

City, University of London Institutional Repository

Citation: Sajjad, Ali (2015). A secure and scalable communication framework for inter-

cloud services. (Unpublished Post-Doctoral thesis, City University London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/14415/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A Secure and Scalable Communication
Framework for Inter-Cloud Services

Ali Sajjad

School of Mathematics, Computer Science & Engineering
City University London

This dissertation is submitted for the degree of
Doctor of Philosophy

September 2015

THE FOLLOWING PARTS OF THIS THESIS HAVE BEEN
REDACTED FOR COPYRIGHT REASONS:

p 7: Fig 1.2. International Data Corporation survey.
p 8: Fig 1.3. International Data Corporation survey.
p 43: Fig 2.13. Architectural view of Google Secure Data Connector.

Supervisors

Prof. Muttukrishnan Rajarajan (City University London)

Prof. Andrea Zisman (The Open University)

Prof. Theo Dimitrakos (British Telecom/University of Kent)

i

ᤌᤈل کے عيشہ اور زعیم ، رحمیٰ ، امیّ ، ابوّ

“For Abbu, Ammi, Ruhma, Zaim and Eesha”

سے گام لےخضرخجستہ پوچھ حیات رازِ
سے تمام نا کوششِ ہے چیز ہرایک زندہ

اقبالؒ) محمدّ (علامہ

Ask Khidr, him of the blessed feet, for the secret of life

‘Everything that is alive is due to unsuccessful effort’

(Iqbal)

Acknowledgements

I would like to express my gratitude to my advisers, Muttukrishnan
Rajarajan, Andrea Zisman and Theo Dimitrakos, firstly for agreeing
to take me on as a PhD student and then for their continuous guidance
in form of fruitful discussions and useful advises. Special thanks to
Theo for arranging further funding for me after the third year, without
which it would have been very difficult, if not impossible, for me to
complete this thesis.

I am also grateful to Constantino Carlos Reyes-Aldasoro and Steven
Furnell for being on my committee and for their timely corrections
and comments that helped me greatly in improving this thesis.

On a personal note, I would like to thank and pay tribute to my
parents who have made immense efforts and sacrifices throughout my
life so that I could focus all of my energies on my academic pursuits.
I admit that I have not been able to do justice to their efforts and
their prayers and unconditional support are the only reasons that I
have been able to accomplish anything. I am also deeply thankful to
my wife, who has supported me in these last four years while pursuing
her own doctoral research and raising our two wonderful children in
parallel. Thank you Ruhma for your phenomenal multi-tasking skills
and for being a rock for our family. Lastly, I do not know how to
express in words my eternal love for the sources of my motivation and
inspiration, my brilliant children Zaim and Eesha, whose laughter
takes away all of my worries and weariness. I love you.

I hereby declare that except where specific reference is made to the
work of others, the contents of this dissertation are original and have
not been submitted in whole or in part for consideration for any
other degree or qualification in this, or any other University. This
dissertation is the result of my own work and includes nothing which
is the outcome of work done in collaboration, except where
specifically indicated in the text.

Ali Sajjad
September 2015

Abstract

A lot of contemporary cloud computing platforms offer Infrastructure-
as-a-Service provisioning model, which offers to deliver basic virtual-
ized computing resources like storage, hardware, and networking as
on-demand and dynamic services. However, a single cloud service
provider does not have limitless resources to offer to its users, and in-
creasingly users are demanding the features of extensibility and inter-
operability with other cloud service providers. This has increased the
complexity of the cloud ecosystem and resulted in the emergence of
the concept of an Inter-Cloud environment where a cloud computing
platform can use the infrastructure resources of other cloud computing
platforms to offer a greater value and flexibility to its users. However,
there are no common models or standards in existence that allows
the users of the cloud service providers to provision even some basic
services across multiple cloud service providers seamlessly, although
admittedly it is not due to any inherent incompatibility or proprietary
nature of the foundation technologies on which these cloud computing
platforms are built. Therefore, there is a justified need of investigating
models and frameworks which allow the users of the cloud computing
technologies to benefit from the added values of the emerging Inter-
Cloud environment. In this dissertation, we present a novel security
model and protocols that aims to cover one of the most important
gaps in a subsection of this field, that is, the problem domain of pro-
visioning secure communication within the context of a multi-provider
Inter-Cloud environment. Our model offers a secure communication
framework that enables a user of multiple cloud service providers to
provision a dynamic application-level secure virtual private network
on top of the participating cloud service providers. We accomplish
this by taking leverage of the scalability, robustness, and flexibility of
peer-to-peer overlays and distributed hash tables, in addition to novel
usage of applied cryptography techniques to design secure and efficient
admission control and resource discovery protocols. The peer-to-peer
approach helps us in eliminating the problems of manual configura-
tions, key management, and peer churn that are encountered when

setting up the secure communication channels dynamically, whereas
the secure admission control and secure resource discovery protocols
plug the security gaps that are commonly found in the peer-to-peer
overlays. In addition to the design and architecture of our research
contributions, we also present the details of a prototype implementa-
tion containing all of the elements of our research, as well as showcase
our experimental results detailing the performance, scalability, and
overheads of our approach, that have been carried out on actual (as
opposed to simulated) multiple commercial and non-commercial cloud
computing platforms. These results demonstrate that our architecture
incurs minimal latency and throughput overheads for the Inter-Cloud
VPN connections among the virtual machines of a service deployed
on multiple cloud platforms, which are 5% and 10% respectively. Our
results also show that our admission control scheme is approximately
82% more efficient and our secure resource discovery scheme is about
72% more efficient than a standard PKI-based (Public Key Infras-
tructure) scheme.

Table of Contents

Table of Contents vii

List of Figures xiii

List of Tables xix

List of Abbreviations xx

1 Introduction 1

1.1 Overview of Cloud Computing . 1

1.2 Characteristics of Cloud Computing 5

1.3 Challenges of Cloud Computing . 6

1.4 Research Problem . 9

1.5 Research Objectives . 12

1.6 Thesis Contributions . 15

1.7 Thesis Outline . 16

2 Review of Related Work 17

2.1 Client-Server based approaches . 22

2.2 Virtual Network based approaches . 24

vii

Table of Contents

2.2.1 VNET . 24

2.2.2 VIOLIN . 26

2.3 Peer-to-Peer based approaches . 26

2.3.1 Hamachi . 28

2.3.2 N2N . 30

2.4 Cloud based approaches . 32

2.4.1 Dynamic IP-VPN . 33

2.4.2 IPsec VPN . 35

2.4.3 Connectivity as a Service (CaaS) 38

2.4.4 Amazon Virtual Private Cloud (Amazon VPC) 41

2.4.5 Google Secure Data Connector 42

2.4.6 CohsiveFT VPN-Cubed . 43

2.5 Chapter Summary . 45

3 Background 48

3.1 Peer-to-Peer Overlays . 50

3.2 Distributed Hash Tables . 53

3.3 IPsec . 57

3.4 Internet Key Exchange . 60

3.5 Key Agreement Protocols . 62

3.6 Functional Cryptography . 65

3.6.1 Predicate Encryption . 68

3.6.2 Identity-based Encryption . 69

3.6.3 Attribute-Based Encryption . 70

3.7 Chapter Summary . 71

viii

Table of Contents

4 Inter-Cloud VPN Overlay 73

4.1 Design and Architecture . 75

4.1.1 Inter-Cloud VPN Overlays . 77

4.1.2 Secure Virtual Private Connections 83

4.2 Prototype Implementation . 88

4.3 Experimental Evaluation . 90

4.3.1 Latency Evaluation Methodology 90

4.3.1.1 Measurement Tools 91

4.3.2 Throughput Evaluation Methodology 92

4.3.2.1 Measurement Tools 93

4.3.2.2 Data Size for Throughput Experiments 94

4.3.3 Scalability Evaluation Methodology 99

4.3.3.1 Measurement Tools 99

4.4 Experimental Results and Analysis . 102

4.4.1 Service Latency . 102

4.4.2 Service Throughput . 106

4.4.3 Service Scalability . 107

4.5 Chapter Summary . 111

5 Inter-Cloud VPN Admission Control 113

5.1 Admission Control in Peer-to-Peer Systems 113

5.1.1 Definition . 113

5.1.2 Bootstrapping using Server Lists 114

5.1.3 Bootstrapping using Peer Caches 114

5.1.4 Bootstrapping using Random Probing 115

ix

Table of Contents

5.1.5 Bootstrapping using Multicast 115

5.2 Threat vectors affecting Inter-Cloud VPN Admission Control 116

5.2.1 Confidentiality Attacks . 117

5.2.2 Integrity Attacks . 118

5.2.3 Authentication Attacks . 118

5.2.4 Availability Attacks . 119

5.3 Security protocol for Inter-Cloud VPN Admission Control 119

5.3.1 The Admission Control Protocol 120

5.3.1.1 Using the Embedded Secret 120

5.3.1.2 Securing the Embedded Secret 121

5.3.1.3 The Complete Protocol 122

5.3.2 Protocol Security Analysis . 125

5.3.2.1 Mitigating Confidentiality Attacks 126

5.3.2.2 Mitigating Integrity Attacks 126

5.3.2.3 Mitigating Authentication Attacks 127

5.3.2.4 Mitigating Availability Attacks 127

5.4 Prototype Implementation . 128

5.5 Experimental Evaluation . 130

5.5.1 Methodology . 130

5.5.2 Experimental Results . 132

5.5.3 Results Analysis . 136

5.6 Chapter Summary . 137

6 Inter-Cloud VPN Secure Resource Discovery 140

6.1 Resource Discovery . 140

x

Table of Contents

6.2 Service based Resource Discovery 141

6.3 Threat vectors affecting Inter-Cloud Resource Discovery 142

6.3.1 Information Confidentiality . 143

6.3.2 Traffic Tampering . 143

6.3.3 Denial of Service . 144

6.3.4 Peer Spoofing . 145

6.4 Security protocol design for Inter-Cloud VPN Resource Discovery . 146

6.4.1 Proposed Solution . 147

6.4.1.1 Key Policy Attribute based Encryption (KP-ABE) . 148

6.4.1.2 Ciphertext-Policy Attribute based Encryption (CP-

ABE) . 148

6.4.1.3 Bilinear Pairing . 149

6.4.2 Secure Resource Discovery 150

6.4.2.1 System Setup . 151

6.4.2.2 Key Generation . 152

6.4.2.3 Key Distribution . 153

6.4.2.4 Public Key Repository 154

6.4.2.5 Peer Address Resolution 155

6.4.2.6 Neighbour Peer Discovery 155

6.5 Prototype Implementation . 156

6.6 Evaluation Methodology . 158

6.6.1 Cost of DHT Lookups . 159

6.6.2 PKI-based Design for Comparison 159

6.6.3 Experimental Results . 160

6.6.4 Results Analysis . 164

xi

Table of Contents

6.7 Chapter Summary . 165

7 Conclusions 167

7.1 Achievements . 167

7.2 Challenges and Limitations . 171

7.3 Future Work . 173

A Virtual Machine Contextualization 175

1 Contextualisation . 175

2 Architecture . 176

3 Advantages . 176

B IPsec Policy 178

C Publications and Patents 180

1 Book Chapter . 180

2 Journals . 180

3 International Conferences . 180

4 Patent . 181

References 182

xii

List of Figures

1.1 A logical view of cloud computing, showing examples of the three

basic service models i.e. Infrastructure, Platform and Application/-

Software that can be accessed from a variety of computational de-

vices [161] . 4

1.2 A survey showing the answers when 244 IT executives were asked

to rate the importance of a variety of cloud services that benefit

their organizations. This chart shows the percentage of respon-

dents rating each benefit a 4 or 5, on a 1 (not important) to 5 (very

important) scale [70]. 6

1.3 A survey showing the answers when 244 IT executives were asked

to rate the top challenges facing adoption of cloud computing in

their organizations in 2008. This chart shows the percentage of

respondents rating each challenge a 4 or 5, on a 1 (not important)

to 5 (very important) scale [70]. 8

2.1 Architecture of a VNET based communication framework, showing

the establishment of a secure connection between a client and the

end host via a proxy gateway [146]. 25

xiii

List of Figures

2.2 The architectural design of VIOLIN, showing the three composing

planes i.e., the bottom plane being the actual layer 3 network, the

PlanetLab overlay infrastructure acting as the middle plane, and

the set of VIOLIN entities that are created in the top plane [92]. . . 27

2.3 The Hamachi architecture for linking fire-walled peers. The fire-

wall functionality is usually provided by private NAT devices that

are transparent to the end-users of this service. 29

2.4 The N2N overlay network architecture showing the two kinds of

nodes i.e., Super Nodes and Edge Nodes. The figure depicts an

example overlay where two Super Nodes are connected to the

Edge Nodes in a star topology, and the communication between

the Edge Nodes has to pass through the Super Nodes (shown with

dashed lines) [50]. 31

2.5 Tunnelling between N2N nodes, with the logical communication

passing through the UDP tunnel in user-space but the physical sig-

nals pass through the tap devices in the kernel-space [50]. 32

2.6 Architecture of the Dynamic IP-VPN showing the four dynamic com-

ponents comprising the system and their deployment locations in

an overlay [79]. 34

2.7 Architecture of the Full-Mesh IPsecVPN, where each IPsec gate-

way (GW) of a private network (NW) is connected to all the other

gateways [89]. 36

2.8 Architecture of the Hub-and-Spoke IPsecVPN, where each IPsec

gateway (GW) of a private network (NW) is connected only to the

Hub gateway (Hub-GW) [89]. 36

xiv

List of Figures

2.9 Architecture of the hybrid IPsec-VPN model, where the Hub gate-

way (Hub-GW) is extended using the MOBIKE or Traffic Selector

extension in order to perform load-balancing operations [89]. 37

2.10 Architecture of the eContract-based secure intra-cloud and inter-

cloud connectivity service. The figure shows two extranets formed

by the Connectivity Service that offer services from both Cloud I

and Cloud II [40] . 39

2.11 Performance of the eContract-based secure inter-cloud connectiv-

ity service in terms of effect on latency and throughput. compared

in the presence and absence of OpenVPN tunnels [40]. 40

2.12 Architecture of an Amazon VPC deployment. Access to the EC2

instances in Zones A and B is provided through a Virtual Private

Gateway (VPG), which acts as the end-point of the VPN between

the customer gateway and the Amazon cloud [6] 42

2.13 Architectural view of Google Secure Data Connector. The VPN is

established between the Tunnel Servers hosted on Google premises

and the Secure Data Connector hosted on the customer network

[71] . 43

2.14 A multi-cloud deployment scenario in VPN-Cubed®. In this deploy-

ment, three VNS3 Manager servers are hosted on three different

cloud regions but only one of them (VNS3 Manager 2) is acting

as the IPsec gateway for the IPsec devices of the customer data

centers [47] . 44

3.1 An abstract P2P overlay network architecture from [110] 51

xv

List of Figures

3.2 An operational description of a distributed hash table [162] 54

3.3 Architecture of the IPsec and IKE protocols 61

4.1 The two-tiered architecture for the Inter-Cloud VPN, with the nodes

of the Universal Overlay acting as the super peers whereas the

nodes of the VPN overlay acting as normal peers 79

4.2 Sequence diagram depicting the steps undertaken for the forma-

tion of a VPN Overlay, with the VM Contextualization service boot-

strapping the process and the SuperPeer facilitating with secure

enrolment and automatic configuration etc. 81

4.3 Architecture of a Inter-Cloud VPN P2P Client node, the architec-

ture being identical for both super peer nodes in the Universal

Overlay and VPN peer nodes in a VPN Overlay 83

4.4 Plot of 150 throughput measurements of 1-50 MB data transfers

between ATOS and BT cloud platforms in order to find the most

stable 3-tuple measurements . 95

4.5 Plot of 150 throughput measurements of 1-50 MB data transfers

from BT to Flexiant clouds in order to find the most stable 3-tuple

measurements . 97

4.6 TPlot of 150 throughput measurements of 1-50 MB data transfers

from Flexiant to BT clouds in order to find the most stable 3-tuple

measurements . 98

4.7 Design of the load scalability experiment to measure the effects of

increasing the numbers of parallel bootstrapping requests from the

VPN peer nodes (P2P Clients) to the Universal Overlay 100

xvi

List of Figures

4.8 Service latency of 240 HTTP HEAD round-trip time request-response

messages from BT to Flexiant clouds 102

4.9 Service latency of 240 HTTP HEAD round-trip time request-response

messages from Flexiant to BT clouds 103

4.10 Service latency of 240 HTTP HEAD round-trip time request-response

messages from BT to ATOS clouds 104

4.11 Service latency of 240 HTTP HEAD round-trip time request-response

messages from ATOS to BT clouds 105

4.12 Throughput of 240 data transmission experiments from BT to Flexi-

ant clouds . 106

4.13 Throughput of 240 data transmission experiments from Flexiant to

BT clouds . 107

4.14 Experiments measuring bootstrapping requests processed per sec-

ond against increasing number of Super Peers 109

4.15 Trend of increasing the number of Super Peers on the average

number of bootstrapping requests processed per second 110

5.1 Duration of the admission control process for 100 trial instances

using the PKI-based and ICVPN methods, on a single cloud plat-

form (BT) . 133

5.2 Duration of the admission control process for 100 trial instances

using the PKI-based and ICVPN methods, between BT and Flexi-

ant cloud platform . 134

xvii

List of Figures

5.3 Duration of the admission control process for 100 trial instances

using the PKI-based and ICVPN methods, between BT and ATOS

cloud platform . 135

6.1 No. of fake peers required to intercept all inter-peer communication

in a Kademlia overlay of size N . 145

6.2 Secure resource discovery for 100 runtime trials between PKI and

Functional Encryption based approaches in ICVPN, on a single

cloud platform . 161

6.3 Secure resource discovery for 100 runtime trials between PKI and

Functional Encryption based approaches in ICVPN, between BT

and Flexiant cloud platform . 162

6.4 Secure resource discovery for 100 runtime trials between PKI and

Functional Encryption based approaches in ICVPN, between BT

and ATOS cloud platform . 163

A.1 Interaction between VM image and ISO Image at run time [13] . . . 177

xviii

List of Tables

3.1 Primitives of Functional Encryption . 67

4.1 Throughput results with least standard deviation against correspond-

ing transmitted data size . 98

5.1 Notations for the Inter-Cloud VPN Admission Control protocol . . . 123

5.2 The Admission Control protocol . 125

5.3 Average time taken by the admission control trials 136

6.1 Four-tuple Functional Encryption . 147

xix

List of Abbreviations

3DES Triple Data Encryption Standard

AES Advanced Encryption Standard

AH Authentication Header

API Application Programming Interface

B2B Business-to-Business

BT British Telecom Ltd.

CA Certificate Authority

CaaS Connectivity as a Service

CD-ROM Compact Disc Read-Only Memory

CRM Customer Relationship Management

CSP Cloud Service Provider

dDoS Distributed Denial-of-Service

xx

List of Abbreviations

DH DiffieHellman Key Exchange

DHT Distributed Hash Table

DoS Denial-of-Service

EC2 Elastic Compute Cloud

ESP Encapsulated Security Payload

FE Functional Encryption

GENI Global Environment for Network Innovations

HTTP HyperText Transfer Protocol

I/O Input/Output

IaaS Infrastructure as a Service

IBE Identity-Based Encryption

ICMP Internet Control Message Protocol

ICV Integrity Check Value

ICVPN Inter-Cloud Virtual Private Network

ID IDentifier

IDC International Data Corporation

IDEA International Data Encryption Algorithm

xxi

List of Abbreviations

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IKEv2 Internet Key Exchange protocol version 2

IP Internet Protocol

IPsec Internet Protocol Security

ISAKMP Internet Security Association and Key Management Protocol

ISO International Organization for Standardization

IT Information Technology

KDC Key Distribution Center

L2TP Layer 2 Tunnelling Protocol

LAN Local Area Network

Mbps Megabits per second

MitM Man-in-the-Middle

MQV Menezes-Qu-Vanstone

NAT Network Address Translation

NIC Network Interface Card

NIST National Institute of Standards and Technology

xxii

List of Abbreviations

P2P Peer-to-Peer

PaaS Platform as a Service

PBC Pairing-based Cryptography

PID Peer Identifier

PKI Public Key Infrastructure

QEMU Quick EMUlator

REST REpresentational State Transfer

RTT Round-Trip Time

S3 Simple Storage Service

SA Security Associations

SaaS Software as a Service

SADB Security Association Database

SDC Secure Data Connector

SPI Security Parameters Index

SSL Secure Socket Layer

TAP network TAP

TCP Transport Control Protocol

xxiii

List of Abbreviations

TLS Transport Layer Security

TTL Time-To-Live

TTP Trusted Third Party

TUN network TUNnel

UDP User Datagram Protocol

UML User-Mode Linux

URI Universally Resource Identifier

URL Universal Resource Locator

UUID Universally Unique IDentifier

VLAN Virtual Local Area Network

VM Virtual Machine

VMM Virtual Machine Monitor

VNE Virtual Network Edge

VNG Virtual Network Generator

VNM Virtual Network Manager

VNR Virtual Network Router

VoIP Voice over IP

VPC Virtual Private Cloud

xxiv

List of Abbreviations

VPN Virtual Private Network

WAN Wide Area Network

ZKPP Zero-Knowledge Password Proof

xxv

Chapter 1

Introduction

1.1 Overview of Cloud Computing

Cloud computing is an extension of the Grid Computing [67] where computing

resources are delivered as a service, typically over the Internet. It follows a dis-

tributed computational model of a large pool of shared, and usually, virtualised

computing resources like storage, processing power, memory, applications, ser-

vices, and network bandwidth. The users of a cloud computing service provider

(CSP) can be provisioned and de-provisioned resources as per their demand in

real-time. Its architecture can be split into two parts, front-end and back-end. The

front-end is a network accessible interface to the users, organizations, and appli-

cations that are using the cloud services. The back-end is typically a large-scale

data centre with a huge pool of storage, computational and network resources.

The cloud service provider gives the end users access to the cloud-based appli-

cations through the front-end interface, which is usually a web interface, either in

form of a web portal or REST (REpresentational State Transfer) based Application

1

1. Introduction

Programming Interface (API) calls, to manage and use the back-end resources

they have purchased. The end users are generally oblivious to the tools and tech-

niques being used to provide them with these services (hence the phrase in the

cloud). The main benefits thus achieved are the reduction or elimination of in-

frastructure costs, improved manageability and dynamic adjustment of resources

to meet the changing computation, I/O or networking demands. According to the

National Institute of Standards and Technology (NIST) [115], there are three basic

models associated with cloud computing:-

1. Software as a Service (SaaS)

2. Platform as a Service (PaaS)

3. Infrastructure as a Service (IaaS)

In the SaaS model, software applications are offered to end users through a

web browser or a thin client. These are almost entirely stored and managed in

the cloud and the users do not manage the cloud infrastructure and platform on

which the application is running. This is suitable for applications in the domain of

social networking, collaboration, media and content management etc. Examples

include Customer Relationship Management (CRM) systems like salesforce.com

[136], email services like Gmail [33], Outlook.com [119] etc., online games like

FarmVille [163] etc. and storage services like Wuala [74] and Dropbox [83] etc.

The PaaS model provides a Computing Platform, which is usually a cus-

tomised environment meant to facilitate the design, development and deployment

of applications. it typically includes operating system, programming language,

execution environment, database, web server and load balancer etc. This moves

2

1. Introduction

the responsibility of managing the underlying hardware and software layers off the

application developer and to the cloud service provider. Examples include Ama-

zon Elastic Beanstalk [5], Google App Engine [72] and Windows Azure Compute

[118].

The IaaS model provides creation of virtual hardware resources including vir-

tual machines, virtual networks and virtualized storage. Cloud providers offer

these resources on demand from their large resource pools installed in data cen-

tres across the globe. The users have to install and manage operating systems

on the machines as well as their application software. Examples include services

like Amazon Elastic Compute Cloud(EC2) [7], Amazon Simple Storage Service

(S3) [8], Flexiant [66] and Rackspace Cloud [131].

There are primarily four cloud deployment models, as recommended by the

National Institute of Standards and Technology (NIST):

1. Private Cloud

2. Public Cloud

3. Hybrid Cloud

4. Community Cloud

Private Cloud is a model in which the infrastructure is operated solely for a

single organization. It might be managed internally or by a third-party and also

might be hosted internally or externally. This is used usually to address concerns

related to data security and trust issues.

In the Public Cloud model, the cloud services are made available to the gen-

eral public by a Cloud Service Provider (CSP). The services might be free (Gmail

3

1. Introduction

Figure 1.1: A logical view of cloud computing, showing examples of the three
basic service models i.e. Infrastructure, Platform and Application/Software that
can be accessed from a variety of computational devices [161]

etc.) or offered on a pay-per-use model (Amazon EC2 etc.).

In the Community Cloud model, the cloud infrastructure is shared by several

organisations with a common policy, security and/or legal considerations. This

helps to reduce costs as compared to a private cloud as it is shared by larger

set of organisations.For example government departments requiring access to

the same information related to infrastructure, such as hospitals, roads, electrical

stations, etc., can utilize a community cloud.

A Hybrid Cloud is the combination of two or more clouds (private, community

4

1. Introduction

or public) to offer the benefits of multiple deployment models. For example, if

the existing private cloud infrastructure is not able to handle the user load, the

cloud can shift workloads between public and private hosting without any service

degradation to the users.

1.2 Characteristics of Cloud Computing

The current buzz around the cloud computing paradigm is due to a number of key

benefits that it provides, which also makes it an interesting research domain in

both academia and the industry [12], [38], [37] . Some of these benefits are :-

• It provides its users with a very low management overhead.

• It gives fast and easy access to a wide range of applications and services.

• It incurs low maintenance cost on its users as a third party is responsible for

the base operations.

• It has the flexibility to scale up and down the resources provided to the users

depending on their real-time requirements.

• Its users have the choice to access their services and applications wherever

they are from a large variety of devices.

• It offers a cost-effective business model as the users pay only for what they

use.

Fig 1.2 shows a survey done by International Data Corporation (IDC) [70]

indicating why customers want to incorporate the cloud computing paradigm in

5

1. Introduction

Figure 1.2: A survey showing the answers when 244 IT executives were asked to
rate the importance of a variety of cloud services that benefit their organizations.
This chart shows the percentage of respondents rating each benefit a 4 or 5, on
a 1 (not important) to 5 (very important) scale [70].

their businesses. It is abundantly clear from this figure that there are two key

driving factors for the rapid adoption of cloud computing. The first is its economic

benefits, and the second being the speed, flexibility and ease of use that it offers

to its users for managing and using their IT resources.

1.3 Challenges of Cloud Computing

Most of the currently available IaaS cloud computing solutions are mainly focused

on providing functionalities and services at the infrastructure level, e.g., improved

performance for virtualization of compute, storage and network resources, as well

as necessary fundamental functionality such as virtual machine (VM) migrations

and server consolidation etc. The main reason behind this is that IaaS is the most

basic kind of cloud offering as it only delivers raw resources whereas PaaS and

6

1. Introduction

IaaS solutions deliver complex systems like development tools, dynamic libraries,

and application life-cycle management suites etc. [69], [147] .

In the cases when higher-level and more abstract concerns need to be ad-

dressed, existing Infrastructure as a Service (IaaS) solutions tend to focus on

functional aspects only. Furthermore, if a cloud’s computational and storage in-

frastructure resources are overloaded due to increased workloads, its services

towards its clients will degrade. The idea of an Inter-Cloud [34] [44] [143] has

been gaining much traction to address such a situation, where a cloud can bor-

row the required infrastructure resources of other clouds. However, in order to

progress from a basic cloud service infrastructure to a more adaptable cloud ser-

vice ecosystem, there is a great need for tools and services that support and

provide higher-level concerns and non-functional aspects in a comprehensive

manner.

There are three fundamental steps in the life cycle of a service in the cloud

computing ecosystem; the construction of the service, the deployment of the ser-

vice to one or more IaaS clouds and lastly the operational management of the

service. In the resulting scenarios, the presence of the multiple IaaS providers

in the cloud ecosystem is the key issue that needs to be addressed by any inter-

cloud security solution.

A major goal of service owners is to select IaaS providers in an efficient way

in order to host the different components of their services on appropriate clouds.

In this respect, third-party cloud brokers [68] can play a major role in simplifying

the use, performance and delivery of the cloud services. These brokers can also

offer an inter-mediation layer spanning across multiple cloud providers to deliver a

host of optimization and value-added services which take advantage of the myriad

7

1. Introduction

Figure 1.3: A survey showing the answers when 244 IT executives were asked to
rate the top challenges facing adoption of cloud computing in their organizations
in 2008. This chart shows the percentage of respondents rating each challenge
a 4 or 5, on a 1 (not important) to 5 (very important) scale [70].

individual cloud services e.g., aggregation of different services or arbitration for a

best-match service from multiple similar services.

For the numerous interaction possibilities among these parties, whatever the

usage scenarios maybe, the security of data and the communication between the

consumers of the service and its multiple providers is of paramount importance.

This can be demonstrated by the results of a survey done by International Data

Corporation (IDC) [70] in December 2009. As shown in Fig 1.3, the top challenge

identified by 87.5 % of the sources is Security. These results show case the

importance of addressing security issues in this respect.

8

1. Introduction

1.4 Research Problem

In the light of the above discussion, we advocate that an inter-cloud security so-

lution is highly desirable that would provide a framework enabling seamless and

secure communication between the different actors of a cloud ecosystem over

multiple cloud platforms. Such a solution, however, has to overcome a number

of challenges because of architectural limitations. This is because most of the

current cloud service platforms, and the multi-tenants environments they offer,

make it difficult to give their consumers flexible and scalable control over the core

security aspects of their services like encryption, secure communication and key

management etc. There have been previous attempts to address these security

issues concerning the nature of the problem that we are addressing, but most

of these have been of limited scope. This has been mainly due to the assump-

tions made for the creation of the models of the computation and communication

architectures. We discuss these in much further detail in Chapter 2.

Most of the existing solutions in this domain are based on some variation of a

centralised point-of-control scheme for all of the security concerns of a commu-

nication model, which does not scale well as the entities in that model increase.

This is especially a major concern in a multi-cloud communication paradigm where

the number of virtual machines can increase or decrease dynamically depending

on the application and user work loads. To cater for this particular issue, we need

a secure communication approach that is flexible to adapt to the churn of virtual

machines and also to their deployment locations. This involves having a decen-

tralised control mechanism as well as having an architecture that is tolerant of

participating entities leaving the communication framework unannounced or join-

9

1. Introduction

ing it dynamically. We aim to demonstrate the efficiency of our proposed solution

in this regard by first modelling the dynamics of the communicating entities in

a multi-cloud scenario and then measuring the performance of our solution with

respect to how quickly can it admit the newly joining members into the communi-

cation framework and how resilient it is to members leaving the framework.

Further limitation of most of the existing work is the amount of manual work

needed to set up the solutions they are employing. This is in terms of practical

work needed for the installations, dependency resolutions, configurations and op-

erations etc. The scaling problem comes into play here as well as the number of

entities that need to be managed like this increases. This is also aggravated by

the lack of dynamic network configurability in most cloud providers caused by the

inherent limitations of the fixed network architectures offered by these providers.

Therefore, one of our security engineering objective is to address the requirement

of minimum manual configuration and deployment and focus on a launch-and-

forget type of solution. In order to achieve this objective, we have to ensure the

security and consistency of the entities participating in the communication frame-

work as well. We demonstrate this by constructing this feature as a component

of our architecture that will have the following properties:-

1. Centralised policy-based specification for the operation and security asso-

ciations of the communication framework.

2. Distributed mechanism to carry out the policy’s actions, where each entity

will have the responsibility for its own configuration.

3. The policy actions should be idempotent and consistent, i.e. the multiple

applications of a policy rule will not change the result beyond the initial ap-

10

1. Introduction

plication, until the next deviation is propagated in the distributed system by

the configuration management component.

Another area of limitation in related literature is comprehensive security man-

agement in general and key management in particular, as this issue is either

handled in a trivial manner with very little details provided or not discussed at all

in any length. For us the security of the overall solution is of paramount impor-

tance, but it also needs an efficient and scalable design. We achieve this aim by

trying to include the concepts of application partitioning and security by isolation

in our solution. More specifically, we have come up with an intra-application sand-

boxing architecture where we partition our solution into different parts and then

securing each part by using a set of different security schemes. As each part is

logically separated by the other ones and employing different security schemes,

its compromise cannot directly affect the whole solution. The main challenge we

have to address here is how to partition the system into meaningful parts and

which security scheme to then design and apply for each part. We investigate the

partitioning of the solution with respect to the different stages of its life-cycle and

describe the design of the security schemes that we have designed to be applied

at those stages.

Lastly, to determine the efficiency of our solution we have to measure its per-

formance and compare it with similar works. This introduces a major challenge

as direct comparison with most of the related work is almost impossible because

of the issues like vastly different test and simulation environments, architecture

of the solutions and availability of reproducible results from the related work. We

address this problem by identifying the important performance metrics that are

11

1. Introduction

commonly measured and noted when encountering a work of this nature and

then designing suitable experiments. We then demonstrate the results produced

in light of those metrics by running those experiments on multiple commercial

cloud platforms and comparing the performance of our solution with experiments

run in the same environment but without any security enhancements and fea-

tures.

1.5 Research Objectives

We have done an extensive literature review of the secure communication mech-

anisms and frameworks that can be used, either in their current forms or with

modifications, to protect the communication channels between physical or virtual

machines deployed on different cloud platforms. The various limitations, gaps,

and shortcomings of the reviewed works are explored further in Chapter 2. By

analysing these limitations and gaps in the existing work in detail, we have been

able to identify the objectives of our research effort. These objectives will help

with the addressing the shortcomings of the existing works, as well as contribute

towards improvement of the robustness and security of communication frame-

works with-in the scope of the inter-cloud environment. We classify our main

objectives in four categories :-

Objective 1: Distributed inter-cloud communication framework

• To design and develop a communication framework that enables the com-

ponents of an application deployed in an inter-cloud environment to com-

municate with each other.

12

1. Introduction

• To investigate and design a decentralised command and control mechanism

for its management and operation so that it does not have a single point of

failure.

• To explore and develop an efficient resource discovery mechanism for the

communication framework so that the distributed entities that constitute the

communication framework are able to share and manage the keys they re-

quire for their security operations.

Objective 2: Security

• To design and develop a security mechanism that ensures the integrity and

confidentiality of the network traffic between the components of an applica-

tion utilising our inter-cloud communication framework.

• To tightly and seamlessly integrate the security mechanism with the inter-

cloud communication framework in such a way that it causes minimum over-

head for the throughput and latency of the communication.

• To design and develop a security protocol for preventing unauthenticated

and unauthorised actors from gaining admission to the communication frame-

work and compare its performance with a standard security protocol.

• To design and develop a security protocol for protecting the resource discov-

ery mechanism used for key management in the communication framework

and compare its performance with a standard security protocol.

Objective 3: Scalability

13

1. Introduction

• To design and architect the secure communication framework in such a way

that it is able to scale with the increased workload.

• To design and develop an architecture for measuring the load scalability of

the communication framework in terms of operations it is able to perform

when increasing or decreasing the number of the distributed entities.

Objective 4: Ease of Use

• To design and architect the secure communication framework in such a way

that it minimizes the complexity of manual deployment and configuration for

its operation in a multi-cloud environment.

In summary, the overall aim of this research is to address the secure, flex-

ible and scalable communication concerns that in our view must be overcome

in order to provide holistic provisioning of services to consumers from multiple

cloud service providers. We aim to present the architecture and design of an

inter-cloud secure communication framework that offers the features of dynamic

and scalable virtual network formation, efficient and scalable key management

and minimal manual configuration, all on top of secure and private communi-

cation between the components of the service across multiple cloud platforms.

Our architecture provides a virtual network using resources from multiple cloud

providers and offers the capability to transparently run applications on top of this

network while catering for the dynamic growth and shrinkage of the components

of the service.

14

1. Introduction

1.6 Thesis Contributions

The main contributions of our research effort pertain to the design and architec-

ture of a secure, scalable and robust communication framework for cloud services

and applications running on virtual machines in a multi-cloud environment, with-

out persistent and centralised administration of all the secure connections. Based

on the detailed discussion in the previous and upcoming sections, we have fo-

cused on the following contributions in this domain:-

1. Design and architecture of a scalable inter-cloud secure communication

framework that works seamlessly with multiple cloud platforms.

2. A novel and efficient security protocol utilising the zero-knowledge proof

concept for controlling admission into a cloud service’s overlay network.

3. A novel and extremely low-overhead secure resource discovery scheme util-

ising functional encryption for scalable key management.

4. A novel process of using distributed hash tables as a command and control

channel for managing and operating the secure communication framework.

5. Deployment, experimentation and analyses of applications using the secure

communication framework on real-life commercial cloud platforms for real-

world evaluations.

Furthermore, the research carried out as a part of this effort has resulted in 1

book chapter, 1 international journal publication, 3 international conference pub-

lications and 1 patent. The detailed references of these publications and patents

have been provided in Appendix C.

15

1. Introduction

1.7 Thesis Outline

The rest of the thesis is organized as follows: In Chapter 2 we present the state-

of-the-art related works that address issues related to this domain and identify

their gaps and limitations. In Chapter 3 we explain in detail the background of

the technologies, methods and algorithms that we have utilised in the formulation

of our solution. In Chapter 4 we outline the key methodology for our approach

and elaborate on the detailed Inter-Cloud Virtual Private Network (ICVPN) archi-

tecture and design, as well as the experimental set up and the evaluation and

analysis of the performance results of our implementation. In Chapter 5 we elab-

orate on the design of the admission control component of our solution and show

its comparison with other related methods. In Chapter 6 we present the design

and implementation of the secure resource discovery component and compare its

efficiency with existing approaches. We conclude in Chapter 7 with a summary

of our contributions and achievements.

16

Chapter 2

Review of Related Work

The concept of the Inter-Cloud has come into its own over the recent years as a

logical evolution of the cloud IaaS interoperability. Most of the commercial cloud

service providers designed and offered their services in such a way that the users

could not easily transition to another cloud service provider offering the same

service (this phenomenon is called vendor lock-in). However, due to the costumer

demands for more flexibility and choice, there has been some effort to come up

with solutions that allow the users to use the resources of multiple cloud service

providers to deploy their systems.

Although most of the attention in this area has been given to data storage use

cases, it is also clear to see that parts of customer softwares running on virtual

machines instances on different cloud platforms must be able to dialogue with

each other. One deployed instance of the software must be able to find one or

more other instances for a particular interoperability scenario and be able conduct

transactions or exchange whatever information or data that is required. Thus, an

inter-cloud communication protocol or framework is needed for the discovery and

17

2. Review of Related Work

messaging needs that can support the one-to-one, one-to-many, and many-to-

many communication scenarios.

As of present, there is no such universal inter-cloud communication protocol

and certainly no universal inter-cloud communication security architecture that ex-

ists to address the above problem statement. The aim of our research is to come

up with such a secure communication framework and evaluate it with respect to

different metrics (discussed in detail in later chapters). In order to start this pro-

cess , we identify some of the key security challenges relevant to the inter-cloud

scenario that we will have to address:-

• Preserving the confidentiality and integrity of data in transit to and from a

cloud service instance (typically a virtual machine).

• Unauthorised access to the resources of the communication framework.

• Interception of data in transit (man-in-the-middle attacks).

• Making access to data or keys selectively available to authorised users and

entities.

Most of these challenges have been addressed quite successfully in the Inter-

net scenario by utilising Virtual Private Networks (VPN). Virtual private networks

have been a mainstay for providing secure remote access over wide-area net-

works to resources in private organizational networks for a long time [120], [106],

[54]. They give the illusion of establishing a connected network by setting up logi-

cal connections between end-points and securing them by using specialized soft-

ware that provides confidentiality and integrity of the traffic flowing between these

end-points by using well-known encryption techniques [16], [61], [20]. However,

18

2. Review of Related Work

the thrust of our research effort is to provision a secure virtual private network

over a multi-cloud infrastructure.

In order to achieve this goal, we have identified a few requirements that help

us in evaluating the related work in relation to the gaps and limitations present in

them that make them unsuitable for an inter-cloud environment. Some of these

requirements have been discussed earlier in section 1.4 in detail. We were able

to establish these requirements as a result of our effort to understand the nature

of our target research environment, i.e., the inter-cloud and the objectives of in-

tended users of this environment, as discussed in existing literature like [34], [44],

and [143].

Additionally, we were also able to gather requirements for our research by

keeping track of the on-going attempts by IEEE (Institute of Electrical and Elec-

tronics Engineers) to create technical standards (IEEE P2302 [88]) for inter-cloud

interoperability. Although the endeavours of IEEE are still in their infancy with

no concrete output thus far, it helped us to discern some useful requirements

from them that were in line with our findings from the study of the related work.

The main insight we were able to ascertain from analysing this material was that

the inter-cloud can not be a single entity, instead it should be a replicated and

hierarchical system. This was based on the observation that the current cloud

computing platforms, that will comprise the inter-cloud environment, are not yet

able to federate and interoperate.

From these sources and more, we were able to identify a few unfulfilled needs

and gaps that must be addressed by anyone who wants to research for a vi-

able inter-cloud communication framework with regards to security, scalability and

ease-of-use. We have have been able to render some of these needs and gaps

19

2. Review of Related Work

into our research requirements and here we summarise the specific requirements

that should be catered for when researching the design and architecture of an

inter-cloud secure communication framework.

• The design of an inter-cloud communication framework should be decen-

tralised, no single-point-of-failure should exist in it.

• The access to the resource of a the communication framework should be

granted only after valid authentication procedures.

– The authentication procedures should be cryptographically strong, e.g.,

user-name/password based methods should be avoided.

– The authentication procedures should be efficient and easy to auto-

mate, e.g., Public Key Infrastructure (PKI) based authentication might

be problematic in this situation due to complex key distribution scheme.

• The communication channels should operate on the lowest layer possible

of the TCP/IP (Transmission Control Protocol / Internet Protocol)networking

model in order to reduce performance overheads.

• The design of an inter-cloud communication framework should be scalable;

the framework should be not burdened as the number of communicating

entities in it increases.

• The management and configuration of the framework should be as simple

and automatic as possible; manual setting up of link and channels should

be avoided.

20

2. Review of Related Work

• The communication framework should be practical in terms of performance,

i.e., it should be secure as that is a fundamental requirement but it should

add as low overheads due to that as possible.

• The design of the framework should be cloud platform independent and not

specific to any particular cloud service provider in order to allow the users

flexibility of choice as well as avoid vendor lock-in.

As mentioned above, the main thrust of our communication framework is the

provisioning of a secure virtual private network in a multi-cloud environment. Af-

ter an elaborate literature survey process, we were able to classify the existing

virtual private network techniques and solutions into four main categories. First

is the most common type of approach, i.e, those that model their solutions ac-

cording to the client-server model [25]. Second is the category of techniques and

solutions that construct a complete virtual network [81] consisting of virtual com-

putational and network entities as well as customised routing mechanisms. Third

category is composed of techniques that leverage peer-to-peer algorithms and

topologies [133] to construct resilient and fault tolerant virtual private networks.

Fourth and last is the most recent and relevant types of efforts that offer virtual

private networking services on cloud computing platforms [140]. We have picked

a few related works for further elaboration in the following sections. This is not

an exhaustive selection, rather we chose some main candidate recent works to

show-case the approaches they take to solve the problems and the common gaps

and limitations in these approaches.

21

2. Review of Related Work

2.1 Client-Server based approaches

The discussion of design and architecture of almost all the client-server based

virtual private network solutions can be condensed by just discussing the design

and architecture of OpenVPN [167]. It is the most common and popular VPN

solution (5 million users worldwide as of June 2015 [168]) used to create secure

point-to-point or site-to-site connections for authenticated remote access [116],

[166].

An OpenVPN server runs the central VPN software and each client machine

needs to install a client software so that they can participate in the extended

network. This client application is usually installed and configured by an admin-

istrator and is done on a per-machine basis. OpenVPN uses industry standard

SSL/TLS (Secure Socket Layer and Transport Layer Security) protocols to pro-

vide confidentiality and integrity of the traffic exchanged between its end-points

[87], [27], [104]. It is based on a modular networking model that uses the TAP

(network tap) and TUN (network TUNnel) virtual networking devices as interfaces

between the client and server operating systems. The Universal TAP/TUN driver

[100] is a virtual network interface and its main purpose is to provide IP tunnelling

support to the operating system. Its appears as a network device to all the appli-

cations and users of the operating system and every application that can use a

network interface is able to use this virtual network interface as well. OpenVPN

listens on the TAP/TUN interface for all the network traffic that is being written to it

by the user applications, encrypts it and then sends it to the destination machine,

where another OpenVPN client will be present to receive the data from its TAP/-

TUN interface, decrypt it and give it to the user application waiting for it.

22

2. Review of Related Work

Gaps and Limitations:

However, the main problem in client/server based approaches like OpenVPN

is that they require centralized servers to manage the life cycle of all the secure

connections for the participating clients, hence suffering from a single point-of-

failure. Furthermore, for authentication of the OpenVPN client, a simple user-

name / password based system is used. There is also the possibility of us-

ing a PKI based system for client authentication but that adds the further key

management complexity as well as the overheads associated with PKI-based ap-

proaches. This can be a major drawback as the issue of key distribution among

all the participating clients in a VPN is non-trivial, especially when the software

itself does not provide any key distribution service and all keys have to be man-

ually transferred to individual hosts [105]. In case of PKI model, an additional

requirement of a trusted Certificate Authority exists that has to issue individual

certificates to all the servers and clients constituting a VPN, which incurs an addi-

tional communication overhead when forming a virtual private network. Another

issue is the quite complex and error prone configuration problems especially if you

want to construct and manage a large-scale network not having a relatively simple

topology, as it would require customized configuration on every client and even

more elaborate management and routing configuration on the server-side. Lastly,

the amount of data transmitted using these VPN tools increases over time due to

the wrapping and tunnelling processes. This is known as the VPN overhead and

its cost depends on the amount of meta-data and the encryption techniques used

in the VPN. In OpenVPN, the use of TAP/TUN interface can introduce a large

overhead, especially for bursty and interactive traffic. We address all of these

23

2. Review of Related Work

problems in our work.

2.2 Virtual Network based approaches

There have been some other VPN solutions for large-scale networks aimed at

grid and cluster computing environments, such as VIOLIN [92] and VNET [146],

that do not follow a strict client/server model based approach.

2.2.1 VNET

VNET is a layer 2 virtual networking tool that implements a virtual local area

network (VLAN) [57] over a wide area network (WAN) using layer 2 tunnelling

[154]. It relies on VNET servers running on a Virtual Machine Monitor (VMM)

that should have the capability to extract raw Ethernet packets sent by the virtual

network card and also the capability to inject raw Ethernet packets into the virtual

network card.

The operation of a VNET set up is shown in Fig 2.1. Basically, a VNET server

VM in a remote network establishes an TCP/SSL tunnel connection to a VNET

server running on a machine, called proxy, inside the user’s home network. All

of the remote virtual machine’s communication goes through this tunnel and the

goal of the proxy is to emulate the remote virtual machine as a local host on

the user’s home network, in effect presenting it as a member of the same LAN

(Local Area Network). So the proxy’s role is to act as a packet filtering gateway

that matches the Ethernet packets that it receives and passes them on to the

appropriate destinations by either directly injecting them into the virtual network

24

2. Review of Related Work

Figure 2.1: Architecture of a VNET based communication framework, showing
the establishment of a secure connection between a client and the end host via a
proxy gateway [146].

interfaces of the VNET servers (in the case of destination being in the remote

network) or injecting them into the local LAN (in the case of the destination being

in the local network).

Gaps and Limitations:

The motivation of this approach is to tackle the user’s lack of administrative

control at remote grid sites to manipulate network resources like routing and re-

source reservations etc. but it suffers from the previously discussed problem of

complex and manual configuration, though trying to emulate the simplicity of a

private LAN. Also the scalability will be a big issue for the proxy as the number

of remote virtual machines grows as each will require a secure tunnel connec-

tion and corresponding virtual network interface mapped to the proxy’s network

interface by the VNET server software.

25

2. Review of Related Work

2.2.2 VIOLIN

The VIOLIN (Virtual Internetworking on OverLay INfrastructure) architectural de-

sign offers is a small-scale virtual network with virtual routers, switches and end-

hosts. the complete design is composed of three layers, as shown in Fig 2.2. The

low-level plane is the actual layer 3 IP network, the mid-level plane denotes an

overlay infrastructure such as PlanetLab, and the top-level plane denotes a set

of VIOLIN entities that are created on the overlay infrastructure. There are three

types of VIOLIN entities which correspond to real network entities i.e., end-hosts,

switched LAN, and routers. All entities in the VIOLIN are implemented in soft-

ware and are hosted by User-Mode Linux (UML) [53] enabled virtual machines

as virtual appliances. This kind of design is aimed at allowing for the dynamic

establishment of a private layer 3 virtual network among virtual machines.

Gaps and Limitations:

VIOLIN does not offer dynamic or automatic network deployment or route

management to set up the virtual network. Virtual links are established between

the virtual appliances using encrypted UDP (User Datagram Protocol) [132] tun-

nels that have to be manually set up and are not self-configuring, making it cum-

bersome to establish inter-host connections in flexible and dynamic fashion.

2.3 Peer-to-Peer based approaches

There have been many peer-to-peer based VPN solutions proposed or imple-

mented, utilising various technologies such as multicast trees, gossip protocols,

26

2. Review of Related Work

Figure 2.2: The architectural design of VIOLIN, showing the three composing
planes i.e., the bottom plane being the actual layer 3 network, the PlanetLab
overlay infrastructure acting as the middle plane, and the set of VIOLIN entities
that are created in the top plane [92].

and overlay broadcasts [94], [164], [75], [165], and [123]. We discuss two peer-

to-peer VPN solutions here, i.e., Hamachi [107] and N2N [50], that have come

up as peer-to-peer alternatives to the centralized and client/server model based

VPNs.

27

2. Review of Related Work

2.3.1 Hamachi

Hamachi is a shareware application that is capable of establishing emulated di-

rect links between computers that are behind NAT (Network Address Translation)

firewalls. Thus it gives the illusion that the network peers on the internet are

connected to each other as if they were on the same local network. A back-

end cluster of servers is managed by the vendor and clients have to install the

client software on the end-user computers. The vendor managed VPN servers

are publicly accessible from the client’s network and each client can establish

and maintain a control connection to the server cluster. When a connection is

successfully established, the client goes through a user-name/password based

login process which authenticates the client to the server. This is followed by a

discovery process which is used to determine the topology of the client’s inter-

net connection, specifically to detect the presence of NAT and firewall devices

on its route to the public internet. This is followed by a synchronization process

that is used to share the status and information of the client’s connectivity details

with other members of its network. After all this is done, the client can construct

peer-to-peer tunnels with other clients using virtual network interfaces and NAT

traversal techniques (if the client is behind a NAT gateway or firewall). It is mainly

used for internet gaming and remote administration.

Fig. 2.3 shows how a Hamachi server helps two hosts establish direct virtual

communication links between each other while they are behind private NAT fire-

walls. In client A’s session message to the Hamachi server, A shares its private

socket address with it. The Hamachi server records client A’s reported private

28

2. Review of Related Work

Figure 2.3: The Hamachi architecture for linking fire-walled peers. The fire-wall
functionality is usually provided by private NAT devices that are transparent to the
end-users of this service.

socket address, along with A’s public socket address as observed by the Hamachi

server itself. Similarly, when client B establishes its session, the Hamachi server

records B’s private socket address and it’s public socket address as well. After

this, client A sends a request message to the Hamachi server asking for help

connecting with client B. In response, the Hamachi server sends B’s public and

private socket addresses to A, and sends A’s public and private socket addresses

to B. Now, client A and client B can each start sending UDP (User Datagram Pro-

tocol) [132] datagrams directly to each other using this session information.

Gaps and Limitations:

29

2. Review of Related Work

Hamachi suffers from scalability issues as each peer has to maintain the con-

nection with the server as well as any other peers it wants to communicate with.

This means that each client essentially has to deal with the overheads of a mesh-

topology. It therefore offers limited number of peers (16 per virtual network) and

limited number of concurrent clients (50 per virtual network), thus placing restric-

tions on the network size. The keys used for connection encryption and authen-

tication are also controlled by the vendor’s servers and individual users do not

initially control who has access to their network. While it offers to support different

kinds of key distribution mechanisms [108], the actual implementation apparently

only offers a Key Distribution Center (KDC) based approach [122], which requires

all peers of a VPN to establish trusted relationship with each other through the

central Hamachi website. Thus, it is not able to offer the users the feature of

independent VPN deployments.

2.3.2 N2N

N2N is a layer 2 VPN solution which does not require a centralized back-end

cluster of servers like Hamachi and the encryption keys are not managed or con-

trolled by the vendor. Each N2N node has a encryption key pre-shared among

the users that have been invited to join the peer-to-peer overlay. It uses a peer-to-

peer overlay network similar to Skype, where a number of dedicated super-nodes

are used as relay agents for edge nodes that cannot communicate directly with

each other due to firewall or NAT restrictions.

The edge nodes connect to a super-node at start-up and pre-shared TwoFish

30

2. Review of Related Work

Figure 2.4: The N2N overlay network architecture showing the two kinds of nodes
i.e., Super Nodes and Edge Nodes. The figure depicts an example overlay where
two Super Nodes are connected to the Edge Nodes in a star topology, and the
communication between the Edge Nodes has to pass through the Super Nodes
(shown with dashed lines) [50].

[139] keys are used for link encryption. The N2N edge nodes are identified

uniquely by a 48-bit MAC address and a 128-bit community name. Edge nodes

use virtual Ethernet devices [100] to establish encrypted UDP tunnels between

each other.

Gaps and Limitations:

As it operates on layer 2, the users of the overlay have to configure their IP ad-

dresses and other network parameters. It also assumes node membership as

relatively static with edge nodes rarely leaving or joining the network over their

life cycle. This is certainly not true in the cloud computing domain where the

virtual machines are very expendable and can be created and destroyed quite

frequently. Lastly, the peer discovery method of N2N utilises the overlay broad-

31

2. Review of Related Work

casting method [41]. This will increase the communication overhead of the sys-

tem, as the number of of peers increases.

Figure 2.5: Tunnelling between N2N nodes, with the logical communication pass-
ing through the UDP tunnel in user-space but the physical signals pass through
the tap devices in the kernel-space [50].

2.4 Cloud based approaches

In recent years, there have been a lot of attempts to investigate scalable and

secure virtual private network solutions for the cloud computing environment.

These include research efforts like Dynamic IP-VPN [79], IPsecVPN [89], and

Connectivity-as-a-Service [40]. Also, some commercial cloud computing services

have been made available by different vendors that provide a virtual private net-

work inside their public cloud offering and offering the customers some limited

degree of control over this network, which is called a Virtual Private Cloud (VPC).

Prime examples in this domain are Amazon Virtual Private Cloud [6], Google Se-

cure Data Connector [71] and CohsiveFT VPN-Cubed [47]. These are aimed

at enterprise customers to allow them to access their resource deployed on the

32

2. Review of Related Work

vendor’s cloud over an IPsec (Internet Protocol Security) [55] based virtual private

network.

2.4.1 Dynamic IP-VPN

Dynamic IP-VPN is a research effort that aims to provides a virtual private net-

work for a private cloud deployment, using some dynamic features provided by

a next generation network. The next generation network used by this system is

GENI (Global Environment for Network Innovations) [23], which provides a virtual

test-bed for networking and distributed systems research. The main attractive

feature GENI for this system is its flexibility and programmability, i.e., it allows the

users to program not only the end hosts of their experimental network but also the

switches in the core of their network. This, in turn, allows them to experiment with

customised network layer protocols. Furthermore, all of the networking equip-

ment is virtualised and its components are made available to users as resources.

In that sense, its a more advanced version of VIOLIN [92], discussed earlier in

this chapter.

Fig. 2.6 shows the architecture that the next-generation network infrastructure

for the private cloud platform must offer their users. This architecture consists of

the following four dynamic components.

1. The edge node, called the Virtual Network Edge (VNE), that connects the

end-user terminals to the overlay network.

2. The forwarding node, called the Virtual Network Router (VNR), that relays

data sent from one VNE to another VNE.

33

2. Review of Related Work

Figure 2.6: Architecture of the Dynamic IP-VPN showing the four dynamic com-
ponents comprising the system and their deployment locations in an overlay [79].

3. The signalling node, called the Virtual Network Generator (VNG), that helps

in the authentication and authorisation of the end-user terminal ahead of

connecting the terminal to the overlay network.

4. The routing node, called the Virtual Network Manager (VNM), that computes

the optimal route for the path between two VMEs and sends configuration

information to VNRs located on that path in order to establish a connection

between the two VNEs.

The authors implement this architecture on a GENI test-bed and measure the

throughput results on a LAN environment with a 100 Mbps (Megabits per second)

line speed specification. They get the throughput of approximately 8 Mbps for an

encrypted tunnel session between two VNEs.

34

2. Review of Related Work

Gaps and Limitations:

The Dynamic IP-VPN architecture requires a specialised networking infrastruc-

ture that supports software-defined networking, a feature most of the current

cloud platforms do not support. Furthermore, the authors assume that the private

cloud platform deploying their solution will support multiple protocol programma-

bility in order to offer both Layer 2 and Layer 3 virtual private networks, using

IPsec, L2TP (Layer 2 Tunnelling Protocol) and SSL-based VPNs. This is also

an unrealistic assumption in our opinion as typically a private cloud deployment

usage scenario is useful for a small company or user group, which usually do not

have the need of such flexibility. Lastly, the performance of the network through-

put really suffers due to the requirement of so much flexibility and even on a 100

Mbps LAN they get an overhead of 92%.

2.4.2 IPsec VPN

IPsec VPN is a research effort that aims to establish a secure VPN between

different private networks, that are connected via the Internet, in order to con-

struct a secure closed user group. The authors describe the two kinds of IPsec

VPN architectures currently being used, which they term as Full-Mesh IPsecVPN

and Hub-and-Spoke IPsecVPN. In case of Full-Mesh IPsecVPN, they envision

a model where the private networks are connected to each other directly via an

IPsec gateway device, with all the IPsec gateways connected in a mesh topology

[62]. Their graphical interpretation of this model is given in Fig. 2.7.

In case of Hub-and-Spoke IPsecVPN, they envision a model where all the

private networks connect via IPsec to a central IPsec gateway called the Hub,

35

2. Review of Related Work

Figure 2.7: Architecture of the Full-Mesh IPsecVPN, where each IPsec gateway
(GW) of a private network (NW) is connected to all the other gateways [89].

and all communication between any of the private networks is relayed through

the Hub. Their graphical interpretation of this model is given in Fig. 2.8.

Figure 2.8: Architecture of the Hub-and-Spoke IPsecVPN, where each IPsec
gateway (GW) of a private network (NW) is connected only to the Hub gateway
(Hub-GW) [89].

The authors then go on to elaborate the limitations of these architectures. In

the case of the Full-Mesh IPsecVPN, they discuss the difficulty of dealing with

scalability issues related to policy management on the IPsec gateways as the

number of private networks increases. In the same vein, it will be difficult to add

36

2. Review of Related Work

new private networks in an existing group seamlessly, as this will require adding

new policy in each IPsec gateway. In the case of the Hub-and-Spoke IPsecVPN,

they mention the problem of increased load on the Hub gateway as the traffic

between the private networks increases. The Hub gateway is also a single point-

of-failure in this model.

To address these concerns, they propose a hybrid model which is a modifica-

tion of the Hub-and-Spoke IPsecVPN, whose architecture is shown in Fig. 2.9. In

this model, they address the load management problem of the Hub-and-Spoke

by using the IKEv2 (Internet Key Exchange protocol version 2) Mobility and Multi-

homing Protocol (MOBIKE). The authors use MOBIKE as a load balancing tool for

their Hub gateway and in case of additional network traffic, they propose to recon-

figure the system so that the problem IPsec gateways are able to communicate

to each other directly without using the Hub gateway as a relay.

Figure 2.9: Architecture of the hybrid IPsec-VPN model, where the Hub gateway
(Hub-GW) is extended using the MOBIKE or Traffic Selector extension in order to
perform load-balancing operations [89].

The authors have not implemented or simulated this architecture, so we can-

not make use of any network performance results of this solution.

37

2. Review of Related Work

Gaps and Limitations:

The main purpose of the MOBIKE extension is to enable a remote access VPN

user to move from one IP address to another, without re-establishing all the se-

curity associations with the IPsec gateway. The MOBIKE extension updates only

the outer (tunnel header) addresses of IPsec Security Associations (SA), the ad-

dresses and other traffic selectors that are in use inside the tunnel stay the same.

In this way the mobility of the user is invisible to the applications using the VPN.

Although the authors claim that this extension to the IPsec protocol can be

utilised for its unintended use as a load-balancer, they do not mention how they

detect or identify the problem traffic in the first place. Furthermore, there is still the

issue of the Hub gateway still being a single point-of-failure for this architecture,

an issue that is not addressed by the MOBIKE extension.

2.4.3 Connectivity as a Service (CaaS)

Connectivity as a Service (CaaS) for intra-cloud and inter-cloud communications

[40] is a research effort that aims to offer secure communication in a cloud-

based collaborative environment. They propose and implement an Electronic

Contract (e-Contract) based solution for intra-cloud and inter-cloud communica-

tion between organisation involved in Business-to-Business (B2B) collaboration

[77]. The main idea is to offer this solution as a trusted 3rd party web service to

the collaborating parties.

The graphical depiction of their architecture is given in Fig. 2.10. The collab-

orating organisations A, B and C reside within their administrative domains. In

38

2. Review of Related Work

Figure 2.10: Architecture of the eContract-based secure intra-cloud and inter-
cloud connectivity service. The figure shows two extranets formed by the Con-
nectivity Service that offer services from both Cloud I and Cloud II [40]

order to collaborate, an e-Contract is negotiated among the organisations and

signed by each collaborator. The connectivity web service can then configure

and form an extranet, according to the e-Contract’s specifications. After the suc-

cessful formation of the extranet, the services deployed by the organisations can

communication with each other within the extranet. The extranet itself is a Open-

VPN based VPN link between specified VMs of the collaborating organisations.

39

2. Review of Related Work

The authors have conducted experimental evaluation of the performance cost

of their architecture in both intra-cloud and inter-cloud environments. For the intra-

cloud performance evaluation, they ran tests on three VMs hosted in Amazon EC2

[7] and measured the observed differences in latency and throughput between the

VMs in the same extranet. They noted an overhead of 100% in both latency and

throughput when using their solution as opposed to insecure communication.

Figure 2.11: Performance of the eContract-based secure inter-cloud connectivity
service in terms of effect on latency and throughput. compared in the presence
and absence of OpenVPN tunnels [40].

For the inter-cloud performance evaluation, they ran data transfer tests be-

tween two machines running on different LANs. Their comparison of the laten-

cies and throughputs of the two set of tests is shown in Fig. 2.11. They observed

that the performance cost of using their solution for inter-cloud communication is

much higher, i.e., ranging from 300% for small sized data (1 KB) to 135% for large

sized data (1 GB).

Gaps and Limitations:

40

2. Review of Related Work

The authors have based the security and architecture of the secure communi-

cation aspect of the their solution on OpenVPN [167]. Hence they suffer from

its inherent drawback as discussed earlier in this chapter, i.e., a single point-of-

failure. Furthermore, they don’t address the issue of distributing keys or other

authentication credentials that is required for ensuring the security of the commu-

nication channels. In the same vein, they also don’t mention how they map the

actual machines that form the extranet, to their web based 3rd party connectivity

service.

Lastly, the latency overheads of more than 100% in case of intra-cloud com-

munication, and more than 300% in case of inter-cloud communication, make

their solution extremely undesirable for most cloud-based network applications.

In case of most B2B applications, which is their target category of applications,

this much overhead will cause an unacceptable increase in time required to send

and receive business transactions.

2.4.4 Amazon Virtual Private Cloud (Amazon VPC)

Amazon Virtual Private Cloud (Amazon VPC) is a cloud based VPN solution pro-

vided by Amazon that lets its customers provision a logically isolated section of

the Amazon cloud as a virtual network to its customers. The customers control

and manage their virtual networking environment, including the selection of IP

address ranges, creation of subnets, and configuration of routing tables and net-

work gateways. The customers can leverage certain security features provided

by the Amazon VPC, like security groups and network access control lists, to help

control network access to Amazon EC2 instances in each subnet. In addition to

41

2. Review of Related Work

this, customers can create VPN connections between their local network and the

Amazon VPC by using a hardware VPN device hosted by Amazon and bridging

it with a hardware VPN device installed in their local network. The logical view of

an Amazon VPC deployment is shown in Fig. 2.12.

Figure 2.12: Architecture of an Amazon VPC deployment. Access to the EC2
instances in Zones A and B is provided through a Virtual Private Gateway (VPG),
which acts as the end-point of the VPN between the customer gateway and the
Amazon cloud [6]

2.4.5 Google Secure Data Connector

Google Secure Data Connector (SDC) is a client-side tool that lets its users es-

tablish an encrypted connection between their local network and Google tunnel

servers. The Google tunnel servers are also used to validate whether a user is

42

2. Review of Related Work

authorized to request access to the specified resources hosted on the Google

cloud. After the user validation, the tunnelling protocol allows SDC to connect to

a Google tunnel server, authenticate, and encrypt the traffic that flows between

the user’s network and the Google cloud.

Figure 2.13: Architectural view of Google Secure Data Connector. The VPN
is established between the Tunnel Servers hosted on Google premises and the
Secure Data Connector hosted on the customer network [71]

2.4.6 CohsiveFT VPN-Cubed

CohsiveFT VPN-Cubed is a virtualised network appliance that is hosted on third-

party cloud services and acts as a a router, firewall, and VPN concentrator. Its

43

2. Review of Related Work

main difference from the previous two products is that it lets its customers extend

their VPN across multiple public and private clouds to create one logical group of

federated resources. It also provides the capability of forming encrypted tunnels

using IPsec to secure all traffic coming to and from its virtual appliances. Similar

to the previous two examples, users can extend their local network into the feder-

ated VPN using dedicated hardware IPsec devices on their premises.

Figure 2.14: A multi-cloud deployment scenario in VPN-Cubed®. In this deploy-
ment, three VNS3 Manager servers are hosted on three different cloud regions
but only one of them (VNS3 Manager 2) is acting as the IPsec gateway for the
IPsec devices of the customer data centers [47]

Gaps and Limitations:

Although these products allow the possibility to leverage the cloud providers’

APIs to flexibly grow and shrink their networks, the management and configu-

44

2. Review of Related Work

ration is as complex as a traditional network as components of the VPC such as

internet gateways, VPN servers, NAT instances and subnets have to be managed

by the customers themselves.

Furthermore, the customers are required to set up an IPsec device on their

premises that connects to an IPsec gateway in the VPC running as a virtual appli-

ance which integrates the enterprise’s network with the VPC subnet in the cloud.

Most importantly, with the exception of [47], these solutions are locked to single

cloud vendor and [47] provides use of a selective set of cloud providers by placing

its virtual appliances as VPN gateways in these cloud infrastructures and allowing

the customers to join these gateways in a mesh topology manually.

2.5 Chapter Summary

In this chapter we have reviewed the existing solutions that can be used to set up

secure communication links between multiple parties. We have explained their

architecture in detail so that its easy to see whether these solutions can be used

in an inter-cloud environment. We have also discussed the deployment models

utilised by these solutions as the ease and automation of deployment of a secure

communication solution in the cloud ecosystem is one of our main objectives.

Therefore, we have focused on four classes of deployment strategies, that is,

client-server, virtual network, peer-to-peer, and cloud computing.

For the client-server model, we have highlighted that although its administra-

tion is simple due to the inherent centralised control, it is also its biggest limitation

from the point-of-view of scalability. Therefore, it becomes difficult to manage as

the number of parties participating in the VPN increase, and it also exposes a

45

2. Review of Related Work

single point-of-failure.

For the virtual network model, we have shown that although these types of

solutions offer the flexibility of constructing highly customised networks, it incor-

porates an inherent management and administrative overhead into the system.

This is due to the fact that heavy customisation does not go hand-in-hand with

flexibility, therefore any change in configuration of the virtual networks becomes a

arduous manual task. This problem only increases in magnitude as the number of

members of such a system increases, thus effecting the scalability of the solution

as well.

For the peer-to-peer (P2P) model, we have highlighted that although the basic

approach of using P2P technology is sound, the two solutions incur overheads

with respect to scalability and ease of administration and management. This is

basically due to the way they structure their topologies, forming a mesh network

in one case and assuming a fixed and static peer membership in the other. This

makes scalability an issue for the former solution, and peer churn comes in as a

problem for the later.

For the cloud based model, we have discussed three popular commercial so-

lutions. These solutions have the advantage of being designed specifically for the

cloud environment, therefore scalability and ease of deployment is usually not an

issue for them. However, some of these give us the problem of vendor-lock-in as

they are tailor made for a specific cloud platform. Furthermore, they almost do

nothing to make it easy to manage and configure the network elements of their

solutions, which are usually left for the customers to administer as they would a

traditional network infrastructure.

In the next chapter, we discuss a collection of methods and techniques that we

46

2. Review of Related Work

believe can be utilised to design a secure communication framework according to

our objectives. We will elaborate in detail techniques concerning de-centralised

control, network tunnelling, key distribution and functional encryption. This will

give the reader ability to better understand the motivation for the design of differ-

ent components of our solution.

47

Chapter 3

Background

In the previous chapter we have identified the gaps in the existing research do-

main that we want to fill with our research efforts by building on the state-of-the-

art research currently available in security engineering methodologies. As men-

tioned previously, the main difference between existing work and our research

effort is that the existing work predominantly focuses on providing remote ac-

cess to users over wide-area networks or single/tightly-integrated cloud service

providers, whereas our research effort aims towards a scalable communication

framework that enables the provisioning of secure virtual private networks in a

generic multi-cloud environment.

In order to achieve this aim, we have detailed the core requirements earlier in

Section 1.4 and Chapter 2, which need to be fulfilled by our research process to

come up with the design and architecture of an inter-cloud secure communication

framework. A summarised and consolidated list of important characteristics and

features for the communication framework that appear out of these requirements

is as follows:-

48

3. Background

• Decentralised and scalable architecture.

• Efficient data and configuration management.

• Low communication and performance overheads.

• Secure and strong access control.

• Decentralised and scalable key distribution.

• Efficient and low-overhead encryption techniques.

In order to cater for these characteristics and features, we evaluated a large

number of mechanisms and techniques that we identified as being relevant to our

stated aims. Of these, we highlight a non-exhaustive selection of the techniques

and mechanisms, which according to our reviews can contribute directly towards

the achievement of our research goals. Therefore, to address the issues of con-

structing the base of a decentralised and scalable communication framework in

which the number of communicating entities can increase or decrease dynami-

cally we study and analyse peer-to-peer overlays. To cater for the efficient data

and configuration management concerns in a widely distributed environment we

look into distributed data structures like the Distributed Hash Table.

To focus on the low communication and performance overheads for our se-

cure communication framework we investigate these overheads for all the com-

ponents of the framework, specifically for tunnelling protocols, as almost all of the

research efforts in the related work have focused on using application layer pro-

tocols for this purpose whereas in our opinion network layer protocols like IPsec

will offer better performance and reduced communication overheads, although at

49

3. Background

the cost of added complexity in terms of configuration management. However,

these added costs can also be mitigated in our research approach by utilising the

distributed data structures for efficiently sharing and enforcing the IPsec related

configurations. To address the challenges of secure access control and decen-

tralised and scalable key distribution in a multi-cloud environment, we investigate

the suitable techniques of key exchanges and key agreements. And lastly, to keep

the overheads of core encryption mechanisms low, we try to avoid the traditional

symmetric and asymmetric techniques and analyse the functional encryption ap-

proach and its variants.

In the upcoming sections in this chapter, we describe in detail the discerning

aspects of these mechanisms and techniques that are beneficial to our goals

and form the foundations of our further research contributions. We also highlight

when, how and where we make use of these mechanisms and techniques to fulfil

our research requirements.

3.1 Peer-to-Peer Overlays

An overlay network can be seen as a network of virtual or logical links and con-

nections that exists on top of another network. As any other computer network,

the main purpose of an overlay network is to facilitate the sharing of resources

between the nodes comprising of that overlay, but at a higher level of abstrac-

tion than the more traditional computer networks. This higher abstraction level

has proven to be quite useful in providing features like scalable and robust wide-

area routing, efficient network-wide search of data and resources, discovery of

nearby nodes, redundant and scalable data storage, anonymity and privacy, and

50

3. Background

extensive scalability and fault tolerance [9].

Peer-to-peer (P2P) overlay networks are a type of distributed systems of re-

source sharing nodes. But instead of conforming to a client-server model in

which client nodes act as consumers of resources and centralised server nodes

act as the producers of resources, all the nodes in a P2P overlay share the re-

sources among themselves and can act simultaneously both as the consumer

and provider of resources.

Figure 3.1: An abstract P2P overlay network architecture from [110]

P2P overlays have been used very successfully in a wide range of application

domains, over a large spectrum of communication frameworks like telecommuni-

cation networks and the world wide web [24]. However, the overall architectural

model of a P2P overlay remains quite consistent despite this vast range and is

discussed in some detail in [110] and depicted in Fig. 3.1, showing typical com-

ponents of a P2P overlay. A brief description is as follows:-

51

3. Background

• The Network Communications layer addresses the network characteristics

like connectivity over the Internet or any other communication infrastructure.

• The Overlay Nodes Management layer handles the management of peer

nodes, which typically includes peer/neighbour-node discovery and P2P

routing algorithms.

• The Features Management layer addresses the issues related to security,

reliability, and fault tolerance of the P2P overlays.

• The Services Specific layer deals with the application-specific components

present in the lower layers of the model, typically relating to task scheduling,

content and file management etc.

• The Application-level layer deals with the applications and services which

make use of the underlying P2P overlay model layers for their advantage.

Depending on how the nodes in peer-to-peer overlay networks are linked to

each other, we can categorize the P2P networks as either structured or unstruc-

tured. A structured peer-to-peer network uses a globally consistent protocol to

make sure that any peer node can efficiently route a search to some other peer

node that has the resource required by that node. In order to achieve this effi-

ciency the peers are organized and managed by following a specific set of rules

and algorithms. This in turn leads to overlays with specific topologies and prop-

erties.

An unstructured peer-to-peer network, on the other hand, does not follow any

rules to ensure any kind of structure in its consistency and are completely decen-

tralized, at least in theory because in practice most implementations do use some

52

3. Background

level of centralization. Their main advantage is that the overlay can be easily con-

structed as a new peer that wants to join the overlay network can copy existing

links of another peer and then form its own links over time. However, on the down

side, if a peer wants to find a resource in the overlay, its request has to be flooded

through the network to find as many peers as possible that have that resource.

Moreover, there is a possibility, albeit very small, that the queries may never be

resolved.

To meet the requirements of our research effort, we investigate the inner work-

ing of a structured peer-to-peer overlay network known as Kademlia [114] in more

detail in the next section. This peer-to-peer overlay has the added advantage of

supporting distributed hash table for information exchange between the different

peer nodes of the overlay. This gives us the capability of addressing the de-

centralisation and scalability problem space as well as the provisioning of a core

mechanism that we can build on further for the purposes of efficient data and

configuration management of the secure communication framework.

3.2 Distributed Hash Tables

Most structured P2P networks make use of a data structure known as a Dis-

tributed Hash Table (DHT), which provides the same service as a traditional hash

table but in it the responsibility for maintaining the mapping from keys to values is

distributed among different nodes i.e., instead of mapping each key to a particular

array slot, as done in a hash table, the distributed hash tables maps each key to

a particular node or peer. More specifically, it employs a keyspace partitioning

scheme that splits the ownership of an abstract keyspace (for example a set of

53

3. Background

160-bit strings) among the participating nodes. An overlay network can connect

these nodes and allows them to find the owner of any given key in the keyspace.

Figure 3.2: An operational description of a distributed hash table [162]

Structured peer-to-peer overlay networks based on DHT support the scalable

storage and retrieval of key, value pairs on the overlay network which is very

helpful when we need to store and retrieve meta-data related to the virtual private

network management. Given a (key, value) pair, a store operation put(key,value)

can be invoked to store the marshalled data objects corresponding to the value on

the P2P overlay. Similarly, given a key, a retrieval operation value=get(key) can be

invoked to obtain the data object corresponding to the key from the P2P overlay.

Each peer node maintains a small routing table containing the Peer ID (IDenti-

fier) and the IP addresses of the neighbouring peer nodes. Different structured

peer-to-peer overlay systems based on distributed hash tables systems have dif-

ferent naming, management, and organisation schemes for their data objects,

key space, and routing algorithms. In theory, DHT-based systems can guarantee

that, on average, any data object can be located with-in O(log N) overlay hops,

where N is the number of peer nodes in the overlay. Existing structured peer-

54

3. Background

to-peer overlay systems like Chord [145], Pastry [135] and Tapestry [170] have

been widely used to provide scalable and fast information storage and retrieval

services for a vast variety of applications. We have leveraged the Kademlia al-

gorithm [114] to cater for the storage and retrieval requirements of our problem

space.

Kademlia works by assigning each peer node a node-identification number

called Peer ID in a 160-bit key space. Its discerning DHT storage principle is that

the key, value pairs are stored on peers with Peer IDs closest to the key, which

is also a 160-bit number. A Peer ID based routing algorithm is used to locate

peers near a destination key and guarantees that on average, any data object

can be located in O(logN) peer hops, N being the number of peers in the overlay.

Kademlia uses a novel Exclusive OR (XOR) metric for distance between points

in the key space, as XOR is symmetric and it allows the peer nodes to receive

lookup queries from the same distribution of peer nodes which are present in their

routing tables. This is because every time a message is sent by a peer node, it

includes its Peer ID, allowing the receiving peer node to record the sender peers

Peer ID and IP address etc. in its routing table.

To locate the key, value pairs, Kademlia utilises the notion of distance between

two Peer IDs. For two 160-bit Peer IDs, a and b, the distance between them is

defined as their bit-wise Exclusive OR, i.e., ∀a, b

a⊕ b = b⊕ a,

a⊕ b = 0, and

a⊕ b > 0 (if a ≠ b).

XOR also offers the triangle inequality property, i.e., ∀a, b

(a⊕ b) + (b⊕ c) ≥ a⊕ c

55

3. Background

∵ a⊕ c = (a⊕ b)⊕ (b⊕ c) and a + b ≥ a⊕ b ∀a ≥ 0, b ≥ 0.

Furthermore, XOR is uni-directional, that is, for any given point x and distance

∆ > 0, there is exactly one point y such that x⊕y = ∆. This uni-directional property

makes sure that all lookup operations for the same key converge along the same

overlay route, regardless of the starting peer location. This improves the lookup

operation performance as caching the key, value pairs along the lookup overlay

route alleviates hot spots.

All peer nodes in the overlay network store a list of IP address, Port No., Peer

ID triples for the peers having the distances between 2i and 2i+1 from themselves.

These lists are called k-buckets. Each k -bucket is sorted by last time seen, with

the least recently accessed peer at the head of the list and the most-recently

accessed at the tail of the list. For small values of i, the k -buckets will be usually

empty as most probably no appropriate peer node will exist, whereas for large

values of i the list can grow up to the value of k. The k is a system-wide replication

parameter and is chosen empirically such that the probability of any given k nodes

failing within an hour of each other is minuscule.

The Kademlia routing protocol consists of four operations: PING , STORE,

FIND NODE, and FIND VALUE.

1. PING pings a peer node to check if it is online.

2. STORE instructs a peer node to store a key, value pair.

3. FIND NODE takes a 160-bit ID as input and returns IP address, Port No.,

Peer ID triples for the k peers it knows about that are closest to the input ID.

4. FIND VALUE is similar to FIND NODE, in that it returns IP address, port

56

3. Background

No., Peer ID triples, except in the case when a peer has received a STORE

for the key, in which case it just returns the stored value.

One of the most important operations that a Kademlia peer performs is to lo-

cate the k closest peers to a given Peer ID. This lookup operation starts by pick-

ing α peer nodes from its closest non-empty k -bucket, and then sending parallel

asynchronous FIND NODE requests to those α peers, where α is a pre-chosen

system-wide concurrency parameter. If the FIND NODE request fails to return a

peer node that is closer than the peers already seen, it resends the FIND NODE

request to all of the k closest peers it has not already queried. To find a key, value

pair, a peer starts by performing a FIND VALUE lookup to find the k peers nodes

with Peer IDs closest to the key and halts immediately when any node returns the

value.

To join the network, a peer A must contact an already participating peer B.

Peer A inserts peer B into the appropriate k -bucket, and then performs a peer

lookup for its own Peer ID. Finally, peer A refreshes all k -buckets farther away

than its closest neighbour, and during these refreshes it populates its own k -

buckets and adds itself into other peers k -buckets as required.

3.3 IPsec

IPsec, short for Internet Protocol Security [55], is an end-to-end protocol suite

based on an Internet Engineering Task Force (IETF) standards [15]. It is used

for securing IP layer communication by authenticating and encrypting each IP

packet of a communication session. IPsec consists of a set of protocols for nego-

57

3. Background

tiation of cryptographic parameters and keys to be used during a communication

session and establishing a mutually authenticated session between the commu-

nicating hosts. IPsec can be used to secure the IP traffic between a pair of hosts

(host-to-host), between a pair of network gateways/router (network-to-network),

or between a network gateway/router and a host (network-to-host) [35]. One of

the main advantages of IPsec is that as it operates on the Network Layer of the

TCP/IP model, applications do not need to be redesigned in order to use it rather

it is transparent to most of the application protocols using it. Another advantage

of IPsec is that it is currently supported and implemented in almost all operating

systems kernels.

IPsec can operate in two modes:

• Transport Mode

• Tunnel Mode

Transport Mode is used to protect end-to-end communication between two

hosts. In this mode, only the IP packet payload is encrypted and/or authenticated.

The routing behaviour of the packet remains intact as the IP header is neither

modified nor encrypted. However, if the Authentication Header is used, the IP

addresses cannot be modified as this will invalidate the hash value. Therefore,

Authentication Header is incompatible with NAT (Network Address Translation).

Tunnel Mode is used to encapsulate IP packets inside another IP packet and

sent to the destination. In this mode, the entire IP packet is encrypted and/or

authenticated and then encapsulated into a new IP packet with a new IP header.

This mode is used to create virtual private networks by allowing the formation of

tunnels between two hosts. As this mode encapsulates the complete IP header

58

3. Background

as well as the payload, it allows the source and destination IP addresses to be

different from those of the encompassing packet and hence support NAT traver-

sal.

IPsec mainly uses two sub-protocols to perform its security operations:-

• Encapsulated Security Payload (ESP)

• Authentication Header (AH)

Encapsulated Security Payload (ESP) protocol protects the IP packet data

from malicious third party attacks by encrypting its contents using symmetric

cryptography algorithms such as 3DES (Triple Data Encryption Standard) [18]

and AES (Advanced Encryption Standard) [1]. It also provides the security ser-

vices of authentication and integrity for the IP packets.

Authentication Header (AH) protocols provides authentication and integrity

protection for the IP packets. It can also protect against replay attacks, in which

the attackers can capture packets during transmission and attempt to re-inject

them back onto the transmission at a later time. It operates by computing a cryp-

tographic hash-based Integrity Check Value (ICV) over all the fields of a IP packet,

except the ones which are modified during transit, for example the TTL (Time-To-

Live) and the IP checksum etc. It stores this ICV in a newly-added AH header

along with some other parameters and sent to the receiving host.

IPsec uses Security Associations (SA) to establish and share security at-

tributes between hosts that want to secure their communication using either AH

or ESP. An SA includes attributes like cryptographic algorithms, IPsec mode, en-

cryption keys, and other network parameters. The framework for establishing se-

curity associations is provided by the Internet Security Association and Key Man-

59

3. Background

agement Protocol (ISAKMP). Security Associations are stored inside a Security

Association Database (SADB) in each host. Upon receiving an IP packet secured

using IPsec, three fields are used to locate the correct SA from the SADB, which

are the sender’s IP address, IPsec Protocol (ESP or AH), and the Security Pa-

rameters Index (SPI). A similar operation is performed when sending an IP packet

using IPsec.

To meet the requirements of our research effort, we make use of the IPsec

protocol suite instead of the more commonly used OpenVPN. This is done in light

of the above background as well as the comparison studies between the two like

[99], which evaluate IPsec as the better choice in terms of throughput and latency

performance results. This better performance is due to IPsec being implemented

in the kernel space, as opposed to the user space implementation of OpenVPN

on most operating systems, as well as because of location of the IPsec in layer 3

of the TCP/IP model as opposed to the layer 5 location of OpenVPN.

3.4 Internet Key Exchange

As described in the previous section, IPsec can be used to provide confidentiality,

integrity, and source authentication for IP packets transmitted from a source to a

destination. These security services are provided by sharing some meta-data and

security parameters between the IP source and destination. This include the type

of security services provided (AH or ESP), the possible cryptographic algorithms

that will be used to provide the security services, and the encryption/decryption

keys. The IPsec protocol suite itself does not contain features of sharing this

required meta-data and security parameters automatically and efficiently between

60

3. Background

the IP source and destination, and it especially becomes cumbersome as the

number of hosts that want to use IPsec for secure communication increases.

This is where Internet Key Exchange (IKE [76] or IKEv2 [95]) comes in, which is

a protocol that can be used to solve this problem, at least partially, by helping to

set up a shared session secret between the two hosts. The relationship between

IPsec and IKE is shown in Fig. 3.3 in context of the standard TCP/IP networking

model.

IKE Protocol Engine

IPsec SPD
Interface

Certificate
Library

Interface

UDP
Interface

Key
Management

Crypto
Library

Interface

Certificate
Library

Public Key Library
(RSA/DSA/DH/

RNG)

Policy
Database

Crypto Library
(DES/3DES/MD5/SHA-1/AES)

SA
Database

IPSec Protocol Engine (AH/ESP) UDP

IP

IKE

IPSec

Figure 3.3: Architecture of the IPsec and IKE protocols

The IKE protocol starts by performing mutual authentication between the two

hosts who want to secure their communication using IPsec. It then establishes an

Security Association (SA) that includes security meta-data and parameters that

61

3. Background

can be used to establish SAs for Authentication Header (AH) or Encapsulating

Security Payload (ESP) and a set of cryptographic algorithms that are to be used

by the SAs to encrypt and secure the traffic. The same functions are performed

on the other end of the connection as well and a common set of cryptographic

algorithms to be used between the hosts is negotiated and agreed upon. Af-

ter the IKE protocol has completed its operations, the IPsec stack on the hosts

machines has the required information needed to start the actual secure trans-

mission of data. This information required by IPsec is parameters like an AES

key, IP addresses of the source and the destination, TCP or UDP ports of appli-

cation layer protocols that are to be protected, and the type of IPsec tunnel that

is to be created.

The IKE protocol is generally supported in most of the operating systems that

support IPsec. The latest versions of the Microsoft Windows operating systems

fully support the IKEv2 protocol, where as almost all major distributions of Linux-

based operating systems support different open source implementations of IKEv2

as well.

3.5 Key Agreement Protocols

In 1976, Whitfield Diffie and Martin Hellman came up with an algorithm that allows

two parties to agree on a shared secret key over an insecure communications

channel, without having any prior knowledge of each other [52]. This algorithm is

now known as Diffie-Hellman (DH) Key Exchange and is widely used for the pur-

pose of key agreement. The basic steps for reaching the key agreement between

two communicating parties, Alice and Bob, are as follows:-

62

3. Background

• Alice and Bob agree on a finite cyclic group G and a generating element

g ∈ G

• Alice picks a random natural number a and sends ga (mod p) to Bob

• Bob also picks a random natural number b and sends gb (mod p) to Alice

• Alice calculates the key K = (gb)a (mod p) = gab (mod p)

• Bob calculates the key K = (ga)b (mod p) = gab (mod p)

Only values of a and b need to be private in order to secure the key agreement

protocol against a passive eavesdropper. In order to compromise the system, a

passive attacker will have to find the value of gab (mod p), given the generator

g, modulus p, and the values of ga (mod p) and gb (mod p). This is known as

the Diffie-Hellman Problem (DHP) and is considered to be a hard problem for the

recommended generators and modulus values.

However, Diffie-Hellman Key Exchange is vulnerable to an active attacker as

it does not offer any authentication of the communicating parties. Thus, a Man-

in-the-Middle (MitM) attack is possible where the attacker can establish two dif-

ferent DH key exchanges with Alice and Bob, effectively appearing as Alice to

Bob, and vice versa. This will allow the attacker to to decrypt, then re-encrypt,

the messages passed between Alice and Bob without them noticing anything.

To safeguard Diffie-Hellman against an active attacker, we can use some of its

authenticated variants like MQV (Menezes-Qu-Vanstone) [101]. MQV is an au-

thenticated key exchange protocol, that is, it tries to combine key exchange with

a mutual authentication of both communicating parties.

63

3. Background

All of the following operations use a finite cyclic group G of prime order q and

a generating element g ∈ G. We use ∣q∣ as the bit length of q, that is, ∣q∣ = ⌈log2 q⌉.

So ` = ∣q∣ /2 .

The basic steps for reaching the key agreement between two communicating

parties, Alice and Bob, are as follows:-

• Alice has a long term private key a ∈ Zq with corresponding public key A = ga;

similarly Bob has a key pair (B, b)

• Alice picks a random number x and calculates X = gx; similarly Bob picks y

and Y = gy

• Alice calculates d = X = 2` + (X mod 2`); similarly Bob calculates e = Y =

2` + (Y mod 2`)

• Alice sends X and Ad to Bob; similarly Bob sends Y and Be to Alice

• Alice computes σA = (Y ⋅Be)x+ad

• Bob computes σB = (X ⋅Ad)y+be

So both Alice and Bob get to the same authenticated session key K = σA = σB.

σA = σB

(Y ⋅Be)x+ad = (X ⋅Ad)y+be

(Y ⋅BY)x+aX = (X ⋅AX)y+bY

(gy ⋅ gbY)x+aX = (gx ⋅ gaX)y+bY

(gy + bY)x+aX = (gx + aX)y+bY (3.1)

64

3. Background

MQV is an authenticated key exchange in that it tries to combine the key ex-

change with a mutual authentication of both involved parties. However, this does

not map well to existing communication frameworks, in particular SSL. In SSL, the

client and server have distinct roles; the client gains assurance that it knows the

correct server public key through the server’s certificate, but the authentication

of the client, when applied at all, is separated from the key exchange (the client

computes a signature with its private key, and the algorithm for that signature

needs not be related to the one used for the key exchange).

Another viewpoint on the subject is that if a putative SSL client has a certifi-

cate with a MQV public key (assuming that use of MQV with SSL was formalized

and implemented), then the client can use that certificate only to authenticate with

SSL servers who uses MQV and happen to have a MQV key pair which uses the

same elliptic curve. This is rather restrictive, and contrasts with the usual situation

where the client has a generic signature certificate which can be used in many

other contexts. As the purpose of a secure and authenticated key exchange pro-

tocol is directly related to our research requirements, we discuss the modification

of this protocol as part of our research effort in detail later in Chapter 5.

3.6 Functional Cryptography

Encryption is a well known and established technique for securely sharing data

between users and processes over insecure or untrusted networks and storage

mediums. Traditionally it had been done with the help of a secret key that was

shared priori between two or more parties that wanted to share data with con-

fidentiality. There exists a large class of algorithms in literature that uses this

65

3. Background

traditional primitive, where usually the same key is used for both the encryption

and decryption process, known as Symmetric Encryption [63]. Some examples

of popular symmetric encryption techniques are Twofish [139], Serpent [10], AES

[1], Blowfish [138], RC4 [63], 3DES [63], and IDEA [137].

However, while these symmetric encryption techniques might be acceptable

for a small and cohesive set of users, they were clearly infeasible for larger net-

works such as Internet, which may consist of millions of users. So about thirty

years ago, a radically new encryption method was invented in the form of public

key cryptography [52], where two or more parties can securely communicate with

each other without having to agree to a priori mutually shared secret. Now-a-

days, the use of this public key encryption or asymmetric encryption is ubiquitous

in all sort of communication networks, from secure web communication to disk

encryption.

However, for some emerging domains, like our focus area the inter-cloud com-

munication, this notion of public key encryption is insufficient. This is mainly due

to the inherent lack of access granularity of the public key encryption techniques,

i.e., a user can either decrypt and access the entire message or he learns nothing

at all about the message, other than perhaps its length. In most modern cloud

services, it is often desirable to associate a decryption policy with the encrypted

message and only the users who can satisfy the policy being able to decrypt the

message. In more generic terms, we want to be able to only give access to a

function of the plaintext message to an authorised user. Public key cryptography

is not really helpful in this types of scenarios and this is where functional encryp-

tion comes in. We discuss the secure formulation of a secure resource discovery

protocol as part of our research effort in detail later in Chapter 6 which uses differ-

66

3. Background

ent variants of the functional encryption scheme described briefly in this section

below.

Table 3.1: Primitives of Functional Encryption

Sequence Explanation
setup(1)→ (pp,msk) Generate a public and master secret key pair
keygen(mk,k)→ sk Generate secret key for k
enc(pp, x)→ c Encrypt message x
dec(sk, c)→ y Use sk to decrypt c

In a generic functional encryption scheme, a decryption key describes a func-

tion of the encrypted data to the user. This function F (⋅, ⋅) is modelled as a Turing

Machine [155] and an authority possessing a master secret key (msk) can gener-

ate a key skk that can be used to compute the function F (k, ⋅) on some encrypted

data.

To describe it more formally but briefly, a functional encryption scheme (FE)

for a functionality F defined over (K, X) is a sequence of four algorithms (setup,

keygen, encryption, decryption), as given in Table 3.1. These must satisfy the

correctness condition y = F (k, x) with the probability 1, for all k ∈ K and x ∈ X.

The set K is called the key space and the set X is called the plaintext space.

The functional encryption technique also requires that the key space K contain a

special key called the empty key ε.

The empty key ε in K gathers all the information about the plaintext that inten-

tionally leaks from the ciphertext, such as the length of the encrypted message.

Therefore, anyone is able to apply dec(ε, c) on a ciphertext enc(pp, x) R→ c and get

all the information about x that intentionally leaks from c.

Another advantage of functional encryption is that many encryption concepts

67

3. Background

and constructions can be viewed as special cases of functional encryption. For

example, we can show that public key encryption is a simple example of functional

encryption. Let K ∶= 1, ε and consider the following functionality F defined over

(K;X) for some plaintext space X:

F (k, x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x if k = 1

len(x) if k = ε
(3.2)

A secret key for k = 1 decrypts the valid ciphertexts, while the empty key

k = ε simply returns the length of the plaintext message. Hence, this functionality

syntactically defines the standard public key encryption method.

Identity-Based Encryption [141], [30], [45], Predicate Encryption [31] and Attribute-

Based Encryption [80] are some examples of sub-classes of functional encryp-

tion. We show by giving a few examples that how functional encryption captures

these encryption concepts.

3.6.1 Predicate Encryption

In many peer-to-peer applications, a plaintext message x ∈ X is usually a key-

value pair (ind, m) ∈ I ×M where ind is the index of the pair, m is the payload

message, I is the index space, and M is the payload message space. For exam-

ple, in an email message, the index will be usually set as the sender’s name or

email address while the payload might be the contents of the email message.

In this context, the Functional Encryption functionality in terms of a polynomial-

68

3. Background

time predicate P ∶K × I → {0,1} over (K ∪ {ε}, (I ×M)) is defined as,

F (k ∈K, (ind, m) ∈X) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

m if P (k, ind) = 1, and

� if P (k, ind) = 0

(3.3)

Now, let c be an encryption of (ind, m) and let skk be a secret key for k ∈

K. Then, the function dec(skk, c) will decrypt the message payload in c when

P (k, ind) = 1 but will reveal nothing new about m otherwise.

3.6.2 Identity-based Encryption

An Identity-Based Encryption (IBE) scheme is an encryption scheme where any

arbitrary string can be a valid public key. For example, email addresses and dates

etc. can also be public keys. Its main advantage is that communicating parties

may encrypt messages and verify signatures with no prior distribution of keys

required between individual participants. This is obviously very useful in a lot of

cases where distribution of authenticated keys is inconvenient or impractical due

to technical or administrative constraints.

Identity-Based Encryption can be formally described as a Predicate Encryp-

tion scheme where :

• The key space is K ∶= {0, 1}∗ ⋃ {ε}

• The plaintext is a pair (ind, m) where the index space I ∶= {0, 1}∗

69

3. Background

• The predicate P on K × I is defined as,

P (k ∈K, ind ∈ I) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if k = ind, and

0 otherwise
(3.4)

For these Identity-Based Encryption systems to properly support the empty

key ε functionality, the ciphertext must explicitly include the ind and the length of

the message len(m) in the clear.

3.6.3 Attribute-Based Encryption

An Attribute-Based Encryption (ABE) scheme is an encryption scheme where the

secret key of a user and the ciphertext are dependent upon attributes that the user

possesses. Due to this, the decryption of a ciphertext is possible only if the set of

attributes of the user key matches the attributes of the ciphertext. Subsequently,

this makes it possible to express complex access policies using these attributes.

The Attribute-Based Encryption concept has been refined into two types: Key-

Policy ABE and Ciphertext Policy ABE.

In Key-Policy ABE, the attributes are assigned to a ciphertext when that ci-

phertext is created. The policies are assigned to users and keys by an authority,

which is usually the same entity that creates the keys. A key can decrypt only

those ciphertexts whose attributes satisfy the assigned policy.

In Ciphertext Policy ABE, the users of the system are assigned certain at-

tributes. The users then receive a key from an authority for their set of attributes.

A policy is associated with the ciphertext at the time of encryption. If a user’s

70

3. Background

attribute set satisfies the policy, he can use his key to decrypt the ciphertext.

3.7 Chapter Summary

In this chapter, we give a detailed explanation of methods and techniques that we

have researched and selected for utilisation in our secure communication frame-

work. We have included the techniques that will help us in achieving our research

objectives, as stated in Chapter 1. Some of these methods and techniques will

form the core of some of the components of our solution, so we have described

them in detail and focused on the aspects that make them suitable for our use.

We started by describing the peer-to-peer overlays and their types, as these

form the basis of the architecture of our framework. A structured peer-to-peer

overlay will be the foundation of our approach to address the issues regarding the

inter-cloud nature of our target environment. Therefore, we describe the specific

peer-to-peer protocol that we will use in our implementation in some detail, i.e.,

Kademlia. We focused on its efficient storage and retrieval aspects using the dis-

tributed hash table data structure, as well as the node joining and peer discovery

mechanisms.

We also described the IPsec protocol suite in some detail, along with its dif-

ferent modes of operations. This is important as we use IPsec and its associated

technologies to provide the underlying confidentiality and integrity in the commu-

nications links established as a result of using our framework. We also described

the Internet Key Exchange protocol, which we don’t actually use in our solution,

but it acts as our motivation to provide the key distribution functionality between

the nodes using our solution, using the distributed hash table as a distribution

71

3. Background

mechanism.

We also described the Diffie-Hellman key exchange protocol that can be used

to generate the actual session keys that are required to perform the encryption

operations in IPsec. We described in detail one of its authenticated variant known

as MQV, which addresses the Man-in-the-Middle attacks that are possible in the

standard Diffie-Hellman scheme. This variant becomes our guiding motivation

with which we design a modified version of authenticated key generation and

exchange protocol for use in our solution.

Lastly, we described the concept of functional cryptography and some of its

types in some detail. This is attractive to us as it gives us the opportunity to

control the granularity of the decryption process by associating it with proving

the ownership of a predicate, attribute, or policy. This is especially useful in cloud

computing scenarios if we are able to share the security credentials efficiently and

securely, by ensuring that only an authorised user is able to access and decrypt

these security credentials and we can control the granularity of the authorisation.

In the next chapter, we highlight when, how and where we make use of these

mechanisms and techniques to construct our solution. We will see in detail how

these methods provide us with further advantages, in addition to the accomplish-

ment our main objectives. Furthermore, we will explain the methodology, tech-

niques and tools that we have used to implement the prototype of our model

framework and the various performance results that we have measured by de-

ploying this prototype on three cloud service providers.

72

Chapter 4

Inter-Cloud VPN Overlay

In the previous chapters we have identified the gaps in the existing research do-

main that we want to fill with the techniques and protocols developed as part of

our research efforts and by applying the applied security research methodologies.

In this respect, the main objectives of our research effort to design and architect

a secure communication framework that works efficiently in a inter-cloud environ-

ment are fourfold.

Firstly, to construct a scalable virtual private overlay network between virtual

machines deployed on multiple cloud platforms. The design of this overlay net-

work has to conform to the constraints and requirements detailed in the previ-

ous chapters. We also have to take into consideration that the number of virtual

machines can increase or decrease dynamically during the life-cycle of a cloud

application and that the overlay network also has to cater for this churn. However,

the triggering of this churn is currently external to our scope of research.

Secondly, to include a scalable key distribution mechanism as an integral part

of the framework, which will cater to the encryption and decryption-keys related

73

4. Inter-Cloud VPN Overlay

requirements of the security mechanisms and protocols that will be needed to be

designed, implemented and evaluated as the core contributions of our research

effort.

Thirdly, to have a design that involves as minimal manual configuration man-

agement as possible in order to make the final solution very easy to deploy. This

is important also due to the fact that most of the existing cloud platforms require a

lot of manual effort to correctly set up and manage even a small or medium cloud

service. So when addressing service deployment and operation at an inter-cloud

level, maximum automation is a highly desirable and attractive prospect for any

cloud vendor.

Fourthly and lastly, we want to ensure the confidentiality and integrity of the

communication as well as the sensitive data and meta-data that is exchanged

between different components of the communication framework.

In order to achieve these objectives, we have come up with a collection of

mechanisms and techniques that can be integrated to formulate an efficient and

scalable secure communication framework that is able to satisfy our research re-

quirements in an inter-cloud environment. In the coming sections we describe

in detail the peer-to-peer model architecture we have come up with in order to

address the inter-cloud nature of our target environment. Although the basic pur-

pose of its design is to handle the distributed and dynamic placement of the virtual

machines on multiple cloud providers, we will also elaborate how we have added

to a standard peer-to-peer design. These additions and modifications have pro-

vided us with further advantages to accomplish our research objectives. After

that we explain the methodology, techniques and tools that we have used to im-

plement the prototype of our model and the various performance results that we

74

4. Inter-Cloud VPN Overlay

have measured by deploying and evaluating this prototype on one academic and

two commercial cloud platforms.

4.1 Design and Architecture

The design and architecture of our inter-cloud secure communication framework

is inspired by a collection of techniques like Virtual Private Networks [148] (VPN)

and Peer-to-Peer (P2P) Overlays [9]. Network virtualization techniques like VPNs

and P2P Overlays have been shown to provide their users with legacy communi-

cation functionalities of their native network environments, despite the topology,

configuration and management architecture of the underlying physical network.

This fits perfectly with our goal of providing a secure virtual private network as a

service to the consumers operating on top of multiple cloud providers.

All the complications and complexities of managing a physical network are

abstracted by the overlay network, enabling the virtual machines deployed on

multiple clouds to benefit from a customised communication network typically only

available in physical local-area environments. However, there are some problems

in using the traditional designs and architectures of Virtual Private Networks and

Peer-to-Peer Overlays for our secure communication framework that we have to

address before utilising them in our solution.

Traditionally, most of the private network solutions for similar problem spaces

require the direct and continuous control of a centralised administration entity

over every aspect of the overlay network, consisting of all the participants that

constitute and facilitate the operation of the service being deployed and run on

the multiple cloud providers. Such a central controller provides services to au-

75

4. Inter-Cloud VPN Overlay

thenticate, secure and police the interactions amongst peers. These centralised

solutions make it almost necessary to provide complex support and management

functionalities to meet the user demands of smooth and continuous operation.

Furthermore, to robustly handle the loads generated by a large number of

users, significant infrastructure resources and services like mirroring or redun-

dant instances and load-balancers must be set aside, incurring additional costs

for the service owner. Peer-to-Peer overlays, on the other hand, are designed to

offer improved scalability, flexibility and availability in a distributed fashion without

extensive reliance on centralised servers or resources. For these reasons, such

overlay networks have been used very successfully to provide specialized appli-

cation layer services like voice over IP (VoIP) e.g., Skype [19] and file sharing

e.g., Bittorrent [46].

Having discussed the shortfalls of the centralised approach used in virtual pri-

vate networks above, we also need to highlight some common problems present

in current Peer-to-Peer techniques that adversely effect our research efforts. These

problems are concerned with the seamless bootstrapping of services like peer

discovery and resource advertisement and discovery. In all structured Peer-to-

Peer overlays, a joining peer is required to have relevant information about at least

one other peer that is already in the overlay, and the current structured Peer-to-

Peer overlays do not offer a scalable solution for the seamless bootstrapping of

these services. This can be seen in the specifications of the popular structured

Peer-to-Peer overlays [14] and [91].

Therefore, a key research contribution is the following architecture of a scal-

able communication framework that can bootstrap multiple Peer-to-Peer overlays,

each able to provide the VPN functionality over multiple cloud providers’ infras-

76

4. Inter-Cloud VPN Overlay

tructure. We strive to explain the detailed design of our core secure communica-

tion framework in two segments. In the first segment (Section 4.1.1) we describe

the architecture of the core communication framework in terms of its salient com-

ponents and their relationship with each other. In the second segment (Sec-

tion 4.1.2) we describe the core work-flow and protocol design that is followed in

order to establish the secure communication links between these components.

4.1.1 Inter-Cloud VPN Overlays

The core research innovation employed in our Inter-Cloud VPN framework is the

loose and dynamic integration of two tiers of peer-to-peer overlays, i.e., a ’univer-

sal peer-to-peer overlay’ and service or application-specific ’VPN overlays’. The

universal overlay is the top tier peer-to-peer overlay that every peer node (virtual

machine) participating in the formation of a secure virtual private network is ex-

pected to join. Therefore, the main role of the universal overlay is to act as a

facilitator that provides services to bootstrap and launch the individual VPN over-

lays. Each VPN overlay is formed dynamically and is logically separate from the

universal overlay, however, some of the peer nodes of a VPN overlay are a subset

of the super peer nodes of the universal overlay.

A distinct benefit of our framework design is that a single universal peer-to-

peer overlay can be used to provide a scalable and secure infrastructure service

for initiating and binding multiple VPN overlays on top of different cloud platforms,

as long as the peer nodes of the universal overlay are accessible to the peer

nodes of the VPN overlays deployed on these cloud platforms. The universal

overlay itself can be initiated either by the service owner, a cloud broker or the

77

4. Inter-Cloud VPN Overlay

cloud service providers and kept in operation for an indefinite amount of time,

thus providing a long-term and reliable universal launch service to individual VPN

overlays.

The Fig. 4.1 shows a reference deployment scenario where the universal over-

lay has been initiated on two different cloud service providers and the peer nodes

of the universal overlay are accessible from the VPN peer nodes running on vir-

tual machines that have been deployed on three cloud service providers. To avoid

creating a chaotic and confused depiction, Fig. 4.1 only illustrates the composi-

tion of a single VPN overlay over the three cloud service providers. However, the

benefits of the flexibility and decentralised nature of our architecture is not hard to

conceptualise here as a large number of VPN overlays can be constructed with

the help of the universal overlay, depending on the requirements of the users and

the cloud service providers.

As discussed earlier, the universal overlay is the overlay that the peer nodes of

the underlying VPN overlays have to join and therefore it helps with the bootstrap-

ping activity of the VPN overlay peers. Thus the universal overlay essentially adds

a layer of abstraction over the underlying VPN overlays. This abstraction can also

come in handy when providing other functions such as service advertisement,

service discovery mechanisms, and service code provisioning, with minimal re-

quirement for manual configuration and administration.

This approach acts as an aggregation service for the eventually peered over-

lay resources, which in this case are virtual machines, and spans across multiple

cloud domains to help form a virtual private network. The peers of the universal

overlay act as super peers for the nodes of the underlying VPN overlays and let

new nodes enrol, authenticate, bootstrap and join a particular VPN overlay based

78

4. Inter-Cloud VPN Overlay

on the cloud service requiring the VPN service.

Cloud 2 Cloud 3

Cloud 1

VPN Peer Node

Virtual Machine

Super Peer Node

Universal Overlay

VPN Overlay

Figure 4.1: The two-tiered architecture for the Inter-Cloud VPN, with the nodes of
the Universal Overlay acting as the super peers whereas the nodes of the VPN
overlay acting as normal peers

As depicted in Fig. 4.1, a service owner/user, a cloud broker, or a cloud ser-

vice provider could itself be a peer node in the universal overlay and a subset of

the universal overlay peer nodes can act as super-peers for the peer nodes of the

VPN overlay for a particular cloud service or application. The universal overlay

peers can join and leave the system dynamically and additional VMs from the

cloud providers can be provisioned to act as the universal overlay peers as well.

As both the universal and the VPN overlay nodes are basically running on VMs

provisioned from different cloud providers, they can be demoted or promoted from

these overlays respectively based on parameters like performance and availabil-

ity.

To join the universal overlay, each peer needs to acquire a unique identifica-

79

4. Inter-Cloud VPN Overlay

tion number (PID). This is generated by the peer itself on its first initialization on a

VM as a unique 160-bit random number. It also needs some bootstrapping data

to validate itself with a super peer for admission into the overlay. The bootstrap-

ping data consists of the IP addresses of the super peers, the ID of the cloud

service or application that this particular VM belongs to and that cloud service’s

or application’s secret key. This data is embedded in a secure cache on the vir-

tual machine by a VM contextualization service [13], when it is provisioned for

the cloud service deployment and the same contextualization service is used to

install the peer-to-peer client in the VM1.

After the bootstrapping phase, the peer follows the admission control protocol

described in Chapter 5, Section 5.3 for a validated admission into the overlay,

using the cloud service’s or application’s secret key as the required password.

After the completion of the bootstrapping process, the VPN peer requests for

enrolment with one of the super peer node in the universal overlay. The super

peer checks its enrolment policy to see if the requesting peer node passes the re-

quirements. After the successful enrolment process, the peer authenticates itself

with the super peer using the secret key provided to it by the VM contextualiza-

tion service. For this, the peer follows the admission control protocol described in

Chapter 5, Section 5.3 for an authenticated admission into the overlay, using the

cloud service’s or application’s secret key as the required password.

If the authentication is successful, the peer asks for the list of the neighbouring

peers in its overlay that are part of the same cloud service. The super peer can

query for all the peer nodes that belong to a particular cloud service by using

the serviceID and return the results to the requesting peer. Similarly, the peer
1See Appendix A for a more detailed description

80

4. Inter-Cloud VPN Overlay

Figure 4.2: Sequence diagram depicting the steps undertaken for the formation of
a VPN Overlay, with the VM Contextualization service bootstrapping the process
and the SuperPeer facilitating with secure enrolment and automatic configuration
etc.

asks for the security tokens/keys that it needs for use in the protocol to form

secure communication channels with other peers of its VPN overlay and the initial

configurations that it requires to follow for the protocol.

81

4. Inter-Cloud VPN Overlay

In the current implementation we use and compare two models; the Public Key

Infrastructure model (PKI) where the super peer act as Certificate Authority (CA)

and can issue signed certificates to the authenticated peers which are valid for a

fixed time duration. The peers can use these certificates to validate each other

as well as use them in the security protocols which support the PKI model. In the

upcoming Chapter 6, Section 6.4 we also develop and evaluate an alternative to

the PKI model which uses Functional Cryptography to solve the same problem

more efficiently.

After all this information is made available to the peer, it joins the VPN overlay

and starts with the process of constructing secure communication tunnels with

other peers of the same VPN overlay according to the policies it has received in

the configuration data. The configuration data can be updated dynamically and

all the peers check with the super peers periodically so that they can apply and

use the latest policies according to the service demands. A sequence diagram

describing this flow of operations is depicted in Fig.4.2.

In a typical usage scenario, the service/application owner is responsible for

provisioning virtual machines from cloud service providers to deploy and run their

services. These virtual machines are considered as the peers of the VPN over-

lays and the complete life-cycle of the peers is handled by a peer-to-peer client

embedded in the appliance image used to instantiate a virtual machine on a cloud

platform.

However, a further advantage of the universal overlay approach is that the

peers of a VPN overlay can get, update and modify the peer-to-peer client pro-

gram dynamically from the super-peers in the universal overlay. The program to

be run is signed by the super-peers for validity and it can check for updated ver-

82

4. Inter-Cloud VPN Overlay

sions of itself by querying for the associated serviceID in the persistent store of

the DHT of the universal overlay.

4.1.2 Secure Virtual Private Connections

The main components of the peer-to-peer client used to construct a virtual private

network in our model are shown in Fig. 4.3. These include the standard compo-

nents required to form a structured peer-to-peer overlay like the Distributed Hash

Table (DHT) service, which basically acts as the command-and-control (C&C)

channel for the ICVPN solution, key-based routing, peer discovery, bootstrapping

service and overlay maintenance service. All of these services are constructed by

implementing the Kademlia protocol mentioned in detail in chapter 3 section 3.2.

Virtual Machine

IPsec

Interface

Key-based Routing

DHT Service

C
o

n
fig

u
ra

tio
n

Bootstrap Service

Peer Discovery Service

Content

Storage

P2P
Client

Figure 4.3: Architecture of a Inter-Cloud VPN P2P Client node, the architecture
being identical for both super peer nodes in the Universal Overlay and VPN peer
nodes in a VPN Overlay

In addition to these peer-to-peer specific components, we specify and set-

aside a secure content storage for the client where sensitive data like keys, pass-

83

4. Inter-Cloud VPN Overlay

words, and security tokens etc. are stored. The configuration component is in-

tegrated with the overlays DHT so that the clients behaviour can be modified

dynamically by pulling new configurations from the super peers. The configura-

tion component manages both the peer-to-peer related configurations as well as

the policies used to configure the IPsec tunnels between the peers for the use

of the higher-level services using the client to provide the secure communication

framework.

The peer-to-peer client software sets up and configures the IPsec Security As-

sociations according the cloud service/application network security policy, which

is advertised by the cloud service/application owner through the DHT of the uni-

versal overlay. The peers of the underlying VPN overlay periodically check for any

update in the security policy and apply and enforce any changes on the kernel of

the VM through the Peer-to-Peer client’s IPsec interface.

The key feature of our Inter-Cloud VPN is establishing a secure communica-

tion tunnel between the peers of the overlay formed over a collection of cloud

providers infrastructure. Therefore, after successfully joining the overlay network

to become part of a service, a VPN peer starts the process of creating secure

tunnels to the other peers of the service it wants to communicate with, according

to the functional policy of that particular service. To achieve this, we make use of

the Internet Protocol Security (IPsec) protocol suite [55] to authenticate and en-

crypt each IP packet of a particular communication session between the peers,

thus creating end-to-end tunnels which provide protection against eavesdropping,

message tempering and message forgeries.

For establishing mutual authentication between peers at the beginning of the

IPsec session and negotiation of cryptographic keys to be used during the ses-

84

4. Inter-Cloud VPN Overlay

sion, we employ the Internet Key Exchange protocol [95], which can make use of

standard cryptographic primitives like public key cryptography [52] and AES [1].

In our current implementation, we have used and compared two key exchange

methods. First is the PKI certificate-based method where the super peers act

as a Certificate Authority (CA) and each peer is issued a signed certificate upon

authenticated completion of the bootstrapping process and queries the Universal

Overlay DHT for resource discovery and gets the resulting data back which is

encrypted by the owning peer using its private key. Second is the authenticated

key exchange scheme, described below, which is used to derive a secure ses-

sion key which can be used in the Cipher-Block-Chaining (CBC) mode with AES

to ensure the confidentiality of the traffic exchanges between the peers using the

tunnel [82].

This second approach removes the Diffie-Hellmans well-known susceptibility

to an active Man-in-the-Middle attack. This is done by providing a way to mutually

authenticate the key exchange between communicating peers. In most traditional

systems, this is done by depending on digital signatures backed by a centrally

managed PKI. However, it has been shown from a practical point of view that

deploying and managing a central PKI can be a complex and problematic expe-

rience as evident from the DigiNotar and Comodo incidents [103]. PKIs require

too many managerial as well as computational and communicational resources,

which are not easy to commit by a small scale cloud service customer. Espe-

cially in our target use case, where such customers wants to use the resources

of multiple cloud providers, they typically does not want to deal with issues like

cross-carrier authentication, certificate revocation lists, and other complexities.

It is therefore a much simpler approach to avoid PKIs altogether, especially

85

4. Inter-Cloud VPN Overlay

when developing secure commercial products. Hence, we augment the Diffie-

Hellman key exchange with secure hash usage at the start of the key exchange

and so PKI is not needed for this approach to mutually authenticate the key ex-

change. The session keys generated as a result of this method, for the IPsec

communication, are valid for a short period of time and when the keys expire the

protocol is run again to come up with new session keys to maintain the IPsec

tunnels. The peers of the VPN overlay use the following protocol to agree on a

secret key S and parameters for establishing the IPsec tunnels between the VMs

for secure communication. This protocol comes into action immediately after the

communicating peers have completed the resource discovery phase and want to

proceed to the secure communication phase.

All of the following operations use a finite cyclic group G of prime order p and a

generating element g ∈ G. The initiating peer A generates its ephemeral key pair

before entering the secure communication phase. The peer begins the exchange

by sending a Hello message to the other peer. The Hello message contains the

peer ID of the peer. The peer ID is a unique 160-bit random string (PID) that has

been generated by the peer-to-peer algorithm (in this case Kademlia) and can

be used to index and look up credentials and configuration data from the overlay

DHT for a particular peer. The responding peer B replies with a Hello message of

its own, containing its PID. On its receipt of the response, peer A sends the cyclic

group generator g, the prime p and Â = ga (mod p) to the peer B. A hash of the

public parameters g, p, Â, and the Hello message of responder B is performed

and sent in the same message to prevent active Man-in-the-Middle attacks.

hash(g ∣∣p ∣∣ Â ∣∣B(Hello))

86

4. Inter-Cloud VPN Overlay

All subsequent messages also contain a hash image that is used to link the

messages together. This allows rejection of false messages injected during an

exchange by an active Man-in-the-Middle attacker. On receipt of the above mes-

sage, peer B checks the hash using the received public parameters for A and its

own Hello message. If it matches, it generates its own random secret value b and

computes its public parameter B̂, i.e., B̂ = gb (mod p), and sends it to A with the

hash. It then calculates the result as,

R̂ = (Â)b (mod p)

Now A can deduce the same result as,

R̂ = (B̂)a (mod p)

For the calculation of the shared secret S, first a total hash Hτ of all the

received and sent messages in the current exchange is calculated by both peers.

The final shared secret is the hash of a concatenation of the R̂, the PID’s of A

and B, and the Hτ .

S = hash(R̂ ∣∣PIDA ∣∣PIDB ∣∣Hτ)

The PIDs act as the context fields and Hτ as a nonce value, as recommended

in [39].

87

4. Inter-Cloud VPN Overlay

4.2 Prototype Implementation

We have implemented a working prototype of Inter-Cloud VPN architecture and its

constituent Peer-to-Peer clients using the Java programming language [59] that

can be deployed on Linux-based operating systems [153]. We were motivated by

the following reasons to use Java for the prototype development, after suffering

from some initial problems with other technologies:-

• A large number of cryptographic and peer-to-peer protocols and libraries

have been developed in Java and are easily available.

• It was easier to integrate components of our framework with the VM Con-

textualizer service as this service is also developed in Java and is exposed

as a Java Remote Procedure Call (RPC).

• We were able to utilise the Java NIO2 libraries to develop multi-threaded,

non-blocking and scalable core networking components that perform much

better than a traditional socket-based implementation.

• There is excellent documentation and useful community help easily avail-

able online for Java related technologies.

The choice of using Linux as the base operating system to run and test our

prototype instances due to the following reasons:-

• As it is an open source operating system, we did not have to worry about

licenses.

88

4. Inter-Cloud VPN Overlay

• After cursory evaluation, it became clear to us that instances of Linux based

virtual machines launch much faster on most cloud computing platforms

than their proprietary competitor.

• The IPsec protocol suite is fully implemented and available in the most re-

cent Linux based operating systems.

• A large number of useful tools are available in Linux for the management

of IPsec tunnels and connections like ipsec-tools, racoon, OpenSwan and

StrongSwan etc.

Other than the core components of our communication framework, the imple-

mentation of our core research contributions (mechanisms and protocols) was

also done using open source libraries and APIs. Specifically, we chose the Boun-

cyCastle library [124] to implement and batch together most of the required cryp-

tographic primitives, as well as the PKI alternatives that were required for the

comparisons. This was due to the fact that BouncyCastle is one of the most light-

weight and extensive cryptographic libraries that is designed with very strong

emphasis on standards compliance and adaptability. In the same vein, we used

the cpabe library [26] for building the Functional Encryption mechanisms, and

the TomP2P library [28] for its implementation of the Kademlia [114] peer-to-peer

protocol and the overlay DHT. In addition, we use the commercially available BT

Compute Cloud platform [32], Flexiant FlexiScale cloud platform [66], and a Xen

hyper-visor based cloud platform [17] from ATOS Origin as our experimental test-

bed.

89

4. Inter-Cloud VPN Overlay

4.3 Experimental Evaluation

In this section we present the results of a series of experiments we conducted to

evaluate the effect of our prototype ICVPN solution upon the network performance

of a service deployed on two different cloud IaaS providers. We use a 3-tier web

service comprising of database, business logic and presentation components de-

ployed on nine virtual machines hosted on the cloud platforms provided by ATOS

Origin, British Telecom Ltd., and Flexiant Ltd.

The purpose of these experiments is to evaluate the architecture being pro-

posed, in terms of service latency and service throughput, in a practical scenario

with a service deployed over a real wide-area network, with the BT cloud platform

geographically located in Ipswich, England, Flexiant cloud platform located in Liv-

ingston, Scotland, and ATOS cloud platform located in Barcelona, Spain. We

define service latency as the inter-cloud round-trip time taken by a HTTP (Hyper

Text Transfer Protocol) [65] request, issued by a service component on one cloud,

to get a response from the target service component on a different cloud. Sim-

ilarly, service throughput is the inter-cloud network throughput between service

components deployed on different clouds.

In this section we introduce the methodology we used to design, conduct and

evaluate our experiments. We firstly explain the metrics that we measure in our

experiments, and then the methodology we used to measure them.

4.3.1 Latency Evaluation Methodology

In the domain of network performance measurement, latency is traditionally de-

fined in term of round-trip time (RTT), that is, the length of time it takes for a

90

4. Inter-Cloud VPN Overlay

source to send a data packet to a destination and receive a reply from the des-

tination. Latency is used most commonly in form of RTT as it can be measured

from a single point, so as long as the source and destination are using a well-

defined and consistent network protocol, there is no need to set up or manage a

latency experiment on the destination.

An example of such protocol is Internet Control Message Protocol (ICMP)

[129], which is usually implemented on all network devices and operating sys-

tems. The ICMP contains a large number of message types that can be used for

network diagnostic or traffic control purposes. The ones typically used for mea-

suring latency are the Echo Request and Echo Reply messages. Various network

tools are available that utilise these ICMP messages to measure network latency,

packet loss and traffic jitter etc.

4.3.1.1 Measurement Tools

Some of the tools commonly used for accurate measurement of latency in com-

puter networks are ping [121], traceroute [42], MTR [97], PathPing [117], and

nmap [111]. However, all of these use the ICMP messages described earlier in

some form or another to calculate the RTT latency between network hosts. The

most prevalent of these is the ping tool that gives the results of the ICMP echo

request and reply messages in the form of a statistical summary of the reply pack-

ets received. This includes the minimum RTT, maximum RTT, mean RTT, and the

standard deviation of the RTT.

However, the ping utility has been abused in the past as a form of Denial-

of-Service attack on some networks. This was historically done as a Ping Flood

91

4. Inter-Cloud VPN Overlay

[160] or Ping of Death [112]. Although most of the ping related security vulnerabil-

ity have been fixed over the years, most of the commercial network environments

still disable or block ICMP traffic coming into their networks. As a result it is im-

possible to use ICMP based tools to conduct any latency related experiments on

these networks.

Therefore, we make use of the Httping tool [156], which works on the same

principal as the ping tool, but instead of using the ICMP messages, it uses the

HTTP protocol requests and response messages to measure the latency. As this

latency is measured at the application layer, instead of the network layer as in

ping, the RTT time is usually greater for HTTP requests. So to keep the size of

the requests minimum, we only send a HTTP request and retrieve only the Header

field of the HTTP reply message, which contains the required timestamps used

in calculating the RTT.

4.3.2 Throughput Evaluation Methodology

Throughput is traditionally defined as the amount of data that is successfully sent

from the source host to the destination host via a network link. It is one of the key

metrics that has to be measured when investigating the performance of a network

protocol or application. In case of a LAN environment where the network link is

usually Point-to-Point, the maximum theoretical throughput is usually very close

to the channel capacity of the physical link, this is,

Throughput ≈ Bitrate × Transmission T ime
Round Trip T ime

92

4. Inter-Cloud VPN Overlay

However, this is not the case in WAN links, like those encounters in the inter-

cloud environment. For example, the TCP [36] throughput may be quite limited

as compared to the theoretical channel capacity of the links between the com-

municating hosts, as it is affected by every component along the route from the

source to the destination, including all the hardware and software components

like switches, routers and forwarding, and routing protocols. Therefore, as its not

possible to measure the maximum theoretical throughput, we have to measure

the achievable TCP throughput, that depends on the network link capacity, the

TCP/IP stack implementation on the networking components, their processing

power, NIC (Network Interface Card) speeds, and the buffer sizes on end hosts.

Hence, we need a tool that is able to handle this complexity for us and can give

us accurate achievable throughput results.

4.3.2.1 Measurement Tools

For conducting and measuring the throughput experiments on our solution, we

make use of the Iperf [152] tool, which measures the throughput between two

hosts by measuring the amount of data sent over a fixed interval of time. Iperf is

quite commonly used in both academic and commercial to gather and evaluate

network performance statistics [4], [130], [43], and [126]. Iperf is also attractive for

us as it allows variations in many TCP parameters like Window Size and amount

of data to be transmitted. However, Iperf needs to be run for longer interval of

times or in multiple bursts, to counter the effects of TCP Slow Start. Slow Start

[144] is the congestion control mechanism used by the TCP to avoid sending

more data than the network is capable of transmitting. For our experiments, we

93

4. Inter-Cloud VPN Overlay

overcome the effects of TCP Slow Start by first measuring the minimum amount

of data that needs to be transmitted between VMs on different cloud platforms

that will give us stable and reliable throughput results.

4.3.2.2 Data Size for Throughput Experiments

We measure the minimum amount of data that is required to be transmitted be-

tween three different cloud platforms, which are BT (British Telecom), Flexiant

and ATOS cloud platforms. Finding out a fixed data size to be transmitted in

the ICVPN throughput experiments is important for two main reasons. Firstly, it

will greatly simplify the process of measuring throughput between different cloud

platforms as it is the otherwise the only variable parameter required by the Iperf

tool. Secondly, a minimum size is also important to bring down the bandwidth

costs incurred when transferring data in or out of a commercial cloud. In order to

measure achievable throughput reliably, we set up the Iperf tool on these cloud

platforms and run data transmission tests between them, gradually increasing the

amount of data transmitted in each successive test.

We start by transmitting 1 MB random data between the cloud platforms and

go up to 50 MB of data, and measure the throughput achieved for each run.

This upper limit of 50 MB was chosen on the basis of empirical inference from

experiments done in the similar domains, as in [93] and [157]. We consider each

run of these 50 tests as one experiment and repeat each experiment two more

times at different times of the day to get a more rounded vision of the achievable

throughput between the cloud platforms. The results of the 50 tests for each

experiment between ATOS and BT cloud platforms are given in Fig. 4.4, giving us

94

4. Inter-Cloud VPN Overlay

150 data points in total.

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45 50

Th
ro

u
gh

p
u

t
(i

n
 M

b
p

s)

Size of Transferred Data (in MB)

Experiment 1

Experiment 2

Experiment 3

Experiemnt 1 Trendline

Experiment 2 Trendline

Experiment 3 Trendline

Figure 4.4: Plot of 150 throughput measurements of 1-50 MB data transfers be-
tween ATOS and BT cloud platforms in order to find the most stable 3-tuple mea-
surements

We plot the trend-lines for each experiment in Fig. 4.4, that depicts the through-

put as a function of data size, for transfers from ATOS to BT cloud platforms. We

got almost identical results for the opposite direction experiments as well (BT to

ATOS cloud platforms), so we only include single-direction results here. These

trend-lines conform to the typical TCP throughput behaviour [109], that is, it in-

creases exponentially with increase in data size and then stabilises as the net-

work capacity is reached, thus following a power law with a long tail. This is due to

the well-known [169] strong correlation between throughput and data size. How-

ever, we are mainly interested in finding out that against what amount of data are

we able to achieve the most stable throughput results among the three experi-

95

4. Inter-Cloud VPN Overlay

ments. We define the most stable throughput results as the results having the

least amount of standard deviation among them for a fixed amount of data. From

Fig. 4.4, we can see that the most stable throughput was achieved for 39 MB data

size.

Similarly, the results of the 50 tests for each experiment between BT and

Flexiant cloud platforms are given in Fig. 4.5 and Fig. 4.6. We conducted the

throughput experiment in both directions between the BT and Flexiant cloud plat-

forms because of the major difference in the throughput results depending on

the direction. When transmitting data from BT to the Flexiant cloud platform, the

throughput trend shows a very stable rate from almost the start and maintains it

for most of the experiment data points. The average throughput achieved in this

direction was 47.31 Mbps.

This changes to an average throughput of 117.32 Mbps when transmitting

data from Flexiant to the BT cloud platform, which is more than double the through-

put seen in the reverse direction. In addition to that, throughput trend-lines also

follows the typical and expected throughput behaviour that was also observed in

Fig. 4.4. Nevertheless, these difference do not fundamentally effect our evalua-

tion as our focus is on the stability of the throughput to find out the optimal data

size to be transmitted, not the non-conformance of the trend-lines to the known

throughput behaviour.

Furthermore, as it is very difficult to ascertain the exact and detailed knowl-

edge of the underlying physical wide-area network connectivity between the two

cloud service providers, we cannot speculate on the reason of this difference

based on direction of transmission. However, such differences are not unheard

of in this domain and are usually due to differences in upstream and downstream

96

4. Inter-Cloud VPN Overlay

traffic throttling policies, differences in routes chosen by the IP packets, and fire-

wall policy issues. We did not see similar issues between BT and ATOS cloud

platforms, therefore we only include the experiment results for tests conducted

from ATOS to BT cloud platforms.

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40 45 50

Th
ro

u
gh

p
u

t
(i

n
 M

b
p

s)

Size of Transferred Data (in MB)

Experiment 1

Experiment 2

Experiment 3

Experiment 1 Trendline

Experiment 2 Trendline

Experiment 3 Trendline

Figure 4.5: Plot of 150 throughput measurements of 1-50 MB data transfers from
BT to Flexiant clouds in order to find the most stable 3-tuple measurements

As in the case of ATOS - BT throughput experiments, we again plot the trend-

lines for each experiment in this case as well, as shown in Fig. 4.5 and Fig. 4.6.

We observe that the most stable throughput was achieved for 32 MB of data

transmitted from BT to Flexiant cloud platform and 17 MB for the reverse direction.

97

4. Inter-Cloud VPN Overlay

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35 40 45 50

Th
ro

u
gh

p
u

t
(i

n
 M

b
p

s)

Size of Transferred Data (in MB)

Experiment 1

Experiment 2

Experiment 3

Experiment 3 Trendline

Experiment 2 Trendline

Experiment 1 Trendline

Figure 4.6: TPlot of 150 throughput measurements of 1-50 MB data transfers
from Flexiant to BT clouds in order to find the most stable 3-tuple measurements

The summarised results for the most stable achieved throughput for all one

hundred and fifty experiments conducted on the three cloud platforms are given in

Table 4.1. Based on the mean data size of these results, we chose the fixed data

size of 30 MB when conducting throughput experiments on the ICVPN solution.

Table 4.1: Throughput results with least standard deviation against corresponding
transmitted data size

Throughput ExperimentsCloud
Platforms Least Std Dev Data Size
ATOS - BT 0.43 39 MB

BT - Flexiant 0.44 32 MB
Flexiant - BT 0.77 17 MB

98

4. Inter-Cloud VPN Overlay

4.3.3 Scalability Evaluation Methodology

Although there is no generally accepted definition of scalability, it can be identified

as the ability of a system to handle and process increasing amount of work load

efficiently. In the domain of computer networks, a system is usually said to be

scalable if the addition of resources proportional to the increase of work load

increases or maintains its current level of performance. An ideal and desirable

characteristic of scalable solutions is that the increase in resources lead to a

linear increase in service capacity. In other words, if there are a n entities that

are affecting the work load of a system, then the amount of resources required to

process the increased load must increase less than n2 [58].

Analysing and measuring the scalability of a system is considered quite im-

portant, especially when designing new architectures [78], as the design and ar-

chitecture of a system has the greatest influence on its scalability. In fact, a better

design can give better scalability to a system than better hardware or more code

optimisation and fine-tuning. Therefore, it is important to note here that scalability

and performance are two separate entities. In fact, sometimes optimising a sys-

tem for maximum performance can sometimes adversely affect the scalability of

that system [29].

4.3.3.1 Measurement Tools

There are different types of scalability discussed in the literature that can be mea-

sured and analysed for different kind of systems, protocols and architectures.

These include load scalability, space scalability, space-time scalability, and struc-

tural scalability [29] etc. However, for analysing the architecture of Inter-Cloud

99

4. Inter-Cloud VPN Overlay

VPN solution we analyse and evaluate its load scalability. This is generally de-

fined as the the ability of a system to function normally under increased work

loads, without requiring the use of exponentially increased resources. This type

of scalability is appropriate for evaluation in the case of Inter-Cloud VPN, as al-

though we have a distributed peer-to-peer architecture, the main resource that is

managing the bulk of the operations at the start up phase of the VPN overlays is

the number of super peer nodes in the Universal Overlay.

Bootst
rap

 re
quest

Bootstrap request

Sta
rt

Peers

St
ar

t P
ee

rs

Start Peers

Launch Controller
(GNU Parallel)

Universal Overlay

Bo
ot

st
ra

p
re

qu
es

t

VM1 VM2 VMN

Super Peer node

P2P Client node

Figure 4.7: Design of the load scalability experiment to measure the effects of
increasing the numbers of parallel bootstrapping requests from the VPN peer
nodes (P2P Clients) to the Universal Overlay

Therefore, in order to measure the load scalability of our solution, we set up an

100

4. Inter-Cloud VPN Overlay

environment where we can run the experiment of increasing the number of super

peers and measuring the number of requests per second that they can handle

from the peer-to-peer clients. In order to do so efficiently, we make use of the

GNU Parallel tool [149]. GNU parallel is a Linux shell tool that can be used for

executing programs in parallel, using one or more computers. This is useful for

us as it is logistically and financially hard for us to create thousands of VMs on

our cloud platform test-beds, therefore we use a limited number of VMs in each

of our cloud platforms and instantiate and large number of peer-to-peer clients on

each VM. The design of this experiment is shown in Fig.4.7.

So in other words, we use GNU Parallel as a load management tool. Its job

is to launch a small bash script that starts a peer-to-peer VPN client and give

it the address of the super peer as input. In case of multiple super peers, we

chose the super peer, to be used by the peer-to-peer client for bootstrapping, in

a round-robin fashion [142]. This method is chosen in order to distribute the load

uniformly among the participating super peers. Our GNU Parallel script is able to

split the input list of super peers and pipe it into the launch commands in parallel.

Furthermore, the super peers are multi-threaded and implement asynchronous

I/O so that they do not block on the client’s bootstrapping requests and can act in

a more responsive manner. We accomplish this by using the Netty API, which is

an asynchronous event-driven network application API that is commonly used for

development of high performance network protocols [113].

101

4. Inter-Cloud VPN Overlay

4.4 Experimental Results and Analysis

In this section we illustrate the results of our experiments. We firstly present the

latency, throughput and scalability results we measured on our experimental test-

bed comprising of three cloud platforms, and then analyse them in comparison

with alternate approaches.

4.4.1 Service Latency

We compare the latency between the components of the service deployed on

different cloud providers, as the latency between the components in the same

cloud is almost negligible as they are usually hosted on either the same hyper-

visor or the same data center.

10

11

12

13

14

15

16

17

18

19

20

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 239

La
te

n
cy

 (
in

 m
ill

is
e

co
n

d
s)

Service Latency experiments

BT-to-Flex without ICVPN BT-to-Flex with ICVPN

Figure 4.8: Service latency of 240 HTTP HEAD round-trip time request-response
messages from BT to Flexiant clouds

102

4. Inter-Cloud VPN Overlay

We measured the latency by using the round-trip delay of an HTTP HEAD

request/response pair, as the components of the web service communicate with

each other using HTTP protocol and ICMP, the de facto latency measurement

protocol, is blocked in the networks of our cloud providers. The main benefit of

using the HTTP HEAD request is that the HTTP HEAD reply message does not

contain a message-body, thus reducing its size to a minimum.

10

11

12

13

14

15

16

17

18

19

20

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 239

La
te

n
cy

 (
in

 m
ill

is
e

co
n

d
s)

Service Latency experiments

Flex-to-BT without ICVPN Flex-to-BT with ICVPN

Figure 4.9: Service latency of 240 HTTP HEAD round-trip time request-response
messages from Flexiant to BT clouds

We computed the average latency by running 10 experiments very hour for

a period of 24 hours, firstly without using the Inter-Cloud VPN solution and then

with it. The results for the 240 experiments run between BT and Flexiant cloud

platforms are shown in Fig. 4.8 and Fig. 4.9. As is clear from the graphs, we get

consistent latency results independent of the direction of the experiments and the

variation of latency within the experiments itself is also quite minimal. Catering

103

4. Inter-Cloud VPN Overlay

for the bi-directional latency, we get a mean overhead of 5.06% when using the

Inter-Cloud VPN solution.

0

50

100

150

200

250

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 239

La
te

n
cy

 (
in

 m
ill

is
e

co
n

d
s)

Service Latency experiments

BT-ATOS without ICVPN BT-ATOS with ICVPN

Figure 4.10: Service latency of 240 HTTP HEAD round-trip time request-
response messages from BT to ATOS clouds

We repeated the same set of service latency experiments for BT and ATOS

cloud platforms. The results for these 240 experiments run between BT and ATOS

cloud platforms are shown in Fig. 4.10 and Fig. 4.11. In this case as well we get

consistent latency results independent of the direction of the experiments and the

variation of latency within the experiments itself is minimal too. Catering for the

bi-directional latency in this case, we get a mean overhead of 5.35% when using

the Inter-Cloud VPN solution.

104

4. Inter-Cloud VPN Overlay

0

50

100

150

200

250

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 239

La
te

n
cy

 (
in

 m
ill

is
e

co
n

d
s)

Service Latency experiments

ATOS-BT without ICVPN ATOS-BT with ICVPN

Figure 4.11: Service latency of 240 HTTP HEAD round-trip time request-
response messages from ATOS to BT clouds

Looking at the results, we can see that using our solution only has a small

impact on the HTTP latency, increasing it just by about 5%. For further analysis

we collect the network traffic dump when running our experiments, using the tcp-

dump packet sniffer. We found out from the traffic dumps that the increased delay

we encountered is mostly due to the additional packets transmitted and received

by the peers for the purposes of key exchange and cryptographic primitives ne-

gotiation when establishing an IPsec tunnel. After this initial protocol handshake

phase is over, the latency performance is almost same in the comparative exper-

iments.

105

4. Inter-Cloud VPN Overlay

4.4.2 Service Throughput

We measure the throughput between components of the service deployed on our

three test-bed cloud platforms. We measured the throughput in both directions by

transferring 30 MB of data, a size chosen earlier in this section according to the

results gathered from experiments conducted in Section 4.3.2.2. We computed

the average throughput by running 10 experiments every hour for a period of 24

hours, firstly without using the Inter-Cloud VPN solution and then with it. The

results are shown in Fig. 4.12 and Fig. 4.13.

0

10

20

30

40

50

60

70

80

90

100

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 239

Th
ro

u
gh

p
u

t
(i

n
 M

b
p

s)

Service Throughput experiments

BT-to-Flex without ICVPN BT-to-Flex with ICVPN

Figure 4.12: Throughput of 240 data transmission experiments from BT to Flexi-
ant clouds

From the throughput results, the first thing that stands out is the difference in

the throughput values depending on the direction of transferring the data. We

have discussed this issue in some detail in Section 4.3.2.2 previously.

106

4. Inter-Cloud VPN Overlay

100

110

120

130

140

150

160

170

180

190

200

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 239

Th
ro

u
gh

p
u

t
(i

n
 M

b
p

s)

Service Throughput experiments

Flex-to-BT without ICVPN Flex-to-BT with ICVPN

Figure 4.13: Throughput of 240 data transmission experiments from Flexiant to
BT clouds

Irrespective of that, by looking at the comparative results it is clear that we just

incur a small overhead in the throughput, of about 10%. By analysing the traffic

dumps generated from the throughout test, we can attribute this overhead to the

IKE and IPsec handshakes, in addition to the extra time taken by the VM kernel

in encrypting and encapsulating 30 MB of data for each throughput test.

4.4.3 Service Scalability

As we have mentioned above, one of the main motivation of using peer-to-peer

overlays in our solution is their ability to scale as the number of virtual machines

in the inter-cloud VPN service increases with the possible increase in the work-

load. Some cloud services and applications can easily expand to hundreds, even

107

4. Inter-Cloud VPN Overlay

thousands, of virtual machines across multiple clouds and it is important that our

solution is able to cope with this sort of scalability.

Therefore, in order to measure the scalability of our solution, we observe the

scale-up behaviour of the super peers of our universal overlay as more and more

P2P clients request to enrol and join their respective VPN overlays. The metric

that we use to measure the scalability is the number of bootstrapping requests

that a super peer can service per second as more and more VPN peers try to join

an overlay.

For this measurement, due to the limitation of resources and privileges in our

test-bed cloud providers, instead of launching thousands of VMs to emulate a

large number of peers trying to join an overlay, we launch only a few VMs con-

taining the P2P client in each cloud provider but create more and more instances

of the peer in the same VM to simulate a heavy workload. On the other hand,

we increase the number of super peers handling the bootstrapping and observe

how many requests they were able to process per second by looking into their log

files. Again, due to the limitation of resources and privileges, we limit the number

of virtual machines acting as the dedicated super peers to 4 on each of our two

test-bed cloud providers used in this experiment, BT and ATOS.

108

4. Inter-Cloud VPN Overlay

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

N
o

. o
f

R
eq

u
es

ts
 p

e
r

Se
co

n
d

Scalability Experiments

1 Super Peer 2 Super Peers 4 Super Peers 8 Super Peers

Figure 4.14: Experiments measuring bootstrapping requests processed per sec-
ond against increasing number of Super Peers

Fig. 4.14 shows the results of experimental measurements of the number of

bootstrapping requests processed by the Inter-Cloud VPN solution, by doubling

the number of super peers in the universal overlay starting from 1 up to 8. To

generate the bootstrapping load, we create 10 VMs on each cloud platform which

contain the P2P client, and each VM then instantiates 25 instances of the P2P

client simultaneously in order to generate the required work load for the super

peers, using the GNU Parallel tool as the launch controller. The same tool is also

used to send the list of available super peers to the launch scripts. We repeated

this experiment periodically 25 times in order to cater for the adverse effects of

jitter, and with 1, 2, 4, and 8 super peers. As it is apparent from Fig. 4.14, we did

109

4. Inter-Cloud VPN Overlay

not actually observe a lot of jitter and observed very low variation in the number

of bootstrap requests per second for all quantities of the super peers.

R² = 0.9599

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8

N
o

. o
f

R
e

q
u

e
st

s
p

e
r

Se
co

n
d

No. of Super Peers

Figure 4.15: Trend of increasing the number of Super Peers on the average num-
ber of bootstrapping requests processed per second

As we can see in Fig 4.15, our solution was able to handle more bootstrapping

requests per second on average, as we increased the number of super peers. As

observed from the trend-line in Fig. 4.15, our solution is able to scale linearly

to hundreds of requests per second against the number of super peers in the

Universal overlay. We attribute this linear progression to the distributed design

of our solution and this progression can be scaled to handle even thousands

of requests per second by linearly increasing the number of super peers in the

system.

110

4. Inter-Cloud VPN Overlay

4.5 Chapter Summary

In this chapter, we have given a detailed description of the design and implemen-

tation details about our Inter-Cloud VPN overlay solution. We have expanded on

the techniques and mechanisms that we mentioned briefly in Chapter 3 and show

how we modify and integrate them to come up with an efficient framework. This

has been done by trying to model the architecture based on a realistic reference

deployment scenario, where we have consider a cloud service that is deployed

on multiple real-world cloud platforms.

Therefore, we started by detailing our novel scheme of employing a two-tiered

overlay network, with the a single universal overlay focusing on management

level functionalities and multiple, per-service VPN overlays focusing on the se-

cure communication aspects. The universal overlay provides a scalable service

to initiate and bind multiple VPN overlays to different cloud services, so the pri-

mary service that it provides is the integrated bootstrapping of the VPN peers

of a cloud service. It accomplishes this by using the DHT, both as a distributed

data store for data sharing, as well as a command & control channel. The peers

of the universal overlay act as super-peers for the nodes of the underlying VPN

overlays, so they can enrol, authenticate, bootstrap and join nodes to a particular

VPN overlay based on the cloud service requesting the VPN service.

The VPN overlays provide the core security functionalities required to estab-

lish and maintain secure communication links between the nodes constituting a

VPN overlay. It does that by utilising some of the protocols available in the IPsec

protocol suite and the security meta-data, like the session keys, that are made

available to it by the universal overlay. We detail the authenticated key sharing

111

4. Inter-Cloud VPN Overlay

protocol that we use to generate and share the session keys between the peers

of the VPN overlay, as well as the design and architecture of our P2P VPN client

that is embedded in the image of each participating VM.

Lastly, we gave the implementation details of the solution and how we evalu-

ated its performance as deployed on two real-world commercial cloud platforms.

We carried out a large number of experiments, over a long time interval, to evalu-

ate the performance of our framework in terms of latency, scalability and through-

put. From the results that we gathered, we were able to show that our devised

solution incurred a minimum overhead of approximately 5 % in terms of latency,

and an overhead of about 10 % in terms of throughput. With respect to scalabil-

ity, we showed that the replication of super peers leads to a linear increase in the

number of bootstrapping requests processed per second.

In the next chapter, we describe in detail how we solve the problem of secure

admission of a peer of a VPN overlay with the help of a super peer in the universal

overlay. We list and describe some of the traditional solutions of this problem

and show how they are not really suitable for an inter-cloud model. A secure

admission control process is really important as it is a requirement of the scalable

key sharing and secure communication scheme detailed in the current chapter,

as these schemes are effective only after the peers join the overlay as the result

of a secure admission process.

112

Chapter 5

Inter-Cloud VPN Admission Control

5.1 Admission Control in Peer-to-Peer Systems

It is important to control the admission of peers in the Inter-Cloud VPN frame-

work to safeguard and protect the resources, credentials, data and meta-data

present in the DHT of the universal overlay from unauthorised and malicious

users. Although the inter-cloud network has a complex and heterogeneous envi-

ronment, we have to employ efficient and scalable security mechanisms that can

protect our communication with minimal performance overhead. In this chapter

we present the design and implementation of the Admission Control scheme that

we have incorporated in the Inter-Cloud VPN solution.

5.1.1 Definition

In the scope of our work, we define admission control as the process following

which a peer of a VPN overlay can securely join and enrol with a super peer in

113

5. Inter-Cloud VPN Admission Control

the universal overlay. In Peer-to-Peer networks, bootstrapping a new peer is a

well-known issue,that is, there is a need for the new peer to discover the required

configurations and peers of the overlay to successfully join the network and ac-

cess resources.

5.1.2 Bootstrapping using Server Lists

There are some traditional and commonly used solutions for this issue in peer-

to-peer networks. One solution is to use a public server-based peer lists, where

the address of the public server is either embedded in the P2P clients or is very

well-known. There are some obvious security problems with this approach, for

example, an attacker can compromise all the peer-to-peer overlays by compro-

mising the server. Even without compromising the server, an attacker can just

impersonate the server and feed the clients bad or malicious information that can

be used to compromise the client itself. Lastly, it is difficult to inform and update

the clients of any changes in the server’s address.

5.1.3 Bootstrapping using Peer Caches

Another solution is to use client-based peer caches, that contain information of

the last-known peers. This approach assumes a successful and secure initial

peer-to-peer bootstrap process, which is an assumption that we don’t make in

our approach. Furthermore, the participants of a cloud server in a inter-cloud

environment can join and leave quite rapidly, hence the cached information can

become stale quite quickly. Another problem to consider is that whether you

trust the cached information from a peer in absence of any formal authentication

114

5. Inter-Cloud VPN Admission Control

process.

5.1.4 Bootstrapping using Random Probing

A yet another solution is to use random address probing to actively find peers.

This is usually done with in the scope of a local area network as the common un-

derlying technique is to use broadcast transmissions. Hence, this is obviously not

suitable for the wide network scope of the inter-cloud environment. Furthermore,

securing broadcast communication protocols usually carry a large performance

penalty. The presence of a malicious impersonate will need to be considered in

this situation as well, as in the peer cache based solution discussed above.

5.1.5 Bootstrapping using Multicast

In this bootstrapping technique, peers discover other peers in their domain by

listening to a well-known global multicast address. This assumes that all partici-

pating peers will be reachable by at least one peer that has multicast connectivity.

In the case where this special peer does not have multicast connectivity, it will

try using directed broadcasts. If directed broadcasts are blocked (due to their

common use in denial-of-service attacks), the peers will only be able to use pre-

viously cache peers until another special peer in the same multicast scope is

introduced to the overlay. As an additional optimization, peers can solicit asyn-

chronous announcement by using expanding ring searches, in which TTL-limited

query requests are sent to the global multicast address and the TTL is increased

gradually until there is a response.

However, regardless of the bootstrapping method being utilised, the require-

115

5. Inter-Cloud VPN Admission Control

ment and importance of secure admission control is obvious as scalable key man-

agement and secure communication schemes are effective only after the peers

join the overlay in a secure admission process. This is also useful to thwart the

well-known vulnerability of P2P networks to Sybil attacks [56], where a peer or a

collection of peers can claim or impersonate multiple identities in a peer-to-peer

network.

5.2 Threat vectors affecting Inter-Cloud VPN Admis-

sion Control

While the concept and design of structured peer-to-peer overlay networks is

highly robust and scalable, that very scale and flexibility of peer nodes can greatly

increase the exposure of the overlay network to malicious peer nodes. For in-

stance, if a malicious peer node is able to join a VPN overlay, it can place a

malware on the distributed hash tables that can be later shared and run within

the scope of virtual machines comprising of the affected VPN overlay. Thus, the

attacker’s ability to harvest sensitive information and even use the compromised

virtual machines as desired (e.g., bot-nets, email account harvesting, denial of

service etc.) will be significantly more than the compromise of a single host or

an isolated virtual machine. Therefore, in addition of using encrypted tunnels and

secure key and resource sharing schemes, we also have to address the secu-

rity threats the admission control process as this process precedes all the other

processes and protocols in our, and in fact all, communication frameworks.

To come up with an efficient, scalable and secure admission control mech-

116

5. Inter-Cloud VPN Admission Control

anism for our Inter-Cloud VPN architecture, we consider the following common

security vulnerabilities and attacks that should be addressed to ensure that no

malicious nodes are able to join an overlay network. However, we do not aim

to identify all possible threats and the corresponding solutions; instead, we start

from an analysis of the common types of attacks discussed in the related litera-

ture and discuss them in the context of the admission control in our inter-cloud

virtual private network.

5.2.1 Confidentiality Attacks

All most all of the current commercial and non-commercial cloud IaaS platforms

support multi-tenant operations. This means that multiple users share the same

computation, storage, and network resources but the cloud platforms can logi-

cally distinguish between different users, thus the users do not share or see each

other’s data, processing and network traffic. However, recent research has shown

that it is possible to utilise cross-VM side-channel attacks to extract information

from a target VM running on the same hardware as an attackers VM [134].

This introduces the possibility of VMs of different users sharing the same net-

work resources and the possibility, in our case, for an unauthorised users to sniff

the network traffic of VMs that want to join a VPN overlay. Although the IPsec pro-

tocol utilised by our solution protects against it, this kind of network sniffing can

be timed before the peer has enrolled with the universal overlay and joined a VPN

overlay, effectively before it has the time to use IPsec. Therefore, it will be possi-

ble for the attacker to sniff sensitive data, passwords and meta-data transmitted

or received by a peer, before it gets admitted into a VPN overlay, compromising

117

5. Inter-Cloud VPN Admission Control

the confidentiality of our solution.

Another possible attack vector is that an attacker can gain unauthorised ac-

cess to a running VM itself by exploiting a known or even zero-day vulnerability in

a software present on the VM or the operating system itself. So even if the VM is

initially trusted at the provisioning stage, it may be compromised later by exploits

that are discovered in it by an attacker. Therefore, it will be possible for the at-

tacker to retrieve and use sensitive data, passwords and meta-data etc. from the

VM storage if it is stored there unencrypted.

5.2.2 Integrity Attacks

In the same vein as the previous discussion, if an attacker is able to modify the

data transmitted between the peers, it should not be able to compromise the

admission control process. For example, if an attacker can modify the content of

a peer’s enrolment request during transit, the super peer should be able to detect

the tempering and discard that request.

5.2.3 Authentication Attacks

It is possible for an attacker to intercept all traffic between a peer and a super

peer and inject its own data instead. This can lead to a man-in-the-middle attack

where the attacker can masquerade as a super peer to the peer and force it to join

a compromised VPN overlay, or the attacker can masquerade as a peer and dupe

the super peer into admitting it into a secure VPN overlay. Lastly, the attacker may

also be able to read all the traffic sent between the communication entities. This

kind of attack is especially easy in wireless environments, where the traffic can

118

5. Inter-Cloud VPN Admission Control

be easily intercepted by anyone who is equipped with the right tools and is with

in range of communication devices.

5.2.4 Availability Attacks

One of the salient benefits of using structured peer-to-peer model as the core of

our communication framework is that the services it provides have higher robust-

ness against failure. However, denial-of-service attacks are still possible against

individual peer nodes within an overlay if the attacker possesses sufficient re-

sources to carry our a sustained and persistent attack. For example, a network

of malicious peer nodes that is controlled by the same attacker could simultane-

ously launch lookup queries for a particular key in the VPN overlay’s distributed

hash table. This can overload the peer node responsible for the key and even

crash it. However, we can again mitigate these types threats with mass replica-

tion (of key-value pairs) strategies discussed earlier. Therefore, in our research

effort we focus our energies in designing an admission control protocol that stops

the malicious peer nodes from joining the overlay in the first place.

5.3 Security protocol for Inter-Cloud VPN Admis-

sion Control

As mentioned before in Chapter 4, we utilise a VM contextualisation service [13]

to customise and provision VM images on different cloud platforms. To address

the security threats described earlier, we modify the service to embed our peer-

to-peer client and some bootstrapping information in each VM launched by the

119

5. Inter-Cloud VPN Admission Control

service on the available cloud platforms. Because of this start-up routine, we can

begin from a reasonable assumption that the cloud service or application owner

that wants to establish an Inter-Cloud VPN between its VMs, and the super peers

of the universal overlay, both have already agreed to a secret value or a password

and that secret information is part of the bootstrapping information embedded by

the VM contextualisation service in each VM. So when a VM created by this

process is first started on a cloud platform, it is free of any malware and it has a

trusted and secure P2P client provisioned on it. Therefore, a fresh virtual machine

containing our P2P client has all the pre-requisites present that are required for it

to undergo an overlay admission control process.

5.3.1 The Admission Control Protocol

Our admission control scheme is used when the peer bootstraps for the first time.

It is motivated by the concept of Zero-Knowledge Password Proof (ZKPP), which

is a generic and interactive method for one party (the prover) to prove to another

party (the verifier) that it knows the value of a secret password, without revealing

anything else to the verifier [21]. The use of this concept is very suitable for our

security protocol as it allows a super peer to authenticate itself to a bootstrap peer

without exchanging the password.

5.3.1.1 Using the Embedded Secret

The concept of a basic Zero-Knowledge Password Proof protocol can be ex-

plained in form of a simple interaction between two peers, Alice (A) and Bob

(B). We assume that Alice and Bob share a secret S. Now, to share a secure

120

5. Inter-Cloud VPN Admission Control

session key among themselves, Alice creates a secure random key K, and sends

it to Bob encrypting it with S, i.e., M = ENCS(K). As Bob already knows the se-

cret S, it can decrypt this message from Alice and retrieve the session key K, i.e.,

K = DECS(M). Now Alice and Bob can use the secure key K for establishing a

secure communication channel between them.

As we can see from the above interaction, the secret S itself is never trans-

mitted on the wire between Alice and Bob, therefore, there is no direct way for an

attacker to sniff it out from the network traffic. However, it is possible for a mali-

cious eavesdropper to save the message M sent by Alice and run a dictionary or

brute force attack against the secret S on it at his leisure. This type of exchange

is susceptible to other kinds of offline and replay attacks as well. Therefore, we

use an enhanced Zero-Knowledge Password Proof protocol based on [151], in

which a Man-in-the-Middle attack cannot be used to obtain enough information

to be able to guess a secret password by brute force, without further interactions

with the peers for each guess.

5.3.1.2 Securing the Embedded Secret

If we consider the possibility that an attacker has somehow stolen sensitive data

about a VPN peer from sources external to the overlay, like the external pass-

word database of the user or client of the service, then he will also be able to

gain admission into the VPN overlay. To cater for this possibility, we modify our

admission control protocol such that instead of using the stored secret password,

we use a password-based key derivation function like scrypt [127] to generate a

new password P from the stored secret password p and a cryptographic salt s,

121

5. Inter-Cloud VPN Admission Control

and securely erase the stored password p from the VM. The same key derivation

function is used on the super peers to generate the verifier v, which is then stored

in the DHT of the universal overlay.

The inclusion of the key derivation function in our admission control protocol

makes it resistant to a wide range of integrity attacks, from dumb/brute force

attacks to rainbow table attacks. Furthermore, as it this function is designed

to be computationally intensive, thus we can substantially limit the amount of

parallelism that an attacker can use in a sustained attack.

5.3.1.3 The Complete Protocol

In our admission control scheme, the super peer stores the password in the form

of a three element tuple (ServiceID, Password, salt). The ServiceID is the

identifying common attribute of the VMs that together constitute the single cloud

service that is being deployed on multiple cloud platforms. It is represented by a

version 4 Universally Unique IDentifier (UUID) [102], and is 128-bits in length.

The salt s is generated as a random number. The private key is generated by

using the SHA-2 hash function in the following manner:-

x =H(s ∣∣ H(ServiceID ∣∣ P))

The password verifier is generated as,

v = gx mod n

where g is a generator of the multiplicative group and n is a safe prime. The

122

5. Inter-Cloud VPN Admission Control

Table 5.1: Notations for the Inter-Cloud VPN Admission Control protocol

Symbol Explanation

n A large prime number. All computations are performed modulo n

g A primitive root modulo n (often called a generator)

s A random octet string used as the salt

p The peer’s password

P The peer’s password strengthened using a key derivation function

x A private key derived from the password and salt

v The peer’s password verifier

u Random scrambling parameter, publicly revealed

H() One-way hash function e.g. SHA-1, SHA-2 etc.

m ∣∣ n The two quantities m and n concatenated

K Session key

description of other mathematical notations is given in Table 5.1.

The authentication process for admission into the overlay is initiated by the

peer when it is started in its VM. Upon contacting the super peer, the peer re-

ceives the salt stored on the super peer, indexed under its Service ID. After its

reception, the peer can calculate x as its Service ID and password P is already

embedded in the VM. Now the peer generates a random number a, uses it to

calculate A and sends the result to the super peer.

A = ga (mod n)

The super peer does a similar operation to calculate B and also adds the public

123

5. Inter-Cloud VPN Admission Control

verifier to it, before sending B and a random scrambling parameter u to the peer.

B = (v + gb) (mod n)

Both sides can now construct the shared session key. The peer constructs it as:

SA = (B − gx)a+ux (mod n)

= (v + gb − gx)a+ux (mod n)

= (gx + gb − gx)a+ux (mod n)

= (gb)a+ux

K = H(SA) (5.1)

The super peer constructs it as:

SB = (A.vu)b (mod n)

= (ga.gux)b (mod n)

= (ga+ux)b (mod n)

K = H(SB) (5.2)

Both sides now possess the same and secure shared session key K based on

the respective formulae. To complete the authentication, now they need to prove

to each other that their keys are identical. In order to do so, the peer constructs

the message MA and sends it to the super peer,

MA =H(H(g) ⊕H(n) ∣∣ H(ServiceID) ∣∣ s ∣∣ A ∣∣ B ∣∣ K)

124

5. Inter-Cloud VPN Admission Control

The super peer will calculate MA using its own K and compare it against the

message received from the peer. If it does not match, the authentication fails.

If it does match, the super peer issues its own proof to the requesting peer by

sending it MB.

MB =H(A ∣∣MA ∣∣K)

The peer will compute the expected response using its own K to verify the au-

thenticity of the server. If it is a match, both parties are now authenticated. The

summarized protocol is given in Table 5.2.

Table 5.2: The Admission Control protocol

Peer Super Peer

→ (lookup s, v)
x =H(s,P) ← s

A = ga A→
← B,u B = v + gb

S = (B − gx)(a+ux) S = (A.vu)b

K =H(S) K =H(S)
MA =H(A,B,K) MA → (verify MA)
(verify MB) ←MB MB =H(A,MA,K)

5.3.2 Protocol Security Analysis

In this section we try to analyse our admission control protocol in terms of its

strength and resistance against the confidentiality, integrity and authentication

attacks described earlier in this chapter.

125

5. Inter-Cloud VPN Admission Control

5.3.2.1 Mitigating Confidentiality Attacks

In the context of confidentiality attacks, the parameters that a passive attacker

sniffing the network traffic between the peer and super peer node is able to as-

certain are s, A, B and u. However, the knowledge of these parameters is not

enough to formulate the value of S, as that requires the attacker to know the

values of a, b and the verifier component v.

Furthermore, in case of an active attacker that is able to modify the parame-

ters being exchanged between the peer and super peer nodes, the modification

will result in both parties computing different values of S, and subsequently differ-

ent values of the secret key K. This will cause the (verify MA) and (verify MB)

checks to fail on the super peer and the peer node respectively and the modifica-

tion attempt will be detected.

5.3.2.2 Mitigating Integrity Attacks

In the context of integrity attacks, we are able to get strong integrity in our scheme

even when using weak or short passwords p, as the attacker can only attempt one

guess per run of the protocol, making this scheme very resistant to dictionary

and brute-force attacks. Furthermore, the super peer does not need to store

the password, thus even an attacker who has stolen the super peer data cannot

masquerade as the VPN peer unless he first does a brute force search for the

password. Additionally, on the VPN peer side, as mentioned above, the secret is

never stored in plain format, rather it is stored in encrypted form using a strong

key derivation function that is resistant to all known integrity attacks.

126

5. Inter-Cloud VPN Admission Control

5.3.2.3 Mitigating Authentication Attacks

In the context of authentication attacks, our scheme enables to ensure the proof

of identity of the super peer node due to the use of the verifier v, as only the valid

super peer knows the correct value of v and it is never transmitted on the wire

during the run of the admission control protocol. Thus, a malicious attacker trying

to impersonate the super peer will have to use an incorrect value of v and will

force the peer node to formulate a different secret key K.

Furthermore, after a peer is authenticated and joins the overlay, its session

key is kept in a secure cache and is valid for a brief time period. Our scheme can

utilize previous session keys to generate new session keys to take advantage of

key-continuity and avoiding overloading the authentication system. As the service

or applications owner’s password is deleted from the virtual machine as soon as

it has been used as an input in the password-based key derivation function, an

attacker won’t be able to compromise other VMs of the same user even if he has

been able to gain access to one of the VMs that has been provisioned with the

Peer-to-Peer client. Another key feature of our scheme is that although it uses

some elements of asymmetric encryption, it does not need a trusted third party.

Thus we are able to avoid the overhead of a purely PKI-based scheme.

5.3.2.4 Mitigating Availability Attacks

In the context of availability attacks, an attacker may be able to target a super peer

with a denial-of-service attack (DoS), rendering it unable to receive or process

the admission control mechanism. These types of attacks are very hard to de-

fend against, especially for the distributed DoS attacks (dDoS). Our scheme does

127

5. Inter-Cloud VPN Admission Control

not specifically defend against these type of attacks, however, most commonly

used approaches in order to mitigate their affects are robust connection/session

management mechanisms, so that each connection/session consumes minimum

resources, and massive replication of services, so that the attack surface is in-

creased substantially for the attacker.

Therefore, our use of structured peer-to-peer overlays as the foundation of

our communication framework is beneficial in this regard as they have in-build

mechanisms for replication of resources like content and key-value pairs of the

distributed hash table.

5.4 Prototype Implementation

We have implemented a working prototype of our Inter-Cloud VPN Admission

Control scheme and integrated it with the overall Inter-Cloud VPN architecture.

In this way, the admission control scheme is available as part of the Peer-to-Peer

ICVPN client, discussed in detail in the previous chapter. Therefore, both the

super peer and peer nodes contain the same implementation of our admission

control scheme, the only difference being that the super peer also contains the

mapping of the cryptographic salt s to the verifier v in its distributed hash table

(DHT of the universal overlay).

This scheme has been implemented using the Java programming language

[59] that can be deployed on Linux-based operating systems [153]. We were mo-

tivated by the following reasons to use Java and Linux as the core technologies for

the prototype development, after suffering from some initial problems with other

technologies and platforms:-

128

5. Inter-Cloud VPN Admission Control

• Java has a large number of relatively easy-to-use cryptographic and peer-

to-peer protocols and libraries.

• Java has excellent documentation and easily available online community-

based help.

• As it is an open source operating system, we did not have to worry about

licenses.

• Linux offers built-in support for creation and management of private keys,

public keys and other cryptographic parameters in form of OpenSSL crypto

library.

Other than the core components of our communication framework, the imple-

mentation of our core research contributions (mechanisms and protocols) was

also done using open source libraries and APIs. Specifically, we chose the Boun-

cyCastle library [124] to implement the majority of the cryptographic operations

needed for our zero-knowledge password proof based admission control and

Inter-Cloud VPN admission control schemes, as well as the PKI-based alternative

that was required for the comparisons. This was due to the fact that BouncyCas-

tle is one of the most light-weight and extensive cryptographic libraries that is

designed with very strong emphasis on standards compliance and adaptability.

In the same vein, we used the TomP2P library [28] for its implementation of the

Kademlia [114] structured peer-to-peer protocol and the overlay DHT. Addition-

ally, we used the commercially available BT Compute Cloud platform [32], Flexi-

ant FlexiScale cloud platform [66], and a Xen hyper-visor based cloud platform

[17] from ATOS Origin as our experimental test-bed.

129

5. Inter-Cloud VPN Admission Control

5.5 Experimental Evaluation

In this section we present the results of a series of experiments we conducted to

evaluate the efficiency of our Inter-Cloud VPN admission control protocol, when

used in a service deployed on three different cloud IaaS providers. We evaluate

this efficiency by comparing two variants of our protocol against the standard PKI-

based protocol [22] that is second most common method used to authenticate and

grant admissions in secure peer-to-peer environments. We have intentionally not

compared our scheme against the most common method used for authentication

and admission control i.e., password or shared secret based admission control.

This is due to the fact that even though it is a low-cost and efficient method, the

weaknesses and limitations of systems based on this method are numerous and

well known [128].

5.5.1 Methodology

To evaluate the performance of the Inter-Cloud VPN admission control protocol,

we measure the time taken by a peer to gain admission to the universal overlay.

We have chosen this particular metric as the basis of our evaluation as it encom-

passes the whole life-cycle of the admission control process in a peer-to-peer en-

vironment. We have conducted this evaluation by launching the universal overlay

on BT, Flexiant and ATOS cloud platforms, therefore the super peer nodes sup-

porting the evaluated admission control protocols were running on all the three

test-beds. Thereafter, we started the VPN peer clients on virtual machines on

each cloud platform as well and measured the time taken by them to success-

fully join target super peers on different cloud platforms. These VPN peers also

130

5. Inter-Cloud VPN Admission Control

supported the evaluated admission control protocols. Repeating the experiments

measuring the joining times from different sources to different destinations gives

us a fair idea of the performance overheads of our admission control scheme, as

all other attributes remain same during the evaluations.

In order to conduct comparative evaluation of our scheme, we conduct the

experiments using three different methods of admission control:-

1. We evaluate the PKI-based method, where the peer uses its RSA private

key to sign its admission request and sends it to a super peer in the universal

overlay. In this scenario, each peer also possesses a principal name and

its own certificate, and also the certificate of the Certificate Authority. The

super peer plays the role of the Certificate Authority, as discussed earlier,

and is thus able to authenticate and admit a valid peer, as it has the record

of the peer’s public key when it had issued that particular peer its certificate.

2. We implement and evaluate the variant of our admission control protocol in

which we do not secure the embedded secret. In this scenario we make use

of a simple password that has been embedded in the peer VM by the VM

contextualisation service at the time of the virtual machine provisioning. The

reason for not securing the embedded secret, as discussed above, is that it

relies on passing it through a password derivation function which is a time-

consuming process and therefore incurs performance penalties. Although it

is an interactive method, we have implemented the protocol in such a way

that all interaction between a peer and the super peer is automated.

3. We implement and evaluate an improvement upon our previous admis-

sion control scheme (ZKPP Admission Control) by strengthening the simple

131

5. Inter-Cloud VPN Admission Control

password used in it by using a strong key derivation function (scrypt) and

securely erasing the original password from the virtual machine. This safe-

guards the system in the scenario where the password database of the peer

virtual machine might be stolen some time after it has been provisioned on

a cloud platform. Therefore, this method increases the security of the pro-

tocol but we are interested in finding out the performance cost associated

with it.

5.5.2 Experimental Results

We implemented the three admission control schemes, described above, in our

cloud platform test-bed. We evaluate the performance of these designs from a

peer’s perspective, that wants to gain admission in to its peer-to-peer overlay. We

do this by measuring the runtime cost of the admission control phase between

the peer and a super peer, as observed by the peer. We define the runtime cost

of the admission control process as the time duration between the sending of the

admission control request by the peer and the reception of a successful enrolment

response from the super peer. This time is logged by the peer in a log file created

by the P2P client on the host VM.

Fig. 5.1 shows the time duration results of admission control process using

the three methods, for 100 separate trials conducted over a 24-hour period. In

this case, only the BT cloud platform was used as the experimental test-bed.

Only a single cloud platform was used so that we can observe the effects of the

admission control protocol with being affected by network latency issues of an

inter-cloud environment. Network latency does exist in a single cloud platform,

132

5. Inter-Cloud VPN Admission Control

0

500

1000

1500

2000

2500

1 10 19 28 37 46 55 64 73 82 91 100

Ti
m

e
(i

n
 m

ill
is

e
co

n
d

s)

Admission Control Experiments

PKI-based Admission Control ICVPN based Admission Control (with scrypt)

ICVPN based Admission Control (without scrypt)

Figure 5.1: Duration of the admission control process for 100 trial instances using
the PKI-based and ICVPN methods, on a single cloud platform (BT)

but it is typically very less (around 2.5 ms) and with negligible jitter.

We modified the P2P VPN client so that the same peer is able to make admis-

sion control requests using the three different authentication mechanisms. Sim-

ilarly, the super peer is able to handle all three types of requests by launching

a new thread for the processing of each request. We can see from the graph

in Fig. 5.1 that, on average, the duration of the admission control process us-

ing the PKI-based approach is much greater (1270.41 milli-seconds) than that for

our Inter-Cloud VPN schemes, with or without using the scrypt key strengthening

function (220.65 milli-seconds and 58.59 milli-seconds respectively). Similarly,

the variation in the time duration results in case of the former is much greater

than that for the later scheme.

Fig. 5.2 shows the time duration results of admission control process using the

133

5. Inter-Cloud VPN Admission Control

0

500

1000

1500

2000

2500

1 10 19 28 37 46 55 64 73 82 91 100

Ti
m

e
 (

in
 m

ill
is

e
co

n
d

s)

Admission Control Experiments

PKI-based Admission Control ICVPN based Admission Control (with scrypt)

ICVPN based Admission Control (without scrypt)

Figure 5.2: Duration of the admission control process for 100 trial instances using
the PKI-based and ICVPN methods, between BT and Flexiant cloud platform

three methods, for 100 separate trials conducted over a 24-hour period. In this

case, two different cloud platform were used as the experimental test-bed, i.e.,

the BT and Flexiant cloud platforms. This was done so that for this set of trial we

can observe the effects network latency on the admission control process. The

super peer VMs were running on the BT cloud platform and the peer nodes on

the Flexiant cloud platform.

We can see from the graph in Fig. 5.2 that, similar to the single cloud plat-

form trials, on average the duration of the admission control process using the

PKI-based approach is much greater (1368.18 milli-seconds) than that for our

Inter-Cloud VPN schemes, with or without using the scrypt key strengthening

function (254.83 milli-seconds and 77.17 milli-seconds respectively). Similarly,

the variation in the time duration results in case of the former is much greater

134

5. Inter-Cloud VPN Admission Control

than that for the later scheme.

0

500

1000

1500

2000

2500

1 10 19 28 37 46 55 64 73 82 91 100

Ti
m

e
 (

in
 m

ill
is

e
co

n
d

s)

Admission Control Experiments

PKI-based Admission Control ICVPN based Admission Control (with scrypt)

ICVPN based Admission Control (without scrypt)

Figure 5.3: Duration of the admission control process for 100 trial instances using
the PKI-based and ICVPN methods, between BT and ATOS cloud platform

Fig. 5.3 shows the time duration results of admission control process using the

three methods, for 100 separate trials conducted over a 24-hour period. In this

case too, two different cloud platform were used as the experimental test-bed,

i.e., the BT and ATOS cloud platforms. This was done for the same reason as

described in the case of the previous results. The super peer VMs were running

on the BT cloud platform and the peer nodes on the ATOS test-bed.

We can see from the graph in Fig. 5.3 that on average the duration of the ad-

mission control process using the PKI-based approach is much greater (1575.03

milli-seconds) than that for our Inter-Cloud VPN schemes, with or without us-

ing the scrypt key strengthening function (438.97 milli-seconds and 241.98 milli-

seconds respectively). Similarly, the variation in the time duration results in case

135

5. Inter-Cloud VPN Admission Control

of the former is much greater than that for the later scheme.

5.5.3 Results Analysis

Given the known stable network latency between the different cloud platforms

available to us, we profiled the implementation of the PKI based design and its

cryptographic libraries at the code level, in order shed some light on the reasons

behind its large overhead in terms of both time and jitter.

Table 5.3: Average time taken by the admission control trials

Admission Control MechanismsCloud

Platforms PKI ICVPN (with scrypt) ICVPN (without scrypt)

BT 1270.41 ms 220.65 ms 58.59 ms

BT - Flexiant 1368.18 ms 254.83 ms 77.17 ms

BT - ATOS 1575.03 ms 438.97 ms 241.98 ms

The main reason for the relative slowness of the PKI-based design is the re-

quired use of cryptographically secure random number generation in this method.

This introduces the largest time and jitter penalty for our PKI-based measure-

ments, as the peer has to wait for system events to gather enough entropy from

entropy sources like disk reads, network activity, mouse movement, key presses,

etc. to generate this kind of random number. In a typical cloud hosted virtual

machine, these events are usually quite stable or uniform (as in case of disk and

network activity), or totally absent (as in case of mouse and keyboard activity).

Therefore, it takes a much longer time to generate the required random number

of reasonable strength, and increasing the overhead of a PKI based solution as a

result.

136

5. Inter-Cloud VPN Admission Control

We also note that the second method (ZKPP+scrypt), although being more

secure than the third method, adds quite a performance overhead on the ad-

mission control duration. Thus, although the Inter-Cloud VPN admission control

method takes about 162 milli-seconds more than the less-secure ZKPP based

method, it is still approximately 82% more efficient than a PKI-based solution.

The cumulative average of all the experiment trials are given in Table 5.3.

Furthermore, the time cost of the third admission control solution can be fur-

ther reduced by adjusting the CPU cost, memory cost and parallelisation cost

parameters of the scrypt algorithm, or even by using a simpler password strength-

ening algorithm other than scrypt e.g., bcrypt, PBKDF2 or even SHA-1.

5.6 Chapter Summary

In this chapter, we have given a description of the design and implementation

details of our attempt to solve the problem of secure admission of a peer of a VPN

overlay. We discussed some of the traditional solutions of this problem and then

explained why they are not really suitable for an inter-cloud model, mainly due

to the lack of authentication of the peer nodes trying to join an overlay network.

So we try to come up with an efficient solution, that should be able to protect our

communication with minimal performance overhead, as well as be integrate-able

with the complex and heterogeneous environment of the inter-cloud.

We started by describing the threat vectors for Inter-Cloud VPN admission

control process. We considered the attacks on confidentiality of the communica-

tion process, especially as unauthorised users might be able to sniff the network

traffic of VMs that want to join a VPN overlay. So we have to make sure that its

137

5. Inter-Cloud VPN Admission Control

not possible for the attacker to sniff sensitive data and meta-data transmitted or

received by a peer, before it gets admitted into a VPN overlay. We also consid-

ered attacks on the integrity of the data communicated between the peers. So an

attacker should not be able to modify the content of a peer’s enrolment request

during transit. We also considered attacks on the identity and availability of the

peers and super peers.

We then give the details of our security protocol for the admission control pro-

cess, which is used when the peer goes through the bootstraps process for the

first time. We have based the core of the protocol on zero knowledge password

proof, which is very suitable for our security model as it allows a peer to authen-

ticate itself to a bootstrapping peer without exchanging the password. Further-

more, it is resistant to dictionary attacks and it does not need a trusted third party.

We further modified this scheme such that instead of using the stored password in

the zero-knowledge password proof, we use scrypt as the key derivation function.

We describe the implementation of this scheme in our system and measured

the time taken by a peer to gain admission to the universal overlay for its evalu-

ation. We used three different methods for authentication to do this comparison,

which are, PKI-based method using RSA algorithm, the zero-knowledge pass-

word proof method, and the zero-knowledge password proof method strength-

ened with scrypt. We showed the time taken by the admission control process for

100 experimental instances using these three methods, with the zero-knowledge

password proof method performing the best and the PKI-based method the worst.

In the next chapter, we describe in detail how we solve the problem of secure

service based resource discovery in our framework. This is a well known issue

in the peer-to-peer overlays and the data about a peer’s resources has to be

138

5. Inter-Cloud VPN Admission Control

obtained in such a manner that this information remains private and confidential

between the valid peers of a VPN overlay. We describe our threat model for this

problem in detail and then describe the security model that gives us the desired

solution by using the functional cryptography based methods. At the end we show

the performance evaluation of our solution again the traditional PKI model.

139

Chapter 6

Inter-Cloud VPN Secure Resource

Discovery

6.1 Resource Discovery

Resource discovery is the process by which the users or client of a distributed

system are able to search for resources required for their operations. Typically

these resources are in form of services and devices etc. and are advertised or

hosted in a networked environment by describing some of their attributes e.g.,

keywords, URL (Universal Resource Locator), URI (Universal Resource Identi-

fier), and other forms of identifiers [86]. Usually specialised services, known as

directory services, are used to store all the information related to the available re-

sources, as well as implementing the functionality of resolving user queries [85].

However, most of the current resource discovery efforts tend to focus on expres-

sive resource descriptions and extensive query predicates [3], [11], [14], and [91].

These efforts may differ in the way in which they name resources and how these

140

6. Inter-Cloud VPN Secure Resource Discovery

names are resolved to the target network location. However, in one way or an-

other, all resource discovery mechanisms utilise attribute-based naming schemes

and semi-structured resource descriptions [2].

As we have already discussed in the earlier chapters, most structured peer-

to-peer networks use a distributed hash table (DHT) that handles resource place-

ment and discovery, as well as ensuring a bounded number of hops for every

search query. However, an important issue still facing resource discovery mecha-

nisms, especially in distributed and peer-to-peer environments, is how to provide

resource discovery techniques that allow their users to locate the resources of

their interest securely, but still efficiently, especially in large-scale environments

like the inter-cloud.

6.2 Service based Resource Discovery

In the Inter-Cloud VPN solution, after a peer in a VPN overlay has been success-

fully and secure bootstrapped using the scheme described above in Chapter 5,

it needs to discover resources like VM ID, IP address and port numbers of the

neighbouring peers in its overlay in order to construct IPsec tunnels between it-

self and the peers it wants to communicate with. These required resources have

to be obtained in such a manner that this information remains private and confi-

dential between the valid peers of a VPN overlay. Therefore, we are interested in

devising a resource discovery scheme that is secure, but it also has to be scalable

as we are operating in a decentralised environment.

As may be recalled from Chapter 3, Section 3.2, we make use of the Kademlia

protocol [114] to provide us with the basic functionalities of a peer-to-peer overlay.

141

6. Inter-Cloud VPN Secure Resource Discovery

Two of its four basic operations can be used for the purposes of resource discov-

ery in our solution, namely FIND NODE and FIND VALUE. Therefore, a peer

can send FIND NODE requests those super peers whose contact information

has been embedded in the virtual machine by the VM contextualisation service.

In the case of the absence of this contact information or to use more up-to-date

information, it can also send the FIND NODE request to the super peer it has

already communicated with in the admission control process.

The advantage of the later method is that as every peer of a VPN overlay

has to go through the admission control process, the super peers responsible for

handling admission control can keep a running list of the peers currently present

in a VPN overlay in the DHT of the universal overlay. However, both of these

resource discovery methods have some security issues discussed below.

6.3 Threat vectors affecting Inter-Cloud Resource

Discovery

Most of the directory services currently used for the purposes of resource dis-

covery do not have security primitive built-in in their architecture. This is mostly

due to the fact that these are usually intended to be used with in the local and

internal scope of an organisation, which is assumed to be a trusted and secure

environment. Whenever there are security requirements, these services fall back

to the use of SSL/TLS protocols, or some variant of them, in order to fulfil those

requirements [84], [51].

However, due to the inter-cloud scope of our working environment, we are

142

6. Inter-Cloud VPN Secure Resource Discovery

aware of the threats of malicious attackers trying to compromise the system using

attacks like eavesdropping on network traffic, spoofing of communication end-

points, tampering with in-flight packets (Man-in-the-Middle attack), and denial of

service etc. Although we do use some encryption techniques for authentication

and admission control purposes in our Inter-Cloud VPN framework, as discussed

in detail in Chapter 5, encryption alone is insufficient to deal with all of these

attacks to compromise the security of resource discovery.

6.3.1 Information Confidentiality

Eavesdropping attacks can be targeted at the network traffic between the virtual

machines, either in a single cloud platform or between multiple cloud platforms.

This can be done quite easily using tools called network sniffers or network anal-

ysers, e.g., tcpdump [90], Wireshark [125], network taps etc., which can be either

software or hardware. These types of attacks can be thwarted by encrypting the

traffic sent between the communicating components of a cloud service, hence

the use of IPsec tunnels to encrypt the connections between the peers of a VPN

overlay.

6.3.2 Traffic Tampering

This an active version of the eavesdropping attacks, where the attacker is placed

between the communicating entities and can either modify the packets they are

sending to each other or even impersonate them both. Furthermore, the attacker

may even choose to not deliver the packets at all, or he may deliver the packets

out-of-order. Lastly, the attacker may also be able to read all the traffic sent

143

6. Inter-Cloud VPN Secure Resource Discovery

between the communication entities. This kind of attack is especially easy in

wireless environments, where the traffic can be easily intercepted by anyone who

is equipped with the right tools and is with in range of communication devices.

To handle this class of attacks, we can again use protocols based on symmet-

ric and asymmetric encryption techniques, that provide the features authenticated

key exchange and mutual authentication. These protocols typically assume that

the identities have already been established for all the participants, in other words

the problem of spoofing has been handled, which might be difficult to achieve in

a large network.

6.3.3 Denial of Service

In this type of attack, the attacker attempts to deny the users access to the re-

source discovery service. This can be done by either inundating the service with

a large number of simultaneously requests, which will overload the system and

cause it to crash. It can also be accomplished by exploiting a vulnerability in the

service itself to compromise its operation. Or it can be done in the form of a Man-

in-the-Middle attack as well where the attacker just does not forward the traffic

between some or all of the communicating entities.

These types of attacks are very hard to defend against, especially for the

distributed DoS attacks. Most commonly used approaches in order to mitigate

their affects are robust connection/session management mechanisms, so that

each connection/session consumes minimum resources, and massive replication

of services, so that the attack surface is increase for the attacker.

144

6. Inter-Cloud VPN Secure Resource Discovery

6.3.4 Peer Spoofing

To join a peer-to-peer overlay, each peer needs to acquire a unique identification

number called Peer Identification number (PeerID). In most structured P2P

systems, this is done by the peer itself by choosing a random number from a

large identity space. For instance, Kademlia protocol assigns a random 160-bit

string to each peer. The content in the DHT also has a 160-bit string as its ID,

which is known as ContentID or infohash. However, this approach is vulnerable

to Sybil attacks [56], the basic idea of which is that an attacker can create and

inject a large number of false peers in the overlay.

1

10

100

1000

10000

100000

1000000

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50

N
u

m
b

e
r

o
f

Fa
ke

 P
ee

rs

k-bucket size

Number of Fake Peers = 𝑁/(max(𝑘, log 𝑁) − 1)

N = 100 N = 1000 N = 10000 N = 100000 N = 1000000

Figure 6.1: No. of fake peers required to intercept all inter-peer communication in
a Kademlia overlay of size N

The attacker can assign or manipulate the false peers’ PeerID at will, and

145

6. Inter-Cloud VPN Secure Resource Discovery

thus subvert the functioning of the peer-to-peer overlay. Due to the k -bucket

mechanism used in Kademlia, an attacker can effectively intercept peer mes-

sages if he has at least one false peer among every peer’s k closest neighbours.

This means that an attacker only has to inject N/(k − 1) false peers in an overlay.

However, we know that the average number of hops in routing a message in a

Kademlia overlay is O(log(N)). As k ≤ 8 in most default deployments of Kadem-

lia, O(log(N)) will become larger than k as the number of peers in an overlay

increase. Therefore, a better calculation of the number of false peers required in

an overlay is N/(max(k, log(N))) − 1.

6.4 Security protocol design for Inter-Cloud VPN Re-

source Discovery

A common way of dealing with this issue it to use some trusted authority to al-

locate peer IDs to the participating peers and the peers validate each other by

querying the central authority with a validation request. In our solution model, it

can work by designating a stable super peer as the Certificate Authorities (CA) for

a VPN overlay’s peer nodes. The CA can assign peer IDs to the peers and signs

a certificate that binds the serviceID of the cloud service or application making

use of our solution and peer ID within the public certificate of the peer for a limited

time duration. The peer then can use this signed certificate to authenticate itself

with other peers in the overlay. However, using this Trusted Third Party (TTP)

model to validate peers and allocate them their identities can introduce substan-

tial communicational and computational overhead, especially as the number of

146

6. Inter-Cloud VPN Secure Resource Discovery

peers in the overlay increases.

6.4.1 Proposed Solution

We propose a decentralized solution that overcomes the above mentioned scala-

bility problems by utilizing a functional encryption based scheme [49]. In a generic

functional encryption scheme, a decryption key describes a function of the en-

crypted data to the user. This function F (⋅, ⋅) is modelled as a Turing Machine

and an authority possessing a master secret key (msk) can generate a key skk

that can be used to compute the function F (k, ⋅) on some encrypted data. To

describe it more formally but briefly, a functional encryption scheme (FE) for a

functionality F dened over (K,X) is a sequence of four algorithms (setup, key-

gen, encryption, decryption) satisfying the following correctness condition for all

k ∈K and x ∈X is given in Table 6.1.

Table 6.1: Four-tuple Functional Encryption

Sequence Explanation

setup(1λ)→ (pp,msk) Generate public and master secret key pair

keygen(mk,k)→ sk Generate secret key for k

enc(pp, x)→ c Encrypt message x

dec(sk, c)→ y Use sk to decrypt c

For Inter-Cloud VPN, we employ a special case of Functional Encryption which

falls under the category of systems known as the predicate encryption schemes

with public index. For our scheme we make use of the system defined in [158]

as Identity-Based Signatures, and in [80] as Attribute-Based Encryption (ABE),

147

6. Inter-Cloud VPN Secure Resource Discovery

where the decision that which users can decrypt a ciphertext is based on the

attributes and policies associated with the plaintext message and the user. We

have discussed the basic background of these systems in Chapter 3. In this

scheme an authority creates secret keys for the users of the system based on

attributes or policies for each user and anyone can encrypt a plaintext message

by incorporating the appropriate attributes or policies in the scheme. There are

two versions of the ABE, Key Policy ABE and Ciphertext-Policy ABE.

6.4.1.1 Key Policy Attribute based Encryption (KP-ABE)

In KP-ABE, attributes are assigned to a ciphertext when creating the ciphertext

and policies are assigned to users/keys by an authority which created the keys. A

key provides an access formula that operates over the set of attributes that must

evaluate to true for decryption to yield the plaintext message. A key can decrypt

only those ciphertexts whose attributes satisfy the policy.

6.4.1.2 Ciphertext-Policy Attribute based Encryption (CP-ABE)

In CP-ABE, the users of the system are assigned different attributes and each

user is issued a key from an authority for its set of attributes. The ciphertext

contains a policy (which is a Boolean predicate over the attribute space) and if

the users attribute set satisfies the policy, they can use their key to decrypt the

ciphertext. Another attractive feature of this scheme is that it is collusion resistant

i.e. multiple users cannot pool their attributes together to decrypt a ciphertext.

148

6. Inter-Cloud VPN Secure Resource Discovery

6.4.1.3 Bilinear Pairing

Most of the Functional Encryption schemes are based on Pairing-based Cryptog-

raphy (PBC) [98], which uses a pairing between elements of two cryptographic

groups to a third group in order to formulate cryptographic systems. If the com-

bining of elements of the two groups yields an element of the third group, that is

linear in each of its arguments, then this pairing is called a Bilinear Pairing.

In groups constituting a bilinear mapping, for example the Weil pairing [159]

or Tate pairing [150], generalizations of the computational DiffieHellman problem

are considered to be impractical while the simpler decisional DiffieHellman prob-

lem can be solved using the pairing function. Bilinear pairings have been used

to design many cryptographic systems for which no other practical implementa-

tion was known to exist, and these include the Functional Encryption schemes

like Identity-based Encryption and the Attribute-based Encryption. The Bilinear

Pairing is often formally defined as follows in most cryptography literature:-

Let r be a prime number.

Let G1 and GT be cyclic groups of prime order r.

Let G2 be a group, which is not necessarily cyclic, where each element has order

dividing r.

Let P ∈ G1 and Q ∈ G2 be the generators of G1 and G2 respectively.

A bilinear pairing e on (G1, GT) is a computable map,

e ∶ G1 × G2 → GT

for which the following is true:

1. Bi-linearity: e(P a, Qb) = e(P, Q)ab ∀ a, b ∈ Z

149

6. Inter-Cloud VPN Secure Resource Discovery

2. Non-Degeneracy: e(P, Q) ≠ 1

3. Computability: e has to be efficiently computable

6.4.2 Secure Resource Discovery

Once a peer has joined its overlay network, it needs to discover its neighbours

and the resources offered by them, to establish secure IPsec tunnels. After the

establishment of the tunnels, the deployed cloud service or application will be

able communicate securely with its different components. In order to achieve

this secure resource discovery process, we have designed the following protocol

scheme based on the Functional Encryption predicates discussed earlier in the

section. A simplified step-wise description of the scheme is as follows:-

1. A super peer sets up its own Master Secret ms and Public Parameters pp.

2. The super peer generates a private key for itself using the ServiceID and its

own PeerID as the public key i.e. PubSP = ServiceID ∧ SuperPeerID,

for each service the super peer is managing.

3. The VPN peer requests for pp on boot up from the super peer.

4. The VPN peer sends a Provisioning Request to super peer, encrypted using

the super peer’s public key (PubSP)

5. The super peer issues a private key to the VPN peer encrypted by its own pri-

vate key, against the public key PubV PN =VMID ∧ PeerID ∧ ServiceID

150

6. Inter-Cloud VPN Secure Resource Discovery

6. The super peer inserts the VPN peer’s public key in the universal overlay DHT

to keep a record of issued private keys;

key(ServiceID) = value(List of VMID)

7. For each peer i, the super peer adds its public key in its VPN overlay ;

key(VMID i) = value(PubV PNi
)

8. The VPN peer requests list of other peers from super peer, which returns the

result of key(ServiceID), encrypted using PubV PN = PeerID ∧ ServiceID

This protocol and its security features are discussed in detail in the following

sections:

6.4.2.1 System Setup

Most of the Functional Encryption based techniques like Identity-based Cryptog-

raphy and Attribute-based Cryptography rely on a trusted third party that is tasked

with the generation of private keys for the whole system. This trusted third party is

typically called Private Key Generator (PKG). Before any encryption or decryption

can take place, the PKG must also generate a master private key and a master

public key. This is denoted by the setup(1λ) function in Table 6.1. In our protocol

we denote these credentials as ms and pp respectively. The PKG is only involved

in the initial phase of the process and it is not required to be continually involved

in the normal operation of the Functional Encryption mechanisms after the keys

have been generated.

151

6. Inter-Cloud VPN Secure Resource Discovery

In the Inter-Cloud VPN architecture, we can use the super peer nodes as a

distributed PKG, as these nodes are also mainly used for the initial management

and peer bootstrapping processes. In case of multiple super peers acting as the

PKG, we can utilise standard techniques like threshold cryptography to distribute

the PKG functionality among the participating super peers. This will ensure that

ms is not available on a single super peer, thus enhancing security of the master

private key as well as avoiding a single point-of-failure.

The master public key pp is put on the DHT storage of the Universal Overlay by

the super peer as a publicly accessible parameter, indexed against the ServiceID

of the VPN overlay for which it is required. Thus each ms and pp pair is unique

and bound to a single VPN overlay, and hence to the individual cloud service

that is to be deployed on multiple cloud platforms. This is to ensure the security

compartmentalisation of VPN overlays, and as a result the deployed cloud service

as well, so that they do not share the same security parameters.

6.4.2.2 Key Generation

When a peer bootstraps and registers with the super peer, the super peer with

the PKG functionality has to generate the peer’s private key based on its three

attributes. These three attributes that the super peer requires are its VMID ,

PeerID, and ServiceID. The VMID of a peer is globally unique and is assigned

to its host VM by the hyper-visor or the cloud platform that launched the VM. It is

not generally possible the change its value from inside the VM as it is not stored

in the VM, rather it resides only on the hyper-visor running the VM or in some

cases the cloud platform can store it as well. It is also difficult to guess as it is

152

6. Inter-Cloud VPN Secure Resource Discovery

usually a long random number, e.g., in case of BT cloud platform it is a 128 bit

number.

However, the peer can query the its hyper-visor or the cloud platform for its

value and then send it to the super peer securely by encrypting it with the super

peer’s public key. A method for securely querying a hyper-visor or the cloud plat-

form for a VMID is usually provided by the vendor in form of an API call. The

hyper-visors and the cloud platforms can also ascertain the source of this query

and only supply the valid results if the query originates from the VM itself. The

other attributes of PeerID and ServiceID have been already discussed in the

last chapter. In order to construct the super peer’s public key, the peer requires

to know the attributes of pp, SuperPeerID, and ServiceID. The latter two of

these are conveniently already embedded in the VM image itself, whereas the

pp attributed can be obtained from the universal overlay DHT at run time, as it is

indexed against a well-known key, i.e., ServiceID.

6.4.2.3 Key Distribution

In the traditional Functional Encryption mechanisms, the PKG will send the user

this private key via a secure side channel. In the Inter-Cloud VPN architecture,

however, we can take advantage of the universal overlay DHT and the private key

of the super peer itself to streamline this key distribution process to the peers. In

our design, the super peer node can generate a private key for itself using the

same process as described above. In fact this step needs to take place before

any key distribution occurs for the VPN peers in the secure resource discovery

process. The attributes that it uses for this purpose are its own PeerID, which in

153

6. Inter-Cloud VPN Secure Resource Discovery

this case is called SuperPeerID, and the ServiceID of the cloud service being

deployed.

Now possessing its own private key, the super peer can sign the private key

it generates for the requesting peers. As the ServiceID is a required attribute in

the super peer’s public key, and its knowledge is private to the valid peers running

in the VMs where this information was embedded, thus only the valid peers are

able to construct the super peer’s public key and able to decrypt and acquire their

private keys from the PKG super peer.

6.4.2.4 Public Key Repository

Along with issuing the peers with their private keys, the super peer also builds

a repository for the public keys, in the form of the conditional attributes against

which a particular private key was generated. Each record in this repository is

kept in the form of a key-value pair in the VPN overlay DHT. The key used for

this purpose is the VMID i of the VM on which the peer is running, and the value

against this key is the public key of the same peer PubV PNi
. Also, this value is

encrypted by the super peer using its private key before placing it in the DHT, so

that only a peer that is in possession of the super peer’s valid public key is able

to read it.

This feature offers the functionality, to any other peer in the VPN overlay, of

uploading or sharing data through the DHT in such a way that only the intended

recipient peer is able to read it. All it needs it order to achieve this goal is to know

the VMID i of the intended recipient and it will be able to get its public key using

the resource discovery lookup operation on the DHT. Encrypting the data to be

154

6. Inter-Cloud VPN Secure Resource Discovery

shared with this public key will ensure that only the intended recipient is able to

read it, as only that peer’s private key can be used to decrypt it.

6.4.2.5 Peer Address Resolution

However, in order to communicate directly with the recipient peer, the sending

peer must have the knowledge of its IP address or the DNS name, as the VMID is

the virtual machine UUID that cannot be used itself as a logical network address.

This problem is overcome again by using a simple API call provided by all hyper-

visors and cloud platforms vendors, which returns a virtual machines IP address

or its DNS name if queried with its VMID . Furthermore, in cloud platforms where

each virtual machines is assigned at least one public IP address by default (e.g.,

Flexiant), we can use this public IP address as the value of the VMID parameter,

instead of the virtual machine UUID. This will further streamline the process of the

acquiring a neighbouring peer’s public key as it will eliminate the need of making

an API call to the cloud platform.

6.4.2.6 Neighbour Peer Discovery

To keep a record of peers that have successfully bootstrapped and have been

issued their private keys, the super peer maintains a running list of these peers

in the universal overlay’s DHT. This list is composed of the concatenated VMID

parameters of all the peers currently active in the VPN overlay, and is indexed

in the DHT against the ServiceID parameter as its key. As this list is stored in

the universal overlay, the VPN peers cannot access it directly, as the resource

discovery mechanism is local to each overlay network. The super peer is also

155

6. Inter-Cloud VPN Secure Resource Discovery

make use of this list, as it helps it to monitor the population of the VPN peers.

Therefore, if it sees a trend of increase in this population, it can start up more

super peer’s in the universal overlay in order to handle the increased work load,

or vice versa.

Therefore, if a VPN peer wants to get the list of all peers in its VPN overlay,

it has to query it from the super peer. On reception of this query, the super peer

will send the list to the the requesting VPN peer, encrypted with the public key of

that peer that it has on record. In this way, on the valid peer will be able to get the

list of all its neighbour peers by decrypting it with its private key. As mentioned

in the previous paragraph, if the cloud platform is assigning public IP addresses

to its virtual machines, then this will be a list of public IP addresses of the all

the peers currently active in the overlay. This will greatly simplify the process of

discovering all the neighbouring peers in a VPN overlay, that is, a peer wishing

to communicate with all the peers in its overlay will be able to acquire their IP

addresses using just one DHT lookup operation.

6.5 Prototype Implementation

We have implemented a working prototype of our Inter-Cloud VPN Secure Re-

source Discovery (ICVPN SRD) protocol and integrated it with the overall Inter-

Cloud VPN architecture. In this way, our Secure Resource Discovery scheme is

available as part of the Peer-to-Peer ICVPN client, whose design and architec-

ture has been discussed in detail chapter 4. Therefore, all the super peer and

peer nodes contain the same implementation of our Secure Resource Discovery

scheme.

156

6. Inter-Cloud VPN Secure Resource Discovery

This scheme has been implemented using the Java programming language

[59] that can be deployed on Linux-based operating systems [153]. We were mo-

tivated by the following reasons to use Java and Linux as the core technologies for

the prototype development, after suffering from some initial problems with other

technologies and platforms:-

• Java has a large number of relatively easy-to-use cryptographic and peer-

to-peer protocols and libraries.

• Java has excellent documentation and easily available online community-

based help.

• As it is an open source operating system, we did not have to worry about

licenses.

• Linux offers built-in support for creation and management of private keys,

public keys and other cryptographic parameters in form of OpenSSL crypto

library.

Other than the core components of our communication framework, the imple-

mentation of our core research contributions (mechanisms and protocols) was

also done using open source libraries and APIs. Specifically, we chose the Boun-

cyCastle library [124] to implement the majority of the cryptographic operations

needed for the PKI-based alternative P2P resource discovery scheme that was

required for the comparisons. This was due to the fact that BouncyCastle is one

of the most light-weight and extensive cryptographic libraries that is designed with

very strong emphasis on standards compliance and adaptability.

157

6. Inter-Cloud VPN Secure Resource Discovery

To implement the functional encryption schemes, especially the CP-ABE and

IBE related functions, we used the cpabe [26] and libfenc crypto libraries. These

are the only extensible libraries that offer implementations for Attribute-Based and

Identity-based encryption schemes. An isue that we encountered at this step of

the implementation was that these libraries are implemented in C programming

language [96] whereas all of other development code was in Java. Therefore, we

had to implement wrappers functions to call the native C code from the Java using

Java Native Interface (JNI) [73]. Although this is not the most efficient and seam-

less approach, this was the only option available to use other than implementing

the complete libraries in Java.

In the same vein, we used the TomP2P library [28] for its implementation of the

Kademlia [114] structured peer-to-peer protocol and the overlay DHT. Additionally,

we used the commercially available BT Compute Cloud platform [32], Flexiant

FlexiScale cloud platform [66], and a Xen hyper-visor based cloud platform [17]

from ATOS Origin as our experimental test-bed.

6.6 Evaluation Methodology

One of the standard metrics to be measured in order to analyse the performance

of a resource discover mechanism is the latency of a resource lookup operation.

Therefore, we also focus to design and conduct experiments that enable us to

accurately measure the time taken by our secure resource discovery protocol to

find and return a set of resources. In case of solutions based on peer-to-peer

networks, such as ours, this includes the time required for each peer to process

the lookup query, as well as the time required to establish connection to the next

158

6. Inter-Cloud VPN Secure Resource Discovery

peer to whom the lookup query is to be forwarded, in case the required data

is not found in the current peer. In such environments, the time required for a

lookup operation increases with the increase in the number of peers in the overlay

network.

6.6.1 Cost of DHT Lookups

However, we can remove the cost of the DHT lookups from our measurements

as their theoretical overhead is known to be O log(N) for Kademlia. This means

that we will get a fixed value of latency for a particular value of N . But due

to the nature of actual runtime experiments, including the measurement of this

metric will add unhelpful noise to the results, as we know that the value of N

can actually vary during the life-time of a peer-to-peer overlay. Furthermore, the

replication and intelligent routing mechanisms implemented by the peer-to-peer

protocol also affect the measurement of this metric.

6.6.2 PKI-based Design for Comparison

As mentioned earlier, one of the main overheads in peer-to-peer overlays is re-

lated to the performance of the resource discovery lookup operations after the

peers have bootstrapped. Securing this process further adds to this overhead

but in an effort to characterise the effect of our secure resource discovery mech-

anism, we compare it with an alternate design of a PKI-based secure resource

discovery system, like the one described in SDS [48].This alternative design uses

the traditional hybrid of asymmetric and symmetric cryptography. However, we

cannot directly compare our results with the ones provided by SDS due a num-

159

6. Inter-Cloud VPN Secure Resource Discovery

ber of architectural and operational differences. For example, SDS is based on

the client-server architecture, it uses a global multicast address for the search

purposes of service discovery and its experiments are run on physical hardware

whose specifications are very different to the VMs used in our test-bed cloud

platforms. Therefore, we take the basic design of a PKI based architecture and

implement and evaluate it in our own test-bed environment.

In the PKI based design, a principal name and a X.509v3 certificate is as-

sociated with every peer, which can be used to prove the peer’s identity. The

certificates are supposed to be signed by a well-known Certificate Authority (CA),

whose own public key is supposed to be known by every peer. In our implemen-

tation, we enhance a super peer with the functionality of a Certificate Authority.

Each peer is issued a signed certificate upon authenticated completion of the

bootstrapping process. The public certificates of the all the peers in the overlay

are stored in the overlay DHT, indexed against their ServiceID, so that the peers

can easily query for and receive any other peer’s public certificate. A peer can

now publish or share any data on its overlay’s DHT by encrypting it with its private

key. Similarly, a peer can query the overlay DHT with resource discovery requests

and get the resulting data back which can then be decrypted by the data-owning

peer’s public key.

6.6.3 Experimental Results

We implemented both the Functional Encryption based secure resource discov-

ery design and the PKI based secure resource discovery design on our cloud

platform test-bed. We evaluate the performance of these two designs by measur-

160

6. Inter-Cloud VPN Secure Resource Discovery

ing the runtime cost of their resource discovery operations. We define the runtime

cost for both designs as the time duration between the start and end of a secure

resource discovery lookup operation.

0

500

1000

1500

2000

2500

3000

1 10 19 28 37 46 55 64 73 82 91 100

Ti
m

e
 (

in
 m

ill
is

e
co

n
d

s)

Secure resource discovery experiments

PKI-based Approach FENC-based Approach

Figure 6.2: Secure resource discovery for 100 runtime trials between PKI and
Functional Encryption based approaches in ICVPN, on a single cloud platform

Fig.6.2 shows the results of doing a secure resource discovery lookup op-

eration for 100 separate trials, conducted over a 24-hour period. In this case,

a single cloud platform was used as the experimental test-bed. We deployed

four VMs on this test-bed, one pair installed with the super peer and peer us-

ing the PKI based resource discovery approach and the other pair installed with

the super peer and peer using the Functional Encryption based resource discov-

ery approach. We can see from the graph that, on average, the runtime of the

secure resource discovery process using the PKI-based design is much greater

(1313.52 milli-seconds) than that for our Functional Encryption based scheme

161

6. Inter-Cloud VPN Secure Resource Discovery

(338.81 milli-seconds). Similarly, the variation in the time duration results in case

of the former is much greater than that for the later scheme.

0

500

1000

1500

2000

2500

3000

1 10 19 28 37 46 55 64 73 82 91 100

Ti
m

e
 (

in
 m

ill
is

e
co

n
d

s)

Secure resource discovery experiments

PKI-based Approach FENC-based Approach

Figure 6.3: Secure resource discovery for 100 runtime trials between PKI and
Functional Encryption based approaches in ICVPN, between BT and Flexiant
cloud platform

Similarly, Fig.6.3 shows the results of doing a secure resource discovery lookup

operation for 100 separate trials, conducted over a 24-hour period. In this case,

two different cloud platform were used as the experimental test-bed, i.e., the BT

and Flexiant cloud platforms. Again, we deployed four VMs on this test-bed, one

pair installed with the super peer and peer using the PKI based resource dis-

covery approach and the other pair installed with the super peer and peer using

the Functional Encryption based resource discovery approach. The super peer

VMs were hosted on the BT cloud platform and the peer nodes on the Flexiant

test-bed.

162

6. Inter-Cloud VPN Secure Resource Discovery

We can see from the graph in Fig.6.3 that, similar to the single cloud platform

trials, on average the runtime of the secure resource discovery process using the

PKI-based design is much greater (1373.47 milli-seconds) than that for our Func-

tional Encryption based scheme (368.09 milli-seconds). Similarly, the variation in

the time duration results in case of the former is still much greater than that for

the later scheme.

0

500

1000

1500

2000

2500

3000

1 10 19 28 37 46 55 64 73 82 91 100

Ti
m

e
 (

in
 m

ill
is

e
co

n
d

s)

Secure resource discovery experiments

PKI-based Approach FENC-based Approach

Figure 6.4: Secure resource discovery for 100 runtime trials between PKI and
Functional Encryption based approaches in ICVPN, between BT and ATOS cloud
platform

Lastly, Fig.6.4 shows the results of doing a secure resource discovery lookup

operation for 100 separate trials, conducted over a 24-hour period. In this case

as well, two different cloud platform were used as the experimental test-bed, i.e.,

the BT and ATOS cloud platforms. Here too we deployed four VMs on these

test-beds, one pair installed with the super peer and peer using the PKI based

resource discovery approach and the other pair installed with the super peer and

163

6. Inter-Cloud VPN Secure Resource Discovery

peer using the Functional Encryption based resource discovery approach. We

again hosted the super peer nodes on the BT cloud platform, and the peer nodes

on the ATOS test-bed.

We can see from the graph in Fig.6.4 that, similar to the single cloud platform

trials, on average the runtime of the secure resource discovery process using the

PKI-based design is much greater (1615.66 milli-seconds) than that for our Func-

tional Encryption based scheme (578.22 milli-seconds). Similarly, the variation in

the time duration results in case of the former is still much greater than that for

the later scheme.

6.6.4 Results Analysis

Given the known stable network latency between the different cloud platforms

available to us, we profiled the implementation of the PKI based design and its

cryptographic libraries at the code level, in order shed some light on the rea-

sons behind its large overhead in terms of both time and jitter. The main reason

for the relative slowness of the PKI-based design is the required use of crypto-

graphically secure random number generation in this method. This introduces the

largest time and jitter penalty for our PKI-based measurements, as the peer has

to wait for system events to gather enough entropy from entropy sources like disk

reads, network activity, mouse movement, key presses, etc. to generate this kind

of random number. In a typical cloud hosted virtual machine, these events are

usually quite stable or uniform (as in case of disk and network activity), or totally

absent (as in case of mouse and keyboard activity). Therefore, it takes a much

longer time to generate the required random number of reasonable strength. The

164

6. Inter-Cloud VPN Secure Resource Discovery

Functional Encryption based approach, on the other hand, does not have such a

requirement. For it to work, it just needs attributes that are usually in an alpha-

numeric form.

Furthermore, a peer in this approach does not need to get a key signed by the

super peer CA to perform encryption, thus eliminating the need to get a signed

certificate from super peers upon bootstrapping. Due to these main design and

implementation specific reasons, our scheme incurs about 74.2% less overhead

than a PKI based scheme.

6.7 Chapter Summary

In this chapter, we described in detail how we solve the problem of secure service

based resource discovery in our framework. The resources we focus on discover-

ing were the VM IDs, IP addresses and port numbers of the neighbouring peers

in a VPN overlay. The knowledge of these resources is important as they are

required to construct IPsec tunnels between a peer and the other neighbouring

peers that it wants to communicate with. We described how we make use of

the Kademlia peer-to-peer protocol’s resource discovery features to achieve this

goal. However, we still needed to address the issue that the data about a peer’s

resources has to be gathered in such a manner that it remains private and confi-

dential between the valid peers of a VPN overlay.

So we started by describing the threat vectors for this problem in detail. This

mostly focused on Sybil attacks, where a malicious attacker can create or imper-

sonate a large number of fake peers in an overlay and use them to disrupt or

compromise the data and communication. We analysed how this type of attack

165

6. Inter-Cloud VPN Secure Resource Discovery

would work in a Kademlia based deployment and worked out the number of fake

peers that will be required to intercept all the peer communication in a Kademlia

based overlay. We discovered that it will require only 14 % fake peers to compro-

mise a Kademlia overlay using a default k-bucket size.

We then gave the details of our security protocol for the resource discovery

process, which is used after the admission control process has been successfully

completed. We described how a certificate authority based scheme can help us

in securing the resource discovery process, but also highlighted its problems with

centralisation and scalability with regard to the overlay size. Therefore, we pre-

sented in detail our novel secure resource discovery model that utilises functional

encryption techniques to accomplish our goals securely and efficiently.

Lastly we described the implementation details of this scheme in our system

and related the experiments we have conducted that measure the time taken by

a peer to discover the identity of other peers currently in its overlay, that is, the

VPN overlay with the same ServiceID. We compared the results of our functional

encryption based scheme with a PKI-based method using RSA algorithm that

we have implemented in the same environment. We showed the time taken by

the secure resource discovery process for 100 experimental instances using our

scheme incurred approximately 75 % less overhead than the PKI based scheme.

166

Chapter 7

Conclusions

7.1 Achievements

In this thesis, we present a secure and scalable communication framework for

cloud services/applications deployed in an inter-cloud environment. We employ

the decentralisation and resilience afforded by structured peer-to-peer overlays

to design a novel command and control architecture for managing and operating

the secure communication framework. The construction of a decentralised and

distributed command and control mechanism is one of the main objectives for our

research effort, and is achieved by constructing two tiers of peer-to-peer over-

lay networks, with the upper tier overlay acting as a universal overlay, spanning

across multiple cloud platforms and undertaking the general management related

responsibilities, whereas the lower tier VPN overlay operates within the scope of

a single cloud service that is being deployed on virtual machines on these multi-

ple cloud platform, with the main responsibility of encrypting the communication

between these virtual machines according to the security polices set by the cloud

service owner. Therefore, we are able to offer secure communication functional-

ity to multiple cloud services by using a separate VPN overlay for each service,

167

7. Conclusions

while a single universal overlay acts as the overseer of all the operational VPN

overlays.

We also utilise the inherent ability offered by almost all structure peer-to-peer

overlay networks to handle growing amount of work load. To design and architect

a scalable communication framework is one of our main research objectives. The

main challenge in this regard is that although a single peer-to-peer network might

be able to address this issue relatively easily by using its overlay churn manage-

ment protocol, our architecture design uses two tiers of peer-to-peer overlays.

Although the universal overlay might be a single overlay network in its tier, it has

to instantiate and manage multiple VPN overlays in the lower tier. In order to ad-

dress this challenge, we designate a subset of the peers in the universal overlay

as super peer nodes for the underlying VPN overlay, with at least one super peer

node in each participating cloud platform. This approach provides us with a sta-

ble bootstrapping point, as well as addressing the issue of peer churn in the VPN

overlays, as we can increase the number of super peers in the universal overlay

as the work load in the underlying VPN overlays increases, or vice versa.

Another main objective that we set out in the beginning of this research is

that the communication between the components of the deployed cloud service

should be secure. We achieve this goal by making use of the IPsec protocol to

form the VPN links between the virtual machines constituting a VPN overlay, thus

providing confidentiality and integrity for all the data exchanged between the con-

stituent components of the deployed cloud service. However, this proves to be

just the last lag of the complete security life cycle, and we design a comprehen-

sive and novel combination of application partitioning and security-by-isolation

schemes to formulate the secure establishment and operation of the IPsec links

168

7. Conclusions

between the virtual machines of the deployed cloud service. This is due to the fact

that the sharing and management of IPsec session keys for establishing secure

communication tunnels is a complex challenge in a peer-to-peer environment. As

structured peer-to-peer overlay networks have been primarily designed for fast

and scalable content distribution, security considerations have not been the focus

of the design in most of the existing implementations. Therefore, as a result of this

there are a few well-known security vulnerabilities associated with a peer-to-peer

overlay system, especially concerned with the identity of the peers and the ease

with which they can be spoofed.

So in addition to design and implement a protocol for the generation, sharing

and management of IPsec session keys for establishing secure communication

tunnels, we address the security limitations of the command and control mech-

anism of the communication framework as well. We identify two crucial stages

in the life cycle model of a peer-to-peer communication framework where the ap-

plication of a security model would maximise the secure operation of the whole

framework, before the third and final stage of establishing IPsec links. The first of

these stages is the admission control stage, where the P2P clients running on the

virtual machines of a particular cloud service seek to enrol with the super peers

of the universal overlay in order to join their specific VPN overlay. The second

stage is the resource discovery stage, where the peer nodes of a particular VPN

overlay wish to discover their neighbouring peers in the same overlay so that they

can begin the process of securely sharing the IPsec session keys.

The security of these three stages is of paramount importance in order to se-

cure the complete life cycle of the inter-cloud virtual private network. According to

the principals of security engineering, we decide to secure each of these stages

169

7. Conclusions

using different security mechanisms, so that the compromise of the security of

one stage, however improbable, would not make it easy for an attacker to com-

promise the whole system.

Therefore, for the first stage we devise a secure admission control process that

relies on a protocol that we construct according to the concept of zero-knowledge

password proof. As its enabling feature, we allow the owners of the cloud ser-

vice to contextualise their virtual machine images with some security meta-data,

which can be used by our admission control protocol implemented in the P2P

client. These security meta-data can be in the form of simple and easy to remem-

ber passwords, as one of the benefit of using a zero-knowledge password proof

schemes is that the actual password is never transmitted between the peers and

the super peers. However, we also offer and evaluate the option of strengthen-

ing this scheme further by increasing the entropy of the password by using a key

strengthening mechanism.

For the second stage, we devise a secure resource discovery process based

on Functional Encryption schemes. The resources can be anything, like the iden-

tifiers of virtual machines in a VPN overlay, keys, and other security credentials

etc. For this process, we use the peer identities and their cloud service and vir-

tual machine attributes to come up with a protocol, that can encrypt and store

the resources such that only the P2P clients having the right attributes and peer

identity are able to decrypt them. Therefore, it allows us to meet our objective of

secure and scalable key distribution as well, because this scheme too relies on

the super peers of the universal overlay.

A salient feature of our research effort is the practical evaluation of the per-

formance of our solution in a real-world deployment, as we are fortunate enough

170

7. Conclusions

to be given access to two commercial and one academic cloud IaaS platforms

to use as our test-bed. As a result, we are able to show that our architecture

presents a minimal latency and throughput overhead of creating and maintaining

the Inter-Cloud VPN connections among the virtual machines of a cloud service

deployed on multiple cloud platforms, being 5% and 10% respectively. Similarly,

we demonstrate the performance of our admission control scheme as having ap-

proximately 82% more efficiency as compared to a PKI based scheme, and the

secure resource discovery scheme being about 72% more efficient for the same

comparison.

7.2 Challenges and Limitations

The main challenge we face is the diversity of cloud platforms being used by

the cloud infrastructure as a service providers, as each cloud platform has its

own management API for the purposes of account management, virtual machine

management, identity management, etc. We try to overcome this challenge by

customising a virtual machine contextualisation tool that allows us to install and

embed programs and data inside virtual machine images before launching them

in their respective host cloud platforms. This affords a very valuable level of

control to conduct our experiments in realistic conditions over multiple cloud in-

frastructure environments. However, this is not a perfect solution as it requires

the contextualisation service to be extended every time a new cloud platform is

needed to be supported.

Another major challenge is using various cryptographic APIs to manage the

different kinds of security credentials and parameters used in the different pro-

171

7. Conclusions

tocols and mechanisms that we have to implement. So although the security

engineering principals of system partitioning and security-by-isolation makes for

a robust solution, it also makes for a quite complex implementation. The most

difficult part is to deal with the integration issues between modules that use differ-

ent encoding structures and standards for their security credentials. For example,

most of the Public Key Infrastructure APIs use the Abstract Syntax Notation One

(ASN.1) standard for the certificates and public, private keys, whereas most IPsec

implementations in Linux require the credentials to be in PEM (Privacy-Enhanced

electronic Mail) format, and the library implementing Functional Encryption uses

Basic Encoding Rules (BER) and Distinguished Encoding Rules (DER).

Another challenge that we address in our work is the complexity of manual

configuration and dependency resolution for the deployment of P2P clients in the

virtual machines. The later issue has been resolved by the contextualisation tool

mentioned before, and the remaining peer related configuration aspects were au-

tomated by using the DHT of the peer-to-peer overlays as the shared storage

for the configuration data and implementing a periodic update feature in the P2P

clients to check for their service related updates regularly against known index/-

content keys in the DHT. However, the former issue is more challenging, espe-

cially in case of virtual machines’ networking and IPsec related configurations.

This is due to the reason that only one of our cloud platforms (Flexiant) assigns

public IP addresses to all of its virtual machines, while the other two cloud plat-

forms only offer NAT based networking, which assigns private IP addresses to

virtual machines which all map to a single public IP address. This breaks the

end-to-end design of the network layer and makes these virtual machines inac-

cessible from external networks.

172

7. Conclusions

This is a tough problem to overcome as it also makes it impossible to use

IPsec in AH mode, as it is incompatible with NAT. This is because the Source IP

Address field of the IP packet header is included in the integrity checking process

of the IPsec AH mode, and as this field is changed in a NAT environment, the

integrity check fails at the recipient. In order to overcome these issues, we have

to implement a NAT Traversal module in our P2P clients that is able to detect if

the peer is behind a NAT firewall and modify the IPsec policy accordingly to adapt

for this situation.

7.3 Future Work

We also highlight some the limitations of our research effort that we intend to ad-

dress as future work. From the security perspective, one of the main issues cur-

rently not addressed in this work is the handling of Denial-of-Service attacks. In

the case of peer-to-peer overlays, the most common form of a Denial-of-Service

attack is to flood the overlay with bogus traffic, thus preventing the peers with

processing legitimate traffic. This type of attacks are very difficult to handle, even

by increasing the computational and network resources, as the attack can also

be scaled by distributing it. Although there are some methods that can be utilised

to mitigate the effects of a dDoS (Distributed Denial-of-Service) attack, they are

effective only against a limited number of simultaneous attacks. However, this

problem has to be addressed to make the communication framework as robust

as possible.

Another feature that needs to be focused on in the future is the dynamically

update the components of the communication framework. In our architecture, an

173

7. Conclusions

additional advantage of using our two-tiered overlay approach is that the peers

of a VPN overlay can get, update and modify the P2P client program dynami-

cally from the super-peers in the universal overlay. This possibility can be further

enhanced to install or run any program on the virtual machine hosting the peer

node. This will add the valuable feature of a dynamic code delivery service to this

architecture. The program to be run can be signed by the super-peers for valid-

ity and it can check for updated versions of itself by querying for the associated

ServiceID in the persistent store of the universal overlay’s DHT.

Overall, we feel that the research contributions made in this thesis with re-

gard to the ICVPN architecture can be very useful to the cloud service providers

and developers to highlight the high level requirements of users and applications

that want to construct a secure communication framework to fulfil their needs.

The ICVPN research effort has also validated two novel specific state-of-the-art

security protocols, providing insights into their use in an inter-cloud environment.

Lastly, a major achievement of our research efforts is its real-world deploy-

ment and evaluation. Simulations and emulations of such large scale systems

as ours are not a substitute for deployment, as in most cases it is impossible

to understand ahead of time the impact of the environment on technology and

this is usually critical to system design. Real-world deployment and evaluation

is the only way to fully investigate the complex interactions between the cloud

computing applications, the underlying network overlays, and the inter-cloud en-

vironment.

174

Appendix A

Virtual Machine Contextualization

Most of the current cloud Infrastructure-as-a-Service providers enable rapid pro-

visioning of virtual machines for their users. This in turn allows the users of the

cloud platforms to scale up and down their cloud services and applications on-

demand. However, this flexibility in virtual machine provisioning introduces a new

set of challenges for dynamic service configuration, one of the main challenges

being the contextualisation of the virtual machines.

1 Contextualisation

We define contextualisation is a set of processes and mechanisms that enable

us to modify the virtual machine images in such a way that external data and

programs can be placed inside well known locations in these images. VM con-

textualisation is a valuable tool especially in the use case scenarios of inter-cloud

and multiple cloud platforms for reasons of interoperability. Most cloud service

providers offer IaaS services that are not interoperable with each other. In this

respect, VM contextualisation can be used for enabling interoperability between

IaaS providers by by-passing their native platform services.

175

A. Virtual Machine Contextualization

2 Architecture

The VM Contextualization service of the OPTIMIS toolkit [64] provides us with

two capabilities. The first capability is a bootstrap mechanism to prepare a VM

image for embedding the appropriate context in it. The second capability provides

a mechanism for creating ISO CD-ROM (International Organization for Standard-

ization Compact Disc Read-Only Memory) images that contain the context data

and operating system specific scripts for processing the context data.

The main purpose of the VM Contextualisation tool is to prepare a VM image

in such a way that it is able to receive the context data in a reusable fashion. It

operates by mounting a VM image using the QEMU quick machine emulator [60]

and modifying it to include a collection of programs and scripts that are usually

run at the operating system boot up. When a virtual machine instantiated from

a contextualised VM image is launched in a cloud platform, it can run these pro-

grams and scripts and access contextualisation data held within an ISO image

attached with the VM.

3 Advantages

The use of an ISO image as a mechanism to store the contextualisation data pro-

vides a facility to separate the contextualisation data from the VM image and re-

moves the time consuming process of creating multiple VM images with different

contextualisation needs. Furthermore, all cloud computing and virtualisation plat-

forms provide the feature of attaching ISO images with virtual machines, making

this tool universally usable. This also enhances the security of the contextuali-

sation process, as sensitive security related data and meta-data is not stored on

176

A. Virtual Machine Contextualization

In
te

rn
al

In

te
rf

ac
e

ISO CD
Image

OPTIMIS
Components

Software
Dependencies

Service

VM ImageVirtual Machine

Specific
Contextualiz-
ation Scripts

OS

Context
Data

Processing
Scripts

Mount CD Image

Config

C
o

n
fig

Fig. 1. Interaction between VM image and ISO Image at run time.

hand and software tokens that carry the authorization infor-
mation on the other hand provide the necessary flexibility
for licenses following applications into Clouds. It is one of
the tasks of the VM Contextualizer to retrieve and embed a
license token into the VM hosting the application. In case of
multiple applications in a VM, required e.g. for a workflow,
the VM Contextualizer assures that all required licenses are
in place when the applications start up. No communication
between the application and the license server that issued the
token is required at runtime. Additional approaches will be
implemented enhancing the SmartLM solution: (i) dynamic
deployment of a trusted instance managing a number of tokens
for one or multiple applications and (ii) dynamic deployment
of a full license service with a subset of the licenses available
at the home organisation of the user. The configuration of the
dynamically deployed license service will be managed by the
VM Contextualizer. This approach is especially useful when
the same Cloud resources are used over a longer period of time
for running license protected applications. In the first approach
the contextualizer tools are responsible for configuring and
deploying the trusted instance for the respective network
environment and to transfer tokens.

2) Cloud Security: Each instance of a VM requires specific
security customisations based on the service it provides and
its threat profile. For example, the firewall rules specific to a
web server VM is different from that of a database VM and
these variations are handled by the contextualization tools.
In addition, the OPTIMIS Data Manager provides a means
of provisioning secure encrypted storage devices for VMs,
where the decryption keys are stored outside an IP. The
specifics of these secure device configurations are different
across various VMs and are set by the contextualization steps.
Various Identity and Access Management (IdAM) components
that need to be installed, along with policies specified at the
VM endpoints, are also set by this component. If required by
the end user or SP, other security mechanisms like Intrusion
Prevention Software can also be instantiated and customised
by similar mechanisms.

C. A Contextualization Use Case

At the IP level, predefined context from a SP is applied
to a VM as it is brought online. This does not require

VM 1

Head Node
Context data

Load
Balancer

VM 2

Web Server
Context data

Web
Server

VM 3

Web Server
Context data

Web
Server

VM (n)

Web Server
Context data

Web
Server

VM 1

Head Node
Context data

MySQL
Master

VM 2

Slave
Context data

MySQL
Slave

VM 3

Slave
Context data

MySQL
Slave

VM (n)

Slave
Context data

MySQL
SlaveC

lie
nt

 L
ay

er

Application Layer

Data Layer

O
P

T
IM

IS
 In

fr
as

tr
uc

tu
re

Fig. 2. Contextualization in a three-tier web application.

communication with any IP level component and addresses
problematic re-contextualization of VMs at runtime. A three
tier web application demonstrates the OPTIMIS toolkit in
operation and the complexities involved in the contextual-
ization of VMs. Figure 2 illustrates the relationship between
the contextualization data and a VM. From the figure it can
be seen that each layer of the service forms a cluster of
cooperating resources that rely on a head node to provide
information on the state of VMs and balance load. Each
new VM brought online contains information about the head
node to which it is to register for active duty in addition to
other VMs to which it must communicate to perform its role.
The information is stored within the contextualization data
of the VM, which includes a subset of the contextualization
data from the head node and can reference other sources of
information. These other sources of information can update the
contextualization data continuously during runtime if needed.
This enables VMs to be taken offline without disturbing the
operation of a service.

To confirm the validity of our contextualisation approach
in such a use case we have created and tested a prototype
of our contextualization tools on our cloud testbed using a
Dual CPU (Intel Xeon E5630) server with 16 GB of RAM
and 1 TByte WD SATA 7200 rpm HDD. Figure 3a and 3b
provide evidence on the potential performance of our approach
for contextualization with regards to preparing VM Image
sizes in the range of 1-5 GByte in increments of 1 Gbyte and
with varying numbers of concurrent user requests from 10-
100 in increments of 10, to create ISO CD Images containing
1 Mbyte context data. The results show adequate scalability
and response time over 10 iterations of the experiment with
minimal variance, as shown by the error bars on the graphs.

IV. RELATED WORK

Approaches to contextualization vary considerably depend-
ing on the nature of the application or virtual appliance.
In the Grid community, research into the effective use of
Cloud computing for academic use and the implications on

330

Figure A.1: Interaction between VM image and ISO Image at run time [13]

the VM itself but on the ISO image, where it can be periodically refreshed or even

deleted by the VM contextualisation tool.

Figure A.1 shows the instance-level contextualisation process of a VM when

it starts its execution at system boot up. During the boot process, the contex-

tualisation tool mounts the ISO image containing the contextualisation data and

the programs and scripts. These scripts and programs can perform all sorts of

operations on the guest operating system of the virtual machines, like modifying

configuration of installed programs, install additional software and resolve their

dependencies, and establish network connections with other virtual machines etc.

etc. Furthermore, these programs can be made to execute in daemon mode, in

order to offer a permanently running contextualisation functionality.

177

Appendix B

IPsec Policy

A sample listing of the IPsec policy applied to a running instance of a VPN overlay

is given in the listing below. The IP addresses of the VPN peers are detected by

the Peer-to-Peer client software dynamically as they are subject to change in a

cloud environment each time a VM reboots. This particular policy is encrypting

all the ICMP traffic between two peer nodes and all TCP traffic that is incoming

and outgoing on ports 80 and 8080 (standard ports for a web server and Apache

Tomcat server) as this is the traffic belonging to the applications that the service

wants to encrypt.

Sample policy

spdadd 82.223.250.28 217.33.61.85 icmp -P in ipsec

esp/transport//require

ah/transport//require;

spdadd 217.33.61.85 82.223.250.28 icmp -P out ipsec

esp/transport//require

ah/transport//require;

spdadd 82.223.250.28 217.33.61.85[80] tcp -P in ipsec

esp/transport//require

ah/transport//require;

spdadd 217.33.61.85[80] 82.223.250.28 tcp -P out ipsec

esp/transport//require

ah/transport//require;

178

B. IPsec Policy

spdadd 82.223.250.28[80] 217.33.61.85 tcp -P in ipsec

esp/transport//require

ah/transport//require;

spdadd 217.33.61.85 82.223.250.28[80] tcp -P out ipsec

esp/transport//require

ah/transport//require;

spdadd 82.223.250.28 217.33.61.85[8080] tcp -P in ipsec

esp/transport//require

ah/transport//require;

spdadd 217.33.61.85[8080] 82.223.250.28 tcp -P out ipsec

esp/transport//require

ah/transport//require;

spdadd 82.223.250.28[8080] 217.33.61.85 tcp -P in ipsec

esp/transport//require

ah/transport//require;

spdadd 217.33.61.85 82.223.250.28[8080] tcp -P out ipsec

esp/transport//require

ah/transport//require;

179

Appendix C

Publications and Patents

1 Book Chapter

Johan Tordsson, Karim Djemame, Daniel Espling, Gregory Katsaros, Wolfgang

Zielgler, Oliver Waldrich, Kleopatra Konstanteli, Ali Sajjad, Muttukrishnan Rajara-

jan, Georgina Gallizo and Srijith K. Nair, ”Towards Holistic Cloud Management”,

Book chapter in ”European Research Activities in Cloud Computing”, Jan 2012,

Cambridge Scholars Publishing.

2 Journals

Sajjad, A., Rajarajan, M., Zisman, A., Dimitrakos, T.,”A Scalable and Dynamic

Application-level Secure Communication Framework for Inter-Cloud Services”, El-

sevier Journal of Future Generation Computer Systems (FGCS), March 2015.

3 International Conferences

1. Sajjad, A., Rajarajan, M., Zisman, A., Nair, S. K. & Dimitrakos, T., ”Dynamic

virtual private network provisioning from multiple cloud infrastructure service

180

C. Publications and Patents

providers”, 4th European Conference, ServiceWave 2011, 26-28 Oct 2011,

Poznan, Poland.

2. Sajjad, A.; Zisman, A.; Rajarajan, M.; Nair, S.K.; Dimitrakos, T., ”Secure

communication using dynamic VPN provisioning in an Inter-Cloud environ-

ment”, 18th IEEE International Conference on Networks (ICON), 428-433,

12-14 Dec. 2012, Singapore.

3. A. Sajjad, M. Rajarajan, and T. Dimitrakos, ”A low-overhead secure com-

munication framework for an inter-cloud environment”, International Confer-

ence on Intelligent Cloud Computing, 24-26 Feb 2014, Muscat, Oman.

4 Patent

1. Sajjad, A., El-Moussa, F., ”Application Level VPN”, IRF No. A32672/E01921,

BT IPD, April 2014.

181

References

[1] Federal Information Processing Standard PUB 197. Announcing the ad-

vanced encryption standard (aes), 2001. 59, 66, 85

[2] Serge Abiteboul. Querying semi-structured data. Springer, 1997. 141

[3] William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy Lilley.

The design and implementation of an intentional naming system. In ACM

SIGOPS Operating Systems Review, pages 186–201. ACM, 1999. 140

[4] Les Cottrell Ajay Tirumala and Tom Dunigan. Measuring end-to-end band-

width with iperf using web100. In Web100, Proc. of Passive and Active

Measurement Workshop, 2003. 93

[5] Amazon. AWS Elastic Beanstalk, 2015. URL http://aws.amazon.com/

elasticbeanstalk. 3

[6] Amazon. Virtual private cloud, 2015. URL http://aws.amazon.com/vpc.

xv, 32, 42

[7] Amazon. Amazon Elastic Compute Cloud, 2015. URL http://aws.amazon.

com/ec2. 3, 40

182

http://aws.amazon.com/elasticbeanstalk
http://aws.amazon.com/elasticbeanstalk
http://aws.amazon.com/vpc
http://aws.amazon.com/ec2
http://aws.amazon.com/ec2

References

[8] Amazon. Amazon Simple Storage Service, 2015. URL http://aws.

amazon.com/s3. 3

[9] David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris.

Resilient overlay networks. SIGCOMM Comput. Commun. Rev., January

2002. 51, 75

[10] Ross Anderson, Eli Biham, and Lars Knudsen. Serpent: A proposal for the

advanced encryption standard. NIST AES Proposal, 174, 1998. 66

[11] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A survey of

peer-to-peer content distribution technologies. ACM Computing Surveys

(CSUR), 36(4):335–371, 2004. 140

[12] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy

Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Sto-

ica, and Matei Zaharia. A view of cloud computing. Commun. ACM, 53(4):

50–58, April 2010. ISSN 0001-0782. doi: 10.1145/1721654.1721672. URL

http://doi.acm.org/10.1145/1721654.1721672. 5

[13] Django Armstrong, Karim Djemame, Srijith Krishnan Nair, Johan Tordsson,

and Wolfgang Ziegler. Towards a contextualization solution for cloud plat-

form services. In CloudCom, pages 328–331, 2011. xviii, 80, 119, 177

[14] Ken Arnold, Robert Scheifler, Jim Waldo, Bryan O’Sullivan, and Ann Woll-

rath. Jini Specification. Addison-Wesley Longman Publishing Co., Inc.,

1999. 76, 140

183

http://aws.amazon.com/s3
http://aws.amazon.com/s3
http://doi.acm.org/10.1145/1721654.1721672

References

[15] Randall Atkinson. Security architecture for the internet protocol. In RFC

1825, 1995. 57

[16] A Balasubramanian, A Hemanth Kumar, and R Prasanna Venkatesan. An

optimized and secured vpn with web service. Networking and Communica-

tion Engineering, 6(2), 2014. 18

[17] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex

Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of

virtualization. ACM SIGOPS Operating Systems Review, 37(5):164–177,

2003. 89, 129, 158

[18] William C Barker and Elaine B Barker. Recommendation for the triple data

encryption algorithm (tdea) block cipher. In National Institute of Standards

& Technology, 2012. 59

[19] Salman Baset and Henning Schulzrinne. An analysis of the skype peer-to-

peer internet telephony protocol. CoRR, 2004. 76

[20] Brian Beach. Virtual private cloud. In Pro Powershell for Amazon Web

Services, pages 67–88. Springer, 2014. 18

[21] S.M. Bellovin and Michael Merritt. Encrypted key exchange: password-

based protocols secure against dictionary attacks. In Research in Security

and Privacy, 1992 IEEE Computer Society Symposium on, pages 72–84,

May 1992. 120

[22] K. Berket, A. Essiari, and A. Muratas. Pki-based security for peer-to-peer

information sharing. In Peer-to-Peer Computing, 2004. Proceedings. Pro-

184

References

ceedings. Fourth International Conference on, pages 45–52, Aug 2004.

130

[23] Mark Berman, Jeffrey S. Chase, Lawrence Landweber, Akihiro Nakao, Max

Ott, Dipankar Raychaudhuri, Robert Ricci, and Ivan Seskar. Geni: A fed-

erated testbed for innovative network experiments. Computer Networks,

61(0):5 – 23, 2014. ISSN 1389-1286. doi: http://dx.doi.org/10.1016/j.

bjp.2013.12.037. URL http://www.sciencedirect.com/science/article/

pii/S1389128613004507. Special issue on Future Internet Testbeds Part

I. 33

[24] Tim Berners-Lee, Robert Cailliau, Jean-François Groff, and Bernd Poller-

mann. World-wide web: the information universe. Internet Research, 2(1):

52–58, 1992. 51

[25] Alex Berson. Client-server architecture. McGraw-Hill, 1992. 21

[26] J Bethencourt, A Sahai, and B Waters. Advanced crypto software collec-

tion: The cpabe toolkit, 2015. URL http://acsc.cs.utexas.edu/cpabe/.

89, 158

[27] Luca Boccassi, Marwan M Fayed, and Mahesh K Marina. Binder: a sys-

tem to aggregate multiple internet gateways in community networks. In

Proceedings of the 2013 ACM MobiCom workshop on Lowest cost denom-

inator networking for universal access, pages 3–8. ACM, 2013. 22

[28] Thomas Bocek. TomP2P: A P2P-based high performance key-value pair

storage library, 2015. URL http://tomp2p.net/. 89, 129, 158

185

http://www.sciencedirect.com/science/article/pii/S1389128613004507
http://www.sciencedirect.com/science/article/pii/S1389128613004507
http://acsc.cs.utexas.edu/cpabe/
http://tomp2p.net/

References

[29] André B. Bondi. Characteristics of scalability and their impact on per-

formance. In Proceedings of the 2Nd International Workshop on Soft-

ware and Performance, WOSP ’00, pages 195–203, New York, NY, USA,

2000. ACM. ISBN 1-58113-195-X. doi: 10.1145/350391.350432. URL

http://doi.acm.org/10.1145/350391.350432. 99

[30] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the

weil pairing. In CRYPTO, pages 213–229, 2001. 68

[31] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Per-

siano. Public key encryption with keyword search. In EUROCRYPT, pages

506–522, 2004. 68

[32] BritishTelecom. BT Compute Cloud, 2015. URL https://cloud.

btcompute.bt.com. 89, 129, 158

[33] Paul Buchheit. GMail, 2004. URL http://mail.google.com. 2

[34] Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N. Calheiros. Intercloud:

Utility-oriented federation of cloud computing environments for scaling of

application services. In Proceedings of the 10th International Conference

on Algorithms and Architectures for Parallel Processing (ICA3PP 2010,

2010. 7, 19

[35] James Henry Carmouche. IPsec virtual private network fundamentals.

Pearson Education, 2007. 58

[36] C Stephen Carr, Stephen D Crocker, and Vinton G Cerf. Host-host com-

186

http://doi.acm.org/10.1145/350391.350432
https://cloud.btcompute.bt.com
https://cloud.btcompute.bt.com
http://mail.google.com

References

munication protocol in the arpa network. In Proceedings of the Spring Joint

Computer Conference, pages 589–597. ACM, 1970. 93

[37] M. Carroll, A. van der Merwe, and P. Kotze. Secure cloud computing: Ben-

efits, risks and controls. In Information Security South Africa (ISSA), 2011,

pages 1–9, Aug 2011. 5

[38] Daniele Catteddu. Cloud computing: Benefits, risks and recommendations

for information security. In Carlos Serro, Vicente Aguilera Daz, and Fabio

Cerullo, editors, Web Application Security, volume 72 of Communications

in Computer and Information Science, pages 17–17. Springer Berlin Hei-

delberg, 2010. ISBN 978-3-642-16119-3. doi: 10.1007/978-3-642-16120-9 9.

URL http://dx.doi.org/10.1007/978-3-642-16120-9_9. 5

[39] L. Chen. Recommendation for Key Derivation Using Pseudorandom Func-

tions. NIST Special Publication 800-108, October 2009. 87

[40] Shiping Chen, S. Nepal, and Ren Liu. Secure connectivity for intra-

cloud and inter-cloud communication. In Parallel Processing Workshops

(ICPPW), 2011 40th International Conference on, pages 154–159, Sept

2011. doi: 10.1109/ICPPW.2011.54. xv, 32, 38, 39, 40

[41] Yang-hua Chu, Aditya Ganjam, TS Eugene Ng, Sanjay G Rao, Kunwadee

Sripanidkulchai, Jibin Zhan, and Hui Zhang. Early experience with an in-

ternet broadcast system based on overlay multicast. School of Computer

Science, Carnegie Mellon University, 2003. 32

[42] Cisco. Understanding the ping and traceroute commands. In Cisco IOS

Software Releases, Aug 2014. 91

187

http://dx.doi.org/10.1007/978-3-642-16120-9_9

References

[43] Kimberly Claffy, Greg Miller, and Kevin Thompson. The nature of the beast:

Recent traffic measurements from an internet backbone. In Proceedings of

INET, volume 98, pages 21–24, 1998. 93

[44] LLC Cloud Strategy Partners. Ieee intercloud interoperability and federation

framework. Computer Society, 2015. 7, 19

[45] Clifford Cocks. An identity based encryption scheme based on quadratic

residues. In IMA Int. Conf., pages 360–363, 2001. 68

[46] Bram Cohen. The BitTorrent protocol specification, 2001. URL http://

www.bittorrent.org/beps/bep_0003.html. 76

[47] CohesiveFT. VPN-Cubed, 2014. URL http://www.cohesiveft.com/

vpncubed. xv, 32, 44, 45

[48] Steven E Czerwinski, Ben Y Zhao, Todd D Hodes, Anthony D Joseph, and

Randy H Katz. An architecture for a secure service discovery service. In

Proceedings of the 5th annual ACM/IEEE international conference on Mo-

bile computing and networking, pages 24–35. ACM, 1999. 159

[49] Amit Sahai Dan Boneh and Brent Waters. Functional encryption: a new

vision for public-key cryptography. Commun. ACM, 55(11):56–64, 2012.

147

[50] Luca Deri and Richard Andrews. N2N: a layer two Peer-to-Peer VPN. In Re-

silient Networks and Services, Lecture Notes in Computer Science, pages

53–64. Springer Berlin Heidelberg, 2008. xiv, 27, 31, 32

188

http://www.bittorrent.org/beps/bep_0003.html
http://www.bittorrent.org/beps/bep_0003.html
http://www.cohesiveft.com/vpncubed
http://www.cohesiveft.com/vpncubed

References

[51] Brian Desmond, Joe Richards, Robbie Allen, and Alistair G Lowe-Norris.

Active Directory: Designing, Deploying, and Running Active Directory. ”

O’Reilly Media, Inc.”, 2008. 142

[52] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transac-

tions on Information Theory, November 1976. 62, 66, 85

[53] Jeff Dike. User Mode Linux, volume 2. Prentice Hall Englewood Cliffs,

2006. 26

[54] Wei Dong and Zhen Ya Zhang. Research on virtual private lan service

signaling protocol and its application. Applied Mechanics and Materials,

543:2585–2588, 2014. 18

[55] Naganand Doraswamy. IPSec : the new security standard for the Internet,

intranets, and virtual private networks. Prentice Hall PTR, 2nd ed. edition,

2003. 33, 57, 84

[56] John Douceur. The sybil attack. In Peer-to-Peer Systems. Springer Berlin /

Heidelberg, 2002. 116, 145

[57] P Draft Standard. 802.1 q/d10, ieee standards for local and metropolitan

area networks: Virtual bridged local area networks, 1997. 24

[58] Leticia Duboc, David S. Rosenblum, and Tony Wicks. A framework for

modelling and analysis of software systems scalability. In Proceedings

of the 28th International Conference on Software Engineering, ICSE ’06,

pages 949–952, New York, NY, USA, 2006. ACM. ISBN 1-59593-375-

189

References

1. doi: 10.1145/1134285.1134460. URL http://doi.acm.org/10.1145/

1134285.1134460. 99

[59] James Gosling et. al. The Java Language Specification. Addison Wesley,

2nd ed. edition, 2000. 88, 128, 157

[60] Fabrice Bellard. QEMU: open source process emulator, August 2015. URL

http://wiki.qemu.org/Main_Page. 176

[61] Ilhem Fajjari, Nadjib Aitsaadi, Michał Pióro, and Guy Pujolle. A new vir-

tual network static embedding strategy within the clouds private backbone

network. Computer Networks, 62:69–88, 2014. 18

[62] Tse-Yun Feng. A survey of interconnection networks. Computer, 14(12):

12–27, Dec 1981. ISSN 0018-9162. doi: 10.1109/C-M.1981.220290. 35

[63] Niels Ferguson and Bruce Schneier. Practical cryptography, volume 141.

Wiley New York, 2003. 66

[64] A. J Ferrer, F. Hernndez, J. Tordsson, E. Elmroth, C. Zsigri, R. Sirvent,

J. Guitart, R. M Badia, K. Djemame, and W. Ziegler. OPTIMIS: a holistic

approach to cloud service provisioning. In First International Conference

on Utility and Cloud Computing, December 2010. 176

[65] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter,

Paul Leach, and Tim Berners-Lee. Hypertext transfer protocol - http/1.1,

June 1999. 90

[66] Flexiant. Flexiant, your cloud simplified, 2015. URL http://www.flexiant.

com/. 3, 89, 129, 158

190

http://doi.acm.org/10.1145/1134285.1134460
http://doi.acm.org/10.1145/1134285.1134460
http://wiki.qemu.org/Main_Page
http://www.flexiant.com/
http://www.flexiant.com/

References

[67] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid -

enabling scalable virtual organizations. International Journal of Supercom-

puter Applications, 15:2001, 2001. 1

[68] Gartner. Cloud consumers need brokerages to unlock the potential of

cloud services, July 2009. URL http://www.gartner.com/it/page.jsp?

id=1064712. 7

[69] Gartner. Survey analysis: Buyers reveal cloud application adoption plans

through 2017, November 2014. URL http://www.gartner.com/document/

2883318. 7

[70] Frank Gens. New idc it cloud services survey: Top benefits and challenges,

December 2009. URL http://blogs.idc.com/ie/?p=730. xiii, 5, 6, 8

[71] Google. Secure data connector, 2012. URL http://code.google.com/

securedataconnecto. xv, 32, 43

[72] Google. Google App Engine, April 2015. URL https://developers.

google.com/appengine. 3

[73] Rob Gordon. Java native interface. Prentince Hall PTR, 1998. 158

[74] Dominik Grolimund. Wuala - a distributed file system. Google Tech Talk,

October 2007. URL www.youtube.com/watch?v=3xKZ4KGkQY8. 2

[75] Jungsoo Han. Distributed hybrid p2p networking systems. Peer-to-Peer

Networking and Applications, pages 1–2, 2014. 27

[76] D. Harkins. Internet key exchange (ike). In RFC 2409, 1998. 61

191

http://www.gartner.com/it/page.jsp?id=1064712
http://www.gartner.com/it/page.jsp?id=1064712
http://www.gartner.com/document/2883318
http://www.gartner.com/document/2883318
http://blogs.idc.com/ie/?p=730
http://code.google.com/securedataconnecto
http://code.google.com/securedataconnecto
https://developers.google.com/appengine
https://developers.google.com/appengine
www.youtube.com/watch?v=3xKZ4KGkQY8

References

[77] R Haywood. Business to business (b2b). Key Concepts in Public Relations,

page 35, 2009. 38

[78] Mark D. Hill. What is scalability? SIGARCH Comput. Archit. News, 18

(4):18–21, December 1990. ISSN 0163-5964. doi: 10.1145/121973.121975.

URL http://doi.acm.org/10.1145/121973.121975. 99

[79] H. Hiroaki, Y. Kamizuru, A Honda, T. Hashimoto, K. Shimizu, and H. Yao.

Dynamic ip-vpn architecture for cloud computing. In Information and

Telecommunication Technologies (APSITT), 2010 8th Asia-Pacific Sympo-

sium on, pages 1–5, June 2010. xiv, 32, 34

[80] Susan Hohenberger and Brent Waters. Attribute-based encryption with fast

decryption. In Public Key Cryptography, pages 162–179, 2014. 68, 147

[81] Ines Houidi, Wajdi Louati, and Djamal Zeghlache. A distributed virtual net-

work mapping algorithm. In Communications, 2008. ICC’08. IEEE Interna-

tional Conference on, pages 5634–5640. IEEE, 2008. 21

[82] R. Housley. Using advanced encryption standard (aes) ccm mode with

ipsec encapsulating security payload (esp), 2005. 85

[83] Drew Houston and Arash Ferdowsi. Dropbox, 2015. URL http://dropbox.

com. 2

[84] Timothy A Howes, Mark C Smith, and Gordon S Good. Understanding and

deploying LDAP directory services. Addison-Wesley Longman Publishing

Co., Inc., 2003. 142

192

http://doi.acm.org/10.1145/121973.121975
http://dropbox.com
http://dropbox.com

References

[85] Adriana Iamnitchi and Ian Foster. On fully decentralized resource discov-

ery in grid environments. In Grid Computing - GRID 2001, pages 51–62.

Springer, 2001. 140

[86] Adriana Iamnitchi, Ian Foster, and D Nurmi. A peer-to-peer approach to

resource discovery in grid environments. In IEEE High Performance Dis-

tributed Computing, 2002. 140

[87] Kohei Ichikawa, Hirotake Abe, Hiroaki Yamanaka, Eiji Kawai, Shinji Shi-

mojo, et al. A network performance-aware routing for multisite virtual clus-

ters. In Networks (ICON), 2013 19th IEEE International Conference on,

pages 1–5. IEEE, 2013. 22

[88] Intercloud Working Group. P2302 - Standard for Intercloud Interoperability

and Federation (SIIF). IEEE Computer Society, January 2012. URL https:

//standards.ieee.org/develop/project/2302.html. 19

[89] K. Ishimura, T. Tamura, S. Mizuno, H. Sato, and T. Motono. Dynamic ip-vpn

architecture with secure ipsec tunnels. In Information and Telecommunica-

tion Technologies (APSITT), 2010 8th Asia-Pacific Symposium on, pages

1–5, June 2010. xiv, xv, 32, 36, 37

[90] Van Jacobson, Craig Leres, and S McCanne. The tcpdump manual page.

Lawrence Berkeley Laboratory, Berkeley, CA, 1989. 143

[91] Michael Jeronimo and Jack Weast. UPnP Design by Example: A Software

Developer’s Guide to Universal Plug and Play, volume 158. Intel Press,

2003. 76, 140

193

https://standards.ieee.org/develop/project/2302.html
https://standards.ieee.org/develop/project/2302.html

References

[92] Xuxian Jiang and Dongyan Xu. VIOLIN: virtual internetworking on overlay

INfrastructure. In In Proc. Of The 2nd Intl. Symposium On Parallel And

Distributed Processing And Applications, 2003. xiv, 24, 27, 33

[93] Guojun Jin and B. Tierney. Netest: a tool to measure the maximum burst

size, available bandwidth and achievable throughput. In Information Tech-

nology: Research and Education, 2003. Proceedings. ITRE2003. Interna-

tional Conference on, pages 578–582, Aug 2003. 94

[94] Pierre St Juste, Heungsik Eom, Benjamin Woodruff, Corey Baker, and Re-

nato Figueiredo. Enabling decentralised microblogging through p2pvpns.

International Journal of Security and Networks, 8(3):169–178, 2013. 27

[95] Charlie Kaufman. Internet key exchange protocol version 2 (ikev2). In RFC

5996, 2010. 61, 85

[96] Brian W Kernighan, Dennis M Ritchie, and Per Ejeklint. The C programming

language, volume 2. Prentice-Hall Englewood Cliffs, 1988. 158

[97] Matt Kimball. Network diagnostics. In BitWizard, Aug 2014. 91

[98] Neal Koblitz and Alfred Menezes. Pairing-based cryptography at high se-

curity levels. Springer, 2005. 149

[99] I. Kotuliak, P. Rybar, and P. Truchly. Performance comparison of ipsec and

tls based vpn technologies. In 9th International Conference on Emerg-

ing eLearning Technologies and Applications (ICETA), pages 217–221, Oct

2011. 60

194

References

[100] Maxim Krasnyansky. Virtual Tunnel, 2015. URL http://vtun.

sourceforge.net. 22, 31

[101] Laurie Law, Alfred Menezes, Minghua Qu, Jerry Solinas, and Scott Van-

stone. An efficient protocol for authenticated key agreement. Designs,

Codes and Cryptography, 28(2):119–134, 2003. 63

[102] Paul J Leach, Michael Mealling, and Rich Salz. A universally unique iden-

tifier (uuid) urn namespace. IETF RFC 4122, 2005. 122

[103] Neal Leavitt. Internet security under attack: The undermining of digital

certificates. Computer, 44(12):17–20, December 2011. ISSN 0018-9162.

doi: 10.1109/MC.2011.367. URL http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=6096548. 85

[104] Tzong-Jye Liu, Chi-Bin Chou, and Chuan-Mu Tseng. P2p traffic classifi-

cation in encrypted tunnels. In Communications (APCC), 2013 19th Asia-

Pacific Conference on, pages 597–602. IEEE, 2013. 22

[105] Madhusanka Liyanage and Andrei Gurtov. Securing virtual private lan ser-

vice by efficient key management. Security and Communication Networks,

7(1):1–13, 2014. 23

[106] Madhusanka Liyanage, Mika Ylianttila, and Andrei Gurtov. Ip-based vir-

tual private network implementations in future cellular networks. Handbook

of Research on Progressive Trends in Wireless Communications and Net-

working, 1:44, 2014. 18

195

http://vtun.sourceforge.net
http://vtun.sourceforge.net
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6096548
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6096548

References

[107] LogMeIn. Hamachi - a zero-configuration virtual private network, 2015.

URL https://secure.logmein.com/products/hamachi2. 27

[108] LogMeIn. Hamachi security, 2015. URL https://secure.logmein.com/

products/pro/security.aspx. 30

[109] Dong Lu, Yi Qiao, Peter Dinda, Fabian E Bustamante, et al. Characterizing

and predicting tcp throughput on the wide area network. In 25th IEEE Inter-

national Conference on Distributed Computing Systems, pages 414–424.

IEEE, 2005. 95

[110] Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi Sharma, and Steven

Lim. A survey and comparison of peer-to-peer overlay network schemes.

IEEE Communications Surveys and Tutorials, 7:72–93, 2005. xv, 51

[111] Gordon Lyon. nmap: Network mapper. In Phrack Magazine, Aug 2014. 91

[112] Margaret Rouse. Ping of Death, August 2014. URL http://

searchsecurity.techtarget.com/definition/ping-of-death. 92

[113] Norman Maurer. Netty in Action. Manning Publications Co., 1st ed. edition,

November 2014. 101

[114] Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer infor-

mation system based on the xor metric. In First International Workshop on

Peer-to-Peer Systems. Springer-Verlag, 2002. 53, 55, 89, 129, 141, 158

[115] P Mell and T Grance. Draft NIST working definition of cloud computing.

http://www.nist.gov/itl/cloud/upload/cloud-def-v15.pdf, 2009. URL http://

www.nist.gov/itl/cloud/upload/cloud-def-v15.pdf. 2

196

https://secure.logmein.com/products/hamachi2
https://secure.logmein.com/products/pro/security.aspx
https://secure.logmein.com/products/pro/security.aspx
http://searchsecurity.techtarget.com/definition/ping-of-death
http://searchsecurity.techtarget.com/definition/ping-of-death
http://www.nist.gov/itl/cloud/upload/cloud-def-v15.pdf
http://www.nist.gov/itl/cloud/upload/cloud-def-v15.pdf

References

[116] Du Meng. Implementation of a host-to-host vpn based on udp tunnel

and openvpn tap interface in java and its performance analysis. In Com-

puter Science & Education (ICCSE), 2013 8th International Conference on,

pages 940–943. IEEE, 2013. 22

[117] Microsoft. Pathping. In Technet Microsoft, Aug 2014. 91

[118] MicroSoft. Windows Azure, February 2015. URL http://www.

windowsazure.com. 3

[119] MicroSoft. Outlook.com, 2015. URL http://www.outlook.com. 2

[120] Ahmad Moradi, Andrea Lodi, and S Mehdi Hashemi. On the difficulty of

virtual private network instances. Networks, 2014. 18

[121] Mike Muuss. The story of the ping program. In US Army Research Labo-

ratory, Aug 2014. 91

[122] B Clifford Neuman and Theodore Ts’o. Kerberos: An authentication ser-

vice for computer networks. IEEE Communications Magazine, 32(9):33–

38, 1994. 30

[123] Daiyuu Nobori and Yasushi Shinjo. Vpn gate: a volunteer-organized public

vpn relay system with blocking resistance for bypassing government cen-

sorship firewalls. In Proceedings of the 11th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI 14), pages 229–241.

USENIX, 2014. 27

[124] Legion of the Bouncy Castle. Bouncy castle java cryptography apis, 2015.

URL http://www.bouncycastle.org/java.html. 89, 129, 157

197

http://www.windowsazure.com
http://www.windowsazure.com
http://www.outlook.com
http://www.bouncycastle.org/java.html

References

[125] Angela Orebaugh, Gilbert Ramirez, and Jay Beale. Wireshark & Ethereal

network protocol analyzer toolkit. Syngress, 2006. 143

[126] Romualdo Pastor-Satorras, Alexei Vázquez, and Alessandro Vespignani.

Dynamical and correlation properties of the internet. Physical Review Let-

ters, 87(25):258701, 2001. 93

[127] Colin Percival and Simon Josefsson. The scrypt password-based key

derivation function. IETF Network Working Group, 2012. 121

[128] Adrian Perrig. Shortcomings of password-based authentication. In 9th

USENIX Security Symposium. ACM, August 2000. 130

[129] J. Postel. Internet control message protocol. IETF RFC 792, 1981. 91

[130] Ravi Prasad, Constantinos Dovrolis, Margaret Murray, and KC Claffy. Band-

width estimation: metrics, measurement techniques, and tools. Network,

IEEE, 17(6):27–35, 2003. 93

[131] Rackspace. Rackspace: The open cloud company, 2014. URL http://

www.rackspace.com. 3

[132] David Patrick Reed. User datagram protocol (udp). IETF, August 1980. 26,

29

[133] Matei Ripeanu. Peer-to-peer architecture case study: Gnutella network.

In Peer-to-Peer Computing, 2001. Proceedings. First International Confer-

ence on, pages 99–100. IEEE, 2001. 21

[134] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.

Hey, you, get off of my cloud: Exploring information leakage in third-party

198

http://www.rackspace.com
http://www.rackspace.com

References

compute clouds. In Proceedings of the 16th ACM conference on Computer

and Communications Security, pages 199–212. ACM, 2009. 117

[135] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized ob-

ject location, and routing for Large-Scale Peer-to-Peer systems. In Middle-

ware. ACM, 2001. 55

[136] salesforce. Salesforce, 2015. URL http://www.salesforce.com. 2

[137] Bruce Schneier. The international data encryption algorithm (idea). Dr

Dobb’s Journal-Software Tools for the Professional Programmer, 18(13):

50–57, 1993. 66

[138] Bruce Schneier. Description of a new variable-length key, 64-bit block ci-

pher (blowfish). In Fast Software Encryption, pages 191–204. Springer,

1994. 66

[139] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall, and

Niels Ferguson. The Twofish encryption algorithm: a 128-bit block cipher.

John Wiley & Sons, Inc., New York, NY, USA, 1999. 31, 66

[140] Jeff Sedayao. Implementing and operating an internet scale distributed

application using service oriented architecture principles and cloud com-

puting infrastructure. In Proceedings of the 10th International Conference

on Information Integration and Web-based Applications & Services, pages

417–421. ACM, 2008. 21

[141] Adi Shamir. Identity-based cryptosystems and signature schemes. In Pro-

199

http://www.salesforce.com

References

ceedings of CRYPTO 84 on Advances in cryptology, pages 47–53, New

York, NY, USA, 1985. Springer-Verlag New York, Inc. 68

[142] Madhavapeddi Shreedhar and George Varghese. Efficient fair queuing us-

ing deficit round-robin. IEEE/ACM Transactions on Networking, 4(3):375–

385, 1996. 101

[143] Stelios Sotiriadis and Nik Bessis. An inter-cloud bridge system for hetero-

geneous cloud platforms. Future Generation Computer Systems, 2015. 7,

19

[144] W Richard Stevens. Tcp slow start, congestion avoidance, fast retransmit,

and fast recovery algorithms. IETF RFC 2001, 1997. 93

[145] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Bal-

akrishnan. Chord: A scalable peer-to-peer lookup service for internet ap-

plications. In ACM SIGCOMM, 2001. 55

[146] Ananth I Sundararaj and Peter A Dinda. Towards virtual networks for vir-

tual machine grid computing. In In Proceedings of the 3rd USENIX Virtual

Machine Research And Technology Symposium, 2004. xiii, 24, 25

[147] T.H. Szymanski. Impact of future trends on exascale grid and cloud

computing. In JulianMartin Kunkel, Thomas Ludwig, and HansWerner

Meuer, editors, Supercomputing, volume 8488 of Lecture Notes in Com-

puter Science, pages 215–231. Springer International Publishing, 2014.

ISBN 978-3-319-07517-4. doi: 10.1007/978-3-319-07518-1 14. URL http:

//dx.doi.org/10.1007/978-3-319-07518-1_14. 7

200

http://dx.doi.org/10.1007/978-3-319-07518-1_14
http://dx.doi.org/10.1007/978-3-319-07518-1_14

References

[148] Andrew S. Tanenbaum and David J. Wetherall. Virtual private networks. In

Computer Networks, page 821. Prentice Hall, 5th edition, October 2010.

75

[149] O. Tange. Gnu parallel - the command-line power tool. ;login: The USENIX

Magazine, 36(1):42–47, Feb 2011. URL http://www.gnu.org/s/parallel.

101

[150] John Tate. Duality theorems in galois cohomology over number fields.

In Proceedings of an International Congress on Mathematics Stockholm,

pages 288–295, 1962. 149

[151] D. Taylor, T. Wu, N. Mavrogiannopoulos, and T. Perrin. Using the Se-

cure Remote Password (SRP) Protocol for TLS Authentication. RFC 5054,

November 2007. 121

[152] Tirumala, Ajay and Qin, Feng and Dugan, Jon and Ferguson, Jim and

Gibbs, Kevin. Iperf: The TCP/UDP bandwidth measurement tool, August

2015. URL https://iperf.fr/. 93

[153] Linus Torvalds et al. The linux kernel. http://www.kernel.org, 2015. 88, 128,

157

[154] W Townsley, A Valencia, Allan Rubens, G Pall, Glen Zorn, and Bill Palter.

Layer two tunneling protocol (l2tp). IETF, August 1999. 24

[155] Alan M Turing. On computable numbers, with an application to the entschei-

dungsproblem. Proceedings of the London mathematical society, 42:230–

265, 1936. 67

201

http://www.gnu.org/s/parallel
https://iperf.fr/

References

[156] Van Heusden, FOLKERT. Testing http throughput and latency with httping,

August 2014. URL http://www.vanheusden.com/httping/. 92

[157] Guohui Wang and T.S.E. Ng. The impact of virtualization on network per-

formance of amazon ec2 data center. In Proceedings of IEEE INFOCOM,

pages 1–9, March 2010. 94

[158] Brent Waters. Efficient identity-based encryption without random ora-

cles. In Ronald Cramer, editor, Advances in Cryptology EUROCRYPT

2005, volume 3494 of Lecture Notes in Computer Science, pages 114–

127. Springer Berlin Heidelberg, 2005. ISBN 978-3-540-25910-7. doi:

10.1007/11426639 7. URL http://dx.doi.org/10.1007/11426639_7. 147

[159] André Weil. Sur les fonctions algébriquesa corps de constantes fini. CR

Acad. Sci. Paris, 210:592–594, 1940. 149

[160] Wikipedia. Ping Flood, August 2014. URL http://en.wikipedia.org/

wiki/Ping_flood. 92

[161] Wikipedia. Cloud Computing, December 2015. URL http://en.

wikipedia.org/wiki/Cloud_computing. xiii, 4

[162] Wikipedia. Distributed Hash Tables, December 2015. URL http://en.

wikipedia.org/wiki/Distributed_hash_table. xvi, 54

[163] Michele Willson and Tama Leaver. Zynga’s farmville, social games, and the

ethics of big data mining. Communication Research and Practice, pages

1–12, 2015. 2

202

http://www.vanheusden.com/httping/
http://dx.doi.org/10.1007/11426639_7
http://en.wikipedia.org/wiki/Ping_flood
http://en.wikipedia.org/wiki/Ping_flood
http://en.wikipedia.org/wiki/Cloud_computing
http://en.wikipedia.org/wiki/Cloud_computing
http://en.wikipedia.org/wiki/Distributed_hash_table
http://en.wikipedia.org/wiki/Distributed_hash_table

References

[164] David Isaac Wolinsky, Panoat Chuchaisri, Kyungyong Lee, and Renato

Figueiredo. Experiences with self-organizing, decentralized grids using the

grid appliance. Cluster computing, 16(2):265–283, 2013. 27

[165] D.I Wolinsky, Kyungyong Lee, P.O. Boykin, and R. Figueiredo. On the de-

sign of autonomic, decentralized vpns. In Collaborative Computing: Net-

working, Applications and Worksharing (CollaborateCom), 2010 6th Inter-

national Conference on, pages 1–10, Oct 2010. 27

[166] Wang Xing, Liu Guaiguai, and Wang Lixia. Build a provincial business

system remote maintenance channel using open vpn. Information & Com-

munications, 1:013, 2013. 22

[167] J. Yonan. OpenVPN - an open source SSL VPN solution, 2008. URL

http://openvpn.net/. 22, 41

[168] J. Yonan. Facts about OpenVPN, 2015. URL https://openvpn.net/

index.php/about-menu/openvpn-facts.html. 22

[169] Yin Zhang, Lee Breslau, Vern Paxson, and Scott Shenker. On the char-

acteristics and origins of internet flow rates. In Proceedings of the 2002

Conference on Applications, Technologies, Architectures, and Protocols

for Computer Communications, SIGCOMM ’02, pages 309–322. ACM,

2002. ISBN 1-58113-570-X. doi: 10.1145/633025.633055. URL http:

//doi.acm.org/10.1145/633025.633055. 95

[170] B. Y Zhao, Ling Huang, J. Stribling, S. C Rhea, A. D Joseph, and J. D Kubi-

atowicz. Tapestry: a resilient global-scale overlay for service deployment.

Selected Areas in Communications, IEEE Journal on, January 2004. 55

203

http://openvpn.net/
https://openvpn.net/index.php/about-menu/openvpn-facts.html
https://openvpn.net/index.php/about-menu/openvpn-facts.html
http://doi.acm.org/10.1145/633025.633055
http://doi.acm.org/10.1145/633025.633055

	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Overview of Cloud Computing
	1.2 Characteristics of Cloud Computing
	1.3 Challenges of Cloud Computing
	1.4 Research Problem
	1.5 Research Objectives
	1.6 Thesis Contributions
	1.7 Thesis Outline

	2 Review of Related Work
	2.1 Client-Server based approaches
	2.2 Virtual Network based approaches
	2.2.1 VNET
	2.2.2 VIOLIN

	2.3 Peer-to-Peer based approaches
	2.3.1 Hamachi
	2.3.2 N2N

	2.4 Cloud based approaches
	2.4.1 Dynamic IP-VPN
	2.4.2 IPsec VPN
	2.4.3 Connectivity as a Service (CaaS)
	2.4.4 Amazon Virtual Private Cloud (Amazon VPC)
	2.4.5 Google Secure Data Connector
	2.4.6 CohsiveFT VPN-Cubed

	2.5 Chapter Summary

	3 Background
	3.1 Peer-to-Peer Overlays
	3.2 Distributed Hash Tables
	3.3 IPsec
	3.4 Internet Key Exchange
	3.5 Key Agreement Protocols
	3.6 Functional Cryptography
	3.6.1 Predicate Encryption
	3.6.2 Identity-based Encryption
	3.6.3 Attribute-Based Encryption

	3.7 Chapter Summary

	4 Inter-Cloud VPN Overlay
	4.1 Design and Architecture
	4.1.1 Inter-Cloud VPN Overlays
	4.1.2 Secure Virtual Private Connections

	4.2 Prototype Implementation
	4.3 Experimental Evaluation
	4.3.1 Latency Evaluation Methodology
	4.3.1.1 Measurement Tools

	4.3.2 Throughput Evaluation Methodology
	4.3.2.1 Measurement Tools
	4.3.2.2 Data Size for Throughput Experiments

	4.3.3 Scalability Evaluation Methodology
	4.3.3.1 Measurement Tools

	4.4 Experimental Results and Analysis
	4.4.1 Service Latency
	4.4.2 Service Throughput
	4.4.3 Service Scalability

	4.5 Chapter Summary

	5 Inter-Cloud VPN Admission Control
	5.1 Admission Control in Peer-to-Peer Systems
	5.1.1 Definition
	5.1.2 Bootstrapping using Server Lists
	5.1.3 Bootstrapping using Peer Caches
	5.1.4 Bootstrapping using Random Probing
	5.1.5 Bootstrapping using Multicast

	5.2 Threat vectors affecting Inter-Cloud VPN Admission Control
	5.2.1 Confidentiality Attacks
	5.2.2 Integrity Attacks
	5.2.3 Authentication Attacks
	5.2.4 Availability Attacks

	5.3 Security protocol for Inter-Cloud VPN Admission Control
	5.3.1 The Admission Control Protocol
	5.3.1.1 Using the Embedded Secret
	5.3.1.2 Securing the Embedded Secret
	5.3.1.3 The Complete Protocol

	5.3.2 Protocol Security Analysis
	5.3.2.1 Mitigating Confidentiality Attacks
	5.3.2.2 Mitigating Integrity Attacks
	5.3.2.3 Mitigating Authentication Attacks
	5.3.2.4 Mitigating Availability Attacks

	5.4 Prototype Implementation
	5.5 Experimental Evaluation
	5.5.1 Methodology
	5.5.2 Experimental Results
	5.5.3 Results Analysis

	5.6 Chapter Summary

	6 Inter-Cloud VPN Secure Resource Discovery
	6.1 Resource Discovery
	6.2 Service based Resource Discovery
	6.3 Threat vectors affecting Inter-Cloud Resource Discovery
	6.3.1 Information Confidentiality
	6.3.2 Traffic Tampering
	6.3.3 Denial of Service
	6.3.4 Peer Spoofing

	6.4 Security protocol design for Inter-Cloud VPN Resource Discovery
	6.4.1 Proposed Solution
	6.4.1.1 Key Policy Attribute based Encryption (KP-ABE)
	6.4.1.2 Ciphertext-Policy Attribute based Encryption (CP-ABE)
	6.4.1.3 Bilinear Pairing

	6.4.2 Secure Resource Discovery
	6.4.2.1 System Setup
	6.4.2.2 Key Generation
	6.4.2.3 Key Distribution
	6.4.2.4 Public Key Repository
	6.4.2.5 Peer Address Resolution
	6.4.2.6 Neighbour Peer Discovery

	6.5 Prototype Implementation
	6.6 Evaluation Methodology
	6.6.1 Cost of DHT Lookups
	6.6.2 PKI-based Design for Comparison
	6.6.3 Experimental Results
	6.6.4 Results Analysis

	6.7 Chapter Summary

	7 Conclusions
	7.1 Achievements
	7.2 Challenges and Limitations
	7.3 Future Work

	A Virtual Machine Contextualization
	1 Contextualisation
	2 Architecture
	3 Advantages

	B IPsec Policy
	C Publications and Patents
	1 Book Chapter
	2 Journals
	3 International Conferences
	4 Patent

	References
	Thesis Preamble.pdf
	Blank Page
	Blank Page

	sajjad redaction page.pdf
	p 7: Fig 1.2. International Data Corporation survey.

	sajjad redaction page.pdf
	p 7: Fig 1.2. International Data Corporation survey.

