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RENEGOTIATION AND RELATIVE PERFORMANCE EVALUATION:

WHY AN INFORMATIVE SIGNAL MAY BE USELESS

Holmstrom's (1979) informativeness criterion is a seminal result in agency theory.' It tells us that a signal
is useful in incentive contracting if and only if it is informative, i.c., conveys information not already
included in the outcome of the action. This criterion has been applied to understand management control
issues including the controllability principle and relative performance evaluation. Field studies, such as those
by Merchant (1987) and Maher (1987), however, have not confirmed the consistent application of the
informativeness criterion. Merchant found that while the informativeness criterion suggests the
controllability principle, i.e., evaluation of a manager's performance should be based only on factors
controllable by the manager, the principle is often disregarded in practice. As an application of the principle,
interfirm relative performance evaluation (RPE) should be used to filter the common uncertainty faced by
firms in the same industry. On the contrary, Maher found that the use of interfirm RPE is rare in practice.’

The goal of this study is to reconcile the discrepancy between the theory and practice of interfirm
RPE based on a new development of agency theory. Recently, the theory is moving in the direction of
understanding the effects of limited commitment by contracting parties.> Along these lines, this paper
investigates the value of monitoring information in renegotiable contracts.* Allowing contracts to be
renegotiable creates a cost of using monitoring information that was ignored in Holmstréom's (1979) analysis.
When this cost is taken into account, the sufficiency part of the informativeness criterion no longer holds.
Instead, whether a signal is useful in incentive contracting will depend on the quality of the signal's
information. I show that a signal is useless if the information quality is sufficiently poor, and useful if
sufficiently rich. In light of this result, violations of the controllability principle and the rare use of interfirm
RPE are rationalizable. They can be understood as resulting from signals with sufficiently poor information
despite their informativeness.

This paper synthesizes the models of Holmstrom (1979) and Fudenberg and Tirole (1990). My model
differs from Fudenberg and Tirole's two-action, renegotiable contract model mainly in the placement of the
renegotiation stage. They placed it between the agent’s choice of action and the outcome. In contrast,

renegotiation is allowed in my model only after the outcome is known and before a signal of the action



arrives. Since my focus is on the signal, this seems to be the most tractable way to start.

Additionally, one can argue that in reality opportunities for the contracting parties to renegotiate are
limited. A natural point at which renegotiation issues are likely to arise is right after the principal learns some
up-to-date information about the agent’s performance. For example, a company usually holds only a small
number of board-of-directors meetings each year to approve the most important decisions, which might
include top managers’ compensation packages. A typical moment to discuss this issue (and hence to
renegotiate) is after the company's annual performance (which corresponds to an outcome) has been
summarized in the annual report pending for approval. This moment often occurs earlier than knowing a
competitor’s performance (which corresponds to a signal) which can be found in its annual report.

Because of the timing of the renegotiation stage, the principal in my model cannot induce the high
(i.e., more productive) action with certainty if she uses the signal's information to design a contract. This
result is analogous to why any non-randomized action, other than the least productive one, is not
implementable in Fudenberg and Tirole's model. If the high action in my model could be induced by a signal-
contingent contract, the principal would be able to infer the action accurately in equilibrium. Then his only
concern at the renegotiation stage would be to provide better insurance to the agent. As a result, the best
replacement contract to be offered by the risk-neutral principal would have to be a full insurance contract.
Foreseeing this, the agent would have benefitted from choosing the low action instead, contradicting the
supposition that the high action and a signal-contingent contract could constitute an equilibrium.’

Since the principal cannot induce the high action with a signal-contingent contract, the only way to
utilize the signal's information is to settle for a less productive, randomized action.’ The implementation of
arandomized action is essential because it will endow the agent with private information at the renegotiation
stage. Consequently, risk sharing will no longer be the principal's only concern at that point. The information
asymmetry created by a randomized action will provide an incentive for the principal to use the signal to
induce the agent's disclosure of the private information about the action actually taken.’

This incompatibility between the high action and the use of the signal’s information creates a cost
of using the signal. The cost appears as a reduction in the principal's expected revenue due to inducing a
randomized action. When the signal carries poor information, the benefit from using it to better motivate the

agent will be small. As a result, the signal’s benefit may not justify the cost of using it. Under such



circumstances, the principal would rationally ignore the signal in designing contracts despite its
informativeness. This "insufficiency of informativeness" result is in sharp contrast to Holmstrom's
informativeness criterion.

The rest of this paper is organized as follows. The formal structure of the model is introduced in
Section 1. Preliminary results are derived in Section 2. The cost and benefit of using a signal's information
for contracting are explained in Section 3. Section 4 presents the main results. Section 5 discusses how the
results can reconcile the discrepancy between the theory and practice of interfirm RPE. Concluding remarks

are given in Section 6, with mathematical proofs contained in the appendix.

1. Model Structure

In my model, a principal hires an agent to perform a task, which is accomplished by taking an action
a in the feasible action set A={L,H}. The agent's choice of action can be governed by a probabilistic decision
rule with the probability distributions representing such rules constituting the set of feasible randomized
actions. Any randomized action is uniquely characterized by its probability of choosing H, denoted by o, with
o =1 and a = 0 representing the choice of non-randomized action H and L, respectively.

The agent's action affects the probability distribution of a jointly observed outcome, x, which is
interpreted as the principal's revenue. The set of possible outcome values is X={x,, x,, ..., x;,} with x, <x, <
.. <x, and M > 2. The parties also jointly observe a signal y of a. The set of possible signal values is
Y={B,G}. Let n(x,y|a) denote the joint probability mass function of x and y given a. The marginal probability
mass function of x given a is p(x|a)=), n(x,y|a), and the conditional probability mass function of y given
x and a is g(y|x,a)= n(x,y|a)/y, n(x,y|a).

The contracting parties have von-Neumann-Morgenstern preferences. The principal is assumed to
be risk-neutral and his utility payoff is the revenue x less the compensation cost s. The agent's utility depends
both on the compensation received and the action taken. Specifically, the agent is assumed risk-averse and
work-averse with additively separable preferences: U(s) - D(a), where U’ >0, U" <0, and D(L) < D(H). Let

® denote the inverse of the agent's utility-for-income function U.

ASSUMPTION 1: The domain of the inverse utility-for-income function ® is (—,u) with lim

=0and lim,_; ®'(u) = .

- @ (u)

U —



Examples of utility functions whose inverses satisfy Assumption 1 are the logarithmic and negative
exponential functions. The domain of @ is assumed unbounded from below to ensure that the individual
rationality constraints in some programs studied here are always binding. The assumption on the limits

guarantees that optimal solutions exist in such programs.

ASSUMPTION 2: () }..; p(x[L) > },.; p(x|H) VXeX\ {xy,}; (b) p(x[H) >0 VxeX.

Part (a) of this assumption says that a change from action L to A will reduce the chance of observing
a smaller outcome value. In other words, the high action will generate a statistically larger outcome value,

in the sense of first-order stochastic dominance. Part (b) rules out a shifting-support problem.

ASSUMPTION 3: The likelihood ratio p(x|L)/p(x|H) is decreasing in x.

This monotone likelihood ratio condition ensures that a larger outcome value is stronger evidence
for the selection of the high action. It implies Assumption 2(a), but is needed only for the proof of Lemma

2 and Proposition 3.

ASSUMPTION 4: (a) ¢(B|x,L)> Y. > q(B|x,H) VxeX; (b) q(B|x,H)> 0 VxeX.

This is the counterpart of Assumption 2 for the signal y. Because G is more likely to be observed
with action H taken, the principal will tend to believe action H is the agent's choice when G is observed.
Thus, G is called the good signal value; similarly, B is called the bad signal value.® Assumption 4 differs
from Assumption 2 in that the probabilities ¢(B|x,L) and g(B|x,H) are required to be greater than and less
than 1/2, respectively, regardless of the outcome value. That is to say, the bad signal value will have more
than a fifty-fifty chance of occurring if action L is taken, as will the good signal value if action H is taken.
This seems to be a reasonable assumption, whose main function is to simplify the appearance, but not the

essence, of the results derived below.

ASSUMPTION 5: When only the outcome is used for contracting, it is suboptimal to induce the low

action, L, which is nonetheless better than not to contract with the agent at all.



The first part of this assumption, i.e., the suboptimality of the low action, is needed to derive the
sufficiency part of the informativeness criterion. So it is assumed here to allow equal-footing comparisons.
The second part of the assumption, i.e., the inferiority of no contracting to the implementation of the low

action, is not critical but can simplify the exposition of the analysis.

ASSUMPTION 6: The risk endurance @o=0'/®" of the agent is a weakly decreasing and concave

function.

This risk aversion measure defined with the inverse utility-for-income function @ is the counterpart
of a more common measure, namely the risk tolerance: t=-U’/U". Concavity of ¢ is equivalent to saying
that the risk tolerance of the agent is a concave function.” Because @' is an increasing function, ¢ being
decreasing implies @' is convex. This last condition, which has been used by Jewitt (1988) to justify the first-
order approach, is essential to my analysis. Although ¢’ < 1 is enough to guarantee the convexity of @', the
stronger assumption used here allows some results to be presented in a simpler form. '’

To conclude this section, let me specify the timing of the events in the model:

1. The principal offers the agent an initial contract C !, which consists of possibly multiple
compensation schemes from which the agent may pick one after the realization of the outcome."

2. The agent either accepts or rejects C'. In case of rejection, the game ends with the principal and the
agent getting their reservation payoffs, 0 and V, respectively.

3. If the agent accepts the contract, he will take an action a guided by the realization of a randomized
action a chosen by him. Subsequently, the outcome is known by both parties.

4. The renegotiation stage begins. The principal leads the take-it-or-leave-it bargaining game at this
stage by proposing a replacement contract, C?, to substitute for the initial contract. Like C, this
proposal may consist of multiple compensation schemes from which the agent may pick one.

5. The agent ends the bargaining game by accepting or rejecting C2. If the agent accepts this contract,
it becomes the final contract; otherwise, the initial contract is the final contract.

6. The agent chooses a compensation scheme from the final contract. Once the signal value y is known,

the agent will be paid according to the compensation scheme selected. The game then concludes.

The event sequence is summarized with the time line in Figure 1.



Insert Figure 1 around here.
. _____________________________________________________________|

In the next section, I will first present a full-commitment benchmark result, namely, the sufficiency
of informativeness."> Then 1 will analyze the replacement contract design problem and derive the

renegotiation-proofness constraints for later analysis.

2. Preliminaries
Because action L is the least costly action in my model, there is no incentive problem for inducing
this action. It is straightforward to confirm that the optimal contract for inducing action L is a non-contingent
contract with compensation U, =D(L)+V in utility, whether full commitment is possible or whether the signal
is used for contracting. The associated expected compensation cost equals ®,=®(U,).

Let Uy(X,Y)=(Up(x.»))

)ex,cy denote the optimal full-commitment contract for inducing action / and

U;(X)=(U;(x)),.x the corresponding contract when only the outcome is used for contracting. The
compensation costs associated with these contracts are ®,= Y.Y ®(Uyxy)a(x,y|H) and ®j=
Y O(Ux))p(x|H). With full commitment, the only effect of using the signal is greater flexibility in
designing contracts. Thus, the expected cost associated with U;,(X,Y) can never exceed that associated with
Uy(X), i.e., @, < Oy Together with Assumption 5, this implies R, - @, > R, - ®}, > R, - ®, > 0, where
R,=Y . xp(x|a) is the principal's expected revenue conditional on the agent's choice of action a. Therefore,
action H is optimal in the full-commitment model with both the outcome and signal available for
contracting."
Given below is the condition characterizing the unique optimal full-commitment contract:

DU ) = A+ 1 - x| L)/m(xy| H)] Vi W,
where A and p are the multipliers for the individual rationality and incentive compatibility constraints.
Because both constraints are binding at the optimum, A and p are positive. This implies the optimal full-
commitment contract will utilize the signal y if and only if the likelihood ratio 7(x,y|L)/z(x,y| H) depends on

y for some x. This condition on the ratio will be satisfied if y is informative, as defined below:

DEFINITION 1: y is informative about a given x if q(y|x,a) depends on a for some x and y."
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Since the optimal full-commitment contract is unique, a signal-independent contract cannot be optimal if the
signal is informative. In other words, utilizing an informative signal will enhance contracting efficiency. This
full-commitment benchmark result reiterates the sufficiency part of Holmstrém’s (1979) informativeness
criterion for the present setting with renegotiation considerations. Formally, the result is stated as the

following proposition:

PROPOSITION 1: With full commitment, the signal y is valuable if it is informative.

In Section 4, I will present results showing that the sufficiency of informativeness established with full
commitment does not extend to renegotiable contracts. This is due to the cost of using the signal's
information arising from the renegotiation-proofness constraints derived next.

Because contracts are renegotiable, solving the contract design problem requires first solving the
replacement contract design problem at the renegotiation stage. At this stage, the agent has private
information, i.e., he knows which action he has taken, while the principal has a probabilistic belief about that
choice. The action chosen becomes the agent’s type, and the focus is now on risk sharing, not moral hazard.
In particular, the principal’s problem at this stage is to find a menu of replacement contracts that will
efficiently share the agent’s risk with respect to his compensation from the original contract. So with
renegotiable contracts, an adverse selection problem is embedded in the original moral hazard problem.

In my model, renegotiation may occur only after the outcome x is known and has only one round.
Therefore, I can apply the revelation principle (Myerson (1979) and Harris and Townsend (1981)) to confine
the choice of an outcome-contingent final contract to the set of interim incentive-compatible contracts. A
contract in this set is a pair of compensation schemes, one for each type of the agent, that provides no
incentive for any type to select the scheme intended for another type. Specifically, a final contract has the
following form: C(x)=(Uy(x,)),ey> (U(x,))),cy), Where U, (x,) is the compensation in utility received by the
agent, when y is observed after his choice of the compensation scheme intended for type « and after the
observation of x. By the renegotiation-proofness principle (Hart and Tirole (1988) and Fudenberg and Tirole
(1990)), the choice of an initial contract can be confined to the set of renegotiation-proof contracts. This

means only initial contracts of the form C(X)=(C(x)),., need to be considered. Because the initial contract



is signed before the outcome arrives, the contract cannot be a direct function of the realized x. Instead, it
specifies for every x a final contract, C(x), to offer at the renegotiation stage.
Given an initial contract C(X)=((Ug(x,0)),cy» (Up(X,))),er)ex> the replacement contract design problem

is represented by the following program:

(oRs-p) y )},\yfi\?yva a(x)Y, Ouy(x,y)q(|x.H) + (1-ax)Y, Ou,(xy)q|x.L)
subject to

HC(H): Y, ux)q|x,H) = Y, u (xy)q(v|x,H)

HC(L): Y, w(x)qy|x.L) = Y, uplx,y)g(v|x.L)

IIR(H): Yy e )q[x,H) 2 Y, Uplx,y)g(v|x.H)

IR(L): Y, u (e )g|x.L) = Y, Uy(xy)g(v|x.L),

where a(x)=ap(x| H)/(ap(x| H)+(1-a)p(x|L)) is the posterior probability revised from the prior probability
o, based on the x observed before the renegotiation. The constraints IIC are interim incentive compatibility
(/IC) constraints which guarantee that no type can benefit from selecting a scheme intended for another type.
The constraints [IR are interim individual rationality (IIR) constraints which ensure that each type can get
at least his interim reservation payoff by accepting the proposed contract. This payoff is determined by what
he obtains from the initial contract, i.e., ), U,(x,»)q(y|x,a) for a type-a agent, because the agent can always
insist on the initial contract. As the action taken is irreversible, the disutility D(a) is not a consideration of
the agent at the renegotiation stage and hence does not appear in the constraints here.

Recall that R,=) . xp(x|a) is the principal's expected revenue, conditional on the agent's choice of
action a. So her expected revenue from inducing randomized action a is R(a)=aRA(1-a)R,. Given that o
is induced, the principal's expected profit from proposing an IIC and IIR replacement contract,
(U x))yePact)ses 18 R(@) = [a()Y, P(uy(x.y)q(v|x.H) + (1-a(x)), Pu,(x.»)q(v|x,L)]. Because R(a)
does not depend on her choice of a replacement contract, her objective at the renegotiation stage is to

minimize the expected compensation cost, i.e., a(x)Y,, P(u,(x,y)q(y|x,H) + (1-a(x))Y,, P(u,(x.y))g(|x,L).

DEFINITION 2: An initial contract C(X) is a renegotiation-proof contract for randomized action « if

for every xeX, the final contract C(x) specified in the initial contract is an optimal solution of the replacement



contract design problem given itself.

The following lemma completely characterizes a class of renegotiation-proof contracts. It has been
proven that any other renegotiation-proof contracts are weakly dominated by some contracts in this class (see
Yim (1995) for details). Thus, the search for an optimal renegotiation-proof contract can be confined to this

class without loss of generality.

LEMMA 1: Suppose C(X) is an initial contract comprising final contracts satisfying the following
conditions: (1) upward-sloping-scheme (US): Uy(x,G) > Uy(x,B), (ii) flat-scheme (FS): U,(x,G)= U,(x,B),
and (iii) same-expected-reward (SER): Y, Uy xy)q|x.L) = Y, U (xy)qy|x,L). Then C(X) is a
renegotiation-proof contract for randomized action o if and only if the following no-net-gain (NNG)
condition is fulfilled:

(1-a)®(Y, Uy(x)g(v [xL)SE)P() > ald'(Uy(x,G) - ' (Uy(x,B))] Vrex,
where 8(x) = q(B|x.L)/q(B|x,H) - q(G|x.L)/q(G|x.H) and p(x) = p(x|L)/p(x| H).

To understand why the final contracts of an optimal contract should satisfy conditions US, FS, and:
SER, it is helpful to draw an analogy between the replacement contract design problem at the renegotiation
stage and Stiglitz's (1977) insurance model. They are closely related because the objective of the replacement
contract design problem is to provide better insurance to the different types of agent. Details of such an
analogy can be found in Section 2B of Fudenberg and Tirole (1990).

The intuition behind condition NNG is as follows. If U,(x,G) and U(x, B) are too far apart (i.e., the
payoffs vary too much with y), a high-action agent will be exposed to too much risk due to the signal's
randomness. Consequently, there will be room for the principal to extract an insurance premium from the
agent by providing him with more insurance. This can be done by reducing the sensitivity of the
compensation scheme for a high-action agent to the signal. Specifically, the change involves an &/q(G|x,H)
reduction in Uy(x,G) and an &/q(B|x,H) increment in U,(x,B), where € > 0, such that the expected
compensation to a high-action agent is left unchanged. Because ¢(G|x,H) > ¢(G|x,L), the expected
compensation to a low-action agent choosing the contract intended for a high-action agent will then increase
by d(x)e. To maintain the incentive compatibility of the contract, the expected compensation

Y, Ui(x,y)q(y|x,L) to a low-action agent must be raised by the same amount. If the agent is of the high-action
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type, the expected reduction in compensation cost from such marginal adjustments of the contract is
(O'(Ulx, G)) = ©'(Uy(x,B)))e. If the agent is of the low-action type, the expected increment in compensation
costis @'(Y, U, (x,»)q(¥|x,L))d(x)e. On outcome realization x, the probabilities that the agent is of the high-
action type and that he is of the low-action type are a(x) and 1-a(x), respectively. Since a(x) =
ap(x| H)/(op(x| H)+(1-a)p(x| L)), the principal's expected net gain from adjusting the contract is
[a(D'(Upl(x,G)- D' (Up(x.8))) = (1-a)®'(}, U,(x.y)q(y|x,.L)ox)p(x)] * ep(x| H)(ap(x| H)+(1-a)p(x|L)).
This must be non-positive in order to ensure the initial contract's renegotiation-proofness. Such a no-net-gain
requirement is condition NNG, as given in the lemma.

In the next section, I will state the initial contract design problem. It differs from that of a full-
commitment model due to incorporation of the renegotiation-proofness constraints, i.e., conditions US, FS,
SER, and NNG. I show that a necessary and sufficient condition for the signal to be useful is the
suboptimality of the high action. The implications of this result for the cost and benefit of using the signal's

information are then discussed.

3. Cost and Benefit of Using the Signal's Information
For the moment, suppose the principal wants to induce a genuine randomized action ac(0,1). The
optimal renegotiation-proof contract, hereafter the optimal contract, can then be identified by solving the

following program:

(oRs) Min ).y, D(Uyxy)r(xy|H) + (1-0)Y,, @(U(xy)a(x.y|L)

U, (x,y) VyVxVa
subject to
SER: Y, Uey)q|x,L) = Y, Un(xy)q(v|x.L) Vx
FS: U,(x,G)=U,(x,B) Vx
US: Uy(x,G) > Uy(x,B) Vx
NNG: (1-0)®'(}X, Ux0)q(v|x,.L))0(x)p(x) = a[@'(Up(x,G))- @' (Up(x,B))] = 0 Vx
AlC: Yol Udxey)n(xy | H) = D(H) = Y.Y., U (x.y)a(x.y|L) - D(L)
AlR: L.y Uley)a(xy|L) - D(L) = 7,

where m(x,y|a) = q(v|x.a)p(x|a), 6(x) = q(B|x.L)/q(B|x.H) - q(G|x.L)/q(G|x,H), and p(x) = p(x|L)/p(x|H).

Constraint AIC is the ex ante incentive compatibility constraint ensuring that genuine randomization between

10



H and L is not against the agent's interest. Note that the contract must give the agent at least his ex ante
reservation payoff, or he will simply refuse the offer. Therefore, the ex ante individual rationality constraint
oYY, Unxy)a(ry| H) - DED] + (1-a)[L.Y, Uyl L) - D)) = V
should be included. This is equivalent to constraint AIR in the presence of AIC. When all the constraints are
satisfied by a contract U,(X,Y), it is optimal for the agent to accept this contract and take the action guided
by the randomization a. Since « is the probability of taking action H, the expected compensation cost to be

minimized with the choice of an optimal contract is
oy, Y, DU e )aCey| H) + (1-0)L,Y, DUy | D).

Although ae€(0,1) has been supposed, program (oRs) can also be used to identify optimal contracts
for inducing degenerate randomized actions @ = 1 and a = 0 (see Yim (1995) for details). Let
U j,‘(X,Y)E(((U a(X:1)),ex)aca) cex denote an optimal solution of program (oRs) for any given a€[0,1]. The
minimized expected compensation cost, denoted by (i)(a), is the objective function value of the program
evaluated at U 9XY). Because R(a)=aR,+(1-a)R, is the expected revenue from inducing randomized action
o, maximizing the principal's expected profit R(a) - Cf)(oc) yields the optimal randomized action.

Constraint NNG implies when a = 1, Uy(x,G) = U,(x,B) for all x, i.e., y is not used for contracting.
Thus, if the signal is useful, @ = 1 must be suboptimal. On the other hand, if @ = 1 is suboptimal, some
interior a must be optimal, and the optimal contract must utilize the signal’s information. Otherwise, such
a signal-independent contract and the interior o would be optimal in a full-commitment model in which only
the outcome is available for contracting. This contradicts the fact that any interior o is suboptimal in such
a model, and therefore the suboptimality of the high action is a necessary and sufficient condition for the

signal to be useful.

PROPOSITION 2: The signal y is useful if and only if the degenerate randomized action o.= 1, i.e.,

action H, is suboptimal.

This result implies that the net benefit of using the signal's information is tied to the net gain from
inducing a genuine randomized action, as opposed to the non-randomized high action. With full commitment,

o = 1 is optimal. Although this remains implementable with renegotiable contracts, the renegotiation-

11



proofness constraints rule out using the signal's information to induce a = 1. To utilize the information, the
principal must settle for some less productive, randomized action a < 1. This will reduce her expected
revenue from R(1) to some lower level R(a)=aR+(1-a)R,. In return, the benefit of using the signal is a lower
expected compensation cost d)(a) as compared to (i)( D=03=Y  O(U(x))p(x| H), where Uy (X) is the optimal
full-commitment contract for inducing action H with only the outcome available for contracting. The
usefulness of the signal y is determined by the value of the expected net gain from inducing a < 1, i.e.,
(DF- Ci)(a)) - (R R(a)). If this is positive for some a, then o = 1 is suboptimal and the signal is useful;
otherwise, the signal is useless for contracting.'

Figure 2 illustrates the cost and benefit comparison that determines the signal's usefulness. The line
o®,+(1-a)®, represents the expected compensation cost resulting from the principal's randomization over
inducing action A with probability a and action L with probability 1-a, given that full commitment is
possible and both the outcome and the signal are used for contracting. When only the outcome is used for
contracting under full commitment, the expected compensation cost is represented by the line a®}+(1-a)®d, .
This line is above a®,+(1-a)®, for all & > 0 because the signal's informativeness implies @, > @,,.

Since a®,+(1-a)d, is attained with unrestricted use of the signal's information, it provides a lower
bound to the minimum expected compensation cost achievable with a renegotiation-proof contract, i.e., Ci)(a).
In general, it is not clear which of (i)(a) and a®;+(1-a)®, is lower. (i)(a) utilizes the signal's information,
but a®;+(1-a)®, has the benefit of having the risk-neutral principal perform the randomization.
Nevertheless, it is certain that when o = 0 or 1, neither has any advantage over the other, and hence they are

equal at these end points.

Insert Figure 2 around here.
|

In the figure, there is a dashed line passing through Ci)(l)z(l)g and parallel to the expected revenue
line R(a)=aR,H(1-a)R,. The height of this dashed line represents the value @ - (R, - R(a)). Therefore,
the vertical difference between the dashed line and the line representing (i)(a) is the expected net gain (@

- Ci)(a)) - (R - R(a)) resulting from inducing o < 1 instead of o = 1. The figure illustrates the situation in
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which some positive expected net gains exist. These gains are represented by the shaded area.'® When such
an area exists, o = 1 is suboptimal and the signal is useful.

Because (i)(a) is bounded from below by a®,+(1-a)®,, the saving in expected compensation cost
from inducing some a < 1, i.e., @ - ®(a), can never exceed a(@), - @) + (1-a)(® - @,). This means the
expected net gain satisfies:

(@ - D(@)) - (R, - R(@) < (@ - D) + (1-a)( @ - D) - (R - R(a))
= a(Qy - D) - (1-0)[(Ry~R,) - (P~ ©)].
Note that this upper bound on the expected net gain is negative for all a's lower than
ay = [(Ry=R,) — (P~ @)VIR,~R,) — (D= D))]-
Therefore, any gainful randomized action, if it exists, has to be greater than this cutoff point. In the figure,
this is the intersection of the dashed line and the line representing a®,+(1-a)®,.

When the signal carries very poor information about the action, g(y|x,a) will be nearly independent
of a. As aresult, U,(X,Y) will be almost identical to Uj,(X), and @, will move towards @}. Because the value
of @}, and the slope of the dashed line are unaffected by this change, it will result in an o, very close to o =
1. The shaded area that represents positive expected net gains might then disappear. This suggests a signal
with very poor information about the action would be useless. Results in the next section confirm this

conjecture.

4. Main Results

Sufficient conditions for the signal to be useless and useful are given in this section. One nice feature
of these conditions is that the effects of the signal's information are captured in an informativeness measure
called the degree of informativeness vector. Using the Euclidean norm to summarize the information quality,
I find that the signal is useless when it carries sufficiently poor information, i.e., when the norm is
sufficiently small. An analogous result for usefulness also holds."’

To obtain a sufficient condition for the signal to be useless, I look for a lower bound of (i)(a). If this
lower bound is everywhere weakly higher than the dashed line @}, - (R, - R(a)), the shaded area will not
exist. That means o = 1 is optimal and the signal is useless.

A component of this lower bound is the minimized value ®*(«) of the following program:
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(oRs-L) Min ¥, ©(U,x)[op(x|H)H(1-a)p(x|L)]

f/L(x) Vx
subject to
NE-L: Y. Up(x|H) - DH) = Y, Uy(x)p(x|L) - D(L)
AIR-L: Y U )px|L) - D(L) > V.

This is the program for finding an optimal full-commitment contract for inducing ac(0,1] using the outcome
alone. Because every feasible contract in this program corresponds to a feasible contract in program (oRs),
and because for such contracts the objective values of the two programs are the same, it follows that program
(oRs-L)'s minimized value must be weakly higher than program (oRs)'s, i.e., ®*(a) > Ci)(a). When o = 1, the
two programs are identical and their minimized values are the same, i.e., (1) = (i)(l).

Let U(X)=(U(x)), ¢ denote the optimal solution of program (oRs-L) for ae(0,1], and 6* and k* the
associated multipliers for constraints AIR-L and NE-L, respectively. Define

p(x) = p(x| LY [op(x| H)yH(1-a)p(x|L)],
which is a generalization of the likelihood ratio p(x)=p(x|L)/p(x| H). Moreover, define
A) = [(B|x.L)g(B|x.H) - 11 - ¢(G|x.L)/g(G|xH)] Vx
and A =(AX)),r
These are called the degree of informativeness of y on outcome value x and the degree of informativeness
vector. Finally, define
x = arg max { A(x) | xeX }.

This is the outcome value associated with the maximum component of the degree of informativeness vector.

The following result provides a sufficient condition for uselessness.

LEMMA 2: The signal y is useless if
Ry = @) — (R(a) - (@) = 2(1-a)(x"or = 6°)p“(x JAC) AD(L)+7) Vae(a,1).

Clearly, the signal's informativeness affects the condition only through A(x). Since

A(x) = [q(B|x,L)/q(B|x,H) - 1][1 - (G|x,L)/q(G|x,H)] VX,

its value is smaller if ¢(B|x,L)/q(B|x,H) is smaller while ¢(G|x,L)/q(G|x,H) is larger. This happens when the

14



signal y is quasi-garbled with a stochastic matrix.'® Intuitively, this means that if the signal’s information gets
worse, the condition in the lemma will become less stringent. When the signal carries sufficiently poor
information, as represented by a small enough Euclidean norm || A(X) || of its degree of informativeness vector,

the condition will be satisfied and the signal is useless.

PROPOSITION 3: For some &> 0, the condition in Lemma 2 will be satisfied, provided | A(X)| <.

Thus, the signal y is useless if it carries sufficiently poor information about the action.

This proposition shows that the condition in Lemma 2 is not vacuous and thus establishes the
insufficiency of informativeness result. Analogous results for usefulness also hold. To show that a = 1 is
suboptimal and hence the signal is useful requires the identification of one a < 1 at which the expected net
gain (O}, - Ci)(a)) - (R - R(a)) from inducing this randomized action is positive. This will happen if the
minimized compensation cost (i)(a) has an upper bound, say d_)(a), satisfying the following conditions: (i)
(1) = OF; (i) /(1) > R'(1).

Because ®(a) > D(a), (D) - ®(a)) - (R, - R(a)) is a lower bound of the expected net gain (@,
Ci)(a)) - (R, - R(a)). Condition (i) ensures that this lower bound equals zero at « = 1. Then condition (ii)
implies its value will increase as o decreases from 1. Together, these conditions guarantee that the lower
bound has a positive value for some a very close to 1. Consequently, the expected net gain from inducing
this o must also be positive. That means, o = 1 is suboptimal and the signal is useful.

In the appendix, I show that such a Ci)(a) satisfying conditions (i) and (ii) can be found if the

condition in the following lemma holds. Consequently, it is a sufficient condition for the signal to be useful.

LEMMA 3: The signal y is useful if (R, - @3;) — (R, - @j5;,) < (' = 0)Y, p()A@) @ U(x))p(x|L),
where @y, = ¥, O(Uy(x))p(x|L).

If ¢(G|x,H) or g(B|x,L) gets larger for some x with their values being constant for all other x, the
signal will become more informative and consequently the degree of informativeness vector, A(X), will
become larger. This will result in a larger value on the right hand side of the condition in Lemma 3. The

condition thus becomes less stringent. When ¢(G|x,H) gets close to 1 for all x with ¢(B|x,L) being constant
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for all x, ¢(B|x,H) = 1 - q(G|x,H) will approach zero, resulting in an arbitrarily large degree of
A(X)

condition in Lemma 3 will surely be met. Intuitively, this means that when the signal carries sufficiently rich

informativeness vector. Such a vector will have an arbitrarily large Euclidean norm, , and the

information, as represented by a large enough || A(X)||, the signal will be useful for incentive contracting

despite the renegotiation consideration.

PROPOSITION 4: For some K > 0, the condition in Lemma 3 will be satisfied, provided | A(X)| > K.

Thus, the signal y is useful if it carries sufficiently rich information about the action.

In the next section, I will discuss how my results bear on some management control practices which

appear to be at odds with conventional agency theory.

5. Implication for Relative Performance Evaluation

In the managerial accounting literature, Holmstrom's informativeness criterion has been applied to
understand the controllability principle in responsibility accounting. Antle and Demski (1988) showed that
the principle can be modified to mesh with the informativeness criterion. That is to say, a manager should
be held responsible for a variable if and only if it is controllable by him in the sense that the variable is
informative about the manager's effort. This appealing interpretation of the controllability principle, however,
does not seem to be confirmed by field studies, such as Merchant (1987). The companies in his study
persistently held their managers accountable for a number of uncontrollable factors including economic and
competitive conditions. This is puzzling because according to the theory, the companies should be able to
benefit from adjusting for these uncontrollables in evaluating their managers' performance.

In a different field study, Maher (1987) collected similar evidence on violations of the controllability
principle. As an application of the principle, interfirm relative performance evaluation (RPE) should be used
to filter the common uncertainty faced by firms in the same industry. Because such industry-specific
uncertainty is rather common, the use of interfirm RPE should be very noticeable. However, Maher (1987)
pointed out that evidence about the use of interfirm RPE to evaluate division managers is sparse. These
observations by Merchant and Maher suggest the use of the controllability principle and the practice of

interfirm RPE are inconsistent with agency theory.
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Such discrepancies between the theory and practice can be explained with the "insufficiency of
informativeness" result derived in this paper. When contracts are renegotiable, the usefulness of a signal will
depend on its degree of informativeness. I show that it can be optimal to ignore an informative signal when
it carries very poor information. So the rare use of interfirm RPE, as observed in practice, will arise if data
on the industry peers' performance are not sufficiently informative. Under such circumstances, it is better to
ignore the data because its use will tighten the renegotiation-proofness constraints. The implicit cost arising

from this will supersede the benefit of using the data for contracting.

6. Concluding Remarks

Does allowing for renegotiation make a difference in our understanding of the use of monitoring
information in incentive contracts? I have shown that when contract renegotiation is possible, the usefulness
of a signal will depend on the degree of its informativeness. An informative signal can be useless if the
benefit of using the information cannot outweigh the cost of using it. This cost exists because the possibility
of renegotiation imposes additional constraints on the way a contract can be designed. These constraints will
be tightened when the signal's information is utilized in the contract.

Three decades of development of agency theory proves that it is a useful framework for
understanding a variety of contracting issues. Nonetheless, there are observed practices that do not fit well
with the conventional theory. They include violations of the controllability principle and the rare practice
of interfirm relative performance evaluation. This study shows that these practices can also be understood
with the agency-theoretic framework, provided the conventional full commitment assumption is replaced
with the assumption of renegotiable contracts.

From an empirical standpoint, it remains to be verified that the inability to fully commit indeed plays
a prominent role in the issues unexplained by the conventional theory but explained by the results here. For
instance, it seems perfectly possible that the rare practice of interfirm RPE is merely a result of bounded
rationality or contract writing costs. Unfortunately, we have few empirical studies investigating these factors,
and the theoretical research in these areas is even less developed than that concerning commitment. While
there might be questions about the importance of the commitment issue, an analytical exercise like this study

is still useful for expanding the predictions consistent with agency theory.
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Appendix

Proofs of the preliminary results in Sections 2 and 3 can be found in Yim (1995). Part I of this appendix
contains proofs of the main results in Section 4. These proofs are based on properties of an optimal renegotiation-
proof contract characterized in Part II of the appendix. The properties are derived from two auxiliary optimization
programs specified in Part I and are expressed in terms of notations introduced there. Therefore, understanding the
structures of these programs and the meanings of the notations in Part I is a prerequisite for understanding the proofs

in Part I.

I. Proofs of Results in Section 4

PROOF OF LEMMA 2: As discussed in Section 3, the expected net gain from inducing some a < 1, i.e.,
(D - (iD(a)) - (Ry - R(a)), is non-positive for any a weakly below o,. Therefore, a sufficient condition for the signal
to be useless is that some lower bound of the expected net gain is non-positive for every ae(a,,1), or equivalently,
some lower bound of (i)(oc) is weakly larger than @}, - (R, - R(a)) for every ac(a,1). In this proof, I will show that
DNa) - 2(1-a)(x%a - 6)p“(x)AX)@D(L)+7) is a lower bound of (). Consequently, the condition

DY) - 2(1- o)k - 0)p“(x)AX)@AD(L)+V) > Dy, - (R, - R(w))  for every ac(ay,),
which is simply the condition in Lemma 2, is a sufficient condition for the signal’s uselessness.

It takes four main steps to show that ®*(a) - 2(1-a)(k%a - 60“)p”(x,)A(x) @ D(L)+V) is a lower bound of
®(a). In the first step, a lower bound of ®(0) is derived based on (i) properties of the optimal solution of program
(oRs-L) specified in Section 4, (ii) properties of the renegotiation-proofness constraints discussed in Section 2, and
(ii1) the convexity of ®@. Then in each of the remaining steps, a new lower bound with a simpler structure is derived
from the lower bound of the previous step, using properties of programs (oRs-1) and (oRs-2) specified in Part I of

the appendix.

Step 11 @) + [, (<" - (k- a0)p“CN( U, x,G:0) - Uy, ,B3a))X(g(G |x,H)- (G| x,L))p(x | H)] +

Y [0°p(x| L) + k“(p(x| H)-p(x| L) (U, (x;00) - Uti(x)) is a lower bound of ®(a), where

(((U X TXY300),00)) e ((U 1(%;0)),v).ev) 18 the optimal renegotiation-proof contract characterized in Part

II of the appendix.

Consider first the optimal solution U7(X) of program (oRs-L) for ac(0,1]. The condition characterizing
Up(x) is

Q' (Ujx)) = k*a - (*a — 6%)p*(x).
Because constraint AIR-L of the program is binding at the optimum, the exact values of 6* and k” are determined
by constraint NE-L and the binding constraint AIR-L of the program, which are equivalent to the equation system
below:
L. @7 (Yo~ (o~ 67)p"(x))p(x|a) - D(a) =V Va,

where @'”'(¢) is the inverse of ®'(¢). Once 0” and k” are determined, so are Uj(x) and @* ()=}, ®(Us(x))[op(x | H)+
(1-a)p(x|L)].



The way I define the Lagrangian guarantees that 8 i.e., the multiplier for constraint AIR-L, is non-negative.
Since p%(x) is decreasing in x, k“/a - 6% must be positive; otherwise, Uj(x) would be non-increasing in x, violating
constraint NE-L. As «“/a - 6" > 0, x” must be positive. In short, 8* > 0, x*/a - 8*> 0, and «* > 0.
The convexity of @ implies
OUy(x, ) = QUR)) + @' (Ui Uy wey:a) = Up)
and DU, (X)) > O(Ug(x)) + D' (Us(x)(U,(x;0) - Ug(x)).
Thus, a lower bound of (i)(a) can be obtained as follows:
0(0) = oL, Uylrwpi00)g(v [ Fp(e| H) + (1=, (U, (Xio))p(x|L)
> o}, Q(Ux)q(y|x,H)p(x | H)
+ al.Y, O (U Uyle, 500 - Up(x)q(v|x.Hp(x | H)
+(1-a)), DUx)p(x|L)
+ (1=, ' (Ui (U,(xie) - Up0)p(x| L)
= L. QU5 ))[op(x| ) H(1-a)p(x|L)]
+ ¥, O (Ui)E, Unlx, x:a)g(v|xH) - Uy(ca)p(x| H)
+ ¥, O (U)[ape| HyH1-a)p(x | L))(U,(x:) - Ugf).
By definition, Y, ®(Uji(x))[ap(x| H)H(1-a)p(x|L)] is @*(a). Moreover, by the flat-scheme and same-expected-reward
renegotiation-proofness constraints, UL(x;a) = Zy UH(x,ﬂx,y;a)q(y|x,L). Therefore, using the characterizing condition
Q' (Ujx)) = k"a - (“/a = 8")p*(x), I can express the lower bound of Cb(a) as
@) + [Y, ("~ (- a0 @) Uyy(,x,Gs00) = Uyyorx,B30))(q(G |6, H)- (G | x,L))p(x| H)]
+ L [0 | L) + k(x| H)-p(x | L)Y sr) = Up(x).

Step 2: ®%(a) - (K"~ a0, p"C) (U (x.x.Gs01) - Uyfex,x.B30))(q(Gx,H)~q(G]x.L))p(x| H)] is a lower bound
of d(a).
Simplifying the lower bound derived in Step 1 with constraint NE-L and the binding constraint AIR-L of
program (oRs-L) in Section 4 yields
(@) + [Y, (" ~ (= a0)p" ) (Uyy(x.x,Gs00) = Uyyxx,B30))(q(G|x,H)-q(G | x.L))p(x| H)]
+ 0%, Uy(vso)p(x|L) - D(L) - V] - &“[D(H) - D(L) - ¥, Uy(x;o)(p(x| H)-p(x | D).
By constraint AIR-2 of program (oRs-2) in Part II of the appendix, the term 6°[) UL(x;a)p(x\L) - D(L) - V] of the
expression above is non-negative. Thus, dropping this term yields the new lower bound of (i)(a) below:
(@) + [Y, (" ~ (= a0)p" ) (Uyy(x.x,Gs00) = Uyxx.B30))(q(G|x,H)-q(G | x,LY)p(x| H)]
- K'[D(H) - D(L) - ¥, U, () (p(x| H)-p(x| L))].
Additionally, constraint AIC-1 of program (oRs-1) in Part II of the appendix and constraint NEL of program
(oRs-2) there imply
Y. (Unx,x,Gs0) = Uy, x,B300)%(q(Gx.H)-q(G | x.L))p(x| H)
=Y. ¥, Uy, xyia)g(y|x.H) - U,(x:a)p(x| H)
=Y. ¥, Upx, xyso)q(v | x Hp(x| H) - ¥, Uy (ria)p(x| H)

il



= Y. Uylsap(x| L) - DL) + DH) - ¥, U,(r:a)p(x|H)

=D(H) - D) - Y., Uy(sa)(p(x| H)-plx| ).
Therefore, the term k“[D(H) - D(L) - ¥, U L (;0)(p(x| H)-p(x|L))] in the new lower bound derived above may be
substituted by ¥ k“(U,(x,x,G;a) — Uy(x,~x,B;0))%(q(G|x,H)~q(G|x,L))p(x| H). With this substitution, the new
lower bound can be expressed as

DY (a) - (K- ab")[Y, p ) Upx,x,Gs0) - Uy, x,B;0))(q(G|x,H)-g(G|x,L))p(x| H)].

Step 3: ®*(a) - 2(1-a)(x"a - O9)[Y., p“(x)A(x)(p(i/L(x;a))p(x|L)] is a lower bound of (i)(a).
Consider below the component UH(x,ﬁx,G;a) - U (x,7x,B;0) of the lower bound of Cb(a) derived in Step
2. By constraint SER-1 of program (oRs-1) in Part II of the appendix,
UH(x,ﬁx,G;a) - (AJH(x,ﬁx,B;a) = (UH(x,ﬁx,G;a) - UL(x;a))/q(B|x,L).
Moreover, the convexity of @’ ensured by Assumption 6 and constraint NNG-1 of program (oRs-1) imply
" (U,r:o)(Uyle,x,G:a) - Uy(wiar))
< '(Uyle,w,Gia)) - @' (Uy(xs00))
< (@ '-DO'(U,(x:a))d@)p().
Thus,
UH(x,ﬁx,G;a) - UH(x,ﬁx,B;a)
< (Blx.L) (@ '- 1)(@' (U (00)/@" (U (x:0))d(x)p(x)
< 2(a - DU, x:a)d)P().
This means that the lower bound of (i)(a) derived in Step 2 is itself bounded below by
(@) - (K"-ad){Y, p"0)[2(a '~ DA U,x:0)d®)p()I(q(G |x.H)-q(G|x,L))p(x| H)}.
Consider below the component d(x)p(x)(g(G |x,H)-q(G|x,L))p(x|H) of this new lower bound of (i)(a).
Because p(x) = p(x|L)/p(x|H) and
o)[g(Gx,H)-g(G|x,L)]
= [q(B|x.L)/q(B|x.H) - q(G|x,L)q(G|x,H)][q(G|x.H)-q(G|x,L)]
=[(q(B|x.L) - q(B|x.H))/(q(B|x,H)q(G|x,F)][q(G|x,H)-g(G|x,L)]
=[q(B|x.L)/q(B|x.H) - 1][1 - q(G|x,L)/q(G|x,H)]
= Ax),
the new lower bound can be expressed as

(@) - 2(1-a)(a - 09[Y, pEAX AU, (x:0)p(x|D)].

Step 4: () - 2(1-a)(K%a - 67)p"(x,)AX)@D(L)+7) is a lower bound of ®(a).
Consider below the component Y’ p“(x)A(x)(p(Q(x;a))p(x |L) of the lower bound of Ci)(a) derived in Step
3. Let x = arg max { A(x) | xéX }. As p“(x) is decreasing in x and ¢ is positive, non-increasing, and concave,
L P CA@ AU, )| L)
< @A@Y, AU x| L)

il



< PO)A@ AL, Uy(wsap(x|L))
< p"()AX)AD(L)HD).
Thus, ®*(a) - 2(1-a)(x"a - 0")p“(x,)A(x) @ D(L)+7) is also a lower bound of (i)(a). |

PROOF OF PROPOSITION 3: Note that the multipliers «“ and 6” are finite."” Thus, some bound b < « will exist

such that k%a - 0% < b Yae(ay,1). Since p“(x,) = p(x;|L)[op(x,| H)+(1-a)p(x,|L)] < p(x,|L)/p(x,|H) = p(x,),
2(1-a)(x%a = 09)p“(x YAX) A D(L)+V) < 2(1-a)bp(x,)A(x) @ D(L)+TV) Vae(og,1).
So it suffices to prove that for some € > 0, 2(1-a)bp(x,)A(X) A D(L)+V) < (R, - ©}) - (R(a) - DN(a)) Vac(ay,1) if
||A(X)|| < &. To prove this, consider the program below, which is the program for finding the optimal full-

commitment contract U,(X) for inducing action / using the outcome alone:

(FC¥) Min Y OU,(x))p(x|H)
Upfx) Vx
subject to
Ict: Y U x)p(x|H) - D(H) > ¥, Uy(x)p(x|L) - D(L)
IR": Y Ui (x)p(x|H) - D(H) > V.

Because the optimal solution Uj(X) of program (oRs-L) in Section 4 is a feasible choice of the program above,
Y. ©(Uj(x))p(x| H) must be weakly greater than program (FC*)’s minimized value, ®@}. Moreover, note that
¥, DU)P(|L) = O(F, U(x)p(x| L)) = DD(L)+T) = @,. Therefore,
(@) = Y, DUH))[ap(x| HyH(1-a)p(x| L)]
> o)+ (1-a)D,.
This implies
Ry — @) = (R(a) - D))

v

(Ry — @) - [(aR,+ (1-0)R)) - (a®y + (1-a)D,)]
(1-)[(Ry — @y) - (R, - @y)].
Let & = [(R, - D) - (R, - ®))/[2bp(x)@D(L)+7)]. When |AX)| < e, A(xX) must also be less than &.

v

Hence, Yae(ay,1),
2(1-0)bp(x)AX PDLYHY) = (1-a)AD[(R,; - D) - (R, - D))/e
< (-)[(Ry, - @) - (R, - @)
< (R - D) - (R(a) - D).
Consequently, for such an , the condition in Lemma 2 is satisfied when | A(X)|| < &. That means, the signal y is

useless if it carries sufficiently poor information about the action. |

PROOF OF LEMMA 3: As explained in the text, to show that o = 1 is suboptimal and hence the signal is
useful, it suffices to find some upper bound <i)(a) of the minimized compensation cost (i)(a) such that (i) ED(I) =05
(i1) (i)’(l’) > R'(1"). To derive such a EI)(a), I use program (oRs-U) stated below. It is modified from program (oRs-
2) in Part II of the appendix. Specifically, program (oRs-U) is obtained by strengthening the inequality constraints
NEU and AIR-2 of program (oRs-2) to equality constraints. As a result, constraint NEL of program (oRs-2) is

v



fulfilled automatically, and program (oRs-2)’s objective function reduces to the one given below:

(oRs-U) Min  ofY,Y, ®(Ux(ey;T,00.0)q( [ x.H)p(x| H)] + (1-o[L, D(T,0)p(x|L)]
subject to vk

NE-U: Y.Y, Us(eysUy0).a)g(v [x.Hp(x| H) - DE) = ¥, U,@)p(x|L) - DL)
AIR-U: Y U x)px|L) - DIL)="7.

Clearly, this is a problem of classical optimization. Suppose U;(X)=(Uj(x)), is an optimal solution of this
program. Let 0" and ” be the associated multipliers for constraints NE-U and AIR-U. By the implicit function
theorem, U3(X), 0%, k% and the minimized value of the program, i.e.,

O(a) = a¥, Y, DUy U@ x| H) + (1-0)L, SUx)p(x|L),
are all differentiable in o.

Because the constraint set of program (oRs-U) is more stringent than that of program (oRs-2), (i)(a) is an
upper bound of (i)(a). When a = 1, Uy(x,y;U,(x),0) will be identical to U, (x) and program (oRs-U) will be the same
as program (oRs-L) in Section 4. Thus, U'(X) = UX(X) = U;(X) and ®(1) = &(1) = @. So condition (i) is satisfied.

In the following, I will show that condition (ii), i.e., (i)’(l’) > R'(17), will be satisfied if the condition given
in this lemma is met. Therefore, this condition is a sufficient condition for & = 1 to be suboptimal and the signal to
be useful.

Consider first the derivative of (i)(a). By the envelope theorem, it is equal to

O'(a) = ¥,Y, ®(Ux(oysUs(0).a)qrx.Hp(x| H) - ¥, ®Us)p(x|L)

+ 1Y, (® - a®' (U Ui@),0))) * (-0U(y:U(x),a)/da)q(y |x, Hp(x | H).
Note that ¥, (OUx(x,y;U(x),0)/0a)q(y |x,H) = - a *p(x)A)D" (U)LY, " (Un(x.y;U,(x),2))g(-y|x.L)]. When &
=1, Uy(x,y;U,(x),a) is identical to U, (x), and program (oRs-U) will be the same as program (oRs-L). Thus, U} (X)
= UYX) = Uy(X), D(1) = @°(1) = @}, K =, and T = 0. Because ®'(U,(x)) = ¥ - (K -0 )p(x), the left-derivative
of &)(a) at a = 1 should be equal to
O'(1) = ¥, DU (PG| H)-p(x| L) + (-0)Y, pe)A® AUy x)p(x | D).
On the other hand, R'(a) = R,; - R,. Therefore, a sufficient condition for & = 1 to be suboptimal and the signal to

be useful is &)’(1’) >R, - R,. Let (I)ﬁ‘ . = Y. ®(Uy(x))p(x|L). The condition can then be expressed as (R, - @}) -
(R, - @j) < (<'=0HE, pIAE) A Up(x))p(x|L). u

PROOF OF PROPOSITION 4: Let K = M"*[(R,, - @) ~ (R, ~ Oy )V/[(x'-0")p(x) A Up(x))p(x|L)], where M
is the number of x's in X. When |A(X)|| > K, A(x) = (¥, A@)M)"? = | AX)||/M*? > KM = [(R,, - ®F) - (R, -
Dy V(' -0Dp() AU (x)p(x|L)]. Thus,

('=6HY, p()A@) A U(x)p(x|L)
> (1K!'-0")p()AC) A Up(x))p(x| L)
> (R = @p) - (R, = D). u



I1. Optimal Renegotiation-Proof Contract: A Partial Characterization

In general, program (oRs) is not a concave program. This can be seen by substituting )’ Uy(x,y)q(v|x,L)
for U,(x,y)'s using constraints SER and FS. The result is a program with choice variables U,(x,))'s only. Since the
size of J(x) varies, it is impossible to guarantee the left hand side of constraint NNG is a concave function.
Moreover, it is not clear whether any of the normality conditions for non-linear programming is satisfied by the
program.”® Therefore, I cannot rely on the usual Kuhn-Tucker conditions to characterize an optimal contract.

To deal with this difficulty, I decompose the contract design problem into two stages. First, the principal
looks for the best compensation plan (U, (x,G),U,(x,B)), for a type-H agent under the same-expected-reward,
upward-sloping-scheme, no-net-gain, and AIC constraints, given a compensation plan (U, (x),U,(x)), . for a type-L
agent that already takes into consideration the flat-scheme constraint. In the second stage, the principal adjusts
(U,(x),U,(x)),.x optimally under the AIR constraint to finish the optimization process. The details of the

optimization problems at these two stages are discussed in the following subsections.

First-Stage Optimization

Stated below is the program representing the first-stage optimization:

(0Rs-1) Min )Y, ®(Uyx)g(y|x,Hp(x|H) + (1-0))Y., (U, (x)p(x|L)

Uplx,y) VyVx

subject to

SER-1: Y, Unxy)q(|x,L) = Uy(x) Vx
US-1: U, (x,G) > Uy(x,B) Vi
NNG-1: (1-0)®'(T,(0))p(x) - a[®'(U,(x,G)) - ©'(U,(x,B))] > 0 Vx
AIC-1: Y. Y, Unsy)g(r x.Hp| H) - DUH) = X, Uy p(x|L) - DIL).

In finding an optimal compensation scheme (Uy(x, G),U(x,B)) for a type-H agent on outcome value x, the
principal should recognize that the weighted average )., U,(x,)q(y|x,L) of the compensation must be restricted to
U, (x) by constraint SER-1. Therefore, the principal can only choose the spread, U, (x, G)- U,(x,B).

There are two constraints on this spread. The first limits it to be non-negative, but not too big. This
constraint is derived by combining constraints US-1 and NNG-1 into the compound inequality

0 < O'(Upyx,G))-@'(Upx,B)) < (o' 1)D'(U,(x))d(x)p(x).
Secondly, coordination in the choice of the spreads for different x's is required by constraint AIC-1. Using SER-1,
one can rewrite AIC-1 as

Y, (Uyx.G)- Uyx, BY@(G|x,H)~g(G | x.LY)p(x | H) = [¥, TU,(0)p(x| L)-D(L)] - [¥, Ty(o)p(x| H)- D).
This means the sum of the spreads with weights (¢(G|x,H)-g(G|x,L))p(x| H)'s must be equal to the reduction in the
expected utility of the agent selecting scheme (U, (x),U,(x)) after taking action H instead of action L.

If constraint AIC-1 in program (oRs-1) were lifted, the principal would for each x adjust the spread to
minimize the component ), ®(U,(x,y))q(y|x,H) of the expected compensation cost. Since ), U,(x,y)q(y|x,L) always
equals U, (x), a scheme (U(x, G),U,(x,B)) with a larger spread is second-order stochastically dominated by one with

Vi



a smaller spread. Therefore, without AIC-1, the principal would eliminate any spread.

When AIC-1 is present, there is a tradeoff among the marginal gains from reducing the spreads. The
optimal choice of a spread can end up in one of the following three possibilities:

(1) Constraint US-1 is binding: As aresult, the spread is zero. This together with constraint SER-1 implies
Uplx,G) = Uy(x,B) = U,(x);

(i1) Constraint NNG-1 is binding: In this case, the spread is set to the maximum allowed by the constraint.
Therefore, U,(x,G) and U,(x,B) are determined by this binding constraint and constraint SER-1;

(iii) Neither constraint US-1 nor constraint NNG-1 is binding: When this happens, the choice of the spread
is an "interior solution." Consequently, U,(x,G) and U,(x,B) are determined by constraint SER-1 and the first-order
condition that characterizes the "interior solution."

A formal expression summarizing the optimal U,(x,y)'s under these three cases can be obtained with the
Kuhn-Tucker conditions. Figure 3 illustrates why these conditions are a valid characterization of the optimal solution
of program (oRs-1). Depicted in the figure is the set of (U, (x,G),U,(x,B))'s fulfilling constraints SER-1, US-1, and
NNG-1 of program (oRs-1) for the specific x. This set is represented by the line segment RP. Clearly, it is a convex
set. Because the set of (U,(x,G),U,(x,B)).~ s fulfilling constraint AIC-1 is convex, and convexity is preserved under
set intersection, program (oRs-1)'s constraint set is also convex. Additionally, the program has a strictly convex

objective function. Therefore, the optimal solution is uniquely characterized by the Kuhn-Tucker conditions.”!

Insert Figure 3 around here.
|

If constraint NNG-1 is binding, the optimal U,(x,y)'s, denoted by (Uy(x, y;UL(x),a))ygy, will be determined
by constraint SER-1 and the binding no-net-gain constraint, i.e.,
(1-a)®@"(U(x))0(x)p(x) = a[ @' (Uyx,G)) = @' (Uy(x,B))],
as discussed in case (ii) above. Denote the multiplier for constraint AIC-1 by # and define y = #/a. When neither
constraint US-1 and NNG-1 is binding, which is case (iii) discussed above, the optimal U,(x,y)'s, denoted by
(Uxy:w,U(x))), > Will be determined by constraint SER-1 and the following interior solution equation originating
from the Kuhn-Tucker conditions: ®'(U,(x, G))q(B|x,L)/q(B|x,H) - ©'(U,(x,B))q(G|x,L)/q(G|x,H) = yd(x).

Given below is the optimal U,(x,y)'s of program (oRs-1), expressed in terms of y:
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ﬁL(x) if 1

IN

®'(U,(x))

Ueysw,U () if - ©'(U,(x))

IN

v
D' (Uy(x,GU ,(x),0))

+ (o '-1)®' (U, (x)q(G|x.L)/q(G|x,H)
U ;U (x),0)  if v > O (Uyx,GU,(x),a)

+ (7' =D)®'(U,(x)g(G|x.L)/g(G|x.H).

IN

U, (xy;9,U,(x),0) = 3

The derivation of this result can be found in Yim (1995). There I also show that some y(U,(X),a) exists such that
constraint AIC-1 is fulfilled by ((Uy,(x,y;w(U,(X),0),U,(x),0)), y);cx» 1-€.,
V.Y, Uryw(U,(0.00.0,(x),0)q (v [x Hp(x | H) - DEH) = Y., Uy(xp(x| H) - D(L).

Consequently, (Uy(x,y;3w(U,(X),®),U,(x),)), y),x is the optimal solution of program (oRs-1).

Note that for any (U, (x, G),U,(x,B)) satisfying the renegotiation-proofness constraints, the value of the left
hand side of AIC-1 is bounded between ) U, (x)p(x|H) - D(H) and Y., Un(x,y;U,(x),a)q(y | x,H)p(x|H) - D(H).
These are, respectively, the value of ), ) U,(x,»)q(G|x,H)p(x| H) - D(H) when US-1 is binding at the optimum for
all x's, and its value when NNG-1 is binding at the optimum for all x's. The fulfillment of constraint AIC-1 requires
the value of its right hand side, i.e., Y, U, (x)p(x|L) - D(L), be inside this range. So the choice of U, (X)=(U, (%)),
must be confined to the following set to ensure program (oRs-1) has a non-empty constraint set:

2,(a) = { (@,(0)),ex | Y, w,)p(x| H) - DH) < ¥, 0,(x)p(x|L) - D(L)

< XXy U ysuy(x),0)q(v|x, H)p(x| H) - D(H) }.

This requirement gives rise to two non-emptiness constraints in the second-stage optimization, which is discussed

in the next subsection.

Second-Stage Optimization
In the second-stage optimization, the principal chooses a compensation plan for a type-L agent to minimize

the minimized value of program (oRs-1), subject to the constraints that %, («) is non-empty and the expected utility

of a type-L agent is no less than his ex ante reservation payoff:

(0Rs-2) Min ), ¥, OU(x.y:9(U(X),0),U,(x),00)q(v |x. H)p(x | H) + (1-a) X, DU, (x))p(x|L)
subject to v

NEL: Y. Up(x|H) - D(H) < Y., U/(x)p(x|L) - D(L)

NEU: Yok, Uny;Ux),a)q(y|x, Hp(x|H) = D(H) = Y., U (x)p(x|L) - D(L)

AIR-2: Y, U x)px|L) - D(L) > 7,

where NEL and NEU are called the non-emptiness (lower bound) and non-emptiness (upper bound) constraints.

Let U, L(X;a)E(UL(x;oc))wX denote an optimal solution of this program. Define
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Unlw,x50) = Uy (U, (Xea).00, U, (v:00.0)
with —x denoting the vector of the elements in X\ {x}. This is the optimal solution of programs (oRs-1), evaluated
at the optimally selected compensation scheme UL()Ca) for a type-L agent. Since programs (oRs-1) and (oRs-2)
together are equivalent to program (oRs), (((lA]H(x,ﬁx,y;a))ygy))XEX, ((UL(x;a))},gy)XEX) is an optimal solution of this
program. Consequently, the minimized expected compensation cost (iD(a) for a€(0,1) should be equal to
oL L, Uyl xy:0)q(vlx Fp(x| H) + (1-0) L, DU (XKio))p(x|L).
Note that (i)(l) = @y and fD(O) =®,. So the expected compensation cost function D is completely determined once
program (oRs-2) is solved. Subsequently, the principal can identify an optimal randomized action & by maximizing

the expected profit R(a) - (i)(a).
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Notes
1. The influence of Holmstrom's work ranges from analytical accounting research such as Baiman and
Demski (1980) and Wolfson (1985) to empirical and experimental studies such as Bushman, Indjejikian, and Smith

(1996) and Frederickson (1990).

2. Having reviewed the related empirical research (Coughlin and Schmidt (1985), Murphy (1985), Antle
and Smith (1986), and Gibbons and Murphy (1990)), Rosen (1992) also concluded that there is only weak evidence
on the use of interfirm RPE. A more recent study by Janakiraman, Lambert, and Larcker (1992) has the same
conclusion.

3. See, for example, Hart and Tirole (1988), Dewatripont (1989), Laffont and Tirole (1990), and Ma
(1991;1994). Applications in accounting include Arya, Glover, and Sivaramakrishnan (1997), Indjejikian and Nanda

(1999), and Demski and Frimor (1999).

4. More specifically, my analysis follows the complete-contracting approach used by studies such as Hart
and Tirole (1988) and Fudenberg and Tirole (1990). Under this approach, renegotiation may be embedded in a
contract that “renegotiates for the contracting parties implicitly.” Such a contract eliminates any gain from
renegotiation and is therefore renegotiation-proof. It is now clear that the analysis of complete-contracting
renegotiation models can be limited to renegotiation-proof contracts without loss of generality; this is the so-called
renegotiation-proofness principle. As renegotiation need not arise in equilibrium, the process of renegotiation is
inessential. Instead, the crucial factor is the possibility of renegotiation that hinders the power of incentive contracts
and hence worsens contracting efficiency. Because it is the possibility, not the process, of renegotiation that matters
under the complete-contracting approach adopted here, I use the term “renegotiable contracts” to emphasize that my
results are driven by renegotiable contracts, not contract renegotiation.

5. The high action, however, is implementable in my model if the signal is not used for contracting. In
that case, the outcome can still be used to motivate the agent. By contrast, the high action in Fudenberg and Tirole's
model is not implementable at all because the outcome there, which corresponds to the signal here, is the only
variable available for contracting.

6. A randomized action, or mixed strategy, is a probabilistic decision rule guiding the agent's choice of
an action actually taken. Some researchers have regarded it as an artificial theoretical construct lacking practical
content, for conscious randomization is rare in real-life decision making. This, however, is only one interpretation

among other more reasonable alternatives. Fudenberg and Tirole (1990) have explained how a randomized action



can be understood as a shorthand for modeling an agent with private information about his preference based on
Harsanyi’s (1973) purification argument. Crawford (1990) has also provided another interpretation based on his
definition of “equilibrium in beliefs,” a generalization to Nash equilibrium for games with player preferences
possibly violating the von-Neumann-Morgenstern independence axiom. With his interpretation, mixed strategy is
a probability distribution representing a player’s belief about the other’s strategy; it need not involve conscious
randomization at all.

7. Given the importance of a randomized action in this model, one might be curious about whether ex ante
randomization by the principal also matters. As the fundamental reason for ex ante randomization, namely the non-
concavity of the principal and the agent’s utility frontier, may also exist here, the optimality of ex ante randomization
is not ruled out. However, for a better focus, this side-issue is not considered in the paper either.

8. One might be confused by the feature of the assumption that the distribution of y depends on a given
x. This seems to suggest y is just another measure of the agent’s performance, not a measure of his competitor’s
performance. Consequently, it seems inconsistent with the interpretation that y can be a competitor’s annual
performance and hence may be used for interfirm RPE. However, in many situations of interest, the action of a
company’s manager can affect its competitor’s performance (e.g., the effort put into an ad campaign increases one’s
market share and at the same time reduces that of its competitor). So y can be a measure of the company’s and its
competitor’s performance. Even without such externalities, a competitor’s performance y may still convey
information about the agent’s action a conditional on x. This does not necessarily imply that the competitor’s
performance is actually influenced by the agent’s action.

9. The class of utility functions fulfilling this requirement includes the linear risk tolerance (LRT) family,
also known as the hyperbolic absolute risk aversion (HARA) family. In decision theory, the absolute risk aversion
coefficient -U"/U’ is a popular measure of risk aversion. Recent research, however, suggests risk tolerance might

be the more relevant measure in agency-theoretic analyses; see, for example, Jewitt (1988).

10. Although I have discussed the requirements on ¢ in terms of its first derivative, its differentiability is
not needed to derive any results here. Only the first- and second-order differentiability of U and hence @ are
required. Moreover, Assumption 6 is used to prove Lemma 2 and Proposition 3 only. The proposition, which is the
key result here, can be established without Assumption 6 using Berge's (1963) maximum theorem if a convex @'

is assumed directly; see Yim (1995) for a proof.



11. The analysis here uses the complete-contracting approach that does not exclude any possible way of
writing an enforceable contract. In particular, the principal may offer a contract contingent on the agent’s report on
the selected action. Alternatively, the principal can achieve the same effect by offering a menu of compensation
schemes composed of all the possibilities of the report-contingent contract and let the agent pick a compensation

scheme from the menu. This alternative setup is analytically more convenient and thus used here.

12. A technical assumption referred to by Amershi, Banker, and Datar (1990) as the all-a-or-no-a condition
is needed to prove the sufficiency of informativeness in Holmstrom's (1979) model. He discussed this in footnote
21 of his paper. Amershi, Banker, and Datar showed that the sufficiency part of the informativeness criterion does
not hold if the technical assumption is violated. This complication does not exist in the two-action, binary-signal
setting considered here. The insufficiency of informativeness, however, will still arise because of economic forces
related to renegotiation.

13. With full commitment, randomized actions are suboptimal because there is always room to upset a
randomized-action prospective equilibrium if it is better to induce action H than action L. Similar room might not
exist in a renegotiable contract model since inducing the agent to take a more productive action will tighten some
renegotiation-proofness constraints.

14. Although this definition of informativeness focuses on a binary action a with ¢ = H being the action
of interest, it is equivalent to the original definition used by Holmstrom (1979) based on sufficient statistics (see Yim
(19995)).

15. One might wonder whether the principal could use the signal for contracting and at the same time
induce an « arbitrarily close to 1. If this is possible, the loss due to inducing an o < 1 could be made arbitrarily small.
It would then be dominated by the gain from utilizing the signal even when it carries little information. However,
the renegotiation-proofness constraints US and NNG in program (oRs) prevent this from happening. To use y for
contracting, we must have @'(Uyx,G)-®'(Uyx,B)) > 0 for some x. Therefore, a <
(Y, Uiley)q(|x.L)d)p(e)[D' (X, U(xy)g(y|x,.L)(x)p(x) + @'(U(x,G))-'(Uy(x.B))], which sets an upper
bound precluding a from getting arbitrarily close to 1. So the real issue is whether there is a way to utilize y such
that the gain from it can dominate the loss from inducing the highest a allowed under the constraints of program
(oRs). The main result of this paper shows that some informative signals cannot generate sufficient net gains to

justify their use in contracting.



16. In general, the line representing (i)(a) might have a very different shape, and there might exist many

such shaded areas or none at all.

17. Necessary and sufficient conditions for the signal to be useful are not derived because of some technical
difficulty arising from the no-net-gain constraint, NNG. This constraint upsets the concavity property of the contract
design problem, leading to an invalid characterization of the optimal solution by the Kuhn-Tucker conditions. The
sufficient conditions provided here are derived based on a partial characterization of the optimal contract. Details
of the characterization are discussed in the appendix.

18. I follow the terminology used by Marschak (1972) to define "quasi-garbled" here.

19. See Takayama (1985), 40-44 and 70-72, for this fundamental result of non-linear programming.

20. The conditions stated in the Arrow-Hurwicz-Uzawa theorem (Takayama (1985), p. 92-98) are examples
of such normality conditions.

21. The convexity of the constraint set and the objective function implies that any (U, (x, G),U,(x,B)), .y
fulfilling the Kuhn-Tucker conditions is an optimal solution. The strict convexity of the objective function then

ensures that the optimal solution is unique.
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Time Line Summarizing the Sequence of the Events in the Model
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Figure 2. Illustration of the Cost and Benefit Comparison Determining the Usefulness of
the Signal
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