returns differ across different investors with different 

initial allocations. 

 

In this chapter the Black-Litterman model is revisited in order to permit the 

construction of active fixed income portfolios, where the return and risk 

dynamics are substantially different from the equities markets.  
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3.3 Methodology 

 

The scope of this chapter is to enhance the Black and Litterman model so that 

it can be applicable to fixed income portfolios. For that purpose both 

equilibrium returns and portfolio risk are revisited. The CAPM equilibrium 

returns are juxtaposed against the occurring yield to maturity set for 

investment grade securities and a multifactor risk model is used. The bonds are 

mapped onto risk factor space, making it feasible to express both the risk and 

the views based on a risk factor framework. 

 

3.3.1 The Equilibrium Returns 

 

Black-Litterman model (1992) proposed a framework for portfolio construction. 

Its two major contributions can be summarized into the following. First, it uses 

the CAPM equilibrium market portfolio as a starting point to generate the 

expected return. Only historic prices and returns can be observed in the market 

place. In the Black-Litterman model, the equilibrium return is backward 

engineered by the market volatility which is occurring in the market.  

 

Second, it combines the portfolio manager’s particular view with the market 

equilibrium return. The latter constitutes a centre of gravity which is adjusted 

by the view depending on the confidence of the investor on it. Nothing similar 

had been published prior to the Black-Litterman model. It offers the 

quantitative platform to specify the investor views and to blend them together 

with the market implied equilibrium return and form a new combined 

distribution. 

 

The Black-Litterman model takes the market equilibrium return as a starting 

point. As mentioned above due to the nature of the data available in the 

market the model is using a reverse optimisation method to derive the excess 

equilibrium returns.  
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The equations for reverse optimisation are derived. The starting point is the 

quadratic utility function: 

 

WWWU TT 









2


 

3.1 

 

 

Where: 

U         is the Investors utility, the objective function during portfolio 

optimisation 

П         is the Excess Equilibrium Return Vector (N х 1 column vector) 

λ          is the risk aversion parameter of the market 

Σ          is the covariance matrix of returns (N х N matrix) 

W     is the weight invested in each asset (N х 1 column vector) 

 

As a concave function U is having one single global maximum. By maximising 

the utility function without any constraints, a closed form solution is derived. 

The first order derivative with respect to the weights (W) is calculated and is 

then set to 0. 

 

0 W
dw

dU
  

3.2 

 

 

Solving the above equation for Π: 

 

W   
3.3 

 

 

The risk aversion coefficient lambda corresponds to the risk premium required 

by the market in order to undertake one more unit of risk. This parameter 

needs to be known in order to use formula (3). In most cases in the literature 

the value of parameter λ is defined prior to using the model. The process of 

calibrating returns of Bevan and Winkelmann (1998) was to input a Sharpe 
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ratio based on their experience. Black and Litterman (1992) use a Sharpe ratio 

closer to 0.5 as part of their analysis.  

 

More specifically, λ can be derived when equation (3) is multiplied at both sides 

by WT and when vector terms are replaced by scalar terms. 

                             

2))((  freerRE  
3.4 

 

 

2
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

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  

3.5 

 

 

Where: 

E(R)   is the return expectation  

r   is the risk free rate  

σ2   is the variance  

 

As part of the recent analysis, formula (5) should be used. E(R), rfree and σ2 are 

inputs in order to calculate λ. Once we have a value for λ then we feed W, λ 

and Σ into formula (3) to compute the set of equilibrium asset returns. Formula 

(3) is nothing but the closed form solution to the reverse optimisation problem 

for the calculation of asset returns given an optimal mean-variance portfolio in 

the absence of constraints. Formula (3) can be rearranged for the computation 

of optimal portfolio weights in the absence of constraints. 

    

 1)(w  
3.6 

 

 

By plugging Π, λ and Σ back into the formula (6), we can get the weights (w). 

Using historical excess returns rather than equilibrium returns would make the 

results extremely sensitive to changes in Π. In Black-Litterman model the 

weight vector is less sensitive to the Π vector.  One of the pros of Black-
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Litterman framework is the stability of the optimisation process. The cons are 

linked with the validity of the CAPM assumptions and the so called ‘CAPM 

equilibrium returns’. 

 

When focusing on fixed income, a good representation of the promised return 

is the yield to maturity. However, this may not be an accurate estimate of the 

expected returns given that bonds may suffer default losses. When focusing on 

investment grade fixed income universe, where the default risk is very low, and 

the main source of uncertainty is price/yields volatility, the yield to maturity is 

a good proxy of the expected return to be achieved if a security is held to 

maturity and no credit events occur.  

 

The yields are stripped out of the occurring valuations and constitute, by 

nature, a representation of the market consensus on future returns, under the 

no default condition. Whereas yield to maturity is a reasonable measure for 

expected returns of a ‘buy and hold’ strategy within investment grade space, it 

would not be applicable to the high yield universe, where the probability of 

default is not negligible. 

 

As such, in this chapter a comparison is made between the CAPM implied 

equilibrium returns and the yield to maturity set. That tests the compatibility of 

Black- Litterman equilibrium returns against the market consensus and also 

tests if the risk aversion coefficient can be calibrated so as to reconcile the two. 

 

3.3.2 Specification of the Views 

 

This section focused on how to specify views on the estimated mean excess 

returns. Views can be absolute i.e. for only one asset class or relative i.e. 

measuring the relative expected performance of two or more asset classes. 

This step will allow the investment managers to express their particular views 

which will be incorporated in the model into a new excess returns distribution, 

conditional on the market equilibrium findings. This new conditional 
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distribution is often referred in the literature as posterior distribution. Two 

conditions are met by construction: 

1. All views should be unique and uncorrelated with each other. 

2. Views should be “fully invested”. The sum of their weights should be 

either one for absolute views or zero for relative views. 

3. It is not necessary to impose views on all assets. In the extreme case 

that there are no views at all, the model will use by default the market 

implied equilibrium excess return. 

 

The investment manager’s k views on n assets will be represented as follows: 

 P is a )( nk  matrix of the assets’ weights corresponding to each view. 

For all relative views the sum of the weights is zero and for all the 

absolute views the weight is one. Satchell and Scowcroft (2000) use an 

equal weighted scheme, whilst He and Litterman (1999) and Idzorek 

(2005) use a market capitalization weighted scheme. 

 Q is a )1( k matrix of the returns per view. 

 Ω is a )( kk  matrix corresponding to the variance-covariance matrix of 

the views. This is by construction a diagonal matrix due to the 

requirement of the views being independent and uncorrelated. Ω is 

symmetric and zero on all non-diagonal elements.  

 

Having set the views specification it is now feasible to express the conditional 

distribution mean and variance in views space as: 

                                                                                                  

)( ABP ~ ),( QN     
3.7 

 

 

And in asset space as: 
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Though interesting to see how views are translated in asset space, there is no 

need to evaluate the above expression in order to implement the Black-

Litterman model.  

 

In a risk factor space all return input parameters for the Black-Litterman model 

are replaced by changes in underlying yields and spreads. A number of steps 

have been followed in order to bring the views to a Black-Litterman compatible 

form. The market views are expressed in a similar way to Satchell and 

Scowcroft (2000). A main modification is the replacement of views on returns 

by views on yield and spread changes. In risk factor space only absolute views 

can be used as input. 

 

The input of views on risk factors is feasible through a vector V. The length of 

vector V is the number of risk factors. The first 13 elements of vector V 

correspond to the expected changes in yield and OAS which will affect the 

portfolio via duration exposures. The last 13 elements of vector V correspond 

to the squared changes of yields and OAS which will affect the portfolio via the 

convexity exposures. An adjustment vector A is created to help mimicking the 

Taylor series expansion for a given level of yield and spread change. The first 13 

elements of vector A are equal to -1, whereas the last 13 elements of vector A 

are equal to ½. When multiplying, element by element, the views vector V and 

the adjustment vector A, we end up with the adjusted views vector .V̂  Q 

vector is becoming: 

 

VFQ ˆ  
3.9 

 

 

The Black-Litterman Q̂  vector is finalized after the zero rows are deleted. Q̂  

vector is expressed on asset class basis thanks to multiplying by matrix F. 

The final number of views is the number of all asset classes which will be 

affected by views in terms of yield and spread level changes. This number 
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equals to the number of asset classes with non-zero exposure to this risk 

particular risk factors. This is what controls the dimensions of P matrix i.e. the 

number of views per asset classes by the number of all asset classes. 

 

3.3.3 The Risk Estimation 

 

One of the main assumptions of the Black-Litterman model is that the input 

returns are normally distributed with mean equal to the market equilibrium 

return. Then we expand on the variance calculation. Black and Litterman made 

the simplifying assumption that the covariance of the mean estimate is 

proportional to the covariance structure of the returns Σ. The constant of 

proportionality created is τ so that: 

 

   
3.10 

 

 

By putting all components together, the prior distribution is formed. It shows 

the estimate of the mean and variance of excess returns. 

 

)(AP ~ ),(  N        
3.11 

 

 

 In the estimation of the mean of a distribution, the uncertainty will be 

proportional to the number of samples. As suggested by Walters (2009) τ can 

be calibrated on the basis of the maximum likelihood estimator: 

 

T

1
         

3.12 

 

 

Or on the basis of the best quadratic unbiased estimator 
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kT 


1
  

3.13 

 

 

Where: 

T   is the number of samples 

k   is the number of assets 

 

The parameter τ is one of the most obscure elements around the Black- 

Litterman model. In fact, it is nothing but a scaling parameter to reflect the 

variance of the mean as opposed to the variance of the population. In a Black-

Litterman environment a higher τ would result in a higher variance for the 

model and a lower τ would result in a lower variance. For some practitioners 

this is a way of calibrating the overall risk estimate which is input to the 

optimization process. 

 

A number of papers use a τ within the range (0.025, 0.05) such as Black and 

Litterman (1992), He and Litterman (1999) and Idzorek (2005). Satchell and 

Scowcroft (2000) use a τ at around 1 that fits to their reference model. The 

value for τ used is this thesis is 0.025 which in line with the first class of papers.  

 

3.3.4 The estimation model 

 

Before advancing, it is important to introduce the Black-Litterman formula and 

provide a brief description of each of its elements.  Throughout this article, k is 

used to represent the number of views and n is used to express the number of 

assets in the formula. 

 

     QPPPRE 111
11

''][ 


   

3.14 

 

 

 Where: 

E[R]   is the new (posterior) Combined Return Vector (n x 1 column vector) 
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τ   is a Scalar 

Σ   is the Covariance Matrix of Returns (n x n matrix) 

P  refers to the assets involved in the views (k x n matrix or 1 x n row 

vector in the special case of 1 view)  

Ω  is the diagonal covariance matrix of error terms in expressed views 

representing the level of confidence in each view (k x k matrix) 

П   is the implied Equilibrium Return Vector (n x 1 column vector) 

Q   is the Views Vector (k x 1 column vector) 

 

And the variance is equal to: 

111 ])[(   PPM T  
3.15 

 

    

Here the posterior variance is the variance of the posterior estimate of the 

mean and not the variance of the returns. 

 

Bayes theorem can be applied to the fusion of prior and conditional 

distributions to generate the posterior distribution of asset returns. The 

derivation is in both Walters (2009) paper and in Satchell and Scowcroft (2000). 

 

The posterior distribution formed is: 

   

)( BAP ~ )])[(,])][()([( 11111111   PPPPQPN TTT            
3.16 

 

 

Conceptually, the Black-Litterman model is nothing but a weighted average of 

the Market Equilibrium Return Vector (Π) and the Views Vector (Q), where 

weights depend on the scalar (τ) and the uncertainty of the views (Ω). 
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3.3.5 Calculation of the variance covariance matrix 

 

An exponentially weighted moving average (EWMA) is used for the calculation 

of the variance covariance matrix. This technique suggested among others by 

Jorrion (2000) is giving extra weight to the most recent observations so that a 

high volatility period is more likely to be followed by a high volatility period. 

Weights are adjusted by a decay rate of 2%, implying that as we move back in 

time each weight is 2% less than the next one.  

  

1)1(  i

iw   
3.17 

 

 

Where: 

iw   is the weight assigned to the ith observation 

δ     is the decay rate 

 

3.3.6 The risk factor loadings F matrix 

 

In order to facilitate the calculation of both the variance covariance matrix and 

the views, a matrix F is introduced. The variance covariance is initially 

calculated on 13 risk factors as a 2% decaying EWMA on 5year of weekly 

changes in yields and spreads. In order to for this variance and covariance 

estimate to liaise with the portfolio under construction we introduce matrix F. 

The dimensions of F are determined by the number of asset classes and the 

number of the risk factors. Litterman (2003) describes the portfolio risk as: 

                                                                                                       

TTWFWF2  
3.18 

 

 

Where: 

W          is the portfolio weights vector 
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F           is the risk factor loading matrix representing the exposures of each 

asset class  to each one of the risk factors 

∑           is the variance covariance matrix on risk factor level  

TFF   is the variance covariance matrix on asset class level 

 

It is noteworthy that in the above formula there is no term for the idiosyncratic 

risk. This is because in the context of a diversified portfolio the specific risk 

should be eliminated. In the long only space portfolios are managed against an 

index which is a broad market representation of the strategy followed and 

offers a high degree of diversification. The diversification benefit of indexation 

is analysed in more detail in chapter 2. 

 

3.3.7 The Multi Factor Reference Model 

 

Highly customized solutions may be applied in portfolio management such as 

defining the appropriate benchmark and setting the appropriate set of risk 

factors depending on the nature of the risks that will be part of the portfolio. 

Most factor models that portfolio managers use comprise a very big number of 

risk factors, usually exceeding one hundred, to accommodate most types of 

global fixed income portfolios. If a particular type of risk is not included in a 

portfolio, the sensitivity assigned to this risk factor is zero.  

 

The choice of the multifactor risk model made here is relatively easy and 

intuitive. As long as the investment universe is the Barclays Capital US 

Aggregate Index the risk factors are separated into interest rate and credit risk 

ones. This is in line with Litterman (2003) and Dynkin (2005). 

 

As part of this paper we are going to focus interchangeably on 13 or 26 sources 

of uncertainty. Only the “durations” will be used for the risk estimation. We 

also tried to incorporate the convexities into the risk estimation but this has 

not added much to the overall risk whilst it dramatically increased the 

complexity of the calculation. As such, convexities are not used for the risk 
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calculation. On the other hand side, the convexities will be used into the 

derivation of the Black-Litterman views through Taylor series expansion. The 

full set of risk factors containing both first and second order sensitivities is 

displayed below. 

 

Table 1: Set of risk factors  

Duration 1-3yrs Convexity 1-3yrs 

Duration 3-5yrs Convexity 3-5yrs 

Duration 5-7yrs Convexity 5-7yrs 

Duration 7-10yrs Convexity 7-10yrs 

Duration 10-15yrs Convexity 10-15yrs 

Duration 15-25yrs Convexity 15-25yrs 

Duration 25+yrs Convexity 25+yrs 

OAS Duration US Agg Gvt Rtd OAS Convexity US Agg Gvt Rtd 

OAS Duration US Agg Securitized MBS OAS Convexity US Agg Securitized MBS 

OAS Duration US Agg Securitized CMBS_ABS OAS Convexity US Agg Securitized CMBS_ABS 

OAS Duration US Agg Corp Ind OAS Convexity US Agg Corp Ind 

OAS Duration US Agg Corp Utility OAS Convexity US Agg Corp Utility 

OAS Duration US Agg Corp Fin OAS Convexity US Agg Corp Fin 

 

These risk factors are designed to explain the price fluctuations per asset class 

based on the changes of the underlying yields and spreads. Based on the way 

the factor model has been specified, the interest rate risk will be captured by 

duration measures and the spread risk by spread duration measures. The key 

difference vs. an econometric model is that the interest rate and spread 

duration sensitivities are generated by Barclays Capital bond pricing models 

rather than resulting from a regression analysis. 

 

The degree of accuracy of the model is described for individual risk measures in 

the literature in Chapter 4. Two ways of evaluating the error term are by either 

factor based performance attribution which is resulting in an unexplained part 

of performance generated or by back testing the multifactor risk model. The 

later one is further elaborated in chapter 4. Introduction of high concentration 

risk to the portfolio would undermine the accuracy of the multifactor model 

chosen.  
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3.3.8 The Optimization 

 

At this point it is noteworthy to comment on the optimization process. To 

begin with, optimization here refers to the relative to the index portfolio. 

Where index, potentially any index can be used. Secondly, it refers to its risk 

profile. From these two points we can infer that the normal full investment 

constraint (weights adding up to one) which is valid in the optimization of 

absolute portfolios per asset class, does not make sense any more. Instead, the 

restriction imposed is that the sum of weights for the relative portfolio should 

be zero. That is to say that if the portfolio manager decides to overweight one 

sector, he must underweight one or multiple other sectors to finance this 

position.  

 

In addition, the short selling restriction holds in a sense of allowing the 

portfolio to have any exposure in a particular asset class in absolute terms but 

never have negative exposure. Relative weights can be negative but should be 

aligned with the short selling limitation. The reason is that the optimization is 

transitioned from the absolute portfolio to the relative portfolio. Therefore, 

any negative figures generated as part of the optimum solution imply that 

exposure to these risk factors is under weighted relative to the benchmark. Risk 

factors with positive weights assigned are over weighted respectively. 

 

Now that it has been clarified that the model aims at the relative portfolio it is 

important to stress what the benchmark is. The answer is the benchmark’s 

choice is upon investor’s discretion. Here the benchmark is the Barclays Capital 

US aggregate index. The optimiser aims to the relative portfolio as a standalone 

portfolio, as a portfolio over and under – weighted vs. a particular benchmark. 

Once the over/under weights are derived they can be applied then to the 

benchmark to generate the risk factor positioning of the managed portfolio.  

 

This approach is quite flexible in allowing the allocator to define the positioning 

of the portfolio, namely the relative portfolio, against the benchmark. Any 
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benchmark that is suitable can be used and once adjusted by the relative 

portfolio optimum exposures should give the absolute portfolio to be held.  

 

 

3.4 Data and Estimation 

 

As specified in the section referring to the choice of risk factors the model is 

based on changes in yields and spreads. Specifically, all of the time series used 

over 5 years of weekly data up until August 31st, 2012. Daily data has not been 

selected due to the great deal of noise embedded in daily time series. In 

addition, weekly observations were preferred over monthly because they 

offers relatively more information about the time series variability without the 

noise accompanying daily prices.  

 

The following sub-indices have been created using BarCap POINT. They have 

been selected so that each sub-index represents a combination of a maturity 

bucket and a credit sector. Based on this a duration/convexity and a spread 

duration/convexity are assigned to each asset class so that each asset class can 

only have exposure to four of the risk factors. 
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Table 2: Sector by maturity sub-indices 

 

Credit Sector 

M
at

u
ri

ty
 B

u
ck

et
 

US Agg Tsy 
1-3 

US Agg 
Securitized MBS 
1-3 

US Agg Gvt Rtd 1-
3 

US Agg 
Securitized 
CMBS_ABS 1-3 

US Agg Corp Ind 
1-3 

US Agg Corp 
Utility 1-3 

US Agg Corp Fin 
1-3 

US Agg Tsy 
3-5 

US Agg 
Securitized MBS 
3-5 

US Agg Gvt Rtd 3-
5 

US Agg 
Securitized 
CMBS_ABS 3-5 

US Agg Corp Ind 
3-5 

US Agg Corp 
Utility 3-5 

US Agg Corp Fin 
3-5 

US Agg Tsy 
5-7 

US Agg 
Securitized MBS 
5-7 

US Agg Gvt Rtd 5-
7 

US Agg 
Securitized 
CMBS_ABS 5-7 

US Agg Corp Ind 
5-7 

US Agg Corp 
Utility 5-7 

US Agg Corp Fin 
5-7 

US Agg Tsy 
7-10 

US Agg 
Securitized MBS 
7-10 

US Agg Gvt Rtd 7-
10 

US Agg 
Securitized 
CMBS_ABS 7-10 

US Agg Corp Ind 
7-10 

US Agg Corp 
Utility 7-10 

US Agg Corp Fin 
7-10 

US Agg Tsy 
10-15 

 

US Agg Gvt Rtd 
10-15 

US Agg 
Securitized 
CMBS_ABS 10-15 

US Agg Corp Ind 
10-15 

US Agg Corp 
Utility 10-15 

US Agg Corp Fin 
10-15 

US Agg Tsy 
15-25 

 

US Agg Gvt Rtd 
15-25 

US Agg 
Securitized 
CMBS_ABS 15-25 

US Agg Corp Ind 
15-25 

US Agg Corp 
Utility 15-25 

US Agg Corp Fin 
15-25 

US Agg Tsy 
25+ 

  

US Agg Gvt Rtd 
25+ 

  

US Agg Corp Ind 
25+ 

US Agg Corp 
Utility 25+ 

US Agg Corp Fin 
25+ 

 

 

The yield and spread levels, the duration and convexity sensitivities and the 

market capitalization weights are sourced form Barclays Capital POINT.  

 

 

3.5 Empirical Results 

 

Once all elements are explicitly defined the Black-Litterman posterior relative 

yields and spread movements expectations are coupled with the new variance 

covariance matrix to create the efficient frontier. The input to the Optimiser is 

the vector of expected changes in yields and spreads and the variance and 

covariance matrix. As per the set of views presented above, with which the 
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Black-Litterman model was fed, we got the following risk and return 

combinations. The risk calculation is the so-called ex ante Tracking Error in the 

literature because it projects the risk profile of the portfolio based on the 

exposure to the various risk factors. The target variables here are the relative 

weights. 

 

Scenario I: Reflationary pressures, the US economy warms up, interest rates go 

up by 20bps and spreads of risky assets do not react. The input of views into 

vector V is as follows.  

 

 

Table 3: First scenario changes in rates and spreads 

 

Change in Yield 

Duration 1-3yrs 0.20% 

Duration 3-5yrs 0.20% 

Duration 5-7yrs 0.20% 

Duration 7-10yrs 0.20% 

Duration 10-15yrs 0.20% 

Duration 15-25yrs 0.20% 

Duration 25+yrs 0.20% 

 

The portfolio combinations are reported below in table 4. 

 

 

Table 4: First scenario allocation per tracking error target 

Tracking Error Alpha Duration Spread Duration 

0.00% 0.00% 4.91 4.43 

0.10% 0.78% 4.94 6.28 

0.20% 1.20% 4.63 6.43 

0.30% 1.23% 4.49 6.36 

0.40% 1.35% 4.52 5.35 

0.50% 1.38% 4.39 4.79 

0.70% 1.36% 5.36 5.58 

0.80% 1.35% 5.55 5.76 

0.90% 1.34% 5.72 5.93 

1.00% 1.34% 5.89 6.09 

1.10% 1.33% 6.05 6.24 

1.20% 1.32% 6.21 6.39 

1.30% 1.32% 6.36 6.54 
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As the risk budget increases so does the concentration of the portfolio towards 

the higher yielding financial sector. It is relatively easier to increase the 

expected alpha when deviating from the benchmark. The results per risk factor 

allocation are presented below. 

 

 

Table 5: First scenario relative to the index allocation 

1-3yrs 3-5yrs 5-7yrs 7-10yrs 

10-

15yrs 

15-

25yrs 25+yrs 

US Agg 

Gvt Rtd 

US Agg 

Securitized 

MBS 

US Agg 

Securitized 

CMBS_ABS 

US Agg 

Corp 

Ind 

US Agg 

Corp 

Utility 

US Agg 

Corp 

Fin 

          

0.46  

          

1.04  

          

0.76  

          

0.73  

          

0.13  

          

0.52  

          

1.27  

          

0.51            1.14            0.07  

          

0.86  

          

0.20  

          

0.38  

          

0.35  

          

1.53  

          

0.45  

          

0.65  

          

0.40  

          

0.36  

          

1.19  

          

0.67            0.49            0.22  

          

0.75  

          

0.69  

          

2.26  

          

0.00  

          

2.01  

          

0.44  

          

0.33  

          

0.04  

          

0.52  

          

1.29  

               

-              2.06            0.14  

          

0.00  

          

0.00  

          

2.93  

               

-    

          

2.13  

          

0.42  

          

0.09  

          

0.03  

          

0.48  

          

1.33  

               

-              2.11            0.17  

               

-    

          

0.00  

          

2.74  

               

-    

          

2.72  

               

-    

               

-    

          

1.32  

               

-    

          

0.48  

               

-              0.61            0.00  

               

-    

               

-    

          

4.25  

               

-    

          

2.70  

               

-    

               

-    

          

1.66  

               

-    

          

0.03  

               

-              0.59                 -    

               

-    

               

-    

          

4.16  

               

-    

          

2.31  

               

-    

               

-    

          

3.04  

               

-    

               

-    

               

-                   -                   -    

               

-    

               

-    

          

5.58  

               

-    

          

2.18  

               

-    

               

-    

          

3.37  

               

-    

               

-    

               

-                   -                   -    

               

-    

               

-    

          

5.76  

               

-    

          

2.07  

               

-    

               

-    

          

3.66  

               

-    

               

-    

               

-                   -                   -    

               

-    

               

-    

          

5.93  

               

-    

          

1.95  

               

-    

               

-    

          

3.94  

               

-    

               

-    

               

-                   -                   -    

               

-    

               

-    

          

6.09  

               

-    

          

1.85  

               

-    

               

-    

          

4.20  

               

-    

               

-    

               

-                   -                   -    

               

-    

               

-    

          

6.24  

               

-    

          

1.74  

               

-    

               

-    

          

4.46  

               

-    

               

-    

               

-                   -                   -    

               

-    

               

-    

          

6.39  

               

-    

          

1.64  

               

-    

               

-    

          

4.72  

               

-    

               

-    

               

-                   -                   -    

               

-    

               

-    

          

6.54  
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Scenario II: Reflationary scenario, the Quantitative Easing programs start 

bearing fruit; the yield curve shifts up by 20bps and credit spreads start to 

compress. The views vector V becomes as follows: 

 

 

Table 6: Second scenario changes in rates and spreads 

 

Change in Yield/OAS 

Duration 1-3yrs 0.20% 

Duration 3-5yrs 0.20% 

Duration 5-7yrs 0.20% 

Duration 7-10yrs 0.20% 

Duration 10-15yrs 0.20% 

Duration 15-25yrs 0.20% 

Duration 25+yrs 0.20% 

Spread Duration US Agg Gvt Rtd 0.00% 

Spread Duration US Agg Securitized MBS 0.00% 

Spread Duration US Agg Securitized CMBS_ABS -0.80% 

Spread Duration US Agg Corp Ind -0.80% 

Spread Duration US Agg Corp Utility -0.20% 

Spread Duration US Agg Corp Fin -0.50% 

 

The different mix of overall duration and spread duration exposures are 

displayed below: 

 

Table 7: Second scenario allocation per tracking error target 

Tracking Error 

Expected 

Alpha Duration Spread 

0.00% 0.00% 4.91 4.43 

0.10% 1.07% 4.80 6.32 

0.20% 1.33% 4.99 6.61 

0.30% 1.45% 5.21 6.81 

0.40% 1.57% 5.40 6.50 

0.50% 1.64% 5.56 6.18 

0.60% 1.69% 5.73 6.11 

0.70% 1.76% 5.58 5.56 

0.80% 1.81% 5.72 5.72 

0.90% 1.86% 5.84 5.85 

1.00% 1.91% 6.21 6.84 

1.10% 1.94% 6.32 6.85 

1.20% 1.98% 6.42 6.85 

1.30% 2.02% 6.53 6.85 
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The more detailed risk exposures are as follows: 

 

Table 8: Second scenario relative to the index allocation 

1-3yrs 3-5yrs 5-7yrs 7-10yrs 

10-

15yrs 

15-

25yrs 25+yrs 

US Agg 

Gvt Rtd 

US Agg 

Securitized 

MBS 

US Agg 

Securitized 

CMBS_ABS 

US Agg 

Corp 

Ind 

US Agg 

Corp 

Utility 

US Agg 

Corp Fin 

                    

0.46  

                     

1.04  

                    

0.76  

                    

0.73  

                     

0.13  

                    

0.52  

                     

1.27  

                     

0.51  

                      

1.14  

                    

0.07  

                    

0.86  

                    

0.20  

                    

0.38  

                    

0.00  

                     

1.90  

                    

0.20  

                    

0.63  

                    

0.07  

                     

1.02  

                    

0.98  

                    

0.29  

                    

2.30  

                     

0.10  

                     

1.36  

                    

0.23  

                     

1.05  

                         

-    

                     

2.17  

                    

0.49  

                    

0.25  

                    

0.04  

                    

0.72  

                     

1.32  

                         

-    

                     

1.22  

                     

0.57  

                     

0.01  

                    

0.00  

                    

3.49  

                         

-    

                    

2.53  

                    

0.39  

                         

-    

                    

0.05  

                     

0.75  

                     

1.48  

                         

-    

                    

0.42  

                     

1.00  

                         

-    

                         

-    

                     

3.91  

                         

-    

                    

2.82  

                         

-    

                         

-    

                     

0.12  

                     

1.34  

                      

1.12  

                         

-    

                         

-    

                     

1.74  

                         

-    

                         

-    

                    

3.64  

                         

-    

                    

2.72  

                         

-    

                         

-    

                     

0.21  

                     

1.89  

                    

0.73  

                         

-    

                         

-    

                    

2.73  

                         

-    

                         

-    

                    

2.72  

                         

-    

                    

2.66  

                         

-    

                         

-    

                    

0.20  

                    

2.36  

                     

0.51  

                         

-    

                         

-    

                    

2.66  

                         

-    

                         

-    

                    

2.94  

                         

-    

                    

2.33  

                         

-    

                         

-    

                    

2.32  

                    

0.93  

                    

0.00  

                         

-    

                         

-    

                    

2.34  

                         

-    

                         

-    

                    

3.23  

                         

-    

                     

2.18  

                         

-    

                         

-    

                    

2.89  

                    

0.64  

                    

0.00  

                         

-    

                         

-    

                     

2.19  

                         

-    

                         

-    

                    

3.53  

                         

-    

                    

2.04  

                         

-    

                         

-    

                    

3.45  

                    

0.34  

                    

0.00  

                         

-    

                         

-    

                    

2.05  

                         

-    

                         

-    

                     

3.81  

                         

-    

                     

1.89  

                         

-    

                         

-    

                    

3.69  

                         

-    

                    

0.63  

                         

-    

                         

-    

                     

1.89  

                         

-    

                         

-    

                    

4.32  

                         

-    

                     

1.79  

                         

-    

                         

-    

                     

4.01  

                         

-    

                    

0.52  

                         

-    

                         

-    

                     

1.79  

                         

-    

                         

-    

                    

4.54  

                         

-    

                     

1.69  

                         

-    

                         

-    

                    

4.33  

                         

-    

                     

0.41  

                         

-    

                         

-    

                     

1.69  

                         

-    

                         

-    

                     

4.75  

                         

-    

                     

1.59  

                         

-    

                         

-    

                    

4.64  

                         

-    

                    

0.30  

                         

-    

                         

-    

                     

1.59  

                         

-    

                         

-    

                    

4.96  
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Scenario III: Reflation of US market, Federal bank starts hiking rates, bear 

flattening of the curve and rally in industrial credits.  

 

The views vector V becomes as follows: 

 

 

Table 9: Third scenario changes in rates and spreads 

 

Change in Yield/OAS 

Duration 1-3yrs 1.00% 

Duration 3-5yrs 0.80% 

Duration 5-7yrs 0.50% 

Duration 7-10yrs 0.20% 

Duration 10-15yrs 0.05% 

Duration 15-25yrs 0.02% 

Duration 25+yrs 0.01% 

Spread Duration US Agg Gvt Rtd 0.00% 

Spread Duration US Agg Securitized MBS 0.00% 

Spread Duration US Agg Securitized CMBS_ABS -0.80% 

Spread Duration US Agg Corp Ind -1.50% 

Spread Duration US Agg Corp Utility -0.05% 

Spread Duration US Agg Corp Fin -0.05% 
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The different mix of overall duration and spread duration exposures are 

displayed below: 

 

Table 10: Third scenario allocation per tracking error target 

Tracking Error 
Expected 

Alpha 
Duration Spread 

0.00% 0.00% 4.91 4.43 

0.10% 1.10% 4.94 6.63 

0.20% 1.23% 5.13 6.93 

0.30% 1.36% 5.32 7.40 

0.40% 1.45% 5.49 7.78 

0.50% 1.54% 5.67 8.02 

0.60% 1.62% 5.83 8.37 

0.70% 1.70% 6.00 8.65 

0.80% 1.79% 6.18 8.98 

0.90% 1.88% 6.36 9.28 

1.00% 1.97% 6.53 9.59 

1.10% 2.06% 6.70 9.91 

1.20% 2.15% 6.87 10.22 

1.30% 2.24% 7.04 10.53 

1.40% 2.32% 7.21 10.83 

1.50% 2.41% 7.39 11.15 

1.60% 2.50% 7.56 11.45 

1.70% 2.63% 7.72 12.27 

1.90% 2.80% 8.10 12.62 

2.00% 2.84% 8.23 12.52 

2.10% 2.93% 8.39 12.86 

2.20% 3.04% 8.53 13.55 

2.30% 3.11% 8.67 13.79 

2.40% 3.19% 8.91 13.88 

2.50% 3.28% 9.03 14.58 

2.60% 3.36% 9.18 14.66 

2.70% 3.44% 9.35 15.00 

2.80% 3.54% 9.60 15.52 
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The detailed risk factor exposures are displayed in the table below: 

 

Table 11: Third scenario relative to the index allocation 

1-3yrs 3-5yrs 5-7yrs 

7-

10yrs 

10-

15yrs 

15-

25yrs 25+yrs 

US Agg 

Gvt 

Rtd 

US Agg 

Securitize

d MBS 

US Agg 

Securitized 

CMBS_AB

S 

US Agg 

Corp 

Ind 

US Agg 

Corp 

Utility 

US Agg 

Corp 

Fin 

                    

0.46  

                     

1.04  

                    

0.76  

                    

0.73  

                     

0.13  

                    

0.52  

                     

1.27  

                     

0.51  

                      

1.14  

                    

0.07  

                    

0.86  

                    

0.20  

                    

0.38  

                     

0.15  

                     

1.47  

                     

0.21  

                     

1.09  

                    

0.06  

                    

0.70  

                     

1.25  

                    

0.29  

                    

2.04  

                     

0.10  

                    

0.64  

                    

0.00  

                    

2.30  

                     

0.19  

                     

1.32  

                     

0.17  

                     

1.38  

                    

0.06  

                    

0.58  

                     

1.42  

                    

0.05  

                      

1.81  

                     

0.15  

                     

0.12  

                    

0.00  

                    

3.38  

                    

0.28  

                      

1.19  

                    

0.02  

                     

1.52  

                    

0.08  

                    

0.47  

                     

1.76  

                         

-    

                     

1.63  

                    

0.29  

                         

-    

                    

0.00  

                    

3.72  

                    

0.30  

                      

1.13  

                         

-    

                     

1.50  

                    

0.08  

                    

0.49  

                    

2.00  

                         

-    

                      

1.55  

                     

0.31  

                         

-    

                    

0.00  

                    

3.92  

                    

0.33  

                     

1.02  

                     

0.01  

                     

1.58  

                    

0.08  

                     

0.55  

                      

2.11  

                         

-    

                     

1.40  

                    

0.28  

                         

-    

                    

0.00  

                    

4.23  

                    

0.35  

                    

0.98  

                         

-    

                     

1.48  

                    

0.07  

                    

0.62  

                    

2.33  

                         

-    

                     

1.34  

                    

0.26  

                         

-    

                    

0.00  

                    

4.44  

                    

0.37  

                     

0.91  

                         

-    

                     

1.48  

                    

0.08  

                    

0.70  

                    

2.47  

                         

-    

                     

1.25  

                    

0.27  

                         

-    

                    

0.00  

                    

4.66  

                    

0.43  

                    

0.78  

                         

-    

                     

1.53  

                    

0.08  

                    

0.68  

                    

2.69  

                         

-    

                     

1.07  

                    

0.30  

                         

-    

                    

0.00  

                    

4.93  

                    

0.45  

                    

0.70  

                         

-    

                      

1.57  

                    

0.08  

                     

0.71  

                    

2.85  

                         

-    

                    

0.95  

                     

0.31  

                         

-    

                    

0.00  

                     

5.16  

                    

0.49  

                    

0.59  

                         

-    

                     

1.58  

                    

0.09  

                    

0.74  

                    

3.04  

                         

-    

                     

0.81  

                    

0.34  

                         

-    

                    

0.00  

                    

5.40  

                    

0.54  

                    

0.49  

                         

-    

                     

1.59  

                    

0.09  

                    

0.76  

                    

3.23  

                         

-    

                    

0.67  

                    

0.36  

                         

-    

                    

0.00  

                     

5.65  

                    

0.58  

                    

0.39  

                         

-    

                     

1.60  

                    

0.09  

                    

0.79  

                     

3.41  

                         

-    

                    

0.53  

                    

0.38  

                         

-    

                    

0.00  

                    

5.88  

                    

0.60  

                     

0.31  

                         

-    

                     

1.62  

                     

0.10  

                    

0.82  

                    

3.60  

                         

-    

                    

0.42  

                    

0.40  

                         

-    

                    

0.00  

                      

6.11  

                    

0.64  

                     

0.21  

                         

-    

                     

1.64  

                     

0.10  

                    

0.85  

                     

3.77  

                         

-    

                    

0.29  

                    

0.42  

                         

-    

                    

0.00  

                    

6.35  

                    

0.68  

                      

0.11  

                         

-    

                     

1.65  

                      

0.11  

                    

0.87  

                    

3.96  

                         

-    

                     

0.15  

                    

0.44  

                         

-    

                    

0.00  

                    

6.59  

                    

0.72  

                     

0.01  

                         

-    

                     

1.68  

                      

0.11  

                    

0.90  

                     

4.14  

                         

-    

                    

0.02  

                    

0.46  

                         

-    

                    

0.00  

                    

6.83  

                     

0.71  

                         

-    

                         

-    

                     

1.50  

                     

0.21  

                    

0.49  

                    

4.80  

                         

-    

                         

-    

                     

0.75  

                         

-    

                         

-    

                    

6.72  

                    

0.60  

                         

-    

                         

-    

                     

1.82  

                     

0.21  

                    

0.69  

                    

4.79  

                         

-    

                         

-    

                    

0.63  

                         

-    

                         

-    

                    

7.20  

                    

0.63  

                         

-    

                         

-    

                     

1.56  

                     

0.13  

                     

1.34  

                    

4.58  

                         

-    

                         

-    

                    

0.48  

                         

-    

                    

0.00  

                    

7.46  

                     

0.61  

                         

-    

                         

-    

                      

1.51  

                     

0.13  

                     

1.38  

                     

4.77  

                         

-    

                         

-    

                    

0.50  

                         

-    

                    

0.00  

                    

7.60  

                    

0.63  

                         

-    

                         

-    

                      

1.16  

                     

0.17  

                     

1.24  

                    

5.32  

                         

-    

                         

-    

                    

0.66  

                         

-    

                         

-    

                     

7.56  

                    

0.64  

                         

-    

                         

-    

                    

0.93  

                     

0.18  

                     

1.48  

                    

5.44  

                         

-    

                         

-    

                    

0.68  

                         

-    

                    

0.00  

                     

7.67  

                    

0.50  

                    

0.02  

                         

-    

                      

1.61  

                     

0.14  

                     

1.36  

                    

5.29  

                         

-    

                    

0.02  

                    

0.52  

                         

-    

                    

0.00  

                    

8.05  

                    

0.58  

-                  

0.00  

                         

-    

                     

1.03  

                     

0.19  

                     

1.33  

                    

5.90  

                         

-    

                         

-    

                     

0.61  

                         

-    

                         

-    

                    

8.08  
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Scenario IV: Replication of a Lehman Brothers crash like scenario where all 

credit sectors suffered and there was a big bull steepening of the curve. The 

difference of the view set and what happened back in October 2008 is that the 

drop at the very short end of the curve i.e. 1-3yrs maturities were reduced to 

only 24bps as opposed to the 80bps realized drop as there is a natural floor for 

the yields at 0 and they cannot go any further down at least on the long run. 

 

The views vector V associated to this scenario is described below: 

 

Table 12: Forth scenario changes in rates and spreads 

 

Change in Yield/OAS 

Duration 1-3yrs -0.24% 

Duration 3-5yrs -0.40% 

Duration 5-7yrs -0.20% 

Duration 7-10yrs -0.05% 

Duration 10-15yrs 0.12% 

Duration 15-25yrs 0.18% 

Duration 25+yrs 0.01% 

Spread Duration US Agg Gvt Rtd 0.90% 

Spread Duration US Agg Securitized MBS 0.65% 

Spread Duration US Agg Securitized CMBS_ABS 4.00% 

Spread Duration US Agg Corp Ind 2.50% 

Spread Duration US Agg Corp Utility 2.50% 

Spread Duration US Agg Corp Fin 2.60% 

 

Table 13: Forth scenario allocation per tracking error target 

Tracking Error 

Expected 

Alpha Duration Spread 

0.00% 0.00% 4.91 4.43 

0.10% 1.18% 4.68 6.70 

0.20% 1.56% 4.51 6.63 

0.30% 1.87% 4.33 6.37 

0.40% 2.14% 4.16 6.09 

0.50% 2.45% 3.99 5.74 

0.60% 2.73% 3.82 5.40 

0.70% 2.95% 3.64 5.20 

0.80% 3.23% 3.46 4.96 

1.00% 3.83% 3.13 4.19 

1.10% 4.10% 2.97 3.94 

1.20% 4.36% 2.80 3.70 

1.30% 4.63% 2.65 3.58 
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And the overall risk factor positioning is presented in the below table: 

 

Table 14: Fourth scenario relative to the index allocation 

1-3yrs 3-5yrs 5-7yrs 7-10yrs 

10-

15yrs 

15-

25yrs 25+yrs 

US Agg 

Gvt Rtd 

US Agg 

Securitized 

MBS 

US Agg 

Securitized 

CMBS_ABS 

US Agg 

Corp 

Ind 

US Agg 

Corp 

Utility 

US Agg 

Corp 

Fin 

                    

0.46  

                     

1.04  

                    

0.76  

                    

0.73  

                     

0.13  

                    

0.52  

                     

1.27  

                     

0.51  

                      

1.14  

                    

0.07  

                    

0.86  

                    

0.20  

                    

0.38  

                    

0.07  

                      

1.41  

                    

0.64  

                     

0.81  

                    

0.07  

                    

0.26  

                     

1.42  

                    

0.37  

                    

2.76  

                    

0.02  

                     

1.38  

                    

0.20  

                    

0.56  

                    

0.03  

                     

1.53  

                    

0.62  

                    

0.83  

                    

0.03  

                    

0.00  

                     

1.47  

                    

0.44  

                    

2.93  

                    

0.00  

                    

0.83  

                    

0.05  

                    

0.92  

                    

0.02  

                      

1.61  

                    

0.60  

                    

0.74  

                    

0.02  

                    

0.00  

                     

1.35  

                    

0.45  

                    

3.04  

                    

0.00  

                    

0.53  

                    

0.03  

                    

0.97  

                    

0.02  

                     

1.67  

                    

0.62  

                    

0.62  

                    

0.02  

                    

0.00  

                     

1.22  

                    

0.36  

                     

3.13  

                    

0.00  

                    

0.56  

                    

0.03  

                    

0.80  

                    

0.00  

                     

1.93  

                    

0.22  

                     

0.81  

                    

0.02  

                    

0.00  

                     

1.02  

                    

0.60  

                    

3.02  

                    

0.00  

                         

-    

                     

0.01  

                     

1.09  

                    

0.00  

                    

2.00  

                     

0.18  

                    

0.79  

                    

0.02  

                    

0.00  

                    

0.84  

                    

0.47  

                    

3.05  

                    

0.00  

                    

0.00  

                     

0.01  

                     

1.04  

                    

0.03  

                     

1.85  

                    

0.59  

                    

0.39  

                    

0.03  

                    

0.00  

                    

0.76  

                     

0.16  

                    

3.28  

                     

0.01  

                    

0.54  

                    

0.04  

                     

0.41  

                    

0.07  

                     

1.64  

                    

0.92  

                     

0.17  

                     

0.01  

                    

0.00  

                    

0.65  

                     

0.13  

                    

3.47  

                     

0.01  

                    

0.44  

                     

0.01  

                    

0.26  

                    

0.04  

                    

2.20  

                         

-    

                    

0.66  

                     

0.01  

                    

0.00  

                    

0.22  

                         

-    

                     

3.16  

                    

0.00  

                         

-    

                    

0.00  

                     

0.81  

                    

0.04  

                    

2.29  

                         

-    

                    

0.53  

                     

0.01  

                    

0.00  

                     

0.10  

                         

-    

                    

3.24  

                    

0.00  

                         

-    

                    

0.00  

                    

0.59  

                    

0.06  

                    

2.30  

                         

-    

                    

0.43  

                     

0.01  

                    

0.00  

                         

-    

                         

-    

                    

3.26  

                    

0.00  

                         

-    

                    

0.00  

                    

0.43  

                    

0.05  

                    

2.40  

                    

0.00  

                     

0.19  

                    

0.00  

                    

0.00  

                         

-    

                    

0.00  

                    

3.39  

                    

0.00  

                    

0.00  

                    

0.00  

                     

0.19  

 

The above scenarios are representations of different states of the world 

regarding rates and spreads. This is a reflection of possible economic outlooks 

an investor would like to analyse. In practice, numerous scenarios could be 

described depending on the investment process, the views of economists and 

investment boards, the input from credit analysts and the output of financial 

models. 

 

3.5.1 Factor Based Black-Litterman Optimization and the Normality 

Condition 

 

Trying to move away from equities to fixed income, the main drawback of 

Black-Litterman model is its generic assumption that expected returns are 

normally distributed. Fixed income securities have the peculiarity that they 

cannot be modelled using the standard equity tool set because in the absence 



Fixed Income Portfolio Construction: A Bayesian Approach for the Allocation 

of Risk Factors 

52 

 

of credit events the investor knows that at maturity the price of the bond will 

be equal to its par value. This is why Black Scholes formula is never used to 

price options on bonds. Moreover, the basic geometric Brownian motion 

assumption to model returns does not hold as the bond prices pull to par. 

Alternatively Black’s model (1976) is used where forward price is modelled 

instead. 

 

In order to overcome this problem and be able to apply the Black-Litterman 

this paper shifts gears from asset classes to risk factors. Instead of normally 

distributed expected returns, normally distributed changes in yields and 

spreads are used which is a less unreasonable assumption to impose. It has 

been largely debated to what extent the normality condition holds, and if so, 

how well can this fit to turbulent periods when the entire market is under 

extreme credit and liquidity pressure.  

 

In order to test this, a data visualisation has been used, called normal 

probability plot. This plot which is generated by a set of readings illustrates 

whether the fluctuations in the readings can be assumed to be statistically 

normal. Then the order statistics of normally distributed readings (norm-

scores) are graphically depicted against the standardised values of the readings 

(z-scores). If the readings are effectively normal, the points drawn in regards to 

the two scores should more or less lie onto a straight line. Departures from this 

pattern indicate deviations from normality and may be due to several reasons.  

 

In the graphs below, one can identify deviations from normality, especially for 

the corporate sector spreads. Namely, financial, utility and industrial 

companies’ spreads behaved in a completely different manner than what 

normal distribution would forecast. Yields and mortgage spreads where more 

in line with the normal pattern. To demystify the severe mismatch observed 

along the left tail of the distribution we should consider the market conditions 

affecting our 5- year data set.  
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The deleveraging process that kicked off in the market after the failure of 

Lehman Brothers is the reason of this massive market dislocation. Most of the 

levered players tried to pull leverage and effectively cut their risk exposures 

down. Almost all participants in the market tried to de-lever, de-risk their 

balance sheets provoking a credit and liquidity squeeze. Spread changes of 

several market segments were not captured by normal distribution, due to the 

systemic events occurred. As mentioned already, this is plotted graphically as 

deviations from a straight line pattern.  

 

 

Figure 3-1: US Government 2 year rates 
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Figure 3-2: US Government 5 year rates 
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Figure 3-3: US Government 10 year rates 
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Figure 3-4: US Government 30 year rates 
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Figure 3-5: US Aggregate Government Related spread 

Normal Probability Plot

-4

-3

-2

-1

0

1

2

3

4

-1 -1 0 1 1 2 2 3 3 4 4

z score

n
o

rm
s

c
o

re

 



Fixed Income Portfolio Construction: A Bayesian Approach for the Allocation 

of Risk Factors 

56 

 

 

 

Figure 3-6: US Aggregate Securitised CMBS_ABS spread 
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Figure 3-7: US Aggregate Securitised MBS spread 
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Figure 3-8: US Aggregate Corporate Industrial spread 
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Figure 3-9: US Aggregate Corporate Utility spread 

Normal Probability Plot

-4

-3

-2

-1

0

1

2

3

4

-2 -2 -1 -1 0 1 1 2 2 3 3 4

z score

n
o

rm
s

c
o

re

 

 



Fixed Income Portfolio Construction: A Bayesian Approach for the Allocation 

of Risk Factors 

58 

 

Figure 3-10: US Aggregate Corporate Financial spread 
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The focus is still on the relative portfolio implying that all risk factor sensitivities 

are on a relative to the benchmark basis. The risk factors’ risk and return 

calculations for the relative portfolio are identical to the regular Black-

Litterman ones. The main difference is that instead of weights per asset classes, 

the model provides sensitivities per risk factors. The variance covariance matrix 

is computed on yields and spreads changes. The construction of the efficient 

frontier from the Black-Litterman model will now refer to optimum 

combinations of exposures to risk factors rather than securities weights.  

 

3.6 Conclusion 

 

Starting from the portfolio theory cornerstones such as the Mean Variance and 

the CAPM we have stepped up to the Black-Litterman framework. This 

approach has been adjusted to meet the modern fixed income portfolio 

construction requirements. For that purpose, a multi factor risk model has 

been used to approximate the systematic risk of the portfolio. The issuer 

specific risk is eliminated through diversification in adequately large portfolios. 

This is in line with real-life fixed income portfolios that usually include no less 

than a hundred securities. In fixed income space, the portfolios are managed 
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against a benchmark to ensure sufficient diversification and decent returns. 

The goal of the active investment manager is to beat the index in terms of 

performance without taking too much risk. The introduction of a risk factor 

framework makes feasible the use of the Black-Litterman model for fixed 

income relative portfolios. What is also new to the way that the model has 

been implemented is that the yield has replaced the equilibrium returns. The 

former is the market’s best proxy for bond returns in the investment grade 

universe. 

 

The advantage of the model is that it brings the economics back to the 

equation by using the drivers of fixed income volatility. In order to set a 

portfolio strategy and communicate it to the broader audience the discussion 

was focused on these risk factors. This chapter establishes an intuitive link 

between market wisdom and the latest academic developments on the 

portfolio construction front. Another positive characteristic of the model is that 

it is flexible enough to incorporate different types of risk factors that reflect the 

risk profile of each portfolio in question, depending on the types of risk that the 

investor is keen to gain exposure to. The model is also accommodative to 

different types of benchmarks. 

 

A drawback is that in order to be implemented it requires high level of 

analytical and technical support. However, in most cases active fixed income 

portfolio management is carried out by institutions that have the required 

infrastructure. Another disadvantage is that this framework is limited to 

investment grade portfolios as the inclusion of high yield would introduce 

default risk and as such would prevent us from using yields as a proxy for 

equilibrium returns. Furthermore, the model cannot handle currency risk. 

Nonetheless, it can estimate currency hedged portfolios.  

 

All in all, the fusion of the multi-factor analysis and the Black-Litterman model 

is a step forward in portfolio construction which enables the portfolio manager 

to better express his views in a factor based language.  
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4 Exploring the Tail Risk of Fixed Income Portfolios via 

Multifactor Risk Models  

 

4.1 Introduction 

 

Active investment managers seek to add extra value to their portfolios versus 

the benchmark. The track record of performance is one of the first things an 

investor would consider prior to allocating any funds to a manager. The second 

element an investment manager is judged for is the amount of risk undertaken 

per unit of return. Then other qualitative characteristics such as the investment 

process are taken into consideration. 

 

The benchmark composition should speak volumes about the portfolio set up, 

as it represents the starting point of the asset allocation. Given the risk 

appetite of investors, each portfolio should offer excess return vs. its 

benchmark but remain aligned in terms of risk. There is a limited amount of risk 

which should be undertaken versus the benchmark and this is measured by the 

tracking error, or in its simpler form the standard deviation of the relative to 

the index returns over time (alpha). A set of tools is developed to assist the 

investment managers in these tasks.  

 

There has been a lot of academic and practical interest in disentangling fixed 

income volatility. There has also been interest in decomposing the 

performance of fixed income portfolios into their main return drivers. Both the 

performance attribution and the risk decomposition, which are the two 

different sides of the same coin, are performed with the help of a factor model. 

The reason behind the risk factor focus becomes clear when we think of bonds. 

A bond is the most generic component of a fixed income portfolio and, has by 

nature a dynamically changing risk profile as its maturity diminishes over time. 

Additionally, newly issued bonds have no price history associated to them, 
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from which their risk profile could be deducted. Finally, fixed income asset 

classes display high correlations implying the existence of underlying risk 

factors driving their performances. 

 

In this chapter, the effort is to cast light on the tail risk measurement of fixed 

income portfolios which remains largely speaking unexplored by solely 

counting on a multifactor risk model. Fixed income portfolios are driven by 

yield and credit spread changes and this is what forms the basis for the risk 

calculation. For this purpose, the relative to the index portfolio exposures 

towards sources of risk are coupled with market data namely an estimated 

variance covariance matrix. Then under the normality assumption, exposures 

to tail events can be drawn. These results are compared with the tail risk 

exposure as computed by using an exponentially weighted variance - 

covariance matrix or by using block bootstrapping for dependent data. Our 

findings are tested on twelve real actively managed portfolios which are 

benchmarked against the Barclays Capital US Aggregate Index and exhibit more 

than a thousand monthly return observations in total. 

 

The outline of this paper is as follows. In section 2, we review the related 

literature. Section 3 describes the methodology followed and section 4 refers 

to the dataset used for the estimation of results which are presented in section 

5. At last, section 6 summarizes the conclusions reached. 

 

4.2 Literature Survey 

 

Arbitrage Pricing Theory (APT), introduced by Ross (1976) is the most generic 

theoretical framework that recognizes multiple risk sources as drivers of asset 

returns. Chen et al. (1986) identified a set of macro-economic factors as 

significant in explaining stock returns.  
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In the fixed income space Chambers et al. (1988), Prisman and Shores (1988) 

and Bierwag et al. (1988) stress that changes in the term structure are 

combinations of level, slope and curvature changes of the yield curve.  

 

Additionally, Litterman and Scheinkman (1991) proposed a three factor model, 

explaining on average 98.4% of the total yield curve variance. Namely, the 

three factors used are “level”, “steepness” and “curvature”. Furthermore, they 

made a distinction between the yield and the specific factor i.e. the spread, as 

the main components to determine bonds’ returns.  Accordingly, Jones (1991) 

also suggested a three-factor model to explain the return of treasuries. In fact, 

he used a similar set of risk factors named differently as “shift”, “twist” and 

“butterfly”. These three factors combined together accounted for 

approximately 95% of the total return of a government bonds portfolio.  

 

A slightly different approach was followed by Willner (1996), who introduced a 

new way of measuring risk sensitivities towards these three risk factors, which 

emanate from each type of change of the yield curve. The sensitivity measures 

introduced are level duration, slope duration and curvature duration. This 

framework has been widely used by academics and market practitioners for 

the monitoring, performance attribution and risk analysis of the fixed income 

portfolios, as it helped to better accommodate the dynamics across different 

maturities of the term structure.  

 

On the other hand, Ho (1992) set a number of maturities on the yield curve as 

being the key rate durations, with typical values of 3 months, 1, 2, 3, 5, 7, 10, 

15, 20, 25 and 30 years. Duration was estimated to measure interest-rate 

sensitivity, to a movement of the yield, at each of the above points in isolation. 

In other words, key rate duration estimates the effect of a change in the term 

structure which is localized at a particular maturity point, and restricted to the 

immediate proximity of this maturity point, usually by having the change drop 

linearly to zero at adjacent points. 
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This is an alternative representation of the term structure which is 

commercially available by most index and fixed income data providers. Crack 

and Nawalkha (2000) presented how the bond risk measures evolve when the 

shape of the term structure is changing and found that durations and 

convexities of barbell portfolios are more sensitive to the changes of level and 

shape of the yield curve than durations and convexities of bullet portfolios. 

 

However, interest rate exposure is not enough to fully capture the dynamics of 

the fixed income market. Several bonds and fixed income securities, which are 

trading at a spread over the treasury curve, exhibit a credit and/or a liquidity 

premium. According to Litterman (1991) the fixed income market returns not 

only are analysed to the yield component but also to the idiosyncratic 

component, which is priced in the spread set by the market. Leibowitz et al. 

(1990) introduced a sensitivity measure, equivalent to duration, for spread risk. 

This new measure, which was named, spread duration, aimed to accommodate 

the credit and liquidity risk, which was neglected by only focusing on the term 

structure, especially when considering credit portfolios. 

   

This has become a very popular risk measure, and gained ground in the 

industry as it helped to fully translate a fixed income portfolio into yield and 

spread exposures. This methodology works better for individual securities, but 

becomes problematic when the spread duration exposures are aggregated to 

portfolio level. This is because individual securities spread movements may 

decouple, slightly or largely, from each other, due to the issue/sector specific 

characteristics. A possible solution to this problem is to use different spreads as 

reference points for groups of securities falling into different instrument type, 

industry and rating category.  

 

A different approach to address the aggregation issue was presented by 

Fabozzi et al. (2006); a beta adjustment mechanism initially applied across the 

spread durations of various countries. This technique became popular amongst 

market practitioners, who used it across sectors, to make the adjusted spread 
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duration reflect the different reaction levels of different market segments, to 

the arrival of the new information. As explained by Ambastha et al. (2010) the 

spread dynamics are very different between higher and lower rated securities. 

Accordingly, investment grade universe is more dominated by interest rate risk 

whilst high yield spreads are more reactive in absorbing market shocks. 

 

Recently, Dor et al. (2007) introduced a new solution to the aggregation 

problem, revolutionizing the spread exposure measurement. They named the 

new metric Duration Times Spread (DTS). The notion behind DTS is that the 

volatility of spread changes is linearly proportional to spread level. Spread 

duration measures the sensitivity of a portfolio to the changes of a reference 

spread in absolute terms. TS instead focuses on the sensitivity to the relative 

(percentage) spread change, practically by scaling up or down the spread 

duration exposure, based on the spread level of each security. 

 

This chapter is also related to the literature that focuses on the risk estimation 

of a portfolio as a whole. Litterman (2003) makes explicit reference to the 

multifactor model specification for equities portfolio management. There are 

two components that make up the total risk of the portfolio: 1) the 

market/non-diversifiable risk approximated by a multifactor model, and 2) a set 

of uncorrelated issue specific risks which can eventually be diversified away for 

adequately big portfolios. According to Markowitz (1952) if the number of 

securities turns out to be big the specific/idiosyncratic risk can be eliminated 

thanks to the diversification benefit. Thankfully all the real portfolios we are 

going to test our results against hold at least a thousand securities and as such 

neglecting the security specific component and solely focusing on the 

multifactor model is robust.  

 

Furthermore, Dynkin et al. (2006) proposed a model which used three 

components for the total risk estimation. The systematic risk, the idiosyncratic 

risk and the credit default risk. The systematic risk is what was explained by the 

multifactor risk model. Equivalently, the idiosyncratic risk can be analysed into 
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issuer-specific/ issue specific risk and the credit default risk which stems from 

any exposure to the default risk of high-yield securities. The multifactor model 

consists of a key rate durations based model for the yield curve using the 6 

month, and 2, 5, 10, 20 and 30 year and a credit spread component where 

spread durations for AAA/AA, A and BBB rated securities are used across 

different industry sectors. A similar technique, spread durations based, is used 

for agency and non-agency MBS and ABS securities. The duration measure used 

is Option Adjusted Spread Duration (OASD). 

 

According to Barra (2007), using shift, twist and butterfly risk measures 

captures between 90%-98% of the total volatility of the yield curve as 

measured by an 8-factor key rate model. Key rate models use a bigger number 

of risk factors than necessary which exhibit a high degree of dependency. In 

terms of spread risk, Barra uses individual “sector-by-rating” factors, rather 

than having each bond exposed both to a sector factor and a rating factor. The 

rationale behind it is that spreads of different rating classes in different sectors, 

behave independently. 

 

As far as the idiosyncratic risk is concerned, it is not included in the multifactor 

risk expression, used here, because: 

1. Relatively big size portfolios ensure adequate level of diversification and 

the specific risk is eliminated 

2. Litterman’s specification for the idiosyncratic risk refers to equities, and 

would most likely not be feasible in fixed income space, due to the lack 

of long enough data histories  

3. Drilling down to security level exposures is beyond the scope of this 

paper. Instead, the focus is on identifying the liaison between the 

portfolio performance and the main market risk drivers 

 

Additionally, the exposure to credit default risk is not further examined as part 

of the present analysis, given that the benchmark exposure is limited to the 

investment grade space.  
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This class of multifactor models is used in the literature for both risk estimation 

and the performance attribution. We instead follow a different approach using 

the multifactor models as a starting point to explore the potential of providing 

better ex ante tail risk estimates. This is done by relaxing the normality 

assumption and incorporating block bootstrapping algorithms. 

 

4.3 Methodology 

 

The aim of this paper is to examine whether the integration of block 

bootstrapping into the multifactor framework is beneficial for the tail risk 

estimation of fixed income portfolios compared to a variance-covariance based 

methodology. 

 

According to Litterman (2003), two different expressions can be used for the 

analysis of portfolio performance; the factor based representation and the 

asset grouping representation. However, in the risk space we are restricted to 

take the risk factor route. As stated in the introduction due to data 

unavailability an asset class based risk estimation would neither be feasible nor 

meaningful. 

 

The multi-factor risk approach instead has the flexibility of translating all the 

risks into exposures towards risk factors. Then based on publicly available 

market information the ex-ante risk of the portfolio relative to the benchmark, 

i.e. the ex-ante tracking error, can be computed. The notion is that the best 

estimate for the future volatility of the relative to the index portfolio should be 

based on the most recent risk exposures of the portfolio.  An additional reason, 

why the asset class alternative is not followed, has to do with the performance 

history of an actively traded portfolio being incapable of predicting ex ante risk, 

as the actual risk exposure of the portfolio is likely to differ substantially over 

time alongside with the evolution of the active views of the investment 
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manager. In this paper the latest available risk exposures form the basis to 

estimate the ex-ante risk.  

 

According to Litterman (2003) the return of a portfolio can be analysed into a 

linear factor model accounting for the systematic part of risk and an 

idiosyncratic component for the asset specific risk. This is summarized into the 

below equation: 

 

, , , ,
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4.1 

 

 

Where,  

fi    the risk factor coefficients or the factor loadings  

dy i  the change of the underlying yield or spread      

εi  the idiosyncratic term      

 

Idiosyncratic risk has zero mean as it incorporates, by assumption, unforeseen 

changes in the return of asset i. In addition because the error term is asset 

specific it is assumed to be uncorrelated with the systematic factors. The 

relevant risk representation becomes as follows: 

T

R FF F    
 

4.2 

 

 

Where,  

F    the risk factor coefficients or the factor loadings per asset  

∑F  the variance-covariance matrix of the yield and spread changes   

  

∑ε  the diagonal idiosyncratic risk matrix per asset    

Accordingly, a typical multifactor model for fixed income portfolios as 

described by Dynkin (2006) is composed of three parts; the systematic risk, the 

idiosyncratic term and the default risk. The latter two comprise all the 

remaining forms of risk not captured by the multifactor model. Various 
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techniques described earlier, such as inserting an idiosyncratic risk component 

or a credit default component and introducing DTS as a risk factor into the risk 

model try to eliminate the specific risk terms. 

  
2 2 2( )Portfolio Systematic Default Idiosyncratic     

 

4.3 

 

 

At this stage it is worth noting that two assumptions are imposed regarding the 

idiosyncratic and default risk. The portfolios examined include more than 1000 

securities ensuring a high degree of diversification. As such, the idiosyncratic 

risk component will be neglected going forward. Idiosyncratic risk as a 

reflection of concentration risk is unlikely to arise for properly risk managed 

funds. However, if for some reason allocation leads to heavily loaded positions 

specific risk can potentially, though unlikely, become an issue.  What is more 

possible is that the correlation risk goes up, rather than the concentration risk, 

which may have a similar effect in the overall riskiness of the portfolio, but can 

be captured as changing covariance is the variance matrix.  

 

The default risk is also not further considered in this paper because the 

portfolios used are benchmarked against an investment grade index, the 

Barclays Capital US Aggregate Index. As the portfolios are actively managed a 

minor allocation was directed towards high yield in order to increase the return 

potential. The overall high yield exposure is limited to less than 0.1yrs of spread 

duration and the securities included are cherry picked so that over the course 

of our analysis there has not been any high yield default reported.   

 

The starting point is the risk exposures available across twelve real portfolios as 

provided by a leading financial institution. This is a set of durations and spread 

durations across asset types. The risk factors used are split into two categories, 

those designed to capture the interest rate risk and those designed to capture 

the various sectors’ spread changes. US duration, swap spread duration, US 

mortgage spread duration, US corporate spread duration, high yield spread 
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duration and emerging markets spread duration are the risk measures which 

form the factor model used.  

 

In this way two things can be tested: firstly the impact of the variations on 

interest rate level on portfolio performance and secondly the effect of credit 

spreads’ variations on top of the US treasury curve on the bond portfolios’ 

performance. 

 

All in all, from a multifactor modelling perspective the performance equation 

becomes as per below: 

                                                        

_ T

dPtf Perf D Y    

4.4 

 

 

Where: 

DKR                is the (6x1) vector containing the duration and spread duration 

loadings 

Yd                     is the (6x1) vector containing the changes in the US rate 

and various spreads 

ε is the residual term   

 

When referring to the relative to the benchmark exposures, the above 

expression becomes: 

 

T

dalpha D Y    

4.5 

 

 

Where: 

D
~

            is the (6x1) vector containing the relative duration and spread 

duration loadings  

dY              is the (6x1) vector containing the changes in the US rate and various 

spreads 
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ε     is the residual term   

 

In order for the present analysis to be meaningful, the following assumptions 

are imposed: 

 The systematic risk is fully described by the set of sectors chosen. If 

broader portfolios are examined, the underlying multifactor model 

needs expansion to accommodate the risks added. It is commonplace 

that market practitioners use models with hundreds or thousands of 

risk factors. As described in the literature though, a handful of risk 

factors should be enough for most fixed income portfolios. 

 There are no price differences between the returns calculated by the 

investment manager and the index provider. Otherwise, the returns of 

the portfolio and the benchmark would not be comparable. 

 

Since the multifactor model has been specified based on the available set of 

risk factors for the real portfolios used, the portfolios are mapped onto the risk 

factor space. The second step in order to proceed with the ex-ante tail risk 

estimation is to specify what the actual risk is for this combination of risk factor 

loadings. In order to do this we need to use an underlying risk model. The 

simplest option is to calculate the variance and covariance and thereafter 

deduct the tail exposure. Specifically, following Dynkin et al. (2006) and 

Litterman (2003) the total tracking error (TE) based on risk factor loadings is: 

 

        
TTE D D   

4.6 

 

 

Where: 

D
~

            is the (6x1) vector containing the relative duration and spread 

duration loadings  

∑             is the (6x6) variance-covariance matrix on the changes of US rate 

and various spreads 
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In terms of calculating the variance-covariance matrix both the standard 

method has been followed as well as the Exponentially Weighted Moving 

Average as described by Jorrion (2002). The more recent observations are 

weighted more than the older ones, with the weight assigned to each 

observation fading down as we move back in time. The time decay factor λ is 

set at 1.5% and the forecast volatility for time t is defined as: 

 

2 2

1 2 3(1 )( ...)t t t th h h h          

4.7 

 

 

Where:  

th   is the estimated variance 

nth      is the deviation of the observation at time t-n from the mean 

After the calculation of the variance-covariance matrix, the estimation of the 

tail risk in the form of the Value at Risk (VaR) for a given confidence level is 

performed on the basis of the normality assumption. The VaR is calculated as 

follows: 

                                                             

,conf t conf tVaR a TE
 

4.8 

 

 

Where: 

confa    is the multiplicative factor depending on the confidence level and 

the distribution 

tTE  is the tracking error, or the ex-ante estimate at time t of the 

standard deviation of alpha  

 

An alternative approach to estimate the VaR is via resampling. Bootstrapping 

techniques have been introduced by Efron (1979) with the working assumption 

that the underlying data is independently and identically distributed. 

Bootstrapping is the effort to estimate a parameter 
ˆ ( )S X   which is a 
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function of a random variable x drawn by an unknown distribution F, where the 

only known is a sample of N observations (X1, X2, X3,..., XN). By regenerating a 

big number of pseudo samples 
*

4 1 4( , , ... )NX X X X X  with replacement from 

the original sample an estimate of the parameter 
*ˆ ( )S X  can be generated. 

When the process is repeated for a number of times the statistical properties 

for S can be deducted. As shown by Efron and Tibshirany (1993) and Shao and 

Tsu (1995) the bigger the number of simulations, the better is the 

approximation of S. For the special case of N being large the distribution of S 

converges to the normal distribution from the Central Limit Theorem. 

Korajczyk (1985) made one of the early attempts to use bootstrap techniques 

for the analysis of financial problems. Because the bootstrap was originally 

developed on the data independence assumption, the bootstrap inference of 

several early analyses suffered from lack of the desired properties when the 

bootstrap was applied directly to raw returns, as presented in Hsieh and Miller 

(1990) and Levich and Thomas (1993).  

 

One solution to this problem proposed by Kunsch (1989) was the moving block 

bootstrapping with blocks of fixed length. As stated by Ruiz and Pasqual (2002) 

the results of this type of bootstrap are not stationary even when the original 

time series are stationary. To address this Politis and Romano (1994) 

introduced the stationary bootstrap method which is using overlapping blocks 

of random length.  

 

Given that the time series used in this paper are stationary and weak 

dependent, the block bootstrapping framework with blocks of random length 

introduced by Politis and Romano (1994) is followed. In order to approximate 

the distribution of the portfolio returns the yield and spread changes are 

bootstrapped based on the below algorithm: 
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, 1 1{ , ,..., )i b i i i bB X X X  
 

4.9 

 

 

Where: 

biB ,    represents the block consisting of 

b observations and 

Xi  is the first element of the block 

 

Let the starting point of the block i be drawn from a discrete uniform 

distribution In~ {1,2,...,N}. The length of the block is drawn from a geometric 

distribution using the inverse of the geometric distribution cumulative density 

function: 

 

ln(1 )

ln(1 )
k

X
L

p




  

4.10 

 

 

Where, 

X is drawn from a uniform distribution (0,1) and 

p denoting a fixed number in [0,1] 

 

The choice of the probability parameter P is critical as it controls the size of the 

block and affects the variance estimate of the model. Politis and Romano 

(1994) capped the block size to N so that this could be contained into the 

sample. In this paper, P=1/36 which stands for one month over 3 years of 

observations. The frequency of the performance we are trying to evaluate is 

monthly and this is how the choice of the numerator was made. The 

denominator represents that the rolling three year data used is analysed into 

36 time periods. Setting P at 1/36 makes the block length contained within the 

sample size without having to impose the cap N restriction which would give a 

high concentration of blocks with length N. In this way the block length varies 

significantly over the different runs. 
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At this point it is useful to clarify that our set of original data (X1, X2, X3,... XN) 

is rearranged prior to performing the bootstrap. An extended sample where 

the data is placed end to end with itself (X1, X2, X3,... XN, X1, X2,..., XN)  is used 

so as to ensure that the bootstrapping procedure is still feasible when In + Lk > 

N. 

 

The parameter 
ˆ ( )S X  which needs to be estimated here is the alpha 

estimate (see expression 4.5) based on the most recently available factor 

loadings of the portfolio. As shown in the next section the data used is weekly 

and in order to derive the monthly return impact we aggregate the change in 

the yields and spreads over the length of each block and then rescale it by a 

parameter 

52

12 kL
 

 to convert the measure to its monthly equivalent.   

 

Then using the multifactor expression 4.5 we estimate the alpha and store this 

number. The same process is run for 800 times and the value at risk is 

calculated. In order to achieve more robust results the above VaR calculation is 

repeated for 30 times and the average is computed. This technique is used to 

overcome computational limitations whilst incorporating a decent number of 

simulations leading to more stable results.  

 

Once the VaR estimate is calculated the results of each method, the parametric 

VaR, the exponentially weighted moving average VaR and the Bootstrapped 

VaR, are back tested against the monthly alphas delivered across 12 real 

portfolios which provide more than 1,100 test points out of which the accuracy 

of the VaR estimates is challenged. 

 

4.4 Data 

 

The aim of this paper is to incorporate different models into a multifactor risk 

framework for the VaR estimation and examine to what extend the use of block 

bootstrapping is a step forward in the tail risk evaluation. In order to do so, the 
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data set used is divided into two broad categories; the portfolio information, 

and the market information. This is the rationale of the multifactor risk models; 

that a well-diversified portfolio bears only market risk, which is explained by 

the set risk factors underlying the risk model. In that sense the risk is 

determined by how risky the market is and how much the portfolio is exposed 

to the risk factors that drive the market.  

 

The portfolio information refers to the portfolio and benchmark monthly 

performance and to the resulting alpha. It also comprises the relative to the 

benchmark monthly risk factor loadings toward each risk factor i.e. the US 

duration, the swap spread duration, the mortgage spread duration, the 

corporate spread duration, the high yield spread duration and the emerging 

markets spread duration for the period February 2003 to July 2003. This data is 

provided by a leading investment management financial institution for twelve 

real actively managed portfolios against the Barclays Capital US Aggregate 

index. 

 

In terms of the market data, which is more widely available, the 10 year US 

treasury yields were downloaded from Bloomberg, on weekly basis for the 

period February 1999 to July 2013. The weekly history of the 10 year US swap 

spreads was also pulled from Bloomberg for the same period of time. In order 

to measure the credit risk exposure of the portfolios the weekly history of 

option adjusted spread (OAS) and option adjusted spread changes has been 

pulled from Bank of America Merrill Lynch as shown in the table below:  

 

 

Table 15: Data set of indices 

 

Risk Factor            Index Source Yield Spread OAS 
OAS weekly 

change 

1 US Treasury 10yrs Bloomberg x 
   

2 US Swap Spread 10yrs Bloomberg 
 

x 
  

3 US Mortgage Master  BoA MLX 
  

x x 

4 US Corporate Master BoA MLX 
  

x x 
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5 US High Yield Master II BoA MLX 
  

x x 

6 Global EM Sovereign & Corporate BoA MLX 
  

x x 

 

 

When not readily available, the yield and spread changes are calculated in 

order to construct the variance covariance matrix and set the stage for the 

block bootstrapping. Finally, the track record of alpha is used to back test the 

findings of the model each month and test their accuracy. 

 

At this point it is useful to analyse the properties of the data used. First of all, 

the risk is derived from changes in yields and spreads by using the difference of 

each measure and its first differences. Graphically this is shown in the below 

tables: 

 

      

Graph 2 

Figure 4-1: Changes in ten year yield 

 

 

 

Figure 4-2: Changes in swap spread 
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Figure 4-3: Changes in corporate spread 

 

 

 

 

Figure 4-4: Changes in high yield spread 

 

 

 

Figure 4-5: Changes in mortgage backed securities spread 
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Figure 4-6: Changes emerging market spread 

 

 

 

 

We have run an augmented Dickey-Fuller test for each of the above time series 

and the null hypothesis that there is a unit root has been rejected. This implies 

that the time series of the yields and spread differences are stationary. Chan et 

al. (1992) provide evidence on stationary interest rate changes which is 

supportive of what is illustrated in the first graph. The data has also been 

tested for serial correlation and has been found weekly dependent. This one of 

the reasons why a stationary bootstrapping that fits the properties of the data 

is chosen. 

 

4.5 Empirical Results 

 

The commitment of indexed active portfolio managers towards the investor is 

to deliver excess return over the chosen benchmark. The alpha generated over 

a period of time should ideally be located mostly in the positive territory but 

should remain well managed in terms of risk. In the below chart the returns of 

a real portfolio relative to the benchmark (US Aggregate) are depicted. The 

dispersion of the portfolio performance away from the benchmark 

performance is examined in this section. 
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Figure 4-7: Portfolio vs. benchmark return plot 

 

At first, the risk associated with the volatility of alpha can be approximated by 

the information contained into the variance covariance matrix and a 

distribution assumption. Given the normality assumption several alternative 

methods are attempted for the estimation of the portfolio tracking error. Then 

the estimated VaR for 95% and 99% confidence levels are tested against the 

realised alpha over time. The alternative approach is linked with the 

approximation of the entire distribution of alpha via block bootstrapping 

instead of focusing on the tracking error calculation. Similarly, once the VaR for 

95% and 99% confidence levels are computed, the results are tested against 

the realised alpha. The four methods tested in this paper are:  

1. Calculation of ex post tracking error based on the monthly alpha and 

then the VaR estimation 

2. Computation of the variance covariance matrix and deduction of the 

portfolio ex ante tracking error through the multifactor model specified 

in order to estimate the VaR 

3. Calculation of an EWMA variance covariance matrix to extract the ex-

ante tracking error and then estimate the VaR 

4. Use of block bootstrap to generate the entire distribution for the alpha 

and from there estimate the VaR 

 

The results for the twelve real portfolios tested for the period 2003 to 2013 for 

each of the above methods is presented in the below table: 
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Table 16: VaR estimates per method  
Portfolio VaR - 95% VaR - 99% 

  

Covariance - 

3yrs data 

EWMA-

1.5% decay  

Ex Post 

Tracking Error 

Block 

Bootstrap 

Covariance - 

3yrs data 

EWMA-

1.5% decay  

Ex Post 

Tracking Error 

Block 

Bootstrap 

1 4.2% 8.3% 4.2% 8.3% 4.2% 8.3% 0.0% 8.3% 

2 6.4% 10.6% 4.3% 14.9% 4.3% 8.5% 4.3% 6.4% 

3 0.0% 6.7% 6.7% 2.2% 0.0% 6.7% 4.4% 0.0% 

4 6.7% 9.0% 7.9% 10.1% 4.5% 7.9% 3.4% 5.6% 

5 0.0% 2.7% 4.5% 0.0% 0.0% 0.9% 1.8% 0.0% 

6 2.4% 6.4% 6.4% 3.2% 1.6% 5.6% 3.2% 1.6% 

7 3.2% 5.6% 4.8% 4.0% 0.0% 3.2% 4.0% 1.6% 

8 2.9% 2.9% 6.7% 3.8% 1.0% 2.9% 4.8% 1.0% 

9 3.2% 7.2% 5.6% 4.0% 3.2% 6.4% 2.4% 3.2% 

10 1.6% 3.2% 4.8% 3.2% 0.8% 2.4% 4.8% 0.8% 

11 1.9% 5.7% 6.7% 2.9% 1.0% 3.8% 4.8% 1.9% 

12 8.7% 12.6% 5.5% 10.2% 7.9% 11.0% 3.1% 7.9% 

Total: 3.4% 6.4% 5.7% 4.9% 2.3% 5.2% 3.6% 2.8% 

 

Unlike the performance which is reported monthly and forms the basis for 

testing the accuracy of an attribution model, the accuracy of risk models 

cannot be that easily tested. A good way to back test the ex-ante estimates of a 

risk model is to rely on the ex post performance in order to challenge its 

accuracy. The focus is on the total VaR estimates as these are computed for 

more than a thousand observations.  

 

Using the historic covariance matrix we have calculated both the 95% and the 

99% VaR. On average 3.4% of VaR breaches occurred instead of the expected 

5%, which were implied by the confidence level of the 95% VaR. Instead, 2.3% 

of VaR breaches occurred when confidence level was set at 99%. This means 

that this method overestimates the probability of a tail exceeding the 95% of 

the total distribution mass and underestimates the probability of a tail 

exceeding the 99% of the total distribution mass. 

 

On the other hand side, the EWMA with decay rate at 1.5% displays breaches 

exceeding those implied by the confidence level. That is a clear sign of tail risk 

being underestimated. This risk estimation method has the property of 
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adjusting the risk based on the most recent observations. When there are 

periods of low volatility being succeeded by periods of higher volatility, the risk 

calculated may suffer from neglecting the information carried in the more 

distant observations. A potential remedy could be to calibrate the decay 

parameter so that the optimum fit is achieved. 

 

The third method which has been tested in this chapter is to simply count on 

the ex post tracking error to assess the total risk of the relative portfolio. This 

method delivered better risk estimates from the variance-covariance based 

alternatives but these results should be analysed further. Specifically, these 

results reflect the fact that the portfolios managed had the same benchmark 

and the same investment philosophy throughout the time period analysed. This 

is the reason why the ex post alpha has been relevant in risk forecasting. Such a 

method, would suffer tremendously, if no track record of alpha is available, in 

the case of newly set up portfolios and when there is a strategy or benchmark 

shift which would make the realized returns irrelevant to the risks associated 

with the most recent portfolio positioning.  

 

Finally, the block bootstrapping method with overlapping blocks of random 

length has led to better results compared to the other methods. By imposing 

no distribution assumption and potentially allowing for excess skewness and 

kurtosis, the 95% VaR has been better approximated. However 2.8% of VaR 

breaches instead of the expected 1% of VaR for 99% confidence level are a 

clear sign that on the extreme the risk has been underestimated. This is 

understandable when we think of two different elements; the way that the 

bootstrapping works, and the behaviour of the markets during the last decade.  

Even though bootstrapping is offering more flexibility in accommodating 

different shapes of distributions, it may suffer when estimating the extreme 

points. The minimum and maximum points are limited to those appearing in 

the sample used and there is no probability at all assigned to outcomes 

exceeding the upper and lower bound. This had been especially true in the 

results presented in this paper which account the crash of Lehman Brothers 
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and the unprecedented banking crises of 2008 which could not be fully 

captured by a bootstrap framework. 

 

The following graphs depict the back test for the 95% and 99% VaR on the 

alpha of the 12th portfolio per each approach. 

 

Figure 4-8: Back testing of parametric approach  

 

 

Figure 4-9: Back testing of exponentially weighted moving average approach 

 

 

 

 

Figure 4-10: Back testing of ex post tracking error approach 
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Figure 4-11: Back testing of block bootstrap approach 

 

 

 

The value at risk used in this paper as a measure of risk is driven by two 

elements: the portfolio positioning and the market volatility. When the VaR 

increases this is because: i) the portfolio is more aggressively exposed vs. the 

benchmark, ii) the market volatility (including the correlations) has increased or 

iii) both of the above.  

 

The smoothest risk estimates, displayed in graph 10, are generated by the ex 

post tracking error method, where the most recent relative to the index 

positioning of the portfolio is ignored. The market spikes are also very modestly 

affecting the risk calculation as the rolling tracking error tends to average up 

the dispersion around the alpha.  

 

The VaR estimation method via the historic variance covariance matrix and via 

the block bootstrapping incorporates the latest available risk factor loadings 

relative to the index and this is why graph 8 and graph 11 are showing a more 

volatile VaR estimate when compared to the ex post tracking error results in 

graph 10. The EWMA (graph 9) is giving the most responsive results both to the 

changes of portfolio positioning and the changes of the overall market 

riskiness.  
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It is noteworthy that most of the breaches occurred during the period between 

2008 and 2009 when the banking crises occurred. The worst performing month 

has been November 2008 both return wise and risk model wise. The poor 

performance was due to the investment view that the authorities would never 

let a major bank to go bankrupt. The investment view proved wrong and those 

portfolios which were in risk on mode substantially underperformed their 

index.  This had an effect on the ex post tracking error which rose substantially 

thereafter.  

 

One limitation of the various risk models became evident during the Lehman 

crisis; they are backward looking to some extent in a sense of relying to the 

available observations to predict the future. These models failed in predicting 

the turning point which was the Lehman crash. Some of the models adapt to 

the higher risk regime faster than some others but still failing to capture the 

turning point. Regime switching models or models (such as Black-Litterman), 

which incorporate investment views in the risk estimation can better 

accommodate extreme events like Lehman. This would be easier to use though 

as a portfolio construction tool rather than as a risk management tool given 

that the performance of the model would be dependent on the validity of the 

views. 

 

4.6 Conclusion 

 

Four different approaches are tested for the tail risk estimation of twelve real 

actively managed portfolios against the Barclays Capital US Aggregate Index. 

These methods are based on a multifactor risk framework where the portfolio 

exposures are mapped to the risk space. Working in a risk factor environment 

offers the dual benefit of feasibility for fixed income portfolios and high 

intuition at the same time. The value at risk for both the 95% and 99% 

confidence levels has been calculated under the normality assumption by 

estimating both a covariance matrix and an exponentially weighted covariance 

matrix. The ex post tracking error has also been used for the value at risk 
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estimation. Finally, block bootstrapping with overlapping blocks of random 

length has been used for the same purpose allowing for the normality 

assumption to be relaxed.  

 

Bootstrapping has given better estimates than the other methods and 

especially for the tail risk estimation with confidence level at 95%. This is 

indicative of the benefits emanating from blending together a fixed income 

multifactor risk framework and resampling techniques. This leads to better risk 

estimates than the traditional variance-covariance based approach and can be 

used both in risk budgeting and asset allocation processes. The main limitation 

of combining risk factors and bootstrapping has been illustrated by back testing 

the results against the realized alpha for the 99% confidence level. Even though 

the block bootstrapping performed better than the alternatives tested, it failed 

to fully capture the extremes occurred in 2008 as the estimated distribution 

was bounded by the maxima and minima occurred in the sample using 

information prior to the distressed period.  

 

Amending the portfolio risk estimation not only can increase the efficiency of 

risk monitoring but can lead potentially to more resistant portfolios to tail risk 

events when incorporated into portfolio construction.      
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5 Bayesian Fixed Income Portfolio construction vs. Tail 

Risk Exposure: A Multifactor Risk Modeling Approach  

 

5.1 Introduction 

 

During the recent years the fixed markets have been dominated by extreme 

events such as the crisis in the U.S. mortgage subprime market, the collapse of 

Lehman Brothers and the resulting banking crisis, the dovish monetary policy 

which has led interest rates to historic lows and the extension of the central 

banks’ balance sheets in the form of extensive quantitative easing programs at 

a time when conventional monetary stimulus tools had been exhausted.  

 

Against this backdrop, where the valuation levels are important and on the 

other hand the financial and political risks are elevated, it is crucial for investors 

to be able to both quantify what the market consensus is and to input their 

own outlook into the investment process. The Black-Litterman framework and 

its various extensions available form a platform that can potentially 

accommodate both the market sentiment and the investor’s outlook.  

 

In this chapter, the market valuations are the starting point for estimating the 

expected returns. The second step is the consideration of investment views on 

any potential market shifts or political implications, which can drive market 

shifts. Blending the two together into a set of expected returns is feasible 

through Bayesian inference. The risk is considered as the entire returns 

distribution rather than the portfolio variance. This allows excess kurtosis and 

fat tail behaviour of the asset returns to be taken into consideration when 

forming the portfolios.  

 

The outline of this chapter is as follows. In section 2, we review the related 

literature. Section 3 describes the methodology followed and section 4 refers 
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to the dataset used for the estimation of results which are presented in section 

5. Finally, section 6 summarizes the conclusions reached. 

 

5.2 Literature Survey 

 
Portfolio construction, in a nutshell, is the art of combining the expecting returns and 

the associated risks onto portfolio level. There are various ways of estimating 

the expected returns and various ways of estimating the portfolio risk. The 

most generic idea of combining return expectations and risk goes back to the 

mean variance optimization introduced by Markowitz (1952). Even though the 

shortfalls of mean variance optimization have been criticized in the literature, 

Markowitz set the stage for the asset allocation problem.  

 

The main criticism was concentrated to the estimation error of risk and 

expected returns’ parameters per se. According to Michaud (1989) the mean 

variance is in fact an estimation error optimization due to the nature of the 

process which magnifies the errors linked with the input estimates. These 

findings were also supported by Britten-Jones (1999). Additionally, the mean 

variance has been contested by Green and Hollifield (1992) for its ability to 

produce adequately diversified portfolios.  

 

In order to resolve this problem, Michaud (1998) and Michaud (2008) proposed 

resampling techniques as a remedy of the “error maximization” problem. 

Accordingly, the five step solution proposed could be summarized in (1) 

sampling a mean vector and a covariance matrix for the returns, (2) computing 

the efficient frontier based on these risk and return estimates, (3) repeating the 

above process several times (4) averaging up the results of step two and (5) 

take into consideration any investment restrictions. 

 

On the other hand side Ledoit and Wolf (2004) and Ledoit and Wolf (2006) 

introduced the concept of shrinkage in the estimation of the sample covariance 

matrix. They presented an alternative risk estimation which smoothed the 
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correlation coefficients towards a common constant correlation and reduces 

the dimensionality of the covariance matrix. The merit of this technique is the 

computational simplicity and the unbiased outcome. According to the authors 

the shrinkage framework is in line with the notion of multifactor risk models 

which are the market standard. 

 

A third way to avoid corner solutions in portfolio optimization is to use the 

model introduced by Black and Litterman (1992). The Black-Litterman model is 

using a Bayesian framework to blend together the implied equilibrium returns 

and the investor’s views. In a CAPM environment, the equilibrium returns are 

implied by the market portfolio weights, the realized volatility and an assumed 

risk aversion coefficient. That is to say that the equilibrium returns are those 

making the market portfolio optimum. In terms of the blending process Black 

and Litterman (1992), He and Litterman (2002), Idzorek (2004) consider the set 

of equilibrium returns as the prior; whilst Satchel and Scowcroft (2000) 

consider the investor views as the prior distribution and the equilibrium returns 

as the likelihood.   

 

The main advantage of the Black-Litterman model is that it leads to a more 

reasonable allocation which is aligned, to some extent, with the market 

portfolio. Furthermore, it allows the investment manager to input his views, if 

any, both in absolute and in relative terms. Even though BL has clearly been a 

step forward in the asset allocation process, it is linked to the shortfalls of 

CAPM.  The reference Black-Litterman model was nicely presented by Walters 

(2009).  

 

Following Black and Litterman (1992), He and Litterman (1999) provided a 

more detailed analysis on the way the reference model works. Satchel and 

Scowcroft (2000) presented an alternative solution to the Black-Litterman 

equation, where the prior distribution was formed by the investor views and 

the market equilibrium returns were used as the likelihood. Mankert (2006) 

described a different way to derive the Black-Litterman model via sampling 
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theory. Idzorek (2004) extended the BL model so that confidence levels can be 

used as input parameters together with the investment views.  

 

Fusai and Meucci (2003) provided a framework for the assessment of the input 

views so that corner solutions are avoided. This involved fine tuning of the 

views, in a manner that the model would not get disruptive and the resulting 

allocation would remain reasonable. Krishman and Mains (2005) re-derived the 

BL model on the basis of a two factor risk framework. The notion is that the 

single risk factor, traditionally used as part of the utility function is not enough 

to fully represent the overall portfolio risk. Therefore a recession risk factor has 

been added to better represent the actual risk dynamics into the utility 

function.  

 

Giacometti et al. (2007) extended the Black-Litterman model to accommodate 

other distributions in addition to the normal distribution. Their findings are 

generated using a multivariate Gaussian distribution, a symmetric t-student, 

and a-stable distributions. Their second goal has been to ameliorate the BL 

model by using different risk measures such as dispersion-based risk measures, 

value-at-risk and conditional value-at-risk in line with Gaivoronski and Pflug 

(2005). 

 

Qian and Gorman (2001) proposed a way to obtain a conditional mean vector 

and a conditional covariance matrix given the investment views. Through their 

analytical derivation of the conditional covariance matrix, they ensured that 

the results generated by mean-variance analysis tend to be stabilized. 

 

Almgren and Chriss (2006) proposed an allocation formulated on three 

ingredients; ordering information which leads to a cone of consistent results, a 

probability density and a constraint set to which the portfolio is limited to. 

According to the authors, this method has led to more robust results as 

opposed to the original Black-Litterman model. 

 



Bayesian Fixed Income Portfolio construction vs. Tail Risk Exposure: A 

Multifactor Risk Modeling Approach 

90 

 

Pezier (2007) used a distance measure between return forecasts based on 

investment views and return forecasts based on market equilibrium. By 

minimizing this distance they tried to examine the impact of the investment 

views on the optimization process and allowed them to be revised until a 

satisfactory combination of forecast and optimal allocation was reached.  

 

Meucci (2006) proposed a “copula opinion pooling” approach to accommodate 

deviations from normality when combining assets to portfolio level. In this 

framework the posterior was numerically derived through Monte Carlo 

Simulations. Meucci (2008) revisited the proposed framework to allow for 

correlation stress testing and non-linear views. To do so, he introduced the so 

called entropy pooling approach which delivered superior results over the 

other BL extensions, presented above, as stated in Meucci (2010). Meucci 

(2009) highlighted that the BL is likely to be restricted by the normality 

assumption for the markets exhibiting a skewed, non-normal returns profile. 

However, he showed that when the randomness in the underlying risk factors 

is normal, the BL model can still be used. The case study used in this paper 

focused on European call options, where the risk could be approximated by 

delta and gamma, especially over a short term time horizon.  

 

Martellini and Ziewann (2007) illustrated a BL extension which incorporated 

higher moments of returns distribution as part of the portfolio construction 

process. They contested the accuracy of the standard CAPM and preferred 

instead a four-moment asset pricing model to derive the equilibrium return.  

 

Cheung (2007) proposed an extension of BL to accommodate equity risk factor 

models. He utilized a linear factor model based on economic and financial risk 

factors to capture the variability of equity returns. Conner et al. (2010) 

presented a similar factor model.  The “Augmented Black Litterman” is a 

smooth process to blend portfolio views and equilibrium returns for stock 

portfolios as part of a factor based portfolio construction process. One of the 
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main concerns regarding the model is the normality assumption which is 

imposed.  

 

Several hedge fund related studies, focused on the fat tail features of return 

distributions which cannot be captured under the normality assumption 

umbrella. Such studies include Favre and Galeano (2002), DeSouza and Gokcan 

(2004), Agarwal and Naik (2004) and Harris and Mazzibas (2010). A common 

theme among them is constructing portfolios against tail risk measures such as 

value at risk and conditional value at risk.   

 

Aguilar and West (2012) used Bayesian inference focusing on the dynamic 

factor nature of spot foreign exchange rates with a goal of forming an 

international currencies portfolio. They have used a k factor dynamic risk 

model consisted of a systematic and an idiosyncratic component. The 

systematic risk was approximated by a factor loadings matrix and a factor 

covariance matrix.  

 

In this chapter, the focus is on the fixed income portfolio construction and as a 

result a different multifactor model is used. The scope of this study is to fill in 

the gap in the literature regarding the construction of fixed income portfolios 

using multifactor risk models, Bayesian inference to blend equilibrium returns 

with investment views and block bootstrapping technology for the estimation 

of the tail risk. Thanks to the nature of fixed income markets, a different 

formulation of the equilibrium returns is used, as opposed to a CAPM based 

methodology followed, largely speaking, in the literature. 

 

5.3 Methodology 

 

We consider the Barclays Capital US Aggregate index as the investment 

universe for the construction of active portfolios. The optimization process is 

centred to the benchmark selected, which is the starting point for the 
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allocation selected. Additionally we work in the context of a multi-factor risk 

model which is suitable for the risk representation of fixed income portfolios. 

Following Meucci (2008), we assume that a risk model for the joint distribution 

of risk factors exists and is described by its probability density function (pdf). In 

a Black-Litterman framework this would form the prior distribution of risk 

factors. 

 

~ xX f  
5.1 

 

                                   

The above representation is used in order to estimate the volatility, the relative 

to the index volatility or tracking error, the value at risk etc. From an 

investment management perspective this model is used for the optimization of 

the portfolio positions. The final allocation is dependent on the utility function 

linking the weights w of the portfolio with the underlying distribution. In light 

of the above, the optimum portfolio of weights w* is described by the 

following: 

 

* arg max{ ( ; )}x
w c

w U w f


  
5.2 

 

                                           

Where: 

C              represents the set of investment constraints 

U represents the total utility  

w represents the positioning of the portfolio and 

xf  represents the probability density function  

 

The views which are used as input are expressed on generic functions 

1( ),..., ( ).Kg X g X  This is how a K-dimensional random variable is formed with 

joint distribution: 
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( ) ~ vV g x f  
5.3 

 

                                                                                                      

Where,  

V represents the expressed view 

g(x) represents the generic functions of the market 

Vf  represents the probability density function associated with the view 

Following Meucci (2008) we make use of the entropy between a generic 

distribution xf approximated by block bootstrapping and the reference model 

xf  as follows:                                           

 

 
5.4 

 

 

Where:  

ε is the entropy between the generic and the reference distribution 

 is the reference probability of bootstrapped distribution function 

 is the generic probability of bootstrapped distribution function 

N is the number of simulations defining the probability distribution 

Practically, this is a measure of how distorted the generic distribution is as 

opposed to the reference distribution. In case that the two distributions are 

identical, the entropy is zero. As long as constraints are imposed on the generic 

distribution, the relative entropy goes up. That told, the posterior distribution 

is defined as: 

 

 
5.5 

 

 

Where f V indicates the distributions which are aligned with the views 

statements. In case that the investor has no views, V is becoming an empty set 

and the posterior distribution equals the reference distribution .xf  On the 
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other hand side, when the view statements fully describe the joint distribution 

the minimization process presented above is not needed. In this case the 

posterior distribution would become:            

 

|( ) ( ) ( )x x v Vf x f x f v dv   
5.6 

 

 

If the investment manager is not fully confident on the views imposed in the 

equation (5) as a set of restrictions then the posterior distribution is becoming 

as follows: 

 

 
5.7 

 

 

Where:  

 represents the bootstrapped probability 

 represents the probability after taking into account the views 

C represents the confidence of the investor to the expressed views  

 

At this stage it is essential to specify the parameters which are going to be used 

in the framework described above. First it is crucial to elaborate more on the 

specification of the equilibrium returns used. Consistent with the semi-strong 

form of market efficiency as presented in Fama (1970) and used in Cheung 

(2007), based on the publically available information the market view should 

be the best available view. The market views are typically incorporated in the 

asset prices. This is valid for the fixed income markets where the market 

defines the bond prices. Bearing in mind that the investment universe is an 

investment grade bond index, the yields implied by the price levels form the 

most reliable set of expected returns reflecting the market consensus. As a 

result, in this paper the equilibrium returns are not provided by any type of 

CAPM framework, or any extension of it, but rather sticks to what the market 

dictates via price levels. 
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That said, it is time to elaborate more on the reference multifactor risk model. 

In this paper we follow Ho (1992) who set a number of maturities on the yield 

curve as being the key rate durations, with typical values of 3 months, 1, 2, 3, 5, 

7, 10, 15, 20, 25 and 30 years. Duration is estimated to measure interest-rate 

sensitivity, to a movement of the yield, at each of the above points in isolation. 

In other words, key rate duration estimates the effect of a change in the term 

structure which is localized at a particular maturity point, and restricted to the 

immediate proximity of this maturity point, usually by having the change drop 

linearly to zero at adjacent points. In this paper we are restricted to use slightly 

different key maturities due to the data availability by the index provider as 

presented later on. Additionally, in order to avoid making the reference model 

too congested with risk factors a duration risk measure against the ten year 

maturity is used as a single risk factor for all the non-US issuers. 

 

Recently, Dor et al. (2007) introduced Duration Times Spread (DTS) as a 

solution to the spread risk aggregation problem, revolutionizing the spread 

exposure measurement. The notion behind DTS is that the volatility of spread 

changes is linearly proportional to spread level. Spread duration measures the 

sensitivity of a portfolio to the changes of a reference spread in absolute terms. 

DTS instead focuses on the sensitivity to the relative (percentage) spread 

change, practically by scaling up or down the spread duration exposure, based 

on the spread level of each security. 

 

Given that the time series used in this paper are stationary and weak 

dependent, the block bootstrapping framework with blocks of random length 

introduced by Politis and Romano (1994) is followed. In order to approximate 

the distribution of the portfolio returns the yield and spread changes are 

bootstrapped based on the below algorithm:
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, 1 1{ , ,..., )i b i i i bB X X X    
5.8 

 

 

Where: 

Bi,b   represents the block consisting of 

b observations and 

Xi  is the first element of the block 

Let the starting point of the block i be drawn from a discrete uniform 

distribution In~ {1,2,...,N}. The length of the block is drawn from a geometric 

distribution using the inverse of the geometric distribution cumulative density 

function.  The above process is repeated for thousand times so as to draw the 

reference distribution non-parametrically. This technique has the advantage of 

keeping the correlation structure between the risk factors over time and not 

restricting the results by any distribution assumption that would be required in 

a parametric environment. In this way, the risk profile of the risk factors is 

derived via the block bootstrapping and the entropy pooling processes.   

 

The expected changes of yields and spreads are also given by the model at this 

stage by incorporating both the equilibrium returns and the views. Equilibrium 

returns refer to the yield advantage of each portfolio component versus the 

yield of the chosen benchmark, under the assumption, that there are no 

defaults and the current state of the world does not change (including shape of 

yield curves and spread levels). This would be the starting point for designing 

“carry” strategies to benefit from a static rather than a changing investment 

landscape over a specific time horizon. The portfolio returns against the 

benchmark index (alpha) are:  

 

 
5.9 

 

 

Where: 

         represents the weight of the i-th component of the portfolio 
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         represents the weight of the i-th component of the benchmark 

         represents the return of the i-th component of the portfolio 

         represents the overall return of the benchmark 

 

In this way, two factors drive the excess return of a portfolio; the over-weight 

or under-weight of each instrument and the relative performance of the 

instrument against the benchmark. i.e. overweighting an instrument which 

outperforms the benchmark is a contributor to return and so on so forth. 

 

Let us now set aside the equilibrium returns/excess returns, and focus on what 

is happening when the market moves. The skill required by an active manager, 

is to deliver excess return, as a result of actively taking advantage of the 

changing investment environment. A way to measure the effect of “directional” 

trades as opposed to “carry” ones is by considering the views on market 

changes and the exposure of the portfolios to them:                           

                             

 
5.10 

 

Where: 

         is the vector with weights of the portfolio 

         is the vector with weights of the benchmark 

F         is the matrix showing the risk factor loadings per component of the 

portfolio and the benchmark 

E         is the vector containing the expected changes in yield and spread 

levels based on the views 

 

 
5.11 

 

 

Where: 
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         is the matrix with the block bootstrapped scenario over the changes 

in yields and  spreads 

         is the vector with the posterior probabilities over the block 

bootstrapped scenario 

 

By combining (9), (10) and (11) the overall excess return of the portfolio 

becomes:                                                           

 
5.12 

 

  

Where: 

C          represents the investor’s confidence in the views    

W          is the vector with the  initial weights of the portfolio which are set 

to be equal to the benchmark’s weights   

          is the vector of the targeted weights of the portfolio to be 

optimized  

          represents the equilibrium returns vector  

F         is the matrix showing the risk factor loadings per component of the 

portfolio and the benchmark 

         is the matrix with the block bootstrapped scenario over the changes 

in yields and  spreads 

         is the vector with the posterior probabilities over the block 

bootstrapped scenario 

 

The Y vector (where the equilibrium returns are approximated by the yields of 

investment grade bonds) is in use under two assumptions. The no default 

assumption and the assumption of even allocation of yield over the time to 

maturity. In reality the bonds appreciate more at those maturity points where 

the yield curve is steeper (and upward sloping). Expectations towards 

modifications of the yield curve shape are captured by the second part of 

equation 5.12. 
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The associated portfolio risk/returns distribution, based on the distance  

is taking the form below: 

 

 
5.13 

 

 

Where: 

W          is the vector with the  initial weights of the portfolio which are set 

to be equal to the benchmark’s weights   

          is the vector of the targeted weights of the portfolio to be 

optimized  

F         is the matrix showing the risk factor loadings per component of the 

portfolio and the benchmark 

         is the matrix with the block bootstrapped scenario over the changes 

in yields and  spreads 

 

By taking into account the representation (13), which forms the set of block 

bootstrapped portfolio relative returns, and the probability vector  we can 

calculate the standard deviation, the VaR and the CVaR of the portfolio. 

 

The aim of this framework is to provide a set of tools for each part of the 

investment process. Those are the consideration of the current valuations in 

the form of equilibrium returns, and the estimated impact of views onto both 

the return and risk profile of the constructed portfolio. The blending 

mechanism can either be used to form the expected returns on a set of pre-

defined views or even help identifying the views per se by incorporating the 

dependence structure of the data into the analysis. 
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5.4 Data 

 
First of all, it is necessary to stress, that the nature of the benchmark used 

determines the structure of the multifactor model chosen. In this paper, a set 

of managed fixed income portfolios, benchmarked against the Barclays Capital 

US Aggregate Index, were selected. Such portfolios do not bear any currency 

risk as all the securities included are denominated in USD. However this 

benchmark allows for issuers from various countries. In fact, more than 91% of 

the index is comprised of issuers in the United States, and the remainder 

reflects issuers from outside the United States. To avoid the extra layer of 

complexity, in order to accommodate the various countries’ interest rates and 

spread exposures and for the sake of keeping the dimensionality of the 

problem lower than higher, the benchmark is restricted to US Aggregate US 

Only Index.  

 

The portfolio information refers to the monthly performance and the resulting 

alpha of the portfolio and benchmark. Other basic statistics may also become 

available but they are not going to be further elaborated.  

 

The benchmark information required was split into two categories: the risk 

factor exposures and the asset groups. As for the multifactor risk model, a 

series of US Aggregate US Only rating-by-sector and by-maturity sub-indices 

have been customized in Barclays Capital POINT. Additionally, the duration and 

spread duration exposures per country of issue were pulled from Barclays 

Capital POINT, for the subset of Barclays Capital US Aggregate US only Index 

corresponding to non-US issuers. Equivalently, US key rate durations were used 

for the interest rate exposure.  

 

The data sourced for the multifactor model are the US key rate durations of the 

following maturity points: 0.5yr, 2yrs, 5yrs, 10yrs, 20yrs and 30yrs for each of 

the above indices. Additionally the option adjusted spread (OAS) and the 
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option adjusted spread duration (OASD) has been sourced for each of the 

reference indices presented in table 17. The data frequency is weekly and the 

time period is from 31/12/2012 to 31/10/2014.  

 

The underlying US treasury yields per key maturity were downloaded from 

Bloomberg. Specifically, the key rates’ history was sourced on a monthly basis 

for the period 31/12/2012 to 31/10/2014. The OAS levels were sourced from 

Barclays Capital POINT. A summary of the market data used is displayed in 

table 17 overleaf. 

 

A special note should be made for high yield and emerging market debt which 

are not included in the following tables at all.  As stated in the methodology 

section, the equilibrium returns described are meaningful under the no default 

assumption. High yield debt and emerging market debt are prone to default 

and because of this their yield to maturity may decouple substantially from 

their expected return if held to maturity. Moreover, the emerging market 

bonds require special treatment as some are issued in local currency and some 

in hard currency. Introducing them in the dataset would add an extra layer of 

complexity in the specification of the factor model without adding much to 

what the core scope of the present chapter is.    
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Table 17: Data set per sub-indices and risk measures I 

Index 
Market Value in 

USD 

ISMA Mod 

Duration 

ISMA Mod 

Convexity 
KRD 0.5 KRD 2yr KRD 5yr KRD 10yr KRD 20yr KRD 30yr YTM OASD OASC DTS OAS 

US Aggregate Treasury 1-3yrs x x x x x x x x x x x x x x 

US Aggregate Treasury 3-5yrs x x x x x x x x x x x x x x 

US Aggregate Treasury 5-7yrs x x x x x x x x x x x x x x 

US Aggregate Treasury 7-10yrs x x x x x x x x x x x x x x 

US Aggregate Treasury 10+yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Financial AA 1-3yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Financial AA 3-5yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Financial AA 5-7yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Financial AA 7-10yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Financial AA 10+yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Financial A 1-3yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Financial A 3-5yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Financial A 5-7yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Financial A 7-10yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Financial A 10+yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Financial BBB 1-3yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Financial BBB 3-5yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Financial BBB 5-7yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Financial BBB 7-10yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Financial BBB 10+yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Industrial AAA 1-3yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Industrial AAA 3-5yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Industrial AAA 5-7yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Industrial AAA 7-10yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Industrial AAA 10+yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Industrial AA 1-3yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Industrial AA 3-5yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Industrial AA 5-7yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Industrial AA 7-10yrs x x x x x x x x x x x x x x 
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Table 18: Data set per sub-index and risk measures II 

              Index 
Market Value in 

USD 

ISMA Mod 

Duration 

ISMA Mod 

Convexity 
KRD 0.5 KRD 2yr KRD 5yr KRD 10yr KRD 20yr KRD 30yr YTM OASD OASC DTS OAS 

US Aggregate Corporate Industrial AA 10+yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Industrial A 1-3yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Industrial A 3-5yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Industrial A 5-7yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Industrial A 7-10yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Industrial A 10+yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Industrial BBB 1-3yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Industrial BBB 3-5yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Industrial BBB 5-7yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Industrial BBB 7-10yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Industrial BBB 10+yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Utility AA 1-3yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Utility AA 3-5yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Utility AA 5-7yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Utility AA 7-10yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Utility AA 10+yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Utility A 1-3yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Utility A 3-5yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Utility A 5-7yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Utility A 7-10yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Utility A 10+yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Utility BBB 1-3yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Utility BBB 3-5yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Utility BBB 5-7yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Utility BBB 7-10yrs x x x x x x x x x x x x x x 

US Aggregate Corporate Utility BBB 10+yrs x x x x x x x x x x x x x x 

US Aggregate Govt Related AAA 1-3yrs x x x x x x x x x x x x x x 

US Aggregate Govt Related AAA 3-5yrs x x x x x x x x x x x x x x 

US Aggregate Govt Related AAA 5-7yrs x x x x x x x x x x x x x x 
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Table 19: Data set per sub-index and risk measures III 

 

              Index 
Market Value 

in USD 
ISMA Mod 
Duration 

ISMA Mod 
Convexity 

KRD 0.5 KRD 2yr KRD 5yr KRD 10yr KRD 20yr KRD 30yr YTM OASD OASC DTS OAS 

US Aggregate Govt Related AAA 7-10yrs x x x x x x x x x x x x x x 

US Aggregate Govt Related AAA 10+yrs x x x x x x x x x x x x x x 

US Aggregate Govt Related AA 1-3yrs x x x x x x x x x x x x x x 

US Aggregate Govt Related AA 3-5yrs x x x x x x x x x x x x x x 

US Aggregate Govt Related AA 5-7yrs x x x x x x x x x x x x x x 

US Aggregate Govt Related AA 7-10yrs x x x x x x x x x x x x x x 

US Aggregate Govt Related AA 10+yrs x x x x x x x x x x x x x x 

US Aggregate Govt Related A 1-3yrs x x x x x x x x x x x x x x 

US Aggregate Govt Related A 3-5yrs x x x x x x x x x x x x x x 

US Aggregate Govt Related A 5-7yrs x x x x x x x x x x x x x x 

US Aggregate Govt Related A 7-10yrs x x x x x x x x x x x x x x 

US Aggregate Govt Related A 10+yrs x x x x x x x x x x x x x x 

US Aggregate Govt Related BBB 10+yrs x x x x x x x x x x x x x x 

US Aggregate Securitised CMBS_ABS AAA 1-3yrs x x x x x x x x x x x x x x 

US Aggregate Securitised CMBS_ABS AAA 3-5yrs x x x x x x x x x x x x x x 

US Aggregate Securitised CMBS_ABS AAA 5-7yrs x x x x x x x x x x x x x x 

US Aggregate Securitised CMBS_ABS AAA 7-10yrs x x x x x x x x x x x x x x 

US Aggregate Securitised CMBS_ABS AAA 10+yrs x x x x x x x x x x x x x x 

US Aggregate Securitised CMBS_ABS AA 1-3yrs x x x x x x x x x x x x x x 

US Aggregate Securitised CMBS_ABS AA 3-5yrs x x x x x x x x x x x x x x 

US Aggregate Securitised CMBS_ABS AA 7-10yrs x x x x x x x x x x x x x x 

US Aggregate Securitised CMBS_ABS A 1-3yrs x x x x x x x x x x x x x x 

US Aggregate Securitised CMBS_ABS A 3-5yrs x x x x x x x x x x x x x x 

US Aggregate Securitised CMBS_ABS A 7-10yrs x x x x x x x x x x x x x x 

US Aggregate Securitised CMBS_ABS BBB 1-3yrs x x x x x x x x x x x x x x 

US Aggregate Securitised CMBS_ABS BBB 3-5yrs x x x x x x x x x x x x x x 

US Aggregate Securitised CMBS_ABS BBB 7-10yrs x x x x x x x x x x x x x x 

US Aggregate Securitised MBS AAA 1-3yrs x x x x x x x x x x x x x x 

US Aggregate Securitised MBS AAA 3-5yrs x x x x x x x x x x x x x x 

 



Bayesian Fixed Income Portfolio construction vs. Tail Risk Exposure: A Multifactor Risk Modeling Approach 

105 

 

 

 

Table 20: Data set per sub-index and risk measures IV 

 

              Index 
Market Value in 

USD 

ISMA Mod 

Duration 

ISMA Mod 

Convexity 
KRD 0.5 KRD 2yr KRD 5yr KRD 10yr KRD 20yr KRD 30yr YTM OASD OASC DTS OAS 

US Aggregate Securitised MBS AAA 5-7yrs x x x x x x x x x x x x x x 

US Aggregate Securitised MBS AAA 7-10yrs x x x x x x x x x x x x x x 

US Aggregate Securitised MBS AAA 5-7yrs x x x x x x x x x x x x x x 

US Aggregate Securitised MBS AAA 7-10yrs x x x x x x x x x x x x x x 

 

 

Table 21: Data set of rates 

 

Bloomberg Data - Rates 

 

0.5yr 2yr 5yr 10yr 20yr 30yr 

US Government Bond Generic Index x x x x   x 

US Interest Rate Swap Generic Index 
    

x   

US Interest Rate Swap Spread Generic Index         x   
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5.5 Results 

 

The purpose of this framework is to assist in the estimation of both the 

expected returns and the underlying total risk. In order to identify the set of 

expected returns an intuitive prior is the starting point, the yield to maturity 

for investment grade bonds. In this case the optimum portfolio would be a 

combination of the yield advantage each asset class offers for a given risk 

budget.  In case the investment manager has a market view, this can be used 

as input in the model. The effect of incorporating a set of views is dual. The 

set of the expected returns will be changed and so will the underlying 

distribution. This process can prove informative in terms of better 

understanding the market dynamics as it is generates representations of the 

most likely performance profile of the asset classes, part of the defined 

investment universe, for which no view is expressed. The views can be either 

absolute or relative.  

 

According to one of the scenarios analysed the US economy shows signs of 

recovery and this is translated into a view that the very short end of the yield 

curve i.e. the 6 month point will eventually increase by 50bps. When no 

additional restrictions are imposed, the set of expected returns incorporating 

the rising rates’ view is as follows: 
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Table 22: Scenarios description 
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d_USGG6M  Index 50 50 64 30 -10 

d_USGG2YR  Index 0 42 67 33 -10 

d_USGG5YR  Index 0 28 42 22 -9 

d_USGG10YR  Index 0 15 7 4 -7 

d_USSW20  Curncy - d_USSS20  Curncy 0 10 -8 -3 -6 

d_USGG30YR  Index 0 6 -21 -10 -6 

dOAS_US Aggregate Corporate Utility 0 -13 -10 -7 17 

dOAS_US Aggregate Corporate Financial 0 -17 -10 -8 21 

dOAS_US Aggregate Corporate Industrial 0 -13 -10 -7 17 

dOAS_US Aggregate Govt Related 0 -3 -6 -3 3 

dOAS_US Aggregate Securitised CMBS_ABS 0 -35 -33 -21 53 

dOAS_US Aggregate Securitised MBS 0 -3 -2 -2 3 

dOAS_US Aggregate Treasury 0 -1 -2 -1 1 

 

 

What is implied by the above table is that based on the bootstrapped data, 

the risky assets tend to perform well in hawkish interest rates environment. 

Alternatively this can be an indication that elevating levels of interest rates 

comes as a response to a warm up of the economy which normally affects 

risky assets positively and the bond market valuations are adjusted 

accordingly.  

 

However, given the interesting investment landscape we are experiencing, 

characterised by both yields and spreads at historic lows, one needs to be 

cautious when using these results. What would make sense in other market 

conditions is not necessarily valid; namely, the further compression of the 

spread levels.  
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The first graph shown below is a depiction of the aggregated bootstrapped 

distribution against the normal distribution. There is evidence that the actual 

distribution exhibits excess kurtosis as opposed to normal distribution. 

 

Figure 5-1: Empirical distribution 

 

 

The first scenario examined, reflects a rates rise which would only affect the 

front end of the curve with every other maturity and all risky assets 

remaining unchanged. We observe that the optimum solution reached is 

closer to the normal distribution but is still leptokurtic aligned with the prior 

distribution. 

 

Figure 5-2: First scenario blended distribution 

 

 

Equivalently, as described above, the following graph illustrates the 

differentiation when there is a 50 basis points rise to the level of short dated 

rates and all other maturity points and the corresponding spreads of risky 
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assets are left unconstrained.  The risk profile of the aggregated distribution 

is closer to the prior with a heavier left tail. As mentioned earlier, cautious 

interpretation of the linkage between raising rates and spread compression 

is advised given the current spread levels of major investment grades indices. 

 

Figure 5-3: Second scenario blended distribution 

 

 

In the following example a relative rather than absolute view is analysed. 

One specific point of the curve is going to be more affected by the rising 

rated than a slightly later maturity. The model still derives a solution which is 

linked to the statistical properties of the prior. 

 

Figure 5-4: Third scenario blended distribution 

 

 

The model is quite flexible to accommodate potentially of any type of view, 

absolute or relative. Then a full joint distribution based on the input view is 
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provided which incorporates both the views and the resulting expected 

changes in the unconstrained variables.  

 

In the graph to follow, the assumption imposed is that Securitized CMBS and 

ABS will underperform Securitized MBS, with CMBS and ABS underlying 

spreads widening by 50bps more than those of their MBS peers. 

 

Figure 5-5: Fourth scenario blended distribution 

 

 

The fully confident posterior distribution is largely speaking aligned with the 

prior distribution. The reason why this is happening is the relatively low 

exposure of the index portfolio to those asset classes. Given the index 

allocation there is limited scope of the overall risk being affected due to any 

relative changes on that front. How those views could affect the allocation 

decision is a different matter which should be examined separately. 

 

The statistics of the probability distributions, estimated through the blending 

of the block bootstrapped resampling and the investment views are 

summarized in table I. We observe that, driven by the prior, the posterior 

distribution exhibits excess kurtosis which corresponds to the leptokurtic 

shape of the probability mass, depicted in the above graphs. 
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This kind of evidence has been presented in the literature. Szego (2002) 

presented a case of leptokurtic distribution for emerging market credits. 

Premaratne and Bera (2000) showed that financial data exhibit excess 

kurtosis and asymmetry whilst Christie-David and Chaudhry (2001) presented 

similar findings for future returns. Other studies observing the presence of 

leptokurtic distributions in finance include Kon (1984), Mills (1995), Peiro 

(1999), Premaratne and Bera (2005) and Patton (2004). Additionally 

Jefferson, Longstaff and Yu (2007) highlighted that arbitrage strategies in 

fixed income display excess kurtosis and so did Kat and Miffre (2006) and Bal, 

Brown and Demirtas (2013) for hedge fund strategies and Enrique, 

Christodoulakis and Poon (2013) for credit loss distributions.   

 

Table 23: Distributions tail behaviour 
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Min 

      Max 

      Mean 0.00% -0.05% -0.89% -0.74% -0.38% 0.14% 

σ 5.44% 6.61% 5.42% 6.08% 5.61% 5.59% 

Skew 

                         

0.33          0.06  -0.07          0.26          0.22  

          

0.46  

Kurt 5.50 3.60 4.56 4.83 5.20 5.61 

VaR (95%) -9.35% -12.12% -11.24% -11.40% -10.51% -9.31% 

VaR (97.5%) -12.01% -13.58% -13.12% -14.10% -12.90% -12.01% 

VaR (99%) -14.34% -15.18% -15.00% -15.00% -14.77% -14.34% 

CVaR (95%) -12.26% -13.95% -13.44% -13.90% -13.15% -12.22% 

CVaR (97.5%) -14.02% -15.12% -14.85% -15.10% -14.71% -14.02% 

CVaR (99%) -15.70% -16.07% -16.13% -16.48% -16.05% -15.68% 
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5.6 Conclusion 

 

This chapter has analysed the issue with fixed income asset allocation and 

portfolio construction with its main components: expected returns and 

portfolio risk being examined separately. Starting from the pioneering work 

of Black and Litterman (1992) and navigating through the various extensions 

available in the literature - this chapter is different in its use of bonds yields 

to define market equilibrium returns, instead of a CAPM framework. 

Moreover, the views represent changes in yield and spread level which is 

highly intuitive.  

 

On the other hand side, a multifactor model has been blended with 

resampling techniques and an entropy pooling approach to jointly capture 

the risk profile of the individual risk factors driving the behaviour of 

investment grade bonds. This sets the groundwork for a realistic estimation 

of expected returns as the prior per se is realistic. The yields extracted from 

market valuations is nothing but the consensus on future returns of a 

particular bond. As such, blending the yield advantage which forms the prior 

and the views on market movements constituted a very reasonable process. 

In contrast, the models using a utility function to extract the equilibrium 

returns provide a set of equilibrium returns which have rather instrumental 

value in a sense of leading to a reasonable allocation. However it is 

questionable to what extent the blend of actual views and instrumental 

equilibrium returns would be meaningful for the identification of expected 

returns.  

 

As a result the main advantage of this framework is the requirement of fewer 

assumptions to be imposed regarding both the equilibrium returns and the 

associated risk. The main weakness is that the yield levels are a meaningful 

approximation of equilibrium returns in a strictly default free environment. 

Thus the benefits of it are limited to the investment grade universe. The 

second drawback is linked with the limitations of resampling which does not 
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assign any probability to out of sample extreme events even though it better 

reflects the tail behaviour and correlation structure between time series. 

 

All told, the framework proposed here is a step forward for the expression of 

views given the latest market valuations and the estimation of blended 

distributions without imposing a normality constraint or any other 

restriction. That forms the basis for the asset allocation discussion. 
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6 Conclusion and Directions for Future Return 

 

6.1 Conclusion 

 

This PhD thesis deals with the asset allocation problem for actively managed 

fixed income portfolios; the equilibrium returns, the investment views, the 

risk dynamics, the correlation structure between asset classes and risk 

factors and the optimization process are all revisited in order to address the 

multiple issues that arise from the portfolio construction process. In this 

respect, each Chapter of the current PhD thesis explores alternative 

research questions in regards to the above topics. Chapter 3 juxtaposes the 

CAPM implied equilibrium returns with the occurring yield to maturities in 

the investment grade universe and uses the yield advantage of each 

component of the portfolio over a benchmark index to determine the 

relative to the benchmark allocation. This is performed using Black-

Litterman model, but tweaked to allow for the representation of the 

investment views and more importantly of portfolio views onto a risk factor 

space. Chapter 4 relates to the examination of the risk behaviour of twelve 

real portfolios of a leading investment institution actively managed against 

the Barclays Capital US Aggregate Index. The tail risk dynamics of these 

portfolios have been explored given the set of available risk factor 

sensitivities over time. Chapter 5 takes into account the latest developments 

in the literature regarding Bayesian portfolio allocation and risk factor 

specification, to propose an allocation risk factor framework which allows 

for leptokurtic and skewed distributions. 

 

Specifically, in chapter 3 the equilibrium returns of the Black-Litterman 

model are compared with the yield to maturity for investment grade bond 

indices. The results show that not only the two are not in line but 

modification of the level of the risk aversion parameter, which controls the 

reverse optimization process in the Black-Litterman model cannot lead to a 

solution. The notion is that yield to maturity is a good proxy of future return 
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of a buy and hold investment strategy under the assumption of no defaults. 

This assumption is compatible with the fixed income investment grade 

universe. As such, the yield advantage of each asset over the chosen 

benchmark index is used as a measure of its ability to generate excess 

returns. Incorporating views into the model, allows captivating the scenario 

of a changing investment landscape in terms of both yields and spreads. It is 

noteworthy, that there is foundation to blend the yield differential over each 

asset class and the index and the relative returns due to market moves 

according to investment views. In contrast, the CAPM equilibrium returns are 

more of instrumental value and it is doubtful how to intuitively blend them 

with the expressed investment views as they may differ substantially. The 

risk estimation is still performed on the basis of a variance covariance matrix 

but this is on risk factor level rather than on asset class level. One of the main 

advantages of the Black-Litterman model is that the optimization process 

leads, by construction to a more aligned allocation with what has initially 

been specified as the market portfolio even though in practice some of the 

underlying assumptions may not hold. To overcome this difficulty, the 

starting point of the allocation in chapter 3 is the chosen benchmark. 

Thereafter the optimizer focuses on the relative to the index portfolio based 

on the relative returns calculated and the risk budget in relative terms. 

 

Chapter 4 relates to the evaluation of the risk profile of twelve real fixed 

income portfolios, actively managed against Barclays Capital US Aggregate 

Index. The available set of sensitivity exposures of these portfolios against 

the main interest rate and spread risk factors are used to test their tail risk 

behaviour. The focus in this chapter remains tied to the relative to the index 

portfolios. As a result, the relative to the index risk factor loadings are used 

for the assessment of the relative to the benchmark risk. The goal is to 

investigate if there is scope to improve a multifactor risk model for active 

investment management by using techniques such as resampling and block 

bootstrapping. The alternative risk methodologies tested are the parametric 

approach, the parametric approach where the covariance matrix is estimated 
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by exponentially weighted moving average, ex post tracking error and block 

bootstrapping with blocks of random length. The Value at risk estimations, 

corresponding to each of the above methodologies have been back tested 

for more than five hundred points of realized performances. In fact, the 

performance of the multifactor risk model improves when moving from the 

parametric approach to resampling. The main empirical results highlight the 

importance of tail characteristics of relative to the index returns which could 

not be captured under the normality assumption of the parametric 

approach.  

 

In light of chapters 3 and 4, chapter 5 elaborates on how to improve the 

portfolio construction mechanism when the normality assumption is in 

practice violated. The multifactor risk model is adjusted to incorporate the 

most recent developments in the measurement of interest rate and spread 

risk exposures. Then block bootstrapping is used to mimic the actual 

marginal distributions per risk factor. Block bootstrapping has the property 

of incorporating the correlation structure of the corresponding marginal 

distributions which is useful for the allocation process. A risk factor loadings 

vector makes it possible to translate the resampled scenarios into portfolio 

returns.  The findings are in line with the main bulk of the literature showing 

that financial data exhibit asymmetric and fat tail distributions. The next step 

is to re-estimate the resampled probability distribution on the basis of 

entropy minimization, when investment views are included, in the form of 

restrictions. This is giving the new probability space that satisfies the 

investment views. The contribution of this chapter is the mix of risk factor 

modelling with the most recent portfolio construction Bayesian techniques 

to allow the assessment of fixed income portfolio construction in a non – 

normal risk factor environment. One other main advantage of this 

framework is the ability to run scenario analysis and to stress test the 

portfolios against different investment outlooks.   
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6.2 Directions for Future Research 

 

Without any doubt, the research ideas and methodologies presented in each 

Chapter of this PhD thesis can be further improved and extended in multiple 

directions. Possible improvements could include the exploration of more 

utility functions in search of compatibility between model implied expected 

returns and yield to maturity. Also, alternative ways to determine 

equilibrium returns could be evaluated and compared, including the roll 

down effect of the yield curve, the yield advantage over an index, the 

probability of default which would allow expanding to other segments of the 

fixed income market such as high yield. The adoption of the utility function 

as a tool to backward engineer the equilibrium returns and to construct the 

portfolio is pivotal. It has to lead to both a realistic set of equilibrium returns 

and a realistic allocation. Incorporating alternatives which use higher 

moments and more than one risk factors would be a step forward. Other 

areas of further research would include the impact of increased 

concentration risk onto portfolio level, when the investment convictions are 

high, which would potentially introduce some form of idiosyncratic risk into 

the portfolio.  
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