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a b s t r a c t 

When designing an optimization model for use in mass casualty incident (MCI) response, the dynamic 

and uncertain nature of the problem environment poses a significant challenge. Many key problem pa- 

rameters, such as the number of casualties to be processed, will typically change as the response oper- 

ation progresses. Other parameters, such as the time required to complete key response tasks, must be 

estimated and are therefore prone to errors. In this work we extend a multi-objective combinatorial op- 

timization model for MCI response to improve performance in dynamic and uncertain environments. The 

model is developed to allow for use in real time, with continuous communication between the optimiza- 

tion model and problem environment. A simulation of this problem environment is described, allowing 

for a series of computational experiments evaluating how model utility is influenced by a range of key 

dynamic or uncertain problem and model characteristics. It is demonstrated that the move to an on- 

line system mitigates against poor communication speed, while errors in the estimation of task duration 

parameters are shown to significantly reduce model utility. 

© 2016 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 
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1. Introduction 

In the period immediately following a mass casualty incident

(MCI), such as the London Bombings of July 7th 2005 ( London As-

sembly, 2006 ), many decisions need to be made in a fast and ef-

fective manner within a high pressure environment ( Paton & Flin,

1999 ). Within emergency response organizations such as the Am-

bulance Service and the Fire and Rescue Service, decision makers

must decide how best to allocate their limited resources amongst

the various sources of demand. This problem environment exhibits

a large amount of structure, with well defined roles and responsi-

bilities and a clear decision making system as defined through the

command and control system ( Wallace & de Balogh, 1985 ). In this

respect, the problem represents a strong candidate for the appli-

cation of mathematical modeling and optimization. However, sig-

nificant challenges remain, particularly with respect to the volatile

nature of the problem environment. That is, the nature of any

decision problem is likely to change over time as the problem

evolves, and the available information upon which a model can be

built will typically be subject to a significant level of uncertainty

( Galindo & Batta, 2013 ). 
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In the modeling of MCI response, as with the design of any op-

imization model, it is necessary to make certain assumptions in

rder to ensure the implementation remains feasible. In this paper

e seek to gain a better understanding of several characteristics of

he response problem, their associated assumptions, and the extent

o which they affect the utility of a scheduling-based optimization

odel. In order to proceed we first discuss a number of assump-

ions common to optimization models for MCI response. We cover

he modeling of casualty health, their allocation to hospitals for

reatment, the transportation of casualties and responders around

he response environment, and the representation of tasks which

esponders must carry out. We go on to focus on how others have

onsidered the dynamic and uncertain nature of the response en-

ironment in their models. Based on our findings, we identify gaps

hat remain uncovered in the literature and we discuss how our

esearch contributes to fill such gaps. 

.1. Common modeling assumptions 

Some common assumptions made in the design of operational

esearch models for disaster operations management are identified

n Galindo and Batta (2013) . Further common assumptions cover-

ng the more general area of disaster planning are listed in Auf der

eide (2006) . 

Depending on the general form of the model, the parame-

ers needed to specify its form can include variables such as
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

http://dx.doi.org/10.1016/j.ejor.2016.01.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2016.01.021&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:d.t.wilson@dur.ac.uk
mailto:d.t.wilson@leeds.ac.uk
mailto:duncantwilson@gmail.com
http://dx.doi.org/10.1016/j.ejor.2016.01.021
http://creativecommons.org/licenses/by/4.0/


D.T. Wilson et al. / European Journal of Operational Research 252 (2016) 334–348 335 

c  

s  

i  

t

 

 

t  

i  

g

1

 

t  

B  

l  

2  

a  

r  

a  

Y  

a  

c  

2  

c  

r  

t  

i  

i  

a  

a  

c  

p

1

 

t  

p  

l  

(  

(  

s  

t  

H  

o  

a  

t  

i  

s  

i  

t  

e

1

 

t  

t  

A  

m  

s  

w  

i  

p  

a

 

i  

m  

Z  

n  

a  

i  

l  

c  

d  

i  

i  

a  

a  

e  

i  

n  

F  

m  

o

1

 

d  

c  

p  

(  

p  

t  

i  

e  

c  

a  

p  

a  

i  

t  

e  

t  

w  

d

1

 

w  

k  

t  

a  

w  

s  

a  

T  

A  

fi  

t  

a  

c  

&  

b  

t  

p  

e  

b  

a  

t  
ommodity supply and demand levels, resource requirements for

pecific tasks, and the number and nature of casualties. As noted

n Galindo and Batta (2013) , it is common for models to assume

hat 

1. the information needed to deduce these parameters is available

and accurate upon initialization of the model, and 

2. the parameters are not required to change over time. 

The extent to which these assumptions are justified depends on

he specific problem under consideration, but will often be lim-

ted by the intrinsic uncertainty and volatility common to all emer-

ency response problems. Some specific examples follow. 

.1.1. Casualty health 

Some authors assume there are no meaningful differences be-

ween the health levels of casualties ( Barbarosoglu & Arda, 2004;

arbarosoglu, Ozdamar, & Cevik, 2002; Mete & Zabinsky, 2010; Rol-

and, Patterson, Ward, & Dodin, 2010; Wex, Schryen, & Neumann,

011; 2012 ). Where differences are acknowledged, it is common to

ssume all casualties have been partitioned into discrete categories

eflecting the urgency of their treatment ( Galindo & Batta, 2013 ),

s in the work of Chiu and Zheng (2007) ; Gong and Batta (2007) ;

i and Ozdamar (2007) . This is reasonable, as it is normal for an

ssessment of the health of each casualty (known as triage) to be

ompleted before the remainder of the response is enacted ( Group,

011 ). It is often assumed that individual casualty health will not

hange over time, and that assessments of health are always accu-

ate. The attraction of the former assumption is understandable, as

he task of accurately forecasting the changing health of casualties

n these environments is challenging. Some attempts are described

n Cotta (2011) ; Fiedrich, Gehbauer, and Rickers (20 0 0) ; Tatomir

nd Rothkrantz (2006) . These models, however, do not provide

ny way to correct errors in prediction, an occurrence which we

an assume to be likely due to the complexity of the underlying

rocess. 

.1.2. Hospitals 

Many models assume that the allocation of casualties to hospi-

als will be done automatically and appropriately. Limited exam-

les of including hospital allocation into a wider decision prob-

em can be found in Jotshi, Gong, and Batta (2009) ; Mysore et al.

2005) ; Wilson, Hawe, Coates, and Crouch (2013a) . In Wilson et al.

2013a) an often ignored aspect of casualty management, self pre-

entation , is discussed. It is often assumed that all casualties are

ransported to hospital by the Ambulance Service only ( Auf der

eide, 2006 ), with the casualty undergoing triage and treatment

perations prior to this. In reality, it is common for some casu-

lties to remove themselves from the incident site and transport

hemselves to a hospital of their choosing. In Wilson et al. (2013a)

t is assumed that this process could be predicted accurately. In

cenarios where this is not possible, a dynamic approach, updat-

ng the model regarding the number of casualties who have left

he incident scene and who have arrived at each hospital, may be

ffective. 

.1.3. Transportation 

The transport network within the problem environment is of-

en assumed to be known, both in terms of topology and the travel

imes between locations ( Yi & Kumar, 2007; Zhang, Li, & Liu, 2012 ).

s noted in Galindo and Batta (2013) , the former assumption is

ore justified than the latter. Examples of removing the latter as-

umption include ( Wilson, Hawe, Coates, & Crouch, 2013b ). In this

ork it is demonstrated that disruption to the network resulting

n uncertainty in travel times can have a significant effect on the

erformance of an optimization model. As such, this problem char-

cteristic should not be ignored. 
Uncertainty in the disruption of the transport network has been

ncorporated to a limited extent using stochastic programming for-

ulations. Examples include ( Barbarosoglu & Arda, 2004; Mete &

abinsky, 2010; Rawls & Turnquist, 2010 ), which consider a finite

umber of scenarios, each with assigned probability and associ-

ted network parametrization. Uncertainty is also acknowledged

n the work of Jotshi et al. (2009) , which extends the ambu-

ance allocation model presented in Gong and Batta (2007) by in-

luding a data fusion step to estimate the level of damage and

isruption on each road link. A solution methodology for find-

ng optimal paths in a disrupted network following a disaster

s presented in ( Zhang, Zhang, Zhang, Wei, & Deng, 2013 ). The

uthors employ the network representation described by Yuan

nd Wang (2009) , where the travel time associated with each

dge of the transport network is assumed to increase over time

n a manner which reflects its proximity to the disaster. A dy-

amic transport network structure is also modeled in the work of

iedrich et al. (20 0 0) , with nodes and edges being added or re-

oved to reflect the impact of both the disaster and the response

peration. 

.1.4. Task durations 

Where the modeling methodology involves the allocation of

iscrete tasks to available responder units, the times needed to

omplete these tasks are necessary problem parameters. Exam-

les include the scheduling models presented in Rolland et al.

2010) and Wex et al. (2011) . In the former, the authors pro-

ose a specific solution algorithm which, through its fast execu-

ion, is designed to facilitate the solving of their proposed model

n near-real time. The authors argue this will allow decision mak-

rs to re-solve any particular response problem when conditions

hange, although this capability is not explicitly tested and evalu-

ted. In Wex et al. (2011) a similar modeling methodology is pro-

osed, where all necessary parameters are assumed to be fixed

nd known upon model initialization. This model is extended

n Wex, Schryen, and Neumann (2012) , allowing for task dura-

ions to be represented by fuzzy values in an effort to acknowl-

dge the uncertainty inherent in available information. The au-

hors suggest the model should be regularly rebuilt and solved

hen the problem environment has evolved by some significant

egree. 

.2. Modeling uncertainty and dynamicity 

All the assumptions mentioned relate to model parameters

hich change over time, either because they are estimates of un-

nown real values and can therefore be revised as new informa-

ion comes to light, or because the real values themselves are of

 dynamic nature, or both. In the worst cases these assumptions

ill render a model unusable in many realistic scenarios. General

trategies to their removal tend to take either a stochastic yet static

pproach, applying stochastic ( Barbarosoglu & Arda, 2004; Chang,

seng, & Chen, 2007; Mete & Zabinsky, 2010 ) or robust ( Bozorgi-

miri, Jabalameli, Alinaghian, & Heydari, 2012 ) programming to

nd solutions which will remain valid as the problem evolves over

ime, or a dynamic approach, allowing for the model to be updated

t a number of set length intervals to help ensure it remains appli-

able (see, for example, Lee, Ghosh, & Ettl, 2009; Ozdamar, Ekinci,

 Kucukyazici, 2004; Yi & Kumar, 2007 ). Only limited steps have

een taken with the latter approach. In the context of manufac-

urer or retailer response to hurricanes, the supply chain models

roposed in Lodree and Taskin (2009) ; Taskin and Lodree (2011)

mploy a Bayesian approach to allow for dynamic information to

e incorporated into future decisions. In Gong and Batta (2007) the

uthors note that determining the appropriate length of update in-

erval is crucial to performance, proposing that future work should
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Table 1 

Task types and their dependency relations. 

Task: Pre-rescue stabilization → Rescue → Pre-transportation stabilization → Transportation 

Responder: HART SAR Ambulance / MERIT / HART Ambulance / HART 

Condition: Trapped and unstable Trapped Unstable All 
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look to develop models which operate in continuous time. This is

echoed in Chiu and Zheng (2007) , where the authors state that

“from a real-time implementation standpoint, a cyclic rolling horizon

based updating and re-optimizing framework and scheme need to be

developed to improve accuracy and robustness of the model under the

highly unpredictable environment”. In order to move towards such

a real-time system, the work reported in Engelmann and Fiedrich

(2007) ; Englemann and Fiedrich (2009) ; Fiedrich (2006) ; Jotshi

et al. (2009) link their proposed decision support models to simu-

lations of the actual response environment, allowing for the testing

of the ability of each model to cope with changes in information.

However, in these cases the whole decision problem is decom-

posed into a sequence of single decision points, where tasks are

allocated to responders one at a time as and when the responder

becomes available. This structure does not allow for the potential

benefits of forward planning, as would be available in a scheduling

model, to be explored. There has been no detailed investigation of

the potential for real-time decision support considering the entire

planning horizon. The need for such research is further highlighted

in the review of Jiang, Yuan, Huang, and Zhao (2012) . 

1.3. Contribution 

In this paper we describe such a real-time system, building

upon the static model presented in Wilson et al. (2013a) . The

model, coupled with addressing many of the limiting assumptions

discussed above, allowing for information to be updated in a real-

istic manner and for this information to be used to improve future

predictions as well as correct past errors, forms the principal con-

tribution of this paper. In addition to this contribution, the paper

presents a detailed computational analysis of model performance,

identifying a number of potential explanatory parameters and ex-

ploring to what extent they impact upon the utility of the opti-

mization model. 

The remainder of this paper is structured as follows. In

Section 2 we briefly describe a previously published decision sup-

port model for casualty processing, given in Wilson et al. (2013a) .

Following this, Section 3 details how this model has been extended

to allow for its use in real-time during an MCI characterized by

uncertainty and volatility. The results of extensive computational

experiments are then reported and discussed in Section 4 . Finally,

we draw conclusions and identify promising avenues for future

research. 

2. A static model of casualty processing 

In this work we build upon the multi-objective combinatorial

optimization model described in Wilson et al. (2013a) . Originally,

the model was designed for use in a static manner, being initial-

ized at a point where all relevant information was available and

running for the desired length of time before delivering the solu-

tion output, which took the form of a work schedule detailing the

allocation and ordering of response tasks to available responders.

While the model did incorporate a probabilistic approach when de-

scribing the evolution of casualty health, no other parameters were

of a stochastic nature. 

As this model is designed to perform a period of pre-

computation before delivering a single solution, we denote it as

model M pc . In this section we will describe the key components of

this model, with the aim of conveying its nature while minimizing
he technical detail which can instead be found in Wilson et al.

2013a) . In the following section we will discuss its extension for

se in dynamic, evolving problems where many more parameters

re subject to uncertainty. 

.1. Solution space 

A solution to the casualty processing problem faced in MCI re-

ponse consists of: 

• an allocation of casualties c ∈ C to hospitals h ∈ H, 

• an allocation of tasks t ∈ T to responders r ∈ R , 

• an ordering of the tasks assigned to each responder r . 

The types of tasks which can be found in T are summarized

n Table 1 . Each casualty requires the completion of a transporta-

ion task, to be carried out by an Ambulance responder unit, in

rder for them to be taken from the incident site to their allocated

ospital. In addition, if the casualty’s health is unstable they will

lso require a pre-transportation stabilizing treatment task to en-

ure their safe transportation. Such tasks may be carried out by

mbulance responder units, a Medical Emergency Response Inci-

ent Team (MERIT), or a Hazardous Area Response Team (HART).

ERIT units are medical teams who attend incident sites to as-

ist the triage and treatment of casualties ( London Emergency

ervices Liaison Panel, 2015 ). HART teams are specially trained and

quipped for working within the hazardous inner cordon area. In

ome cases, casualties may require extrication from the incident

ite by a Search And Rescue (SAR) responder unit, which we shall

efer to as a ‘rescue’ task. Should this be the case, it is possible that

 pre-rescue stabilizing treatment task be required in order to re-

uce the likelihood of the health of the casualty deteriorating dur-

ng the extrication operation. These tasks may only be completed

y HART units. 

.2. Objective functions 

Given a solution as defined in Section 2.1 , a schedule can be

onstructed detailing the work plan for each responder, identifying

he time at which the responder (a) begins traveling to the loca-

ion of their next task, (b) begins work on this task, and (c) finishes

ork on this task. In constructing a schedule from a solution, the

patial nature of the problem is taken into account in estimating

he travel times of responders as they move between sites and/or

ospitals. These estimates are combined with estimates of task du-

ation when constructing the schedule. 

For a given (estimated) schedule, a number of measures are

alculated and used to evaluate and compare solutions during

he optimization process, together measuring fatalities and suf-

ering. We will briefly describe these functions here and re-

er the reader to Wilson et al. (2013a) for further details and

iscussion. 

.2.1. Fatalities 

In many countries it is standard practice in MCI response for

 full triage of casualties to be carried out before any subsequent

asks may begin. The result is an assessment of the health of each

asualty, which is classified according to the four possible cate-

ories listed in Table 2 . 

Our model uses a Markov chain consisting of a state space { T 1,

 2, T 3, dead } to predict how the health of a casualty will evolve



D.T. Wilson et al. / European Journal of Operational Research 252 (2016) 334–348 337 

Table 2 

Triage levels assigned to casualties. 

Category Description Explanation 

T1 Immediate Require immediate life-saving procedure 

T2 Urgent Require surgical or medical intervention within 2–4 hours 

T3 Delayed Less serious cases whose treatment can safely be delayed beyond 4 hours 
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ver the course of the response operation. We assume that the

ealth of casualties will only ever decrease when in an unstable

nvironment, that is, before they have been extricated and taken

o a safe designated area. For each casualty, the model is used to

alculate the probability that they will have died before they reach

ospital. These probabilities are summed together to produce an

bjective of the casualty processing problem, 

in f 1 (s ) = 

∑ 

c∈C 
P( c dead on arrival at hospital) , (1)

here s is a solution to the model. 

We note that our model assumes the transition probabilities of

his chain are known. In practice, this may not be possible due

o the inherent low frequency of MCIs and the lack of data collec-

ion which occurs during them. However, we have attempted to set

ransition probabilities which reflect the qualitative descriptions of

riage states, as given in Table 2 . For example, we have ensured

hat the probability of death of a T 1 casualty who is left untreated

n an unstable environment for thirty minutes approaches 1, while

or a T 3 casualty it reaches only 0.1. In selecting these transition

robabilities we aim to consider the most generic MCI scenarios.

ere the model to be applied to more unique and idiosyncratic

cenarios, these parameter values should be adjusted accordingly.

t is noted that due to the inherent low frequency of MCIs and

he lack of data collection which occurs during them, estimating

hese probabilities presents a significant challenge. However, one

uggested approach to estimate transition probabilities would be to

nalyze patient data from non-MCI emergency situations in which

here are fewer casualties and their health states are monitored

ore closely. While acknowledging that such data would originate

rom non-MCIs, it would provide a more realistic basis for their

stimation. 

.2.2. Suffering 

A second objective of MCI response, f 2 , is to minimize suffering.

e consider suffering to be quantified through two components.

irstly, for each casualty the time taken from moment of injury to

heir arrival at hospital is noted. These times are summed together

ith each individual contribution weighted by the severity of that

asualty’s health. Secondly, the standard of treatment available at

he hospitals to which casualties have been assigned is measured.

his is done through forecasting the arrival times of casualties at

ach hospital and contrasting with predicted resource levels in or-

er to estimate the amount of time casualties will collectively wait

t a hospital before treatment is administered. To this we add a

enalty term for every casualty who has been assigned to a hos-

ital which does not provide any specialist treatment their injuries

equire (e.g., those suffering from severe burns should be encour-

ged to be sent to a hospital with a specialist burns unit). These

wo measures are combined to form the single suffering objective,

 2 , using the weighted metric method of least squares. 

.2.3. Lexicographic ordering 

The objectives f 1 and f 2 are combined in a lexicographic man-

er to reflect the fact that the saving of lives is always of higher

riority than the reduction of suffering. The full multi-objective
odel can now be defined as 

in 

s ∈S 
f 1 (s ) , f 2 (s ) . (2)

.3. Solution methodology 

.3.1. Local search 

A Variable Neighborhood Descent metaheuristic is employed in

rder to find high quality solutions to the scheduling problem de-

cribed above. Four neighborhood structures are employed, each

ith variable size, which facilitates the local search process escap-

ng local optima through consideration of larger neighborhoods. A

imilar approach has been shown to perform well on a flexible job

hop problem ( Amiri, Zandieh, Yazdani, & Bagheri, 2010 ), which is

f a similar structure to the model described in Section 2.1 . As de-

cribed in Wilson et al. (2013a) , the algorithm employs four dif-

erent neighborhood structures, cycling between them at each iter-

tion. When a certain neighborhood structure results in no neigh-

oring solutions which improve upon the current solution, the size

f that neighborhood is increased. For example, one neighborhood

tructure allows for any two tasks to be swapped, in terms of their

esponder allocation and their position in that responder’s sched-

le. Increasing the size of this neighborhood allows for two of

hese ‘swap’ operations to be carried out in a single step. Accord-

ngly, increasing the size of the neighborhood increases the like-

ihood of finding an improving solution. This strategy enables the

earch process to escape any local optima it finds itself in. 

.3.2. Constructive heuristic 

In addition to a local search solution methodology, Wilson et al.

2013a) also provides details of a heuristic routine which can

e applied in a constructive manner. Specifically, the construc-

or builds a solution by allocating tasks to the end of respon-

ers’ schedules until all tasks have been allocated. At each deci-

ion point, the responder chosen is the one which is due to finish

ll their tasks first. A task to be allocated to the end of their sched-

le is chosen by considering a number of criteria, such as the time

t which the task could begin and the health of the associated ca-

ualty, in a lexicographic manner. The constructor is designed to

pproximate how decisions would be made on the ground of an

CI, focussing on the immediate situation as opposed to planning

head. 

. An online model of casualty processing 

Having described the pre-computation model M pc in Section 2 ,

e now consider its extension to more realistic problems subject

o high volatility and associated uncertainty in model parameters.

e denote this online model by M o . In the following discussion

e shall partition all such parameters into two sets. By solution

pace parameters, we refer to those which affect the nature of the

olution space, as described in Section 2.1 . That is, a change in a

olution space parameter will alter the set of possible solutions.

n contrast, objective space parameters are those which, when al-

ered, result in a change in the objective value(s) of one or more

olutions. 
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Fig. 1. Two-way communication between optimization and response environment. 
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We describe problems which do not include any dynamic char-

acteristics as static problems. Those which include dynamic ob-

jective spaces are described as partially dynamic problems. Finally,

those problems which exhibit dynamic behavior in both the solu-

tion and objective spaces are denoted fully dynamic problems. In

this section we will first describe how the model can be used in

real-time by allowing instructions to be issued to responders grad-

ually, one task at a time, as opposed to issuing a full schedule at

a single time point. We then go on to describe dynamic features

of the problem which result in changes to solutions space param-

eters, before finally considering features leading to changes to the

objective space. 

3.1. Real-time and online optimization 

A necessary first step in adapting the model is allowing for the

model to pass instruction to the problem environment in a gradual

manner as opposed to at one single point in time. This is accom-

plished through the partitioning of all tasks within the model into

two complementary sets: fixed , denoting tasks which have been

given as instructions and which a responder unit has begun; and

free , denoting all tasks yet to be issued to a responder unit. 

Employing the local search optimization procedure in real-time

means that, at any given point in the response operation, the lo-

cal search procedure is carried out over only the set of free tasks,

adjusting their positions in the schedule in an attempt to find a

solution of higher quality. At the outset of the operation, optimiza-

tion is carried out over all tasks in the model. Towards the end of

the operation, where the majority of tasks have been carried by

responders and are now fixed in their positions in the schedule,

optimization may involve only a handful of remaining free tasks.

When a responder unit becomes available, their next task is cho-

sen based on the best overall schedule found so far by the op-

timization algorithm. After this task is issued and becomes fixed,

optimization continues considering the remaining fee tasks. Thus,

a responder’s schedule is not fixed at time τ= 0, but rather con-

tinuously built as the response operation progresses. In this man-

ner, the optimization model can be used in real-time as the event

unfolds, regularly issuing instructions. This is in contrast with the

usual offline approach, where the model issues a full schedule of

instructions once, at the outset of the response operation. 

It should be emphasized that by employing the optimization

procedure in real-time, the common concern of algorithm compu-

tation time is no longer of direct relevance. Usually, the evaluation

of an algorithm would concern both the quality of the solutions

it suggests, and the time required to do so. In designing an al-

gorithm, one would trade-off these two characteristics to achieve

the right balance for the problem at hand. In our case, however,

we continue to optimise over the current set of free tasks until a
esponder requires instruction. There is no benefit in pausing or

erminating the optimization procedure before this, and so we are

ot concerned with trading off computation time for solution qual-

ty. An inefficient or slow algorithm will impact the quality of the

roposed solutions, but this impact will be entirely encapsulated

y the final solution quality observed upon completion of the re-

ponse operation. 

The continuous passing of instructions from the model to the

esponse environment is complemented by the continuous feed-

ack of information from the environment to the model in what

e term online optimization. There, any changes in the environ-

ent which are relevant to the model are noted and passed back

o the model as they are observed, to allow for the model to be

pdated and reflect the problem more accurately. This process of

ontinuous two-way communication is illustrated in Fig. 1 . 

In the remainder of this Section, we describe the various

hanges in the response environment which can be updated within

he model, and how these changes can be simulated for the pur-

oses of experimental evaluation. 

.2. Solution space parameters 

As described in Section 2.1 , the decision problem modeled con-

ists of assigning an ordered list of tasks to a number of responder

nits and allocating casualties to appropriate hospitals. Since the

et of tasks T is determined by the set of casualties C, we can re-

uce the parameters associated with solution space change to be: 

• C, the set of all casualties, 
• R , the set of all responder units, 
• H, the set of hospitals. 

As the hospitals available for use in the response operation

re unlikely to alter, we do not consider any dynamic changes to

he set H. Regarding the set of available responder units, we note

hat this can both increase and decrease as the response opera-

ion progresses. As discussed in Auf der Heide (2006) , it is com-

on for responders from areas neighboring the affected district to

elf-dispatch, thus arriving with little or no notice and increasing

he set of responders. Although a reduction can occur due to in-

ury sustained when working in a hazardous environment, given

he short time-scale of problem scenarios considered in this paper

e do not account for this possibility. 

In terms of the set of casualties, an increase can occur in both

 gradual manner, as more casualties are discovered during search

nd rescue operations, and in a sudden manner, if another incident

ere to occur nearby. Moreover, a decrease in the number of ca-

ualties can occur due to self presentation. An illustration of the

ynamic nature of casualty and resource numbers is provided in
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Fig. 2. Changes in the numbers of casualties and responders over the course of an 

example MCI response operation. 
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ig. 2 which charts the corresponding set size over the first fifteen

inutes of the problem which will be considered in Section 4 . 

In order to extend the model to allow for these changes, we

equire (a) a heuristic procedure to govern the re-assignment of

asks assigned to a responder when he/she leaves the set, and (b)

 heuristic procedure to govern the assignment of tasks associ-

ted with a newly discovered casualty. The constructive heuristic

rocedure described in Section 2.3.2 can easily be employed for

his purpose. Once tasks have been initially assigned in this man-

er, the local search procedure can go on to find higher quality

llocations. 

.3. Objective space parameters 

Regarding the objective values assigned to any proposed solu-

ion, a number of parameters upon which these values depend are

ubject to uncertainty, or are of a dynamic nature, or both. Specif-

cally, the health parameter associated with each casualty will be

ubject to measurement error, known more commonly as under-

riage or over-triage. In addition, health will evolve with time and

o this evolution must be predicted, introducing further uncer-

ainty. Schedule parameters will also be subject to uncertainty;

oth the time needed to travel from one destination to another and
ig. 3. The evolution in time of schedule parameters affecting a single responder’s sched

ation delays, and is subsequently used in revising the relevant parameters. 
he duration of certain tasks must be estimated from the informa-

ion available at that point in time, and will generally have some

egree of error. Moreover, we allow for possible delays in the com-

unication of such information from the problem environment to

he model. The dynamic and uncertain nature of these parameters

esults in a schedule which evolves over the course of the response

peration. 

A simple example of an evolving schedule is given in Fig. 3 . The

llustration shows the schedule of a single responder, as viewed

rom the perspective of the optimization model, and how this

chedule changes with time. These changes are illustrated on the

ertical axis. Note that, in this case, the tasks assigned to the

esponder do not change in their ordering, only in the parameters

escribing their timings. As time progresses, tasks move from a

ree state (dark green or blue) to a fixed state (light green or light

lue). We also observe the points at which information regarding

he timings of tasks are sent, and the delay in these messages

eaching the optimizer, at which point the schedule is updated

o reflect the new information. For example, the initial estimated

ompletion time of task t 1 is shown to be 7 minutes. However,

he true duration is in fact 6 minutes. Thus, at the 5 minute mark,

 message is sent from the simulation to the optimization model

otifying it that the true duration of task t 1 is 6 minutes. However,

here is a delay of 2 minutes in this message reaching the opti-

ization model. It is therefore not until the 8 minute mark that

he optimization model is updated, with the duration parameter of

ask t 1 changed from the original estimate of 7 to the true value

f 6. Similar behavior will occur with respect to the times taken to

ravel between task locations, as illustrated in the figure. The final

ection of the figure illustrates a scenario where a task, specifically

ask t 2 , takes longer to complete than initially forecast. During

he simulation and optimization of a full problem instance, such

volution of model parameters will clearly occur on a much larger

cale. 

In order to improve the optimization model with respect to ad-

ressing these challenges, a number of alterations must be made.

n what follows we give details of these alterations, and describe

he underlying simulation models which govern the uncertain and

ynamic nature of these parameters. 
ule. As time progresses, information is received by the model following communi- 
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Table 3 

The probability of health assessment outcomes with 

error level ε. 

True health state P ( A [ T 1]) P ( A [ T 2]) P ( A [ T 3]) 

T 1 1 − ε/ 2 ε/2 0 

T 2 ε/3 1 − 2 ε/ 3 ε/3 

T 3 0 ε/2 1 − ε/ 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. A hierarchical model of task durations. 
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3.3.1. Casualties and health 

As discussed in Section 2.2 , the health of a casualty is described

through the discrete triage classification system with states T 1, T 2,

T 3 and dead . We wish to increase the realism of the triage as-

sessment process by allowing for the fact that the classification

assigned to some casualties may not accurately reflect their true

health state. 

Denoting by A [ Ti ] the event that a triage assessment has led

to a casualty being classified in state Ti , the probabilities of these

events conditional on the true health state of the casualty are

given in Table 3 . The parameter ε ∈ [0, 1] allows for the degree

of error to be modified, where ε = 0 corresponds to completely

accurate classification. The resulting probability distribution leads

to unbiased errors, where the probability of under-triage is equal

to the probability of over-triage in cases where both outcomes are

possible. In practice, a significant bias towards the over triage of

casualties has been observed ( Frykberg, 2002 ). We do not model

this systematic bias for two reasons. Firstly, to do so whilst also

modeling imprecision in triage assessment would lead to difficulty

in interpreting the results of the experimental analysis presented

in Section 4.3 , as it would not be clear if any observed effect was

due to a lack of accuracy, a bias, or both. As such, removing bias

allows us to focus on evaluating the effect of imprecision only. Sec-

ondly, while a bias has been documented, its precise nature has yet

to be adequately described in quantitative terms. 

In addition to allowing for errors in the triaging of casual-

ties, we wish to allow for the dynamic nature of casualty health

in the online model. The simulation of this dynamic behavior is

achieved through using the same Markov chain model described

in Section 2.2 which is used in predicting future variation in ca-

sualty health. By simulating the actual variations in health state of

all casualties, we may now periodically update the model to reflect

any such changes. This updating corresponds to another triage as-

sessment being carried out. This is reflective of real MCI response

operations, where casualties are regularly re-assessed and changes

in health are noted. The frequency of any such triage operations

is a variable of the model, which we will denote λtri , and will be

adjusted in the experimental analysis of Section 4.2 . 

Another aspect of casualty behavior which may be captured

via an online modeling approach is their tendency to self-present

at hospital. Self-presentation is known to occur in MCI response,

when casualties with less significant injuries (specifically, those in

health state T3) may decide to leave the incident site and transport

themselves to a hospital of their choosing. Self presentation leads

to changes in the solution space, as any casualty who has trans-

ported themselves to hospital will no longer require any attention

from responders and so can be removed from the casualty process-

ing model. Self-presentation will also lead to changes in the objec-

tive space, with information regarding any self-presentation being

used to update model parameters and allow for better prediction

of solution quality. In particular, upon receiving notification that

a casualty has arrived at a specific hospital it is possible to infer

how long said casualty remained at their incident site before leav-

ing. Denoting this observed data as x , we require that a probability

density function p ( x | θ ) relating x to an unknown parameter θ is

defined, together with a prior probability distribution on θ , p ( θ ).
he posterior probability distribution of the unknown parameter θ
an then be calculated through the usual application of Bayes rule:

p(θ | x ) = 

p(x | θ ) p(θ ) 

p(x ) 
(3)

n this manner, estimates of the parameter θ will improve over the

ourse of the response operation as relevant data is accrued, po-

entially correcting any inaccurate initial specifications. Note that

his approach is generic and may be applied regardless of the form

f the probability distribution describing the length of time a casu-

lty will wait before leaving to self-present. However, cases leading

o conjugate priors will enable the calculation of posterior proba-

ility distributions without any significant computational burden.

s an example, we may consider self-presentation times to follow

n exponential distribution. In this case, the parameter θ will be

f one dimension and may be interpreted as the average rate at

hich casualties leave the incident site to self-present. 

.3.2. Task durations 

As described in more detail in Wilson, Hawe, Coates, and

rouch (2012) , the uncertain nature of task durations is encapsu-

ated through a hierarchical model reflecting the different nature

f incident sites in a multi-site MCI. We discuss the case of rescue

asks, noting that the model for treatment tasks (pre-rescue and

ost-rescue) is identical. 

The true duration of a rescue task relating to casualty i at site

 , θ j , i , is a random variable with mean μj and variance σ 2 
j 

. These

ite-specific parameters are themselves considered to be random

ariables, with joint mean � and covariance matrix �. This hier-

rchical model, illustrated in Fig. 4 , will allow for incident sites of

arying severity (in terms of the durations of the tasks to be un-

ertaken there) to be modeled. As in the case of modeling self-

resentation times, a lack of empirical data prevents us from rec-

mmending a specific parametric model to describe these random

ariables. 

Uncertainty is introduced by generating unbiased estimates of

ach duration θ j , i , denoted by e j , i , by sampling from normal dis-

ributions with mean θ j , i and variance s 2 . This variance, which de-

ermines the accuracy of duration estimates, is specified as prob-

em input. Given these estimates and assumed distribution, the

rue duration of each task is known to follow the distribution

 ( e j , i , s 2 ). For example, given a variance s 2 = 0 . 7 and a simulated

rue task duration of θ j,i = 4 , the estimated task duration will be

imulated from a normal distribution N (4, 0.7). A resulting value

f, say, e j,i = 5 . 2 would then be used by the optimization model

hen attempting to predict the true task duration θ j , i . 
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Table 4 

Problem scenario time line. 

Time Event Description 

Explosion, site i 1 A first set of casualties is created. The ambulance service conducts a triage sieve operation, noting the state of 

each located casualty regarding their task requirements. 

0 0:0 0:0 0 Model initialization Using the information gathered during the initial triage operation, the scheduling model is initialized. 

0 0:04:0 0 Explosion, site i 2 A second incident occurs, producing a further set of casualties. A triage sieve operation begins. 

0 0:10:0 0 Mutual aid arrival A set of responders, namely 18 Ambulance responders and 7 SAR responders, arrive from neighboring areas to 

assist in the response operation. 

0 0:15:0 0 Explosion, site i 3 A third and final incident occurs. 
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As it is known that θ j , i will follow the distribution N ( e j , i , s 2 ),

he natural (most likely) estimate of θ j , i will be e j,i = 5 . 2 . However,

e allow for the model to make other estimates in order to reach

 desired level of confidence that the true value will be equal to or

ess than the estimated value. That is, for a given confidence level

 ∈ [0, 1] we estimate the duration of tasks to be ˆ θ j,i = F −1 
j,i 

(ψ)

here F j , i denotes the relevant cumulative distribution function.

or example, setting ψ = 0 . 8 would result in conservative task du-

ations estimates which will over-estimate the true durations with

robability 0.8. 

.3.3. Travel times 

Travel times are initially estimated by applying Dijkstra’s al-

orithm ( Skiena, 1990 ) to the road network which covers the

roblem environment. This procedure generates a route, following

hich a distance d travelled can be calculated. An estimate for the

ravel time using this distance is provided by the model of Kolesar,

alker, and Hausner (1975) , as recently validated by Budge, Ingolf-

son, and Zerom (2010) . The function, denoted KWH ( d ), gives an

stimate of the median travel time. The median travel time is then

stimated as 

ˆ 
 = KW H(d) = 

{
2 . 42 

√ 

d , d ≤ 4 . 13 kilometer 
2 . 46 + 0 . 596 d, d > 4 . 13 kilometer 

(4) 

here 4 . 13 = v 2 c / 2 a denotes the distance required to travel in order

o reach ‘cruise speed’ v c , and a is the average acceleration of the

ehicle as it increases speed from rest to v c . The values of these

arameters are taken from the analysis of ambulance travel times

n Calgary, Canada, presented in ( Budge et al., 2010 ). 

The actual travel time is simulated through applying a disrup-

ion to the transport network, resulting in an uncertain increase

n the time needed to traverse each arc. This disruption procedure

onsists of randomly generating a multiplying factor for each road

ink, to be applied to the link’s ‘length’ parameter. The level of

isruption is controlled by a parameter denoted κ . The disruption

odel is described in more detail in Wilson et al. (2013b) . 

We are required to generate and update the probability distri-

ution of the travel time associated with each journey, as defined

y a location pair A − B . To do so, we assume travel times are

ndependent and identically distributed according to a lognormal

istribution, X ∼ logN ( ν , ρ), with an assumed, constant precision

, as discussed in Westgate, Woodward, Matteson, and Henderson

2011) . Note the variation in travel times may arise from either

ariation in the route chosen by responders making the journey

n question, or variation the time taken to traverse any specific

oute. Given the dynamic nature of the problem as discussed in

ection 3 , we employ the previously outlines Bayesian approach in

evising the estimate of the unknown parameter ν as more travel

ime data becomes available. Given the assumed lognormal distri-

ution and the associated conjugate prior distribution for ν , ν ∼
 ( ν0 , ρ0 ), we can calculate the posterior distribution following the

bservation of n data x i , ν ∼ N ( νn , ρn ) where 

n = 

ρ0 ν0 + ρ
∑ n 

i =1 ln (x i ) 

ρ0 + nρ
(5) 
nd 

n = ρ0 + nρ. (6) 

The expectation of this posterior distribution, ˆ ν = E(ν) , is then

sed as an estimate of ν , giving X ∼ logN( ̂  ν, ρ) . The median travel

ime for the route in question can then be estimated as ˆ m = e ̂ ν . 

. Evaluation and analysis 

In this section we report the results of several computational

xperiments analyzing the performance of the described model. In

articular, we aim to answer the following key questions: 

1. To what extent are pre-computed static schedules applicable in

dynamic problems? 

2. Can the scheduling methodology cope with solution space dy-

namics as well as non-predictive methods can? 

3. How sensitive is the model to underlying variation and uncer-

tainty in objective space parameters? 

In order to do so we first identify problem characteristics with

otential to influence the answers to these questions, and vary

hese in a comprehensive experimental design to produce a large,

pace filling data set. This data is then analyzed through the fitting

f linear regression models in order to identify key relationships

etween problem parameters and performance. 

.1. Problem scenario 

The following elements of the problem scenario are held con-

tant through all variants used throughout the set of computational

xperiments: 

• Incident sites I = { i 1 , i 2 , i 3 } – their location, time of event and

resulting set of casualties; 
• Responders R – including initial location and arrivals through

mutual aid (including time(s) of arrival); 
• Hospitals H = { h 1 , h 2 , h 3 } – their location, initial occupancy lev-

els, maximum capacities and specialist treatment facilities. 

The sequence and timings of events occurring in the problem

cenario is given in Table 4 . 

Each of the three incident sites results in a set of seventy casu-

lties with an identical profile in terms of their initial state (their

ealth level and whether or not they are trapped). Responders are

iven initial locations which correspond to one of the three hospi-

als’ locations in Fig. 5 (for Ambulance, MERIT and HART respon-

ers) or, for SAR responders, one of several fire stations in the area

not shown). 

In terms of distributional assumptions, we use normal distri-

utions in the hierarchical model of Fig. 4 . To simulate task dura-

ions, we use a common value for the problem level mean of task

urations and covariance. That is, for each task type the value of

= ( ̄μ, σ̄ 2 ) has fixed μ̄ and covariance �, while σ̄ 2 will be al-

ered in the experimental design (see Section 4.2 ). For rescue tasks,

¯ is set to seven minutes. For pre-transportation stabilizing treat-

ent, μ̄ is set to three minutes. Finally, for pre-rescue stabilizing 
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Fig. 5. Three incident sites and three hospitals in central London, as part of the test 

problem environment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Model and problem pairs analyzed. 

Model Problem 

Static Partially Fully 

dynamic dynamic 

Pre-computed, M pc Wilson et al. (2013a) 4.3.1 n/a 

Online, M o – – 4.3.2 
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treatment, μ̄ is set to five minutes. We emphasise that these values

are example only, and have been chosen to differentiate between

task types. The covariance for all task types is 

� = 

(
1 0 . 5 

0 . 5 0 . 5 

)
. (7)

We assume that the times which casualties will wait at inci-

dent sites before leaving to self-present at a hospital are indepen-

dent and identically distributed following an an exponential distri-

bution, τ sp 
c ∼ exp (λsp ) . Given this assumed distribution, the model

estimate of parameter λsp can be continually revised following the

general Bayesian strategy outlined in Section 3.3 . Specifically, we

note that the Gamma distribution acts as a conjugate prior for the

parameter, 

λsp ∼ Gamma (α, β) . (8)

Here, the hyperparameters α and β are set to reflect the initial es-

timate of the self-presentation rate. Upon observing a waiting time

τ sp 
c , the posterior distribution is updated to be 

λsp ∼ Gamma (α + 1 , β + τ sp 
c ) , (9)

and the parameter of interest is estimated as ˜ λsp = E (λsp ) . With-

out sufficient data regarding actual times spent waiting before self-

presenting in real MCIs, it is not possible to verify to what extent

an exponential distribution is a realistic choice in modeling this

process. However, given its common use in queuing models, which

are of a similar nature, it appears to be an appropriate choice and

will allow for an initial analysis of the effect of self-presentation in

an online model. 

Finally, we simulate the gradual discovery of casualties at inci-

dent sites by randomly generating a time at which they are discov-

ered and added to the model. These times are generated according

to an exponential distribution, parametrized so that the average

time for a casualty to be discovered is equal to ρ . 

4.2. Experimental design 

Considering the two models described in this paper, namely the

pre-computation model M pc and the online model M o , we wish to

evaluate performance in problems exhibiting different degrees of

dynamic behavior. Prior to consideration of the online model M o , it

is of interest to evaluate the performance of the pre-computation

model M pc in a partially dynamic environment. That is, we wish

to investigate to what extent a pre-computed, optimized sched-

ule will lead to high quality solutions when applied to a more

realistic problem scenario than was considered in Wilson et al.

(2013a) . Following this, the online model M o will be evaluated in

fully dynamic problem environments. These analyzes complement

that presented in Wilson et al. (2013a) , where the model M pc was

evaluated in static problem environments. In each case, summa-

rized in Table 5 , evaluation consists of comparing the performance
f the full, local search based scheduling methodology with that of

he constructive heuristic approach. 

The problem scenario defined in Section 4.1 is used in all prob-

em instances to be considered in the experimental procedure. In-

ividual problem instances may vary in the nine dimensions de-

cribed in Table 6 . For some parameters, namely λ1 and λ5 , the

hoice of range is a natural one. For other parameters a judgement

as been made regarding feasible levels; for example, we consider

t unlikely that the communication delay described in Section 3.3

ill be larger than five minutes. 

The frequency of triage has been allowed to vary from every

inute to every 20 minutes. This includes the rate of once every

5 minutes, currently used in practice. The variance in task dura-

ions takes values from 0, corresponding to all task durations being

dentical, to 3, which would lead to 95 percent of task durations

o be within a range of + / − 3.46 minutes. The maximum delay

n communicating information, denoted ν from the response en-

ironment to the optimization model has been set to 5 minutes,

eflecting the fact that model communication technology will pre-

ent any more significant delay from occurring. We have consid-

red a rate of casualty discovery ranging from an average of ten

er minute to one every ten minutes, reflecting the wide variety

f incidents and the corresponding difficulty of search and rescue

perations. For the average time a casualty will wait before leaving

he site to self-present, a range of between 5 and 20 minutes has

een considered. 

All experiments follow a Sobol sequence of 500 points in the

 dimension experimental design space, as constructed using the

 package randtoolbox ( Dutang & Savicky, 2013 ). This provides a

et of points in the experiment parameter space which is ‘space

lling’, in the sense that points are evenly distributed around the

pace. In contrast with an experimental design which places points

nly at the edges of the parameter space (i.e., where parameters

re set at the end points of their ranges), a space filling design will

llow for non-linear relationships between the parameters and the

esponse to be identified in the analysis of the data. 

.3. Results 

In this section we report the results of the computational ex-

eriments defined in Section 4.2 . 

.3.1. Pre-computed scheduling in partially dynamic problems 

The applicability of the static scheduling model to dynamic en-

ironments may now be evaluated through employing the simu-

ation routine described in this paper. Each experiment involves

pending five minutes searching the solution space. At the end of

his time the best solution found is issued and the response oper-

tion proceeds to follow the corresponding schedule, with the dy-

amic and uncertain nature of all objective space parameters be-

ng simulated. By means of comparison, the same problem setup

as addressed using the constructive heuristic defined in Wilson

t al. (2013a) , designed to replicate how decisions would be made

n reality when faced with an evolving problem. Descriptive statis-

ics of these experiments are provided in Table 7 . Fig. 6 shows
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Table 6 

Experiment design parameters, denoting (a) the coefficients associated with each parameter when fitting linear regression models to the simulated data, and 

(b) the ranges considered for each parameter. 

Parameter Regression coefficient Range Description 

Triage assessment error, ε β1 [0, 1] Error in the triage classification process. 

Triage frequency, λtri β2 [1, 20] Time between each triage assessment of any given casualty. 

Task duration variance, σ 2 β3 [0, 3] Inherent variation in the durations of all tasks. 

Task duration assessment error, s 2 β4 [0, 2] Error in the estimation of durations of all tasks. 

Task duration confidence, � β5 [0.1, 0.9] Level of confidence required that task duration estimates will not be short. 

Communication delay, ν β6 [0, 5] Average wait between a temporal event being recorded and the optimization 

model being notified. 

Road network disruption, κ β7 (0.5, 2] Extent to which the road transport network is disrupted. 

Casualty discovery rate, ρ β8 [0.1, 10] Average time taken to locate a casualty following an incident. 

Casualty self-presentation rate, λsp β9 [5, 20] Average time an eligible casualty will wait at scene before leaving to 

self-present. 

Table 7 

Descriptive statistics of final objective values across all partially dynamic problem instances, for 

both search and constructor solution methods. 

f 1 f 2 

Mean Min Median Max Mean Min Median Max 

M pc search 20.82 9 21 33 31124 18265 30768 51365 

M pc constructor 17.63 7 18 29 49808 33172 49295 76954 

Fig. 6. Density plots of final objective values obtained by constructive and search 

methodologies, pre-computed case. 
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Fig. 7. Final simulated values minus initial estimated values of the pre-computed 

search procedure, where marginal distributions are shown in red. (For interpreta- 

tion of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

Table 8 

Regression coefficients, f 1 , pre-computed case. 

Mean Standard error 2.5 percent 97.5 percent 

ˆ β0 16 .43 2.674 11 .17 21 .68 
ˆ βi 0 .2177 0.0503 0 .1188 0 .3165 
ˆ β7 −6 .660 2.282 −11 .14 −2 .177 
ˆ β7 2 1 .528 0.9030 −0 .2464 3 .302 

4

 

b  

i  

i  

b  

b  
he joint distribution of objective values as contour plots for both

ases, where we label the constructive heuristic method as ‘Heur’. 

The differences in objective values observed when comparing

he expected values at the end of the search process with the sim-

lated values are presented in Fig. 7 . 

It is of interest at this stage to consider the performance of the

tatic search methodology in more detail. To do so, linear regres-

ion models relating each objective measure to the varied problem

arameters were fitted in R by considering a ‘full’ model, includ-

ng potential interaction and higher order terms, and performing

 backwards stepwise variable selection procedure. The resulting

stimates of coefficients remaining in the model following a back-

ards stepwise elimination procedure are given, with their 95 per-

ent confidence intervals, in Tables 8 and 9 . We note that coeffi-

ient β0 denotes the model intercept, while β i is the coefficient of

he term denoting the initial solution value generated by the con-

tructive heuristic method. 
.3.2. Online scheduling in fully dynamic problems 

We now consider the fully dynamic problem, with variation in

oth solution space and objective space parameters. As described

n Section 3.1 , we propose that when applying the online model

n real-time tasks should be issued to responders as soon as they

ecome free, and that the appropriate task to issue can be found

y consulting the best solution schedule found by the local search
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Table 9 

Regression coefficients, f 2 , pre-computed case. 

Estimate Standard error 2.5 percent 97.5 percent 

ˆ β0 28740 2392 24041 33443 
ˆ βi 1 .220 0 .1078 1 .008 1 .431 
ˆ β1 −1101 605 .4 −2291 88 .47 
ˆ β6 663 .5 13 .44 399 .3 927 .6 
ˆ β7 −26230 2624 −31384 −21074 
ˆ β7 2 8141 134 .4 6101 10182 
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algorithm by that point in time. It is possible, however, that it

is instead beneficial to wait a short period of time before issu-

ing instructions to responders in the hope that the solution al-

gorithm will find a schedule of higher quality. However, any such

delay in responders completing tasks will also have a negative im-

pact on the quality of the overall response operation. To assess the

trade-off between these two factors, we conducted an experiment

whereby the local search algorithm was allowed 1, 2, 3, 4 or 5 min-

utes to search for a solution schedule at the start of the response

operation, after which point tasks began to be issued to respon-

ders. The distributions of the quality of the resulting solutions, as

expressed by their percentage improvement over the solution pro-

duced by the constructive heuristic, are presented in Figs. 8 and 9

as box plots. 

In Fig. 8 it can be seen that in the case of the fatalities objec-

tive f 1 , any benefit brought through the optimization process is not

enough to counteract the penalty of delaying action for any value

of search time considered. In contrast, as indicated in Fig. 9 , this

is not the case for the suffering objective f 2 , which shows mod-

erate improvement for all search times considered. Thus, the lex-

icographic ordering of these objectives suggests that the optimal

policy (for the example considered) is to issue instructions as soon

as responders become available, rather than waiting for a period
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Fig. 9. Percentage change in f 2 as sea
f time to allow the search algorithm to locate higher quality so-

utions. 

Having established the benefits of immediately issuing instruc-

ions, we now consider the performance of the online model in

ully dynamic problem instances. As in Section 4.3.1 , both the

cheduling and constructive heuristic methodologies were em-

loyed. The results are summarized in Table 10 and Fig. 10 . 

Further linear regression models were fit to the data corre-

ponding to the scheduling approach. Coefficient estimates are pro-

ided in Tables 11 and 12 . 

In order to better appreciate the resulting trends, graphical

esidual and component plots of the most significant predictors of

bjective f 2 are given in Figs. 11 –13 . 

.4. Discussion 

The results given in Section 4.3 allow us to answer the ques-

ions posed in Section 4 . 

.4.1. To what extent are pre-computed static schedules applicable in 

ynamic problems? 

Considering the results of the pre-computation case ( Table 7 &

ig. 6 ), we note that the local search approach outperforms the

onstructive approach in terms of objective f 2 . However, in the case

f objective f 1 it is the constructive methodology which results

n best average performance. In contrast, the results presented in

ilson et al. (2013a) suggested that the pre-computed approach

ould lead to improvements in both objectives. These results high-

ight a shortcoming of the search methodology which was not ev-

dent from previous studies. The dangers of evaluating optimiza-

ion models for MCI response using unrealistically static and pre-

ictable problems scenarios is clear. 

We note that the initial estimates of fatalities and suffer-

ng resulting from pre-computed solutions are systematically
3 4 5

 (mins)

rch time increases (box plots). 

3 4 5

 (mins)

rch time increases (box plots). 
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Table 10 

Descriptive statistics of final values across all fully dynamic problem instances, for both search 

and constructor solution methods. 

f 1 f 2 

Mean Min Median Max Mean Min Median Max 

M o search 19.49 11 20 28 29008 18920 28784 44789 

M o constructor 21.50 10 21 31 31663 21793 31329 43168 

Fig. 10. Density plots of final objective values obtained by constructive and search 

methodologies, online case. 

Table 11 

Regression coefficients, f 1 , online case. 

Mean Standard error 2.5 percent 97.5 percent 

ˆ β0 24 .34 1.495 21 .41 27 .28 
ˆ β1 −0 .9790 0.2681 −1 .506 −0 .4522 
ˆ β3 −0 .3027 0.1803 −0 .6570 0 .0517 
ˆ β5 2 .477 0.6794 1 .142 3 .812 
ˆ β6 0 .1842 0.1209 −0 .0534 0 .4218 
ˆ β7 −6 .597 2.352 −11 .22 −1 .976 
ˆ β7 2 1 .764 0.9300 −0 .0637 3 .591 

Table 12 

Regression coefficients, f 2 , online case. 

Estimate Standard error 2.5 percent 97.5 percent 

ˆ β0 33285 1596 30149 36420 
ˆ β3 295 .9 193 .2 −83 .68 675 .4 
ˆ β4 1209 287 .1 644 .8 1773 
ˆ β6 286 .6 129 .5 32 .11 541 .1 
ˆ β7 −8168 2518 −13116 −3219 
ˆ β7 2 1697 995 .9 −259 .9 3654 
ˆ β8 106 .0 58 .31 −8 .55 220 .6 
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Fig. 11. Residual and component plot for task duration assessment error effects, 
ˆ β4 s 

2 , with the fitted trend shown in red. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. Residual and component plot for communication delay effects, ˆ β6 ν, with 

the fitted trend shown in red. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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ifferent from those realized upon completing the simulation, as

hown in Fig. 7 . Specifically, the number of fatalities is typically

ver-estimated whereas the level of suffering is typically under-

stimated. These discrepancies illustrate the difficulty in ensuring

ccurate forecasts within the dynamic and uncertain MCI response

nvironment. 

Considering the linear regression models fitted in Section 4.3.1

 Tables 8 and 9 ) we note that the level of error in the estimation of

ask duration was not identified as a significant predictor in terms

f either fatalities or suffering. This suggests that the proposed
odel is relatively robust to any misspecification of task duration

istributions. In contrast, errors in the triage assessment of casual-

ies do have a significant and negative association with suffering,

s does a delay in communication. The former effect demonstrates

he importance of having accurate information with regards to the

ealth of casualties, and shows that an assumption that all health

ata is known with complete accuracy could produce misleading

onclusions regarding the utility of the model. As would be ex-

ected, the initial expected value of the pre-computed solution in-

uences the final objective values, confirming that some value is

etained throughout the simulation. 

Finally, we note that the problem scenarios considered in

he pre-computed case only allowed for dynamic and uncertain

ehavior in the objective space. Were such behavior to exist in

he solution space, the pre-compacted approach would lead to
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Fig. 13. Residual and component plot for road network disruption effects, ˆ β7 κ + 

ˆ β2 
7 κ

2 , with the fitted trend shown in red. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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schedules which would quickly become irrelevant as the response

operation progressed. 

4.4.2. Can the search-based solution methodology cope with solution 

space dynamics as well as non-predictive methods can? 

In the online case, the local search solution methodology results

in improved performance in both objectives, on average ( Table 10

and Fig. 10 ). The difference in the bivariate distributions is shown

to be statistically significant under a Hotteling’s T2 test ( p ≈ 0).

We can therefore conclude that the search based methodology

equipped for online use in the manner described in this paper can

deliver improved performance over the alternative heuristic ap-

proach. 

4.4.3. How sensitive is the model to underlying variation and 

uncertainty in objective space parameters? 

Considering the regression models fitted ( Tables 11 and 12 ) we

see that, in comparison to the pre-computed case, a larger num-

ber of relationships between parameters and objective values were

identified in the online case. Indeed, all parameters other than λ2 

(frequency of triage) and λ9 (rate of casualty self-presentation)

were identified as potential predictors of at least one objective

outcome. The omission of triage frequency may be explained by

the fact that the model only allows for the health of casualty to

change when they are in a hazardous area. As the majority of ca-

sualties will be removed from such areas relatively quickly, there

may only be limited scope for health to change. As such, increasing

frequency of triage will have limited scope to impact the quality of

the response. 

Road network disruption is important, as we would expect

since it leads to longer travel times. The delay in communication

between the problem environment and the model also has a signif-

icant effect on performance, as does the accuracy of initial task du-

ration estimates. However, while statistically significant linear rela-

tionships with these parameters were identified, a large amount of

otherwise unaccounted for variance in performance remains. 

Both fatalities and suffering are associated with a delay in com-

munication, although the associated parameter estimate is lower

than in the pre-computed case (see Table 9 ). This suggests that

the online solution methodology successfully reduces the impact

of poor communication by allowing for flexible adaptation of the

schedule. 

We note that the parameter describing the ‘task duration con-

fidence’, i.e. the confidence the decision maker requires that their

estimates of task durations will be greater than or equal to the
ealized value, is identified as a significant predictor of the fatal-

ties objective. The relationship is positive and linear, suggesting

hat by estimating task duration in a manner which will result in

nder-estimates on average can lead to improved performance. 

. Conclusions 

The dynamic and uncertain nature of mass casualty incidents

epresents a significant challenge to the design of a robust and ef-

ective optimization model. In this paper we have described the

xtension of such a model, which employs a task scheduling rep-

esentation of an MCI response operation, to better cope with this

olatility. In particular, the model has been extended for use in an

nline manner, allowing for communication between model and

roblem environment to be carried out continually as the response

rogresses. This has resulted in the removal of several common

ssumptions made in such models, as highlighted in Galindo and

atta (2013) . 

Through the design and analysis of several computational ex-

eriments, the performance of the model in a simulated environ-

ent has been assessed. It has been shown that the extension of

he model from its initial ‘static’ design to the online case has re-

ulted in significant improvement in terms of both expected fatal-

ties and the suffering of casualties. Statistically significant associ-

tions between parameters and model utility have been identified,

ighlighting the importance of fast communication between prob-

em environment and model and the accurate estimation of task

urations. Of equal value is the lack of such associations found in

ther parameters, where it may be natural to assume one would

xist, such as the frequency of triage. 

.1. Further work 

The computational burden arising from evaluating the proposed

ethodology through simulation has placed a practical limit upon

he number of scenarios which could be considered and compar-

sons which could be made. Further work could, therefore, focus

n extending the simulation study presented in Section 4.3 . One

tudy which would be of value would be the application of the on-

ine model M o to partially dynamic problem scenarios. This would

hen enable a direct comparison of the models M pc and M o to be

ade, helping to demonstrate the superiority of the latter. 

In the process of designing the simulation of the MCI response

peration, we have made a number of decisions regarding the

ature of probability distributions and their parameters. Unfortu-

ately, due to the inherently low frequency of MCI events and

he limited data collection which occurs during them, it has not

een possible to base these decisions on the results of statistical

odels. While the assumptions made have enabled a valuable ex-

loration of the sensitivity of the optimization model to the dy-

amic and uncertain nature of MCI response operations, it would

e of value to examine how robust the results generated are to vi-

lations of these assumptions. For example, the sensitivity of the

odel to changes in the assumed transition probabilities of the

arkov chain described in Section 2.2 could be assessed. 

As discussed in Galindo and Batta (2013) , a Bayesian approach

o processing information in the dynamic environment of disaster

esponse may be applicable. While the model presented in this pa-

er employs such an approach when considering parameters which

overn travel times in the road network and the rate at which

asualties self-present, other parameters may benefit from similar

reatment. In particular, we note that the full hierarchical model

epresenting the duration of response tasks could be estimated

nd adjusted as information is accrued during the response. This

ould, however, require further computational resources. If such

 learning routine were to be implemented, it would be of value
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o analyze to what extent performance is robust to changes in the

nderlying model. 

As discussed in Section 4.4 , the method used in predicting fa-

alities, as originally described in Wilson et al. (2013a) , results in

n average over-estimation when compared with the actual value

esulting from the simulation. A more accurate and robust calcu-

ation would clearly improve performance, as it would enable the

onsequences of decisions to be predicted to a higher degree. This

ould in turn allow the benefits to optimization over the remain-

ng time horizon to be fully realized. 

The simulation of volatility presented in this paper is restricted

o that resulting from factors external to the response operation

tself. That is, we assume that all responders will follow the in-

truction issued by the optimization model regardless of their own

ersonal view of events. This assumption should be examined in

urther detail. In particular, it would be of interest to consider

ituations where an individual responder has access to informa-

ion which is significantly more accurate and up-to-date than that

hich was used by the optimization model in formulating its in-

truction. Such an analysis would require a detailed model of in-

ividual decision making; an agent-based simulation, such as that

escribed in Hawe, Coates, Wilson, and Crouch (2012) , would be

ell suited to this task. Allowing for the responder to override the

odel in such a situation could improve overall performance, al-

hough the impact of introducing further uncertainty and volatility

nto the model should be examined. 
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