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Abstract

The paper investigates the effect of hedging strategies on the so called
pinning effect, i.e. the tendency of stock’s prices to close near the strike price
of heavily traded options as the expiration date nears. In the paper we extend
the analysis of Avellaneda and Lipkin (2003) who propose an explanation of
stock pinning in terms of delta hedging strategies for long option positions.
We adopt a model introduced by Frey and Stremme (1997) and show that
in this case pinning is driven by two effects: a hedging dependent drift term
that pushes the stock price toward the strike price and a hedging dependent
volatility term that constrains the stock price near the strike as it approaches
it. Finally we show that pinning can be gnerated by dynamic hedging strate-
gies under more realistic market conditions by simulating trading in a double
auction model.
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1 Introduction

Financial mathematics models are typically based on the assumption that mar-
kets are complete, frictionless and perfectly liquid, the last implying that investors
can trade large volumes of stocks without affecting their prices. Each of these as-
sumptions have been questioned in the literature. In particular a number of papers
(Frey and Stremme (1997, 2000), Platen and Schweizer (1998), Schonbucher and
Wilmott (2000)) have concentrated on the feedback effects of dynamic hedging
strategies in illiquid markets. These papers focus on the impact of options’ hedg-
ing strategies on the volatility of the underlying asset and relate the smile pattern
of implied volatility to the lack of liquidity. In this paper we analyze the impact of
option hedging strategies on both the drift and the volatility of the underline asset
price and show that dynamic hedging can be responsible for the pinning effect,
i.e. the tendency of stock’s prices to close near the strike price of heavily traded
options (in the same stock) as the expiration date nears.

A thorough analysis of the pinning effect has been provided by Ni et al. (2005) who
analyze data from the Ivy DB dataset and from a second dataset obtained from
the CBOE, from 1996 to 2002. The authors show that over this period, optionable
stocks (i.e., stocks with listed options) close near the strike prices on expiration
dates, both when the likely delta hedgers have net purchased option positions and
net written option positions. There is no corresponding effect for non-optionable
stocks.1 Moreover, as the expiration date approaches, the pinning effect increases
when hedgers have net long option positions, but it decreases when delta hedgers
have net short option positions. Thus the authors conclude that when traders
have net long positions delta hedging does contribute to the pinning. On the
contrary, when traders have net short positions, the pinning effects is driven by
stock manipulation. Evidence of pinning is provided also by Krishnan and Nelken
(2001) and Avellaneda and Lipkin (2003).

Avellaneda and Lipkin (2003) introduce the first pinning model by suggesting
that stock pinning can be induced by delta hedging long option positions. In our
paper we extend their analysis following the approach of Frey and Sremme (1997,
2000). In our model pinning is the result of two combined effects: a drift term,
driving the stock price towards the strike price of the option, and a volatility term
that, by decreasing as the stock price approaches the strike price, confines the price
close to the strike. Both models Frey and Stremme and Avellaneda and Lipkin,
make a number of assumptions on the dynamics of prices, on continuous hedging
and on the price impact shape. To model the price formation and the feedback
mechanism in a more realistic framework, we study pinning in a microstructure

1The CBOE database used by Ni et al. provides information, for each transaction, on whether
the two parties trading are market makers, public customers, or firm proprietary traders. By
assuming that the public customers do not hedge their option portfolio Ni and al. infer if the
hedgers overall net position is long or short.
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model initially introduced by Marcus et al. (2003) (see also Farmer et al (2003)
and Smith et al. (2004)). In the model, zero intelligence agents can submit both
market and limit orders. The order flows are modeled as Poisson process. The
original model has been expended by incorporating an hedger who rebalances his
position discretly. We show that our model generates pinning consistently with
the theoritical models and the experimental findings.

The remainder of this paper is organized as follow: in section 2 we revise the Frey
and Stremme model (1998) and highlight the mechanisms in the model that can
induce pinning. In this section we also compare our analysis to the one performed
by Avellaneda and Lipkin (2003). In section 3 we describe the microstructure
model and the results of our simulations.

2 Stock Pinning

Assume that the asset price behaviour is defined by a diffusion equation of the
form,

dS(t) = µS(t)dt + σS(t)dW (t), (1)

where µ is a constant drift, σ a constant volatility, and W (t) a standard Brownian
motion. Under this assumption the value of a European vanilla call option is given
by Black and Scholes formula,

C(S(t), T,K, σ, r) = S(t)N(d1) − Ke−r(T−t)N(d2),

with

d1,2 =
log(S(t)

K
) + (r ± 1/2σ)2(T − t)

σ
√

T − t
.

where r is the risk free rate, K the option strike price and T the option matu-
rity. N(·) is the normal cumulative distribution function. Moreover the amount
of stock to hold in order to hedge a position is given by the option delta defined
as ∆ = ∂C/∂S. As time goes the amount of stocks to buy or sell to maintain a
delta neutral is given by d∆.

∆ hedging strategies create a feedback effect on the stock price by inducing an
additional drift term in the diffusion equation given by eq. (1) that becomes

dS(t) = µS(t)dt + nL̂S(t)d∆(S, t) + σS(t)dW (t). (2)

In eq.(2) above L̂ is a constant price elasticity and n is the open interest on the call
option. Hence, L̂ represents a linear impact of the hedgers on the stock process.
The model further assumes that traders do not take into account feedbacks effects
when rebalancing their portfolio. The hedging strategy is based on the assump-
tion that the stock price evolves accordingly to the geometric brownian motion in
eq.(1). In this case the Delta for a long call is ∆ = −N(d1).
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The dynamics of ∆(S, t) can be derived by using Itô’s Lemma which gives,

d∆(S, t) =
∂∆(S, t)

∂t
dt +

∂∆(S, t)

∂S
dS(t) +

1

2

∂2∆(S, t)

∂S2
〈dS(t)〉. (3)

where 〈dS(t)〉 denotes the quadratic variation of S(t).

Avellaneda and Lipkin (2003) assume that the price dynamics is given by

dS(t) = nL̂
∂∆

∂t
S(t)dt + σS(t)dW (t). (4)

This can be interprated as taking only the delta time decay term in eq.(3) above.
The model generates pinning when traders hedge a long call position. The intuition
behind the pinning is clear. The term ∂∆

∂t
in eq.(4) is given by

∂∆

∂t
= −n(h1)

σ
√

τ

log y − aτ

2τ
, (5)

where τ = T − t, a = r + σ2/2, y = S(t)/K and

h1 =
log y + aτ

σ
√

τ
.

In Fig.(1), eq.(5) is positive for y < e−aτ and negative otherways. This suggests
that when the price is above the strike, d∆ is negative, inducing the hedger to sell
and, doing so, he pushes the price towards the strike. Similarly when the price is
below the strike, d∆ is positive inducing the hedger to buy and, doing so, he again
pushes the price towards the strike. This argument then suggests that pinning is
possible when the trader hedges a long position. Hedging a short position would
have the opposite effect thus pushing the stock price away from the strike.
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Figure 1: Time decay in function of y = S/K for τ = 5 days, σ = 0.16 and a = 0.
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Frey and Stremme instead consider all the terms in the delta expansion in eq.(3)
and obtain,

dS(t) = nL̂S(t)
∂∆

∂S
dS(t) + nL̂S(t)

(

∂∆

∂t
dt +

1

2

∂2∆

∂S2
d〈S(t)〉

)

+ σS(t)dW (t),

or equivalently

(

1 − nL̂S(t)
∂∆

∂S

)

dS(t) = nL̂S(t)

(

∂∆

∂t
+

1

2

∂2∆

∂S2
σ2S2(t)

)

dt + σS(t)dW (t).

Rearranging we find

dS(t) = b(t, S(t))S(t)dt + v(t, S(t))S(t)dW (t) (6)

with

b(t, S(t)) =
nL̂

1 − nL̂S(t)∂∆
∂S

{

∂∆

∂t
+

1

2

∂2∆

∂S2

σ2S2(t)

[1 − nL̂S(t)∂∆
∂S

]2

}

,

and
v(t, S(t)) =

σ

1 − nL̂S(t)∂∆
∂S

.

0.9 0.95 1 1.05 1.1

y

0

0.025

0.05

0.075

0.1

0.125

0.15

v
Ht

,y
L

0.9 0.95 1 1.05 1.1

y

-1

-0.5

0

0.5

1

b
Ht

,y
L

Figure 2: Drift term (right) b(t, y) and volatility term (left) v(t, y) in the Frey
and Stremme model, as a function of y = S/K. The time to maturity is τ = 5
days. The three lines correspond to three price elasticity: nL̂ = 2.5(solid), nL̂ =
0.5(dot), nL̂ = 0.1(dash).
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Figure 3: Drift term (right) b(t, y) and volatility term (left) v(t, y) in the Frey
and Stremme model as a function of y = S/K. The price elasticity is nL̂ = 0.05.
The three lines correspond to three different time to maturities: 1 day before
maturity(solid), 3 days before maturity(dash), 4 days before maturity(dot).

Hence the dynamic hedging strategy generates not only a change in the drift term,
as suggested by Avellaneda and Lipkin, but also a change in the volatility term
(which is constant in the Avellaneda and Lipkin model).

Furthermore, the drift term b(t, S(t)) incorporates both the Delta time decay and
the Delta convexity. This drift term is plotted in Fig.(2-right) as a function of y
for different values of L̂. The denominator in the rhs of the equation for b(t, S(t))
is always positive since ∂∆

∂S
< 0 for a long call position. For L̂ sufficiently large,

or sufficiently close to maturity, the drift term changes sign around y = 1 and
generates pinning. When L̂ → 0, v(t, S(t)) → σ and

b(t, S(t)) → ∂∆

∂t
+

1

2

∂2∆

∂S2
σ2S2(t) =

n(d1)σ√
T − t

> 0

in which case pinning does not arise. The volatility term reaches its minimum
value for y = 1, i.e. when S is close to the strike, as shown in Fig.(2-left). As L̂
increases, the volatility term v decreases further reducing random deviation from
the strike. Furthermore as we approach the maturity date the drift term becomes
stronger close to strike, while the volatility (Fig.(3-left)) becomes smaller. The
combined effect of these terms is not only to drive the price towards the strike but
also to keep it closer to the strike as it approaches it.

We solve the Frey and Stremme model numerically. Given eq.(6), the probability
density function p(t, y) of being at y at time t satisfies the forward Kolmogorov
equation:

∂p(t, y)

∂t
=

1

2

∂2p(t, y)

∂y2
v(t, y)2 − ∂p(t, y)

∂y
b(t, y) (7)

with initial condition the delta function δ(τ0, y0) = 1. Eq.(7) can be solved using
an implicit scheme with a adjusting mesh as we approach maturity due to the
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singularity at y = 1 and τ = 0.

Fig.(4) shows the solution of the Kolmogorov equation with initial conditions
τ0 = 5 days before maturity and y0 = 1.04. On the left we plot the solution for
the Frey and Stremme Model and on the right the solution for the Avellaneda
and Lipkin model. We see that in both cases the solution becomes bimodal as
nL increases with a pronounced pick at y = 1. Hence both model can explain
pinning as driven by hedging long call positions but the effect is stronger in the
Avellaneda and Lipkin model (3.5%) than in Frey and Sremme model (1.8%).
Ni et al. estimate that pinning affects 2% of optionable stocks. Our choices of
parameters gives in both cases comparable values with the empirical result.
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Figure 4: Solution of the Kolmogorov forward equation close to maturity, with
initial condition, 5 days before maturity, y0 = 1.04, and for three different hedging
positions. (Left) Frey and Stremme model with nL = 0 (solid), nL = 0.002 (small
dash), nL = 0.003 (large dash). (Right) Avellaneda model with nL = 0 (solid),
nL = 0.0005 (small dash), nL = 0.002 (large dash).

The main assumptions behind the Frey and Stremme model (as well as of the
Avellaneda and Lipkin model) is that price are lognormal, rebalancing is contin-
uous, the price impact is linear via a constant price elesticity L, are arbitrarly
large option positins can always be rehedged (demand and supply always match).
Furthermore the feedback mechanism in place in these models extrapolates from
actual markets condition like the order flow arrival rate and the order book shape.
Empirical studies on the NYSE (see for example Lillo et al. (2003)) have shown
nonetheless that the price impact function is always concave, typically well ap-
proximated by a function dp(ω) ∼ ωα where dp is the price change caused by an
order of volume ω. The exponent α varies from α ∼ 0.5 to α ∼ 0.2 depending on
stock capitalization. In the next session we introduce a microstructure model, pre-
viously studied by Daniel et al. (2003), that allows us to estimate the importance
of pinning under more realistic market conditions.
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3 A Microstructure Model

The aim of this section is to introduce a microstructure limit order model where
a hedger rebalances his position at discrete times. The model allows us to study
the impact of the hedging strategy on the order book and on the stock price and
thus gives a more realistic way of determining the probability of pinning. The
model implemented here has been previously introduced in Daniel et al. (2003).
Alternative microstructure models have been proposed for example by Chiarella
and Iori (2002), Challet and Stinchcombe (2001), Bouchaud et al (2002). The
model assumes a simple random order placement of orders. All the order flows are
modeled as Poisson processes. We assume that market orders arrive at a rate of ν
shares per unit time, with an equal probability for buy and sell orders. Similarly,
limit orders arrive at a rate of α shares per unit price and per unit time. Bids
and offers are placed with uniform probability at integer multiples of the tick size
∆p on a window sufficiently large around the midpoint. The midpoint is defined
as (a(t) + b(t))/2, where a(t) and b(t) are respectively the best ask and the best
bid at time t. When a market order arrives it causes a transaction; a buy market
order removes limit orders on the offer side, and a sell market order removes limit
orders on the bid side. Limit orders can also be removed spontaneously by being
canceled or by expiring which, in the model, happens at a constant rate of δ per
unit time. The size of the limit and market orders are sampled from a log normal
distribution with mean and variance one. In Daniel et al. (2003) it is shown that
two parameters characterize the shape of the book: the asymptotic depth α/δ
and ǫ = 2δ/ν. The asymptotic depth gives the number of shares per price interval
far from the midpoint; ǫ determines the depth at the bid and at the ask. ǫ also
determines the price impact function which is linear for ǫ > 0.1 and concave for
smaller values of ǫ. We calibrate the model by assuming that market orders arrive
with a frequency of about two a minute, such as ν = 0.16 and δt = 0.08 minutes.
The other parameters are initially set to α = 0.31, δ = 0.08, which gives a value
of ǫ = 1. We will later compare it with ǫ = 0.025. For the price tick we choose
∆p = 0.02.

To study pinning we focus on the impact of a trader that rehedges a long call
position four times a day. The option expires in five days. In the model, hedging
is achieved by submitting market orders and not limit orders because immediacy
in execution is important for the hedger. When the stock price increases, the
hedger places a market order to sell the variation of ∆(S, t), and when the stock
price decreases, the trader places a market order to buy the variation of ∆(S, t).
We first compare the shape of the stock’s drift and volatility in the simulated
process with the theoretical models proposed in the previous section.
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In Fig.(5), we show that pinning still arises in the microstructure model. As
expected, the pinning effect is stronger when the hedger position is bigger. In the
model the maximum amount of orders that the hedger can submit is limited by the
overall trading activity in the market. In fact if the amount of orders submitted
by the hedger is higher than the amount of orders submitted by the rest of the
market, the book becomes empty. Hence there is a maximum option position that
can be simulated. Thus there is a limit to the pinning generated by our model.
Nonetheless the pinning probabilities we obtain in Fig.(5) are comparable with
the empirical findings. Fig.(5) also shows that pinning is also more likely to arise
when ǫ is large, i.e. when the price impact is linear. This provides a justification
for this assumption in the theoretical models.
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Figure 5: Stock price distribution without the hedger (solid) and with the hedger
n = 600 (dash) and n = 1000 (dot) for two different ǫ: ǫ = 0.025 (left), ǫ = 1.
(right) under microstructure model

We then test if the mechanisms that generate pinning are consistent with the
theoriticaI model. To this purpose, we study the behaviour of the drift and the
volatility in the microstructure model. Given that an instantaneous drift b(t, S)
and volatility v(t, S) cannot be defined here, we measure the average drift and
volatility over a period ∆t = t1 − t0 and averaged them over a number of trajec-
tories M , i.e.

µ(t0) =
1

M

M
∑

j=1

µj, (8)

where m is the number of steps between t0 and t1, µj = 1
m

log Sj(t0+∆t)
Sj(t0)

, and

σ(t0) =
1

M

M
∑

j=1

√

√

√

√

1

m − 1

m
∑

i=1

(r(ti) − µj)2, (9)

with r(ti) = log(S(ti +∆t/n)/S(ti)). We have chosen here to simulate M = 10000
paths, with ∆t = 2 days, to allow the effect of hedging to be sufficiently incor-
porated in the stock price. We take the time to maturityτ = 5 days and repeat
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the simulation starting from initial condition S0. In Fig.(6), we observe that the
microstructure model generates a similar drift profile as in the theoretical models
but the volatility differs. Here the volatility increases as we approach the strike,
while in Frey & Stremme it decreases as we approach the strike.2
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Figure 6: Drift and volatility under microstructure model for 2 differents ǫ: ǫ =
0.025 (dash), ǫ = 1 (solid) for n = 1000.

4 Conclusion

In this paper, we compare three different models that are all capable of generating
pinning by hedging long call positions. The three models share a common pinning
mechanism, i.e. an excess drift generated by delta hedging that pushes the stock
price towards the strike. The model differs in the way hedging impacts on the
volatility which remains constant in the Avellaneda & Lipkin model, present a
minimum around the strike in the Frey & Stremme model and a maximum in
the microstructure model. Empirical analysis is required to clarify which model
generates the most realistic behaviour.

2We check that, using the same method, we recover the correct shape for the drift and the
volatility when simulating the SDE in eq. 5 via Monte Carlo. We also checked that without the
hedger, the drift µ(t, S) and the volatility σ(t, S) stay constant.

9



References

M Avellaneda and M. Lipkin (2003) A market induced mechanism for stock

pinning, Quantitative Finance, V 3, 417-425.

J. P. Bouchaud, M. Mézard, M. Potters (2002) Statistical properties of

stock order books: empirical results and models, Quantitative Finance, Vol. 2,
no 4, 251-256.

D. Challet and R. Stinchcombe (2001) Analyzing and Modelling 1+1d

markets, Physica A 300, 285.

C. Chiarella and G. Iori (2002) A simple microstructure model of double

auction markets, Quantitative Finance, Vol. 2, no. 5, 346-353 .

M. G. Daniels, J. D. Farmer, L. Gillemot, G. Iori, E. Smith (2003) Quantitative

model of price diffusion and market friction based on trading as a mechanistic

random process, Phys. Rev. Lett. Vol 90, No. 10, 108102.

Frey R. and A. Stremme (1997) Market Volatility and Feedback Effects

from Dynamic Hedging, Mathematical Finance, 7(4), 351-374.

Frey R. and A. Stremme (2000) Market Illiquidity as a Source of Model

Risk in Dynamic Hedging, ed. by R. Gibson, 125-136, Risk Publications,
London.

Hausman, J., A. W. Lo, and A. C. MacKinlay (1992) An ordered probit

analysis of transaction stock prices, Journal of Financial Economics 31, 31930.

Kempf, A., Korn, O., (1999) Market Depth and Order Size, Journal of
Financial Markets 2, 29-48.

Krishnan H. and I. Nelken (2001) The effect of Stock pinning upon op-

tion prices, Risk December S17-S20.

F. Lillo, J. D. Farmer, R. N. Mantegna (2003), Single Curve Collapse of

the Price Impact Function for the New York Stock Exchange, Nature, Vol. 421,
129-130.

S. X. Ni, N. D. Pearson, A. M. Poteshmana, (2005) Stock price cluster-

ing on option expiration dates, Journal of Financial Economics Vol. 78, Issue
1, 49-87.

10



Platen E. and Schweizer M., (1998), On Feedback Effects from Hedging

Derivatives Mathematical Finance, , vol. 8, no. 1, 67-84(18).

Schonbucher P. and P. Willmott (2000) The Feedback Effect of Hedging

in Illiquid Markets, SIAM Journal of Applied Mathematics, vol.61, no.1,
232-272.

11




