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uncover the unmanaged earnings important to firm valuation and public scrutiny, yet unobserved by outside 
parties. Simulation results based on the model show that the puzzling volcano shape of the distributions can 
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Mixture and Continuous ‘Discontinuity’ Hypotheses:  
An Earnings Management Model with Auditor-Required Adjustment 

1. Introduction  

This paper develops a parsimonious model to understand within a unified framework two 

puzzling phenomena. They are: (i) a discontinuity at zero in the distributions of the earnings 

triplet (i.e., earnings, earnings change, and earnings surprise); (ii) the volcano shape of the 

distributions. Hayn (1995) was the first to point out a discontinuity at zero in the distribution of 

earnings. Burgstahler and Dichev (1997) systematically showed that the discontinuity occurs in 

the distribution of earnings change as well as earnings, suggesting that it could be caused by 

earnings management to avoid earnings decreases and losses. Since then, a number of studies 

have found similar phenomena for particular types of institutions and for different countries (e.g., 

Beatty et al. 2002, Beaver et al. 2003, Coulton et al. 2005, Gore et al. 2007, and Parte Esteban and 

Such Devesa 2011). Degeorge et al. (1999) found a similar discontinuity in the distribution of 

earnings surprise (also known as unexpected earnings or negative forecast error) using forecast 

data in 1974-1996. Bhojraj et al. (2009) documented such a discontinuity using forecast data in 

1988-2006.  

Besides the discontinuity, the distributions of the earnings triplet usually have a volcano 

shape. “The common mental image of a volcano is that of a steep symmetrical cone sweeping 

upward in a [convex] curve to a sharp summit peak” (Rafferty 2010, p. 169).1 The sharp peak of 

the volcano shape is markedly different from the smoother, rounder top of the bell shape of a 

                                                   

1 In reality, not many volcanoes have this ideal shape. Those qualified as good examples of this image 
usually are categorized as stratovolcanoes (also known as composite volcanoes). According to Wicander and 
Monroe (2006), composite volcanoes are “steep sided near their summits … but the slope decreases toward the 
base” (p. 107). A drawing of a composite volcano on the website of the United States Geological Survey 
(http://pubs.usgs.gov/gip/volc/types.html), or a photo of Mayon Volcano in the Philippines on the website of 
San Diego State University’s Department of Geological Sciences 
(http://www.geology.sdsu.edu/how_volcanoes_work/Thumblinks/Mayon_page.html), illustrates what I refer to 
as a volcano shape in this paper. However, the crater of a volcano, which is very small in the classic 
stratovolcanoe form, is a feature to deemphasize. 



 2

normal distribution, or that of similar alternatives such as Student, logistic, or extreme value type 

I. The volcano shape of the distributions of the earnings triplet can be noticed in prior studies 

(e.g., figure 1 of Burgstahler and Dichev 1997, figure 6 of Degeorge et al. 1999, and figure 2 of 

Frankel et al. 2010). To my knowledge, no study has highlighted the volcano shape of the 

distributions, let alone explain it.  

Using simulation results based on the model developed, I show that the widely documented 

discontinuity can be partly due to a steep increase in density appearing like a discontinuity when a 

continuous distribution is plotted in terms of frequency counts in histogram bins. The steep 

increase in density is a consequence of the compression of unmanaged earnings into reported 

earnings toward an earnings benchmark as a result of cookie-jar earnings management. This 

provides a novel alternative perspective to interpret the discontinuity phenomenon, supplementing 

the prevalent explanation based on upward earnings management by “just-missed” firms. A 

number of studies have examined whether the prevalent explanation is indeed the main cause of 

the discontinuity or even questioned the existence of the discontinuity (Dechow et al. 2003, 

Durtschi and Easton 2005 and 2009, Beaver et al. 2007, Jacob and Jorgensen 2007, and Kerstein 

and Rai 2007). The alternative perspective provided here adds to the debate by setting a different 

null hypothesis for testing the existence of a discontinuity distinct from what could simply be 

interpreted as a continuous increase in density.  

Together with the auditor’s strategic response, the compression of earnings arising from 

cookie-jar earnings management attempts can also generate a volcano-shaped distribution of 

reported earnings. Auditors sometimes require adjustments to remove earnings management 

attempts (Nelson et al. 2002). Consequently, the distribution of reported earnings observed by the 

public is a mixture of the distributions of unmanaged and managed earnings. The mixture can 

retain the volcano-shape characteristics of the managed earnings distribution. I illustrate this 
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explanation using simulation results based on the model that takes into account auditor-required 

adjustment. Prior models of misreporting have omitted this aspect in order to focus on other 

issues, such as the interaction between a firm’s disclosure and investors’ rational expectation.  

Many of the studies investigating earnings management and fraud are empirical-based, with 

only a few of them (e.g., Kedia and Philippon 2009) closely guided by formal theoretical models. 

Models of misreporting exist in the literature (e.g., Kumar and Langberg 2009, Guttman et al. 

2006, Ewert and Wagenhofer 2005, Kirschenheiter and Melumad 2002, Sankar and 

Subramanyam 2001, and Fischer and Verrecchia 2000). Yet, except Caskey et al. (2010) and 

Newman et al. (2001), few have explicitly modeled the auditor, which plays an important role in 

the corporate reporting process (Bollen and Pool 2009, Caramanis and Lennox 2008, Brown and 

Pinello 2007, and Liang 2003). Some of the models above have provided explanations to the 

discontinuity phenomenon. However, no prior study has provided a single theoretical framework 

to understand the two salient features of the earnings triplet distributions.  

The sort of earnings manipulation discussed in this paper is better understood as borderline 

misreporting rather than outright fraud. Proving the intention of borderline misreporting is often 

difficult. Usually what auditors can do is simply requiring adjustments to remove such earnings 

management attempts. In the unusual circumstances where the extent of misreporting is so 

outrageous to strongly suggest outright fraud, auditors may notify regulators. Otherwise, rarely 

would client firms bear any significant consequences of borderline misreporting disallowed by 

auditors. Therefore, the main consequence of unsuccessful borderline misreporting is the reversal 

of the attempted manipulations before announcing the earnings to the public.  

The distinction between borderline misreporting and outright fraud suggests a novel 

assumption on a firm’s cost of misreporting for downward manipulations, sometimes referred to 

as cookie-jar accounting. In contrast to the conventional quadratic assumption, I assume that the 
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cost of misreporting is an increasing function of earnings manipulation, even for the negative 

values representing downward manipulations. In other words, a larger downward manipulation 

results in a more negative misreporting cost standing for the opportunity benefit of “saving for the 

future.” An auditor-required adjustment reversing a downward manipulation attempt means a 

reversal of the negative misreporting cost as well. 

Downward manipulations look like conservative accounting when viewed with respect to the 

current period. However, they can be used to build up cookie-jar reserves for subsequent upward 

manipulations (Cohen et al. 2011, Jackson and Liu 2010, and Moehrle 2002). Cookie-jar 

accounting has caused serious concern to regulators. In his famous 1998 speech entitled The 

‘Numbers Game’, the then Chairman of the U.S. Securities and Exchange Commission (SEC) 

Arthur Levitt said: “[U]sing unrealistic assumptions to estimate liabilities for such items as sales 

returns, loan losses or warranty costs … [some companies] stash accruals in cookie jars during the 

good times and reach into them when needed in the bad times.” 2 The model of this paper 

accommodates cookie-jar accounting as equilibrium behavior under a wide range of 

circumstances. In contrast, models focusing on upward manipulations usually admit downward 

manipulations as possible behavior occurring infrequently in equilibrium.  

In the model, a firm manipulates the earnings before providing the figure to an auditor for 

audit. The audit allows the auditor to separate the unmanaged and manipulated components of the 

                                                   

2 Recently, the Public Company Accounting Oversight Board (PCAOB) fined Ernst & Young (E&Y) $2 
million for failing to properly evaluate in the 2005 to 2007 audits of Medicis Pharmaceutical Corp. the amount 
set aside to account for the cost of product returns. In addition, it sanctioned three current partners of the audit 
firm plus one retired, barring some of them from auditing public companies for one to two years or more and 
imposing fines from $25,000 to $50,000. Medicis corrected the misreporting when it was discovered in 2008 
and has restated the financial statements for the years affected. The company said: “It actually revealed that we 
were more profitable across the overall six-year restatement period.” The company also emphasized that 
“[s]everal independent reviews found that the errors didn’t stem from any improper efforts to inflate earnings” 
(Gordon 2012). This example suggests that regulators disapprove non-inflationary manipulations as much as 
inflationary ones, and companies do use cookie-jar accounting.  
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pre-audit (managed) earnings. He can require the firm to make an adjustment to remove the 

manipulation before announcing the post-audit (reported) earnings to the public. However, the 

auditor must incur a cost, privately known to him, to convince the firm to follow the 

requirement.3 Depending on the magnitude of the cost and that of the expected liability cost 

arising from tolerating the manipulation, the auditor decides whether to require an adjustment or 

not. From the firm’s perspective, this outcome of the auditor’s adjustment decision is stochastic. 

Considering the chance of a required adjustment, the firm chooses the extent of an upward or 

downward manipulation to balance the benefit and cost of misreporting. If the auditor tolerates 

the manipulation, the managed earnings are reported to the public. If he requires an adjustment, 

the manipulation is reversed. So is the firm’s cost of misreporting because it captures the 

opportunity cost (or benefit) of “borrowing from (or saving for) the future.” The earnings reported 

to the public are then the unmanaged earnings.  

In reality, an auditor influences the earnings reported to the public through a complicated 

auditor-client negotiation process (see, e.g., Perreault and Kida 2011, Bame-Aldred and Kida 

2007, Beattie et al. 2004, and Gibbins et al. 2001). Modeling this process in an elaborated manner 

requires a separate paper. The moderate goal here is to use a tractable “ban-or-tolerate” game to 

capture only the first-order impact of the auditor-client negotiation. 

A key element of the model is a cutoff point that divides the model into two separate regions, 

with upward manipulation being optimal in one and downward manipulation in the other. 

Whether the model can generate a “discontinuity” resembling the one observed in reality depends 

                                                   

3 See section 2 and related discussions in McCracken et al. (2008), Gibbins et al. (2001), and Beattie et al. 
(2004) for explanations about the adjustment requirement cost borne by the auditor. The consideration of 
materiality is implicitly captured in the specification of the distribution function of this cost. When the 
manipulation is immaterial, it is highly likely that the auditor’s adjustment requirement cost will exceed the 
expected liability cost arising from the manipulation, leading to the tolerance for the immaterial manipulation.  
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critically on the location of the cutoff point, which is determined by the underlying parameters of 

the model. The fact that the model cannot explain the discontinuity location with a wide range of 

parameter values is a strength rather than weakness of the model. It is the alignment of the 

discontinuity location with the location of the cutoff point, together with the change in the density 

around that point implied by the model, that provides the identifiability of the underlying 

parameters. Without identifiability, the model cannot be used for structural estimation and 

counterfactual policy analysis (see below for further discussion).  

The paper contributes to the literature by offering a single framework to understand two 

puzzling features of the earnings triplet distributions. In particular, the predicted change in the 

density around the cutoff point provides a theoretical prediction for what one should expect when 

reported earnings are affected by cookie-jar earnings management only. This prediction 

constitutes a null hypothesis for testing the existence of a discontinuity due to other reasons over 

and above cookie-jar earnings management.  

My alternative interpretation of the discontinuity phenomenon is based on earnings 

compression from both sides toward the earnings benchmark. This is distinct from the prevalent 

explanation based on moving earnings across the benchmark to turn small losses into small 

profits (TSLISP). The alternative interpretation concerns the behaviors of all firms with opposite 

directions of earnings management. The latter is a local explanation concerning upward 

manipulation by only a small group of “just missed” firms, without saying anything about the 

behaviors of other firms. If a more general perspective can demystify both the discontinuity and 

the volcano shape, it is not necessary to invoke a second explanation specifically for the 

discontinuity. Therefore, testing the existence of a discontinuity against the null hypothesis based 

on the prediction of a structurally estimated model of this paper can provide evidence on the 

necessity of the TSLISP hypothesis. A reasonably good alignment of the data with the prediction 
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of the model rejects the TSLISP hypothesis as a necessary explanation.  

Second, the model of this paper provides a framework for structural estimation of the 

underlying parameters, allowing inferring the unmanaged earnings not observed by outside 

parties. This is important to firm valuation, investment decisions, and public scrutiny. The 

framework also allows policy or event analysis to be conducted based on the hypothesized 

impacts of a policy or event on the parameters (see Heckman 2010 for a discussion on 

counterfactual policy analysis). By hypothesizing how regulation changes might affect certain 

model parameters (or the distribution of unmanaged earnings), one can use the model of this 

paper to predict the impacts on earnings manipulation. This provides an assessment useful for 

comparing the anticipated impact to the implementation cost of a regulation change, helping 

regulators to make informed decisions.   

The rest of the paper is organized as follows. The next section introduces the model setup. In 

section 3, I provide a general characterization of the optimal misreporting strategy, which is 

unique under some mild conditions. In section 4, two (effectively four) closed-form solutions are 

derived for particular functional form assumptions. Section 5 presents the results of two 

simulation exercises demonstrating the model’s capability of generating the two salient features of 

the earnings triplet distributions. Further details of why the volcano shape is a puzzle are 

discussed in section 6. The difference between a sharp peak and the widely documented 

leptokurtic property of stock return distributions are also discussed there, followed by concluding 

remarks on various issues, including potential applications of the model.  

Maximum likelihood and nonlinear least squares methods to estimate the model parameters 

are discussed in appendix A. Appendix B suggests a few ways to extend the model, such as 

allowing analyst forecast dispersion to play a role. Technical proofs are relegated to appendix C. 

The appendices are available upon request.  
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2. Model Setup 

In the model, a firm needs to prepare the earnings figure for audit before announcing it to the 

public. The firm generally has an interest to manipulate the figure away from the unmanaged 

earnings denoted by y. The unmanaged earnings are defined as the cash flows plus the 

unmanaged accruals, i.e., the accruals most correctly determined according to the auditor’s 

understanding of the financial reporting standards. Therefore, the auditor knows the value of y, 

given that the audit engagement allows unrestricted access to the firm’s accounting system. It is 

assumed that the firm also knows the y in the auditor’s mind. This way in defining the unmanaged 

earnings means that any real activities earning management, if exists, is part of y.  

The interest to manipulate the earnings figure is affected by some earnings benchmark 

denoted by z, which is common knowledge in the model. Real-world examples of earnings 

benchmarks include the profit/loss cutoff at zero, last year’s earnings highlighting earnings 

increase/decrease, and the analyst consensus forecast reflecting market expectation (see section 

3.1.5 of Dechow et al. 2010). In circumstances where a firm’s accounting choices are heavily 

influenced by certain executives, earnings benchmarks can be some internal yardsticks used for 

performance evaluation related to salary increases, bonuses, promotion, etc.  

One of the key insights of this paper is that the widely documented discontinuity 

phenomenon could be partly due to a steep but continuous increase in the density of the earnings 

distribution. Therefore, I will specify a payoff function of the firm that is smooth even at the 

earnings benchmark. This specification sets the model apart from others (e.g., Degeorge et al. 

1999) that rely on a jump (e.g., a lump-sum bonus) to generate a discontinuity in the distribution 

of reported earnings.  

The earnings figure prepared for audit, hereafter the pre-audit earnings (or managed 

earnings), is denoted by m. In general, it may include manipulation that nonetheless is not 
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outright fraud. Let a ∈ (–∞,∞) denote such manipulation. By comparing m to the y in its mind, the 

auditor knows the value of a.4   

In the very beginning of the model, the auditor explains the audit plan to the firm. The quality 

level q ∈ [0,1] of the audit is known to the firm at that time before the firm knows the unmanaged 

earnings y and selects the manipulation a accordingly. Denote by εq + ε1–q the total amount of 

unintentional errors contained in y.  By definition, the firm is unaware of these errors. The 

components εq ~ Normal(0, qσu
2) and ε1–q ~ Normal(0, (1–q)σu

2) are independent random 

variables, with the parameter σu > 0. The part of unintentional errors discovered and removed by 

the auditor is εq, with ε1–q remaining in y even after the audit. For ease of exposition, q is treated 

as an exogenous parameter in this paper. Endogenizing it does not critically affect the main 

results. (I discuss how it can be endogenized in appendix B.) Excluding unintentional errors from 

the model does not qualitatively change the results either. However, their inclusion helps to 

understand the model’s implications; for example, it allows one to see the effect of the quality 

parameter q, which is interesting.  

Let x ∈ {0,1} denote the auditor’s adjustment decision, with 0 standing for no adjustment 

required and 1 otherwise. Requiring an adjustment to remove the manipulation is not as simple as 

just saying no. To achieve the objective, the auditor must bear a cost, X ∈ [0,∞), privately known 

to him. Field studies (e.g., McCracken et al. 2008) have documented the stress auditors face and 

the effort they make during the negotiation process to convince client firms to make adjustments. 

                                                   

4 The simplifying assumption of the auditor being capable of separating manipulation from earnings 
seems to be consistent with practitioners’ observation (e.g., Bagshaw 2013, p. 266): “[T]he evidence of the 
relevant fraud or accounting irregularity was not hidden from auditors. Reports note that such evidence was 
sometimes recorded in the audit file, but that auditors did not appreciate the significance of the issue, follow it 
up or make the right linkages. Reports by professional bodies and independent regulators on audit firms 
highlight the same problem. Audit failure is more likely to involve errors of judgement and a failure to evaluate 
audit findings properly than deficient audit methodologies, or sampling risk, for example.” In this model, the 
“errors of judgment” or “failure to evaluate audit findings properly” is modeled in a stylized way as a willful 
decision to tolerate manipulation based on expected liability and adjustment requirement cost comparison.    
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Accomplishing this without jeopardizing the relationship with the clients and the likelihood of 

being retained as the auditors is a big challenge. Such a process can take weeks, or even months, 

to finish (Gibbins et al. 2001), potentially distracting the auditors from concentrating on other 

work like the audits of other clients. Preparation work such as producing sufficient literature 

research to back up the adjustment requirement, gathering evidence of similar practices by other 

companies, securing the support from the national office, or even obtaining a second opinion from 

another audit firm also contributes to the cost of requiring an adjustment. Alternatively, the cost 

may be viewed as a parsimonious way to model whether the auditor’s personality is closer to a 

crusader type (who never tolerates any manipulation), as opposed to an accommodator type (who 

is prepared to bend the rules to interpret a manipulation as complying with GAAP) (Beattie et al. 

2004).   

The cost X is modeled as a random variable independent of εq and ε1–q. It follows a 

probability distribution G(l) = Pr{X ≤ l} with a differentiable probability density g(l) = G′(l) > 0 

for all l > 0. The hazard rate function h(l) = [1–G(l)]/g(l) is therefore also differentiable. To ensure 

that the firm’s objective function (to be specified shortly) is twice-differentiable in a, I assume the 

existence of bounded limits liml↓0 l½g(l) and liml↓0 [g(l) + 2lg′(l)]. This is a mild condition 

satisfied by a number of distributions including those discussed in section 4. The auditor learns 

the realized value of X just before making the adjustment decision. The firm knows only the 

distributional properties of X without observing the realized value. 

The expected liability cost to the auditor is assumed to be a quadratic function of the extent 

of the manipulation: L = ka2/2, where k > 0. (Any expected liability cost that might arise from 

failing to remove all the unintentional errors is irrelevant to the auditor’s adjustment decision and 

need not be specified.) Assuming a quadratic form is common in the literature to maintain 

analytical tractability. The symmetric loss represented by the quadratic form is not critical to the 
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model. At the expense of expositional simplicity, alternative specifications such as an asymmetric 

expected liability cost like L = [k21{a > 0} + k11{a ≤ 0}]a2/2, where k2 > k1 > 0, can be used, 

without critically changing the nature of the results.   

The optimal adjustment decision, x*(a), is determined by minimizing the sum of the expected 

liability cost and the cost of requiring an adjustment:  

 Min x∈{0,1}  (1–x)L + x(X).   (1) 

Clearly, x*(a) = 1{X ≤ L}, i.e., equal to 1 when the event {X ≤ L} holds and 0 otherwise. In other 

words, the auditor will require an adjustment if and only if the cost of doing so is not higher than 

the expected liability cost from tolerating the manipulation.  

The firm’s manipulation incentive is driven by the benefit and cost of misreporting (see 

Jiambalvo 1996 and Marquardt and Wiedman 2004 for discussions on the benefits and costs). 

Because I focus on cookie-jar earnings management, a dollar of downward manipulation today 

helps build up the cookie-jar reserve, facilitating future upward manipulations. Similarly, every 

dollar of upward manipulation today is essentially borrowed from the future. Hence, if in the 

absence of distortions and discounting, the cost of misreporting can be as simple as c(a) = a. 

Allowing for discounting and potential distortions (e.g., a small psychic cost of misreporting), I 

assume a more general c(a) with the requirements that c(0) = 0, lima↑∞ c(a) = ∞, c′(a) > 0 with 

c′(0) = c0 < ∞, and c″(a) ≥ 0.5 The monotonicity assumption, c′(a) > 0, is a departure from the 

                                                   

5  Although the model technically is a single-period model, it should be viewed as modeling a 
representative period of an infinite-period setting, rather than as a one-shot model. The misreporting cost in this 
reduced-form representation of an infinite-period setting plays a role analogous to the next-period value 
function in a Bellman equation for dynamic programming. Such a value function is endogenously determined in 
a Bellman equation but the misreporting cost in the reduced-form representation here is exogenously specified. 
The reduced-form representation could be formulated as a two-period model like some others in the literature. 
Such two-period models typically assume that the manipulation in the first period must be reversed in the 
second period, effectively turning the two-period choices of manipulation into a one-period choice. Therefore, 
the difference between the two formulations is not as big as they appear. The representative-period formulation, 
however, seems to be more consistent with the going-concern perspective of accounting.  
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usual specification of a quadratic misreporting cost function (e.g., Guttman et al. 2006 and 

Fischer and Verrecchia 2000). The assumption is essential for deriving downward manipulations 

in the model. I will elaborate on this further shortly.  

The firm benefits more from reporting earnings that exceed the earnings benchmark to a 

greater extent and bears more negative consequences from missing the benchmark more.6 This is 

captured by a negative exponential benefit function. If the auditor does not require an adjustment 

to remove the manipulation a, the net benefit to the firm is  

 
( )

),(
][exp1

ac
zay q −







 −−+−−

α
εα

 (2) 

where α > 0, with the limit case of α = 0 accommodating a linear benefit function. If an 

adjustment is required, a is reversed. So is c(a), which captures the opportunity cost (or benefit) 

of “borrowing from (or saving for)” the future. Accordingly, the net benefit to the firm is simply 

[1 – exp(–α[y – εq – z])]/α, as though there was no manipulation attempt.   

To reduce notation complexity, I will simply write x*(a) as x to denote the binary random 

variable induced by the auditor’s optimal adjustment decision. The earnings announced to the 

public after the audit are referred to as the post-audit earnings (or reported earnings) defined as 

follows: 

 r = xy + (1 – x)m – εq.  (3) 

The firm’s manipulation decision is made before εq is known. Anticipating the auditor’s 

response x*(a), the firm chooses a to maximize the expected net benefit given below:  

                                                   

6 A strand of literature in economics assumes that utility is reference-dependent. See discussions in 
Rablen (2010) and Koszegi and Rabin (2006).  
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which can be simplified as  
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Note that the parameter b defined above summarizes the impacts of the quality parameter q 

and the deviation of y from z on the firm’s misreporting incentive. For ease of reference, I simply 

call b the marginal expected benefit of manipulation, although strictly speaking it is only one of 

the contributing factors.  

The firm can control a but not εq. When εq is more uncertain as a result of a higher quality 

level q, it raises b for any given levels of y – z and a. Consequently, the slope of the expected net 

benefit function changes, providing a different incentive to manipulate earnings. Likewise, a 

different benchmark z can also change the incentive.  

Whether the optimal manipulation is upward or downward also depends on the marginal cost 

of manipulation, c′(a), relative to the marginal benefit affected by b. If c(a) were assumed to be 

quadratic as in other earnings management models, c′(a) would be negative for a < 0. Downward 

manipulation would never constitute an equilibrium. Therefore, the assumption of c′(a) > 0 is 

critical for accommodating both upward and downward manipulations. Given that cookie-jar 

                                                   

7 E[ [1 – 1{X ≤ L}][[1 – exp(–α[y + a – εq – z])]/α – c(a)] + 1{X ≤ L}[1 – exp(–α[y – εq – z])]/α ] 
= E[1 – exp(–α[y – εq – z])]/α + E[1 – 1{X ≤ L}] E[ exp(–α[y – εq – z])[1 – exp(–αa)]/α – c(a) ] 
= (1 – b)/α + [1 – G(L)][ b[1 – exp(–αa)]/α – c(a) ], 

where b = E[exp(–α[y – z – εq])] = exp[–α(y – z) + α2σu
2q/2]. The first equality above uses the assumption that 

X and εq are independent, and the second utilizes the normality assumption on εq.  
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accounting is an important regulatory concern, it is interesting to explore the implications of this 

alternative assumption that captures the idea of “saving for the future.”   

I end this section with table 1 that summarizes the notations used and the timeline in figure 1 

that summarizes the sequence of events in the model.  

3. Optimal Misreporting Strategy 

This section gives a general characterization of the optimal manipulation. In the next section, 

closed-form solutions for particular adjustment requirement cost distribution and misreporting 

cost functions are derived. Then in section 5 the solutions are used to conduct two simulation 

exercises to see how well, or not so well, the model is able to accommodate the two salient 

features of the earnings triplet distributions.   

Central to the characterization of the optimal manipulation is a cutoff point y0 given by the 

equation exp[–α(y – z) + α2σu
2q/2] = c0. That is to say, y0 ≡ z – (lnc0)/α + ασu

2q/2. This cutoff 

point of the unmanaged earnings determines whether the optimal manipulation is upward or 

downward. The proposition stated below proves the existence of the optimal misreporting 

strategy and characterizes it with several equality and inequality conditions.  

Proposition 1 (Existence and Characterization of Optimal Misreporting Strategy):  Let b = 

exp[–α(y – z) + α2σu
2q/2] and y0 = z – (lnc0)/α + ασu

2q/2. An optimal manipulation of the firm, 

denoted by a*, exists and satisfies  

(POS)   b[1 – exp(–αa)]/α – c(a) ≥ 0,  

which defines a convex set of a, denoted by Φ. Moreover,  

(i) a* is a solution of the following equation:  

(FOC)    [1–G(L)][ bexp(–αa) – c′(a) ] = kag(L)[ b[1 – exp(–αa)]/α – c(a) ],  

where L ≡ ka2/2; 

(ii) a* satisfies the following inequality:    
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(SOC)   [1 – G(L)][ αbexp(–αa) + c″(a) ]  

+ k[ g(L) + 2Lg′(L) + 4Lg(L)2/(1 – G(L)) ][ b[1 – exp(–αa)]/α – c(a) ] ≥ 0;  

(iii) unless y = y0, zero manipulation (i.e., a = 0) is suboptimal;  

(iv) for y > y0, any optimal manipulation is downward (i.e., a* < 0); for y < y0, any optimal 

manipulation is upward (i.e., a* > 0). 

For a manipulation to be optimal, the firm’s expected net benefit v for a > 0 minus the v for a 

= 0 must be non-negative, i.e., the manipulation must bring a non-negative gain to the firm. Since 

[1 – G(L)] > 0, the non-negativity requirement is simply condition POS. The equality first-order 

condition FOC can pin down candidates of optimal manipulation, of which some are actually 

suboptimal. The second-order condition SOC can differentiate between them but oftentimes 

condition POS can do so more conveniently. The last two parts of the proposition highlight a very 

simple structure of the optimal manipulation: Downward manipulation is optimal when the 

unmanaged earnings are sufficiently high (i.e., y > y0); otherwise, upward manipulation is 

optimal. This result can provide the force to turn normally distributed unmanaged earnings into a 

volcano-shaped distribution of post-audit earnings. I will explain this further in section 5. 

The next result stated below establishes the uniqueness of the optimal manipulation. Other 

misreporting models often use a signaling approach, leading to multiple equilibria. This limits the 

potential of using such models to guide structural estimation in empirical studies because it is not 

clear which of the equilibria is observed in data.8 In contrast, the uniqueness result in the next 

                                                   

8 One can choose to focus only on the linear equilibrium when linking signaling-based misreporting 
models to data. In fact, this is typically the only equilibrium analyzed for such models, as a way to get around 
the intractability of analyzing all the multiple equilibria. The linear equilibrium specifies a rational price 
conjecture under which the share price is an affine function of the reported earnings. Although this equilibrium 
appears to be simplest and most intuitive, taking it to data causes some technical complications. For example, 
the reported earnings in principle can take an arbitrarily large positive or negative value, e.g., as a realization 
from a normal distribution. However, the share price cannot be negative. Therefore, the linear rational price 
conjecture cannot be well-defined for all possible values of the reported earnings if the distribution of earnings 
has the real line as the support, which seems very reasonable. In contrast, the model of this paper does not run 
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proposition removes such ambiguity when linking the model of this paper to data.  

Proposition 2 (Uniqueness of Optimal Misreporting Strategy):  Suppose 1 + 2l[dlng(l)/dl] – 

4l[dln(1 – G(l))/dl] ≥ 0 (e.g., if dlng(l)/dl ≥ –1), or equivalently, dln[h(l)(1 – G(l))]/dl ≤ 1/2l (e.g., 

if h′(l) ≤ 0). Then any manipulation satisfying conditions FOC and POS also satisfies condition 

SOC with strict inequality. Consequently, the firm has a unique optimal manipulation a* fully 

characterized by conditions FOC and POS.    

The proof of this proposition shows that under the conditions on the adjustment requirement 

cost distribution specified in the proposition, conditions FOC and POS can pin down the unique 

optimal manipulation. This approach offers the way to derive the closed-form solutions given in 

the next section.  

4. Closed-Form Solutions 

I begin with the following lemma showing that several families of the adjustment requirement 

cost distribution can ensure the uniqueness of the optimal manipulation.  

Lemma 1 (Distributions Ensuring Unique Optimal Misreporting Strategy):  Suppose that 

the adjustment requirement cost distribution belongs to the following families:    

(i) Weibull distribution with λ > 0 and θ > 0, i.e., g(l) = θλθlθ–1exp[–(λl)θ] with 1 – G(l) = exp[–

(λl)θ] and h(l) = l1–θ/θλθ, provided that θ ≥ ½ (including Exponential when θ = 1); 

(ii) Gompertz distribution with λ > 0 and θ > 0, i.e., g(l) = λθexp(λl)exp(–θ[exp(λl) – 1]) with 1 – 

G(l) = exp(–θ[exp(λl) – 1]) and h(l) = exp(–λl)/λθ;  

(iii) Pareto Type II distribution with λ > 0 and θ > 0, i.e., g(l) = (θ/λ)[λ/(λ + l)]θ+1 with 1 – G(l) = 

[λ/(λ + l)]θ and h(l) = (λ + l)/θ, provided that θ ≥ ½.  

Then the firm has a unique optimal manipulation a*.  

                                                                                                                                                                     

into such a complication.  
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I derive two closed-form solutions under the assumptions of an exponential and a linear 

misreporting cost function, respectively. This effectively provides two more, with the additional 

ones corresponding to hybid misreporting cost functions combined from the exponential and 

linear functions. Before elaborating on this further, let me first present the more specific form of 

condition FOC under the assumption of a Weibull adjustment requirement cost distribution with θ 

= ½. This proves to be a useful assumption that greatly simplifies the first-order condition and 

allows the solution to be expressed in closed form.     

Corollary 1 (First-Order Condition with Weibull Adjustment Requirement Cost 

Distribution):  Suppose the distribution of the auditor’s adjustment requirement cost is Weibull 

with λ > 0 and θ = ½. Let η = (kλ/2)½, which is a parameter capturing the relative importance of 

the expected liability cost and adjustment requirement cost to the auditor. Moreover, let b = exp[–

α(y – z) + α2σu
2q/2], y0 = z – (lnc0)/α + ασu

2q/2, and Φ be the convex set of a defined by condition 

POS. Then  

(i) for y > y0 (i.e., b < c0), the optimal manipulation is downward (i.e., a* < 0) and uniquely 

determined by   

exp(αa)[ c′(a) + ηc(a) – (η/α)b ] = (1 – η/α)b  for a ∈ Φ;   

(ii) for y < y0 (i.e., b > c0), the optimal manipulation is upward (i.e., a* > 0) and uniquely 

determined by 

exp(αa)[ c′(a) – ηc(a) + (η/α)b ] = (1 + η/α)b  for a ∈ Φ;  

(iii) for y = y0 (i.e., b = c0), the optimal manipulation is zero manipulation (i.e., a* = 0), which 

solves both of the conditions above regardless of η.  

As mentioned, the cutoff point y0 plays an important role in dividing the model into two 

separate regions. This is reflected in the two parts of the simplified condition FOC stated in the 

corollary above, with the dividing point at y0 fitting either part. An important implication of this 
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structure is that if two misreporting cost functions are identical on one side of the cutoff point, the 

optimal manipulation must be identical as well for that side. So when the closed-form solutions 

for an exponential and a linear misreporting cost function are derived, a mix-and-match of them 

yields the closed-form solutions for some hybrid misreporting cost functions. These functions are 

referred to as “left-linear, right-exponential” (LLRE) and “left-exponential, right-linear” (LERL) 

functions, with a = 0 that corresponds to y = y0 as the dividing point: 

(LLRE)  c(a) = c0a for a < 0; c(a) = (c0/γ)[exp(γa) – 1], with γ > 0, for a ≥ 0    

(LERL)  c(a) = (c0/γ)[exp(γa) – 1], with γ > 0, for a < 0; c(a) = c0a for a ≥ 0. 

 Using the simplified condition FOC in Corollary 1, I am able to derive the closed-form 

solutions given in the next two propositions.  

Proposition 3 (Solution with Exponential Misreporting Cost and Weibull Adjustment 

Requirement Cost Distribution):  Suppose the firm’s cost of misreporting is exponential, i.e., c(a) 

= (c0/γ)[exp(γa) – 1] with γ > 0, and the distribution of the auditor’s adjustment requirement cost 

is Weibull with λ > 0 and θ = ½. Let η = (kλ/2)½. Moreover, let b = exp[–α(y – z) + α2σu
2q/2] and 

y0 = z – (lnc0)/α + ασu
2q/2. Then the optimal manipulation a* is given as follows:  

(i) For η = α, if y ≥ y0 (i.e., b ≤ c0), a* = (1/α)ln( [(b/c0) + (α/γ)]/[1 + (α/γ)] ).  

(ii) For η = γ, if y ≤ y0 (i.e., b ≥ c0), a* = (1/α)ln( [1 + (α/γ)]/[1 + (c0/b)(α/γ)] ).  

(iii) For α = γ, if y ≥ y0 (i.e., b ≤ c0),  

a* = (1/α)ln( [ (1 + b/c0) + {(1 – b/c0)2 + 4(α/η)2(b/c0)}½ ] / 2(α/η + 1) );  

if y ≤ y0 (i.e., b ≥ c0),  

a* = (1/α)ln( [ {(1 – b/c0)2 + 4(α/η)2(b/c0)}½ – (1 + b/c0) ] / 2(α/η – 1) )  

for η ≠ α, and a* = (1/α)ln[2b/(c0 + b)] for η = α.  

Parts (i) and (ii) of the proposition consider the optimal manipulation for specific cases with 

η = α or η = γ. Under these cases, the first-order conditions for the relevant regions take a linear 



 19

form. Solving out a* in closed form for those regions is thus trivial.  

The closed-form solution given in part (iii), with α = γ, comes from a quadratic equation that 

conveniently arises under this case for an exponential misreporting cost function assumed. The 

proof involves considering multiple cases to ensure that the optimal manipulation is well-defined 

even for certain parameter values that appear to result in an ill-defined first-order condition.  

Proposition 4 (Solution with Linear Misreporting Cost and Weibull Adjustment Requirement 

Cost Distribution):  Suppose the firm’s cost of misreporting is linear, i.e., c(a) = c0a, and the 

distribution of the auditor’s adjustment requirement cost is Weibull with λ > 0 and θ = ½. Let η = 

(kλ/2)½. Moreover, let b = exp[–α(y – z) + α2σu
2q/2] and y0 = z – (lnc0)/α + ασu

2q/2. Then the 

optimal manipulation a* is given as follows:  

(i) For y ≥ y0 (i.e., b ≤ c0), 

  a* = (1/α){ (b/c0) – (α/η) + W0( (α/η – 1)exp(α/η)(b/c0)exp(–b/c0) ) };  

(ii) for y ≤ y0 (i.e., b ≥ c0),  

 a* = (1/α){ (b/c0) + (α/η) + W–1( –(α/η + 1)exp(–α/η)(b/c0)exp(–b/c0) ) },  

where W0 and W–1, with W0 ≥ –1 ≥ W–1, are the single-valued upper and lower segments of the 

real branch of the Lambert W function defined on the domains [–exp(–1),∞) and [–exp(–1),0], 

respectively.   

The linear misreporting cost function considered in this proposition leads to a simple form of 

the first-order condition. It has a closed-form solution that can be expressed in terms of the 

Lambert W function. This special function is defined as the (multi-valued) inverse of the function 

f(W) = Wexp(W). The real branch of the function has an upper and a lower (single-valued) 

segment, denoted by W0 and W–1, defined on the domains [–exp(–1),∞) and [–exp(–1),0], 

respectively, with W0 ≥ –1 ≥ W–1. Figure 2 shows the shape of the function. The figure is adopted 

from Corless et al. (1996) that reviews the function and further develops its properties, making it 
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more widely known than before. However, work related to the function dates back to Johann 

Lambert (1728-1777) and Leonhard Euler (1707-1783) (Brito, Fabiao, and Staubyn 2008).9  

The shape of the Lambert W function gives a special touch to the optimal manipulation. It 

can result in a rather drastic change in the density around the cutoff point y0 in the earnings triplet 

distributions. This provides a continuous alternative interpretation to the discontinuity in 

histogram documented in the literature (e.g., Burgstahler and Dichev 1997 and Degeorge et al. 

1999). I will elaborate on this further in section 5 where two simulation exercises based on 

solutions involving the Lambert W function are discussed.    

Figure 3a illustrates the closed-form solution of the optimal manipulation (a*) in Proposition 

4 based on the Lambert W function, alongside with the marginal expected benefit of manipulation 

(b), both as functions of the unmanaged earnings y. In figure 3b, the optimal manipulation is 

added to the unmanaged earnings to depict the pre-audit earnings m = y + a* as a function of the 

unmanaged earnings. The shaded areas in the figure indicate the optimal manipulations that 

constitute the pre-audit earnings.     

I end this section with the following result that shows the one-to-one mapping from the pre-

audit earnings m back into the unmanaged earnings y. Holding for the two (effectively four) 

closed-form solutions, this result provides a hope to derive conditions under which such a one-to-

one inverse mapping exists generally. The challenge is left for future research.    

                                                   

9 The Lambert W function finds its role in many fields including mathematics (e.g., combinatorial number 
theory), computer science (e.g., algorithm and data structures), statistics (e.g., generalized skewed distributions 
and risk estimation), engineering (e.g., combustion, fuel consumption, and time-delayed systems), geology (e.g., 
earthquake forecasting), population ecology (e.g., Lotka-Volterra equations for population growth), health 
science (e.g., epidemic models), chemistry (e.g., enzyme kinetics), and especially physics (e.g., electrostatics, 
statistical mechanics, general relativity, inflationary cosmology, radiative transfer, and quantum 
chromodynamics) (Goerg 2011, Brito et al. 2008, Scott et al. 2006, and Corless et al. 1996). A decade ago, an 
“editorial in Focus, the newsletter of the Mathematical Association of America, asked: ‘Time for a new 
elementary function?’,” suggesting that the usefulness of the function in diverse fields qualifies it to be 
considered a candidate member of elementary functions, like the familiar sin, cosine, logarithm, exponential, 
etc (Hayes 2005).  
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Proposition 5 (Invertibility of Pre-audit Earnings to Unmanaged Earnings):  Suppose the 

distribution of the auditor’s adjustment requirement cost is Weibull with λ > 0 and θ = ½. Let η = 

(kλ/2)½ and µ = exp( –α(m – z) + α2σu
2q/2 )/c0. Then the unmanaged earnings y are below 

(above) y0 = z – (lnc0)/α + ασu
2q/2 if and only if the pre-audit earnings m = y + a* are below 

(above) y0. Moreover, the auditor can infer y from m using the relation y = Y(µ), with Y defined as 

follows:  

(i) If the firm’s cost of misreporting is exponential with γ = α, i.e., c(a) = (c0/α)[exp(αa) – 1],   

Y(µ) ≡ z + ασu
2q/2 – (1/α)ln[ c0[µ + (α/η – 1)µ2]/(α/η + 1 – µ) ]  for m ≥ y0 (i.e., µ ≤ 1)   

Y(µ) ≡ z + ασu
2q/2 – (1/α)ln[ c0[(α/η + 1)µ2 – µ]/(α/η – 1 + µ) ]  for m ≤ y0 (i.e., µ ≥ 1); 

(ii) if the firm’s cost of misreporting is linear, i.e., c(a) = c0a,   

Y(µ) = z + ασu
2q/2 – (1/α)ln[ –c0W0( –exp(–α/η)µexp[(α/η – 1)µ] ) ] for m ≥ y0 (i.e., µ ≤ 1)   

Y(µ) = z + ασu
2q/2 – (1/α)ln[ –c0W–1( –exp(α/η)µexp[–(α/η + 1)µ] ) ] for m ≤ y0 (i.e., µ ≥ 1).  

The unmanaged earnings y = Y(µ) are continuous and strictly increasing in the pre-audit 

earnings m ∈ (–∞,∞).  

In the next section, I present the results of two simulation exercises based on the model. The 

analysis helps to assess the limit and the potential of the model as a framework for guiding 

empirical research.  

5. Empirical Contents of the Model 

Before presenting the simulation results in subsections 5.2 and 5.3, I first briefly explain why the 

model should be capable of accommodating the two salient features of the earnings triplet 

distributions.  

5.1 Why the Model Can Accommodate the Puzzling Features  

To elucidate how the model can lead to a phenomenon similar to the discontinuity documented in 

the literature, I plot the distribution of unmanaged earnings, y, in figure 4a and superimpose on it 
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the distribution of pre-audit earnings, m. In the figure, the unmanaged earnings are assumed to 

follow a normal distribution. Only the left side of the density line (in gray) appears in the plot 

given the scale chosen. The earnings benchmark z is marked by the vertical solid line (in black). It 

is assumed to be 0.02, rather than zero, to highlight that the model does not require the earnings 

benchmark to be equal to zero.  

The vertical dash line (in green) indicates the location of the cutoff point y0 (assumed to be 

0.06), which divides the two directions of earnings manipulation. Unmanaged earnings below y0 

are manipulated upward, pushing the density line to the right toward the cutoff point. Similarly, 

the density line on the right of y0 is pushed to the left toward the point. Mathematically, this one-

to-one remapping of the density of unmanaged earnings into the “density” of pre-audit earnings is 

straightforward and represented by the thin solid curve (in black). However, the area under this 

curve need not add up to one. To ensure that the remapped density meets the “sum to one” 

requirement of probability theory, the thin solid curve is multiplied by a normalizing factor to 

obtain the density line of pre-audit earnings. This is represented by the thick solid curve (in blue). 

Figure 4a assumes that the firm’s misreporting cost function is linear. Consequently, the 

optimal manipulation can be solved in terms of the Lambert W function. The shape of this 

function leads to a particularly steep slope around y0. A zoom-in view of that part of the density 

lines (surrounded by red dotted rectangles) is provided on the left side of the figure.  

Imagine that the probability distribution of pre-audit earnings described by the model is 

sampled, with the distribution of observations plotted in histogram form. Because of the steep 

slope around y0, it is likely to see a sharp difference between the frequencies observed in the 

immediate left and right bins next to the cutoff point. A “discontinuity” similar to those 

documented in the literature can thus arise in the continuous model of this paper. Several issues 

however should be kept in mind before concluding that the model can accommodate the 
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discontinuity phenomenon.              

First, the documented discontinuity occurs at zero in the distributions of earnings, earnings 

change, and earnings surprise. For the model to predict the phenomenon, y0 must be close to the 

earnings benchmark in concern, be it the profit/loss cutoff, earnings increase/decrease, or 

beating/missing an earnings forecast. This proximity between y0 and z is assumed in figure 4a and 

in the simulation exercises. Empirically, it is the alignment of the predicted location of the 

“discontinuity” with the actual location observed from the data that gives the identifiability of the 

underlying parameters y0 and z. I discuss the estimation of the model parameters in appendix A.  

Second, figure 4a only shows a “discontinuity” in the distribution of pre-audit earnings, 

which are not exactly the same as the reported earnings in audited financial statements. I therefore 

conduct the two simulation exercises to fill the gap between these earnings concepts.  

Third, the documented discontinuity is not about the distribution of earnings from the same 

firm observed multiple times. Instead, the earnings concerned in the literature come from different 

firms. Thus, they are likely to be drawn from different distributions, rather than from a single 

distribution assumed in figure 4a. The simulation exercises make an attempt to address this issue.  

Figure 4b illustrates that even when the unmanaged earnings are distributed normally, the 

distribution of pre-audit earnings may have a volcano shape with the peak sharper than that of a 

bell-shaped normal distribution. This may occur if y0 is located around the peak of the unmanaged 

earnings distribution, with the left and right sides of the density line pushed toward the peak 

strongly. For example, imagine that the expected liability cost is low and the adjustment 

requirement cost tends to be high. So the auditor is reluctant to require an adjustment. The firm 

will have a strong incentive to manipulate earnings, resulting in a big push of the density line 

toward the middle and hence a volcano-shaped distribution of pre-audit earnings.  

Before presenting the simulation results in the next two subsections, let me first introduce 
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some terminology. Recall that the audit will remove some of the unintentional errors, namely εq, 

before the firm publicly announces the post-audit earnings r = xy + (1 – x)m – εq. Without an 

auditor-required adjustment (i.e., x = 0), r is simply the pre-audit earnings m corrected for the 

discovered unintentional errors. If an adjustment is required (i.e., x = 1), r is the unmanaged 

earnings y corrected for the discovered unintentional errors.  

The first simulation exercise focuses on the distribution of excess earnings, defined as the 

part of earnings exceeding the earnings benchmark z. (Negative excess earnings mean the part of 

earnings falling short of the benchmark.) Based on this definition, the post-audit excess earnings 

are  

 δr = [xy + (1 – x)m – εq] – z. (7) 

Similarly, the pre-audit and unmanaged excess earnings are m – z and y – z, respectively. If the 

analyst consensus forecast is taken as the earnings benchmark, post-audit excess earnings 

coincide with the concept of earnings surprise.  

To simulate the distribution of earnings change, I consider a simple repetition of the model 

for two periods. This yields some interesting results. However, one needs to bear in mind a 

caveat. Repeating the model for multiple periods does not give a truly dynamic model. In a 

dynamic model, care must be taken to consider the accumulation of past earnings manipulations 

in the total assets (see, e.g., Barton & Simko 2002 and Baber et al. 2011), which might enhance 

the auditor’s incentive to require an adjustment in the future. Owing to the limited space here, the 

analysis of a truly dynamic version of the model is left for future research.    

Let r1 denote the lagged post-audit earnings, i.e., the post-audit earnings in the earlier period 

of a two-period repetition of the model. The second simulation exercise assumes that in the 

current period of the two-period repetition some firms use the profit/loss cutoff as the earnings 

benchmark (i.e., z = 0) while others use the earnings increase/decrease cutoff as the benchmark 
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(i.e., z = r1). Because of this diversity in the benchmarks assumed, a discontinuity can occur in the 

distributions of earnings and earnings change/difference simultaneously. The post-audit earnings 

change is defined as   

 ∆r = [xy + (1 – x)m – εq] – r1.  (8) 

Similarly, the pre-audit and unmanaged earnings differences are defined as m – r1 and y – r1, 

respectively. For firms using lagged post-audit earnings as the benchmark, the post-audit earnings 

change is simply their excess earnings. However, for firms using zero earnings as the benchmark, 

the post-audit earnings change is not the same as excess earnings but the post-audit earnings are. 

5.2 Simulating a Volcano-shaped Distribution of Excess Earnings with a Sharp Peak 

Figure 5a visualizes the results of the first simulation with y0 – z = $0.011 and a linear 

misreporting cost function. The simulation assumes a population of firms each with possibly a 

different distribution of unmanaged earnings (per share in cents). For simplicity, the distributions 

are all normal with the same standard deviation but possibly different means. The means are 

themselves drawn from a normal distribution.  

I am interested in simulating the situation where earnings forecasts taken as the earnings 

benchmarks are equal to the means of the unmanaged earnings distribution. The purpose is to see 

how far the distribution of the simulated post-audit excess earnings can get close to its counterpart 

reported in figure 2 of Bhojraj et al. (2009), which is included in figure 5b for ease of reference. 

Because this simulation is meant to be a first look at the empirical contents of the model, I do not 

consider the more complicated situation with the forecasts set to the post-audit earnings of an 

earlier period. The second simulation presented later will include such dynamic considerations.  

In figure 5a, the distributions of the pre-audit, post-audit, and unmanaged excess earnings are 

plotted in histogram form, with the latter overlaid on the former one after another. The bin width 

of the histogram is $0.01, to be consistent with the choice in Bhojraj et al. (2009). To provide a 
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better angle in viewing the three distributions, a three-dimensional plot of the distributions is 

given in figure 5c. The shape of the Lambert W function that characterizes the optimal 

manipulation behind this simulation induces a huge spike in the frequency distribution of the pre-

audit excess earnings (in yellow) in the back. This starkly differs from the nearly flat distribution 

of the unmanaged excess earnings (in gray) in the front. The stochastic nature of the adjustment 

decision, together with the correction for the discovered unintentional errors, mixes the two 

publicly unobservable distributions into the distribution of the post-audit excess earnings (in blue) 

in the middle, which is observable to the public.  

The especially sharp peak of the distribution of earnings surprise is a feature easily noticed in 

related studies (e.g., figure 6 of Degeorge et al. 1999 and figure 2 of Frankel et al. 2010). The 

simulation illustrates how the model turns a rather flat distribution of unmanaged excess earnings 

(originating from normally distributed unmanaged earnings) into a dramatically different 

distribution of post-audit excess earnings. The assumption of y0 – z = $0.011 ensures that the 

sharp peak of the distribution occurs in the two right bins next to zero excess earnings. The solid 

stair-step line (in blue) in figure 5a outlines the distribution of the post-audit excess earnings 

partially hidden behind the distribution of unmanaged excess earnings in the front. The overall 

shape of the post-audit excess earnings distributions looks quite similar to its counterpart in figure 

2 of Bhojraj et al. 2009, which however is fatter at the mid-level and has thinner tails. Given the 

simple structure of the model, compared to the complex reality it tries to approximate, such 

mismatches seem unsurprising.    

The following hypothesis summarizes the key insight from the first simulation. 

The Mixture Hypothesis:  The volcano-shaped distribution of earning surprise with a 

sharp peak documented in the literature is due to a mixture of a relatively flat distribution of 

unmanaged excess earnings with a spiky distribution of pre-audit excess earnings. 
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Although cookie-jar earnings management alone can give rise to a volcano-shaped 

distribution, recognizing the auditor’s role in the model is necessary to the discovery of the 

mixture hypothesis. Most important, the auditor’s role cannot be ignored, or the empirical content 

of the model would be adversely impacted. Ignoring the role is equivalent to imposing the a priori 

restriction that the expected adjustment requirement cost is infinitely large (so that any 

misreporting attempt will be tolerated). This will introduce a bias in the estimated coefficients 

when the model parameters are structurally estimated. Whether the expected adjustment 

requirement cost is large or not is an empirical question. However, what appears to be certain, 

even without any estimation, is that the cost should be neither infinitely large nor negligibly 

small. 

5.3 Simulating a ‘Discontinuity’ in the Distributions of Earnings and Earnings Change 

Throughout the second simulation, I assume y0 – z = $0.015 and a “left-exponential, right-linear” 

(LERL) misreporting cost function (see section 4 for the definition). Assuming a linear 

misreporting cost function as in the first simulation would not change the results critically. 

However, the overall shapes of the simulated distributions would look less similar to their 

counterparts based on actual data.  

The first simulation directly assumes a distribution of unmanaged earnings per share (in 

cents). In contrast, the second simulation uses a more complicated procedure to simulate the 

distribution of unmanaged earnings based on the actual data of total assets in 1988-2006, 

assuming a relation between the unmanaged earnings and total assets. The distribution of 

unmanaged earnings per share is then computed using the actual shares outstanding data 

associated with the total assets data. I use this unmanaged earnings distribution as the “seed” for 

simulating the distribution of post-audit earnings for an earlier period, assuming zero earnings as 

the benchmark for manipulation. The earnings increase/decrease cutoff is not a choice at this 
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point because there are no lagged post-audit earnings yet.  

After obtaining the post-audit earnings for the earlier period, they become the lagged post-

audit earnings for the current period of the simulation. The beginning value of the total assets for 

the current period is updated from that of the earlier period using the simulated post-audit 

earnings, assuming a 75% payout ratio. The updated total assets are used as a basis to simulate the 

current period’s unmanaged earnings, assuming a relation augmented by some “natural growth.”  

There are three main sources for such “natural growth.” First, it can come from technological 

advancement that improves the productivity of any given asset base. Second, it can arise from an 

expansion of the asset base due to new investment opportunities discovered. (But this is not 

captured in the simple clean-surplus updating of the total assets assumed above.) Third, the 

earnings concerned in the literature are in nominal value. Inflation can contribute to the “natural 

growth” of earnings even when the productivity is fixed and the asset base is constant.  

Allowing for some “natural growth” is important. Otherwise, the peak of the distribution of 

the simulated unmanaged earnings difference would not be so far to the right as in figure 7a. 

Consequently, the peak of the distribution of the simulated post-audit earnings change would be 

much sharper, unlike its counterpart in figure 7b based on actual earnings data in 1988-2006. It is 

important to keep in mind that the model of this paper does not explain the shape of the 

(unobservable) unmanaged earnings distributions. It only explains how the distribution may be 

transformed into the (observable) post-audit earnings with a distinctly different look. Therefore, 

the purpose of assuming some “natural growth” is to come up with something reasonably close to 

the reality and let the model explain the remaining difference, which otherwise is perplexing.  

With the unmanaged earnings for the current period simulated, the model then converts them 

into pre-audit and post-audit earnings. Unlike in the first simulation, now firms can differ in the 

earnings benchmarks assumed: some use z = 0, while others use z = r1. For simplicity, I assign 
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these two benchmarks randomly with 40% of the chance setting z = 0 and 60% setting z = r1. The 

distributions of the pre-audit, post-audit, and unmanaged earnings are plotted in figure 6a, with 

the latter overlaid on the former one after another. Again, the bin width of the histogram is $0.01. 

I use small solid circles (in blue) to outline the distribution of the post-audit earnings partially 

hidden behind the distribution of unmanaged earnings (in gray) in the front. Whenever the 

frequency of the post-audit earnings exceeds that of the unmanaged earnings, the exceeding part 

can be clearly seen as a blue bar segment on top of a gray histogram bar. The key difference 

between the distributions of the post-audit and unmanaged earnings is the higher frequencies in 

the several right bins next to zero earnings. A close-up view of that part (surrounded by red dotted 

rectangles) is provided on the left side of the figure. The distribution of the actual earnings in 

1998-2006 is given in figure 6b for comparison.  

Figure 7a shows the distributions of the pre-audit earnings difference (in yellow) in the back, 

the post-audit earnings change (in blue) in the middle, and the unmanaged earnings difference (in 

gray) in the front. Again, small solid circles (in blue) are used to outline the distribution of the 

post-audit earnings change partially hidden behind the distribution of the unmanaged earnings 

difference. Note that 40% of the simulated observations in the figure use z = 0 (rather than z = r1) 

as the benchmark for earnings manipulation. Still the remaining 60% are sufficient to induce the 

noticeably higher frequencies in the several right bins next to zero earnings change indicated by 

the solid vertical line (in black). The left side of the figure provides a zoom-in view for that part 

of the post-audit earnings change distribution (surrounded by red dotted rectangles).  

The key insight from the second simulation is summarized as the following hypothesis:  

The Continuous ‘Discontinuity’ Hypothesis:  The simultaneous existence of a 

“discontinuity” in the distributions of earnings and earnings change documented in the literature 

is due to a continuous but drastic increase in the density of the distributions around the respective 
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earnings benchmarks.   

6. Discussions and Concluding Remarks 

6.1 Why is the Volcano Shape a Puzzle? 

To my knowledge, there is no known reason suggesting that the earnings triplet distributions 

should have a volcano shape. Below I draw on the insights from the literature on stock return 

distributions to argue that there are reasons to believe that the earnings distribution may have a 

normal-like shape. It is important to recognize that the model in this paper does not impose any 

normality requirement on the unmanaged earnings distribution. The model simply transforms 

whatever smooth, single-peaked distribution of unmanaged earnings into a reported earnings 

distribution with a shaper peak.  

Similar to the classical model of return distributions (Osborne 1959 and Fama 1965),10 it 

seems reasonable to assume that earnings from transaction to transaction in a firm approximately 

are independent, identically distributed random variables with a finite variance. This can occur, 

for example, when the price of a product is marked up from its cost by a fixed percentage and the 

quantity purchased by a customer and that of the next are independent, identically distributed 

random variables with a finite variance. With numerous transactions accumulated in a quarter or a 

year, the central limit theorem ensures that the quarterly or annual earnings of a firm should have 

a normal distribution.11 This holds regardless of the distributional form of the earnings from an 
                                                   

10 Another model of return distributions assumes that the returns from individual transactions follow a 
distribution in the stable paretian class, with α–characteristic < 2 (Mandelbrot 1963). This stable model fits the 
behavior of daily stock returns better, compared to the classic model. Blattberg and Gonedes (1974), however, 
show that their Student model fits the daily returns data even better. Focusing on monthly, quarterly, and annual 
returns, Upton and Shannon (1979) reject the stable model in favor of their lognormality model. Lau et al. 
(1990) provide additional evidence further rejecting the empirical validity of the stable model.  

11 It should be emphasized that although the i.i.d. condition is invoked here for the sake of easy 
understanding by typical readers, recent development in probability theory has proved that exact independence 
is not necessary for achieving some notion of normality, unlike the classical central limit theorem. See Chen, 
Goldstein, and Shao (2011), Barbour and Xia (2006), Chen and Shao (2004), Romano and Wolf (2000), Szeidl 
and Zolotarev (1998), de Jong (1997), Zolotarev (1997), Hall and Heyde (1980), and Ibragimov (1975).     
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individual transaction. So it is a very powerful argument. In the context of stock returns, even 

though daily returns are leptokurtic, Fama (1976) finds that “monthly returns are close enough to 

normal for the normal model to be a good working approximation.” Assuming a Student 

distribution to capture the fat tails of stock returns, Blattberg and Gonedes (1974) also find that 

for monthly returns the estimated distribution is “almost indistinguishable from a normal 

distribution.”  

Given that the annual or quarterly earnings of a firm should be normally distributed, the 

earnings change is the difference between two normally distributed variates. Thus, the change is 

also normally distributed. If the earnings forecast is largely based on the earnings of a previous 

period, the earnings surprise is like an earnings change and should follow a distribution close to 

normal. Alternatively, if the earnings forecast is a close enough prediction of the mean of the 

earnings, the earnings surprise should be normally distributed too. Even though the earnings 

triplet distributions might not be exactly normal, there seems to be no obvious reason why they 

should have a volcano shape with a sharper peak, instead of a rounder top in bell-shaped 

distributions such as logistic, Student, and normal.    

The arguments for expecting a normal distribution have been so far based on the earnings of 

an individual firm. The earnings triplet distributions discussed in the literature, however, are 

constructed using a cross section of firms in a period, whose earnings might not be identically 

distributed. By imposing more structure on the earnings from different firms, it is not 

unreasonable to expect a distribution close to normal. One such structure was considered by 

Praetz (1972) and Blattberg and Gonedes (1974) in the context of stock returns. They prove that if 

the variance of otherwise identically normally distributed stock returns follows an inverted 

gamma distribution, the posterior distribution of the returns is Student. Analogously, the earnings 

from a cross section of firms can follow a Student distribution if the earnings of each firm are 
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identically normally distributed with the variance inverted-gamma distributed. Moreover, if the 

value of the degrees of freedom parameter is high (e.g., over 25), the distribution can be close to 

normal. Again, even when normality is not a good approximation, there has been no theory 

suggesting a volcano-shaped distribution. This shape goes against intuition and is perplexing.   

Some authors argue that normalizing earnings by market value or other size deflators 

contributes to the discontinuity phenomenon (Durtschi and Easton 2005). One might suspect that 

the volcano shape could be caused by deflation as well. It should be stressed that the volcano 

shape, or the discontinuity, appears not only in studies examining scaled earnings (e.g., 

Burgstahler and Dichev 1997) but also in others focusing on unscaled earnings per share (e.g., 

Degeorge et al. 1999 and Bhojraj et al. 2009). Hence, normalization by size deflators cannot 

explain the volcano-shape phenomenon. Providing a unified framework to understand this puzzle 

as well as the discontinuity phenomenon therefore is interesting.   

6.2 Shape Peak versus Fat Tails 

The earnings compression explanation of the volcano-shape feature suggests that the feature is 

closer to the statistical concept of peakedness than tailweight (see Birnbaum 1948 and 

Groeneveld and Meeden 1984 for formal definitions of more peaked and heavier-tailed). The 

feature is not the same as the leptokurtosis found in the empirical distributions of daily stock 

returns (Fama 1976, p. 24).  

Kurtosis is often defined as the fourth central moment normalized by the squared variance. It 

is an inverse measure for the concentration of probability density around the “shoulders” of the 

distribution, i.e., the two points at one standard deviation above and below the mean (Moors 

1986). If kurtosis is high, i.e., greater than 3, the distribution is said to be leptokurtic; a normal 

distribution has a kurtosis equal to 3 (Abell, Braselton, and Rafter 1999). High kurtosis (or 

leptokurtosis) can be due to a concentration of probability density near the mean, or in the tails, or 
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both, relative to a normal distribution. So there is no logical connection between leptokurtosis and 

the high concentration of density near the mean compared to a normal distribution with the same 

mean and variance (Balanda and MacGillivray 1988 and Kaplansky 1945).  

Finance professionals and researchers’ interest in the leptokurtic behavior of asset returns is 

often due to the importance of extreme rare events in risk management (e.g., Sheikh and Qiao 

2009 and Lucas 2000). Therefore, leptokurtosis in finance tends to mean fat tails (e.g., Blattberg 

and Gonedes 1974 and Kon 1984). This feature is crucially different from the sharper peak 

emphasized with the volcano shape description of a distribution.  

6.3 Concluding Remarks 

The model of this paper can accommodate the two salient features of the earnings triplet 

distributions, despite the simple representation of the auditor-client negotiation process as a “ban-

or-tolerate” game. Aside from some mismatches that seem unsurprising given the simple model 

structure, the simulation results demonstrate the model’s potential to capture the driving forces 

behind the two salient features.  

Two caveats for the simulation results are worth noting. In the second simulation, I assume 

for simplicity that firms stochastically choose the profit/loss or the earnings increase/decrease 

cutoffs as the benchmarks for manipulation. In unreported analysis, I also consider a behavioral 

model of benchmark selection based on the unmanaged earnings’ proximity to different 

benchmarks. The results are broadly similar. Because constructing such a selection model is not 

the focus of this paper, it is not reported here. However, endogenizing the benchmark selection is 

an interesting extension of the model.  

The second simulation also tries to be dynamic. But the model here is only “pseudo-

dynamic,” i.e., it uses an exogenously specified misreporting cost function to represent in reduced 

form any future benefits and costs of the current-period manipulation. A truly dynamic version of 
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the model requires carefully considering the connection between periods through a misreporting 

cost function endogenously determined in equilibrium. 

Appendix A discusses how the parameters of the model can be estimated structurally. 

Alternatively, methodologies such as the geophysical inverse theory and nonparametric mixture of 

regression models can be borrowed from geophysics and statistics to uncover the underlying 

unmanaged earnings using the theoretical framework developed here (Ganse 2008 and Huang, Li, 

and Wang 2013). 

Besides providing a single framework to understand two puzzling phenomena, the model also 

sheds light on an interesting finding of Dichev and Tang (2009):  earnings with low volatility 

have remarkably high persistence. Ignoring any earnings management consideration, they simply 

see “earnings volatility as arising from two factors, volatility due to economic shocks and 

volatility due to problems in the accounting determination of income, and both of these factors 

reduce the predictability of earnings.” This paper provides a different perspective to understand 

their finding. Suppose many firms use lagged earnings with a constant growth rate as their 

earnings benchmarks. Cookie-jar earnings management smoothens earnings over time for the 

purpose of not deviating too much from the earnings benchmark. This can result in earnings being 

more persistent – in the sense that the reported earnings always follow closely the path of the 

lagged earnings with a constant growth rate. Connecting persistence to volatility (variance) is an 

incomplete story, if viewed through the model here. A tighter connection is with the shape of the 

distribution of earnings, which are compressed by cook-jar earnings management and hence have 

a lower variance. An empirical research design to measure the connection to the shape would 

provide evidence on whether cookie-jar earnings management is the more complete story.  

There are other potential applications of the model. Besides the policy analysis application 

already mentioned in the introduction, I will discuss two more here. The first is to use the model 
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as a framework for examining the effectiveness of certain corporate governance mechanisms in 

curbing earnings manipulation. For such mechanisms to be useful, they must change the model 

parameters related to the benefit and cost of misreporting (e.g., c0). By including corporate 

governance measures as explanatory variables in the estimation procedures, one can test whether 

the relevant parameters are sensitive to these variables. Conclusions can then be drawn on the 

effectiveness of the variables in discouraging earnings manipulation. 

Besides viewing the model from a positive perspective, it may be used as a framework for 

developing decision aids to help auditors improve adjustment decisions. In the model, the auditor 

is assumed to know all the parameters without doubt. In reality, this seems unlikely. Instead, 

auditors might have a subconscious assessment of the factors corresponding to the model 

parameters and make decisions based on “professional judgment.” Less experienced auditors 

might misjudge and make mistakes against their own interest. With the decision made in a 

judgmental manner, even experienced auditors might make occasional mistakes due to 

subconscious psychological biases. Systematically collecting information useful for estimating the 

model parameters and developing a formal decision aid based on the model can raise the 

awareness of the auditors making adjustment decisions. By highlighting the strategic 

considerations in the model, the auditors can carefully balance such considerations with other 

unmodeled factors. The decision quality can thus be improved.  
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Table 1: Notations 

y ∈ (–∞,∞) is the unmanaged earnings of the firm 

z ∈ (–∞,∞) is the earnings benchmark affecting the firm’s incentive to manipulate earnings 

a ∈ (–∞,∞) is the earnings manipulation chosen by the firm 

m = y + a is the pre-audit earnings (or managed earnings) provided to the auditor for audit. 

q ∈ [0,1] is the quality level of the audit. 

ε
q
 ~ Normal(0, qσu

2

), with σu > 0, is the part of the unintentional errors contained in y that is 

discovered and removed by the auditor.  

ε1–q
  ~ Normal(0, (1–q)σu

2

) is the part of the unintentional errors remaining in y even after the audit. 

L = ka
2

/2, where k > 0, is the expected liability cost to the auditor arising from tolerating the earnings 

manipulation.   

x ∈ {0,1} is the auditor’s adjustment decision. 

X ∈ [0,∞) is the auditor’s cost of requiring an adjustment, which follows a probability distribution 

G(l) = Pr{X ≤ l}, with a differentiable probability density g(l) = G′(l) > 0 for all l > 0 and a 

differentiable hazard rate function h(l) = [1–G(l)]/g(l). The existence of bounded limits lim
l↓0 

l
½

g(l) and lim
l↓0 [g(l) + 2lg′(l)] is assumed.  

x
*

(a) = 1{X ≤ L} is the optimal adjustment decision 

c(a) = the firm’s misreporting cost, where c(0) = 0, lim
a↑∞

 c(a) = ∞, c′(a) > 0 with c′(0) = c0 < ∞, and 

c″(a) ≥ 0. 

b = E[exp(–α[y – z – ε
q
])] = exp[–α(y – z) + α

2

σu

2

q/2] is the “marginal expected benefit of 

manipulation” that summarizes the impacts of the quality parameter q and the deviation of y 

from z on the firm’s misreporting incentive. 

v = (1 – b)/α + [1 – G(L)][ b[1 – exp(–αa)]/α – c(a) ], with α > 0, is the firm’s expected net benefit 

from earnings manipulation. 

y0 = z – (lnc0)/α + ασu

2

q/2 is the cutoff of the unmanaged earnings that determines whether the 

optimal manipulation is upward or downward. 

λ > 0 is the reciprocal of the scale parameter of a Weibull adjustment requirement cost distribution. 

θ = ½ is the shape parameter of a Weibull adjustment requirement cost distribution that simplifies the 

first-order condition for the optimal manipulation, allowing the solution to be expressed in 

closed form. 

η = (kλ/2)
½

 is a parameter capturing the relative importance of the expected liability cost and 

adjustment requirement cost to the auditor. 

W = the Lambert W function, which is the (multi-valued) inverse of the function f(W) = Wexp(W). 

The real branch of the function has an upper and a lower (single-valued) segment defined on the 

domains [–exp(–1),∞) and [–exp(–1),0], respectively. The two segments are denoted by W0 and 

W–1, respectively, with W0 ≥ –1 ≥ W–1. 

µ = exp( –α(m – z) + α
2

σu

2

q/2 )/c0 is the counterpart of b for Y(µ), the inverse mapping from m back 

to y. 

r = xy + (1 – x)m – ε
q
 is the post-audit earnings (or reported earnings) announced to the public. 

δr = [xy + (1 – x)m – ε
q
] – z is the post-audit excess earnings. 

r1 = the lagged post-audit earnings. 

∆r = [xy + (1 – x)m – ε
q
] – r1 is the post-audit earnings change.  

   

   



 

 

Figure 1:  Timeline of events in the model 

 

 

 

 

              

The auditor 

explains the audit 

plan to the firm, 

letting it know 

the quality level 

q of the audit. 

The firm assumes 

an earnings 

benchmark z 

(e.g., analyst 

consensus 

forecast), which 

is common 

knowledge in the 

model.  

The firm learns 

the unmanaged 

earnings y, 

chooses the 

manipulation a, 

and provides the 

pre-audit 

earnings m = y + 

a to the auditor 

for audit. 

The auditor 

conducts the 

audit and 

removes the 

discovered part 

ε
q
 of the 

unintentional 

errors in y, with 

the undiscovered 

part ε
1–q

 

remaining in y.  

After the audit, 

the auditor 

knows the 

components y 

and a of m. 

The auditor 

decides whether 

to incur a cost X, 

privately known 

to him, in order 

to require an 

adjustment (x = 

1) to remove the 

manipulation a, 

or not (x = 0).  

The firm 

announces to the 

public the post-

audit earnings r = 

xy + (1 – x)m – ε
q
 

= y + (1 – x)a –

ε
q
.   
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Figure 3a.  Optimal manipulation and marginal expected benefit of manipulation 
as functions of unmanaged earnings
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Figure 3b.  Pre−audit earnings as a function of unmanaged earnings
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Figure 5b.  Frequency distributions of excess earnings in 1988−2006
(Source: Figure 2 of Bhojraj et al 2009)

Excess earnings defined as earnings surprises relative to analysts’ consensus forecast (in cents)



Figure 5c.  3D plot of frequency distributions of simulated excess earnings
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Figure 6a.  Frequency distributions of simulated earnings
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Figure 7a.  Frequency distributions of simulated earnings differences
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Figure 7b.  Frequency distributions of earnings change in 1988−2006
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