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Abstract: Given a 3-vector  the least distance problem from the Grassmann 

variety  is considered. The solution of this problem is related to a 

decomposition of z  into a sum of at most 5 decomposable orthogonal 3-vectors in 

. This decomposition implies a certain canonical structure for the Grassmann 

matrix which is a special matrix related to the decomposability properties of z . This 

special structure implies the reduction of the problem to a considerably lower 

dimension tensor space  where the reduced least distance problem can be solved 

efficiently. 

 

 

1. Introduction 
 

The Determinantal Assignment Problem (DAP) is an abstract problem formulation 

unifying the study of frequency assignment problems of linear systems [6]. The 

solution to this problem is reduced to finding real intersections between the 

Grassmann variety and a linear variety of a projective space [11]. Computationally, 

this is an inherently non-linear problem due to its determinantal character, and clearly 

expresses the significance of exterior algebra and classical algebraic geometry for this 

family of control problems. The multi-linear nature of DAP has suggested [6] that it 

may be reduced to a linear problem of zero assignment of polynomial combinants, 

defining a linear variety, and a standard problem of multi-linear algebra expressed by 

the additional condition known as decomposability of multi-vectors [12], [13]. The 

decomposability problem is equivalent to that the multi-vector belongs to the 

Grassmann variety of the respective projective space [5] and it is thus characterized 

by the set of Quadratic Plucker Relations (QPR) [12]. An alternative characterisation 

of decomposability has been introduced by the representation of the decomposable  

multi-vectors by special structure and properties matrices, the Grassmann Matrices 

[8], [9]. 

 

The DAP framework provides a unifying computational framework for finding the 

solutions, when such solutions exist, and relies on exterior algebra and on the explicit 

description of the Grassmann variety in terms of the QPR. This search for exact 
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solutions is equivalent to finding real intersections and this may be interpreted as a 

zero distance problem distance problem between varieties in the (real) projective e 

space. Such an interpretation allows the transformation of the exact intersection to a 

problem of “approximate intersection", i.e., small distance -via a suitable metric- 

between varieties and transforms the exact DAP from a synthesis method to a DAP 

design methodology, where approximate solutions to the exact problem are sought. 

This enables the derivation of solutions, even for non-generic cases and handles 

problems of model uncertainty, as well as approximate solutions to the cases where 

generically there is no solution of the exact problem. In [10] the approximate DAP 

has been considered for the distance from the variety and a closed form 

solution to the distance problem was given based on the skew-symmetric matrix 

description of multi-vectors via the gap metric. A new algorithm for the calculation of 

the approximate solution was derived and the stability properties of the approximate 

DAP solutions were investigated. The study of the general case of distance from the 

variety  , is not straightforward; a crucial step to this study is the study 

of the distance from   which is considered here. 

 

In this paper we consider 3-vectors , where 6

1{ }i ie =  is an 

orthonormal basis of . The problem of decomposability of z  is to find three 

vectors  such that . If this holds true, the multi-vector is 

decomposable [12]. Clearly, not all multi-vectors  are decomposable and 

those which are decomposable 3-vectors obey certain algebraic relations the so-called 

QPR (Quadratic Plucker Relations) which define a projective variety in the projective 

space . This is the Grassmann variety in  defined as the 

image of all 3-dimensional subspaces in (the Grasmannian ) through the 

Plucker embedding. 

 

When z  is not decomposable it is desirable in many applications to approximate z  by 

the closest decomposable 3-vector , i.e. to find  such 

that  is minimized and thus define approximate solutions of the 

corresponding problem. In the simpler case when  the problem has been 

solved via considering the spectral structure of the matrix zT  which is the n n´  skew-

symmetric matrix representing  [10]. In the latter case the least distance 

problem implies a canonical decomposition  

 

 

 

where  and 1 1 2 2, , , , , ,k ka b a b a bL  is a specially selected orthonormal set. In this 

paper we consider the case of   which is formulated as the optimization 

problem . It is shown that the first order conditions for the related 

problem , s.t.  , imply a selection of an appropriate 
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basis  of 6¡  such that z  is written as a sum of at most 5 

decomposable multivectors. This decomposition implies a certain diagonal structure 

for the corresponding Grassmann matrix [8] as well as a certain symmetry of its 

squared singular values. In fact the squared singular values can be grouped in pairs 

such that the sum of every pair is the squared norm of the 3-vector z . Furthermore, it 

is shown that via this symmetry the problem may be mapped to the lower dimensional 

vector space  where it can be solved efficiently. 

 

Throughout the paper the following notation is adopted: If F  is a field, or ring then 
m nF  denotes the set of m n  matrices over F  If H  is a map, then 

( )  ( )  ( )r lH H H R N N  denote the range, right, left nullspaces respectively. 
k nQ 

 

denotes the set of lexicographically ordered, strictly increasing sequences of k  

integers from the set  = {1 2 }n … n     If V  is a vector space and 
1

{ }
ki i

…v v   are vectors 

of V  then 
1 1 ( )

k ki i
… i … iv v v         denotes their exterior product and r V  the 

r  th exterior power of V  [12]. If m nH F  and min{ }r m n    then ( )rC H  denotes 

the r  th compound matrix of H  [13]. In most of the following, we will assume 

thatF = . 

 

 

2. The problem of approximate decomposability  
 

The problem of approximate decomposability (AD) is finding the best approximation 

of a 3-vector  by a decomposable 3-vector . This problem has two 

equivalent formulations in the affine and the projective space settings which are 

defined below: 

 

Affine space formulation of AD: Solve the optimization problem: 

 

 

W 
For the Projective space formulation of AD we have to use of a suitable metric in the 

projective space 3 6( )P Ù ¡  such as the gap metric, which is defined as: 

 

 

where [ z ] denotes the line passing through z  and 0. Then we may define the 

projective formulation of AD as 

 

Projective space formulation of AD: Solve the optimization problem: 
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 Given that the set  is the image of the Grassmannian 

 through the Plucker embedding [5] and that  is compact, we may state 

the following result: 

 

Theorem(2.1). Let  then the projective AD acquires a global minimum 

which satisfies: 

 

 

Proof: 

The distance function  defines a continuous map and 

its image is a compact subset of ¡ . Therefore the distance function acquires a global 

minimum. 

W 
The relation between the two formulations is now described by the following result:  

 

Proposition(2.1). Let and Pmin be the nonempty set defined by: 

 

  

where 2m is the optimum value of the objective function of the projective AD. Then 

the set 

  

where 
1m is the optimum value of the objective function of the affine AD, is 

nonempty. Furthermore, the elements of the two sets minP ,
minA ,  and 

can be paired so that: 

i) 1 2m z m=  

ii)  

 

Proof: 

We consider the following expansion: 

 

 

For fixed 1 2 3, ,x x x  this norm is minimized when . 

Therefore the Affine AD minimization problem: 

 

 

is equivalent to the minimization problem: 
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   (2.1) 

On the other hand, due to the identity: 

 

 

The minimization problem (2.1) (which is equivalent to the Affine AD) may be 

solved via the minimization problem  and as the latter 

has a global minimum so does the first. This proves that 
minA is  nonempty. According 

to the above arguments we may now write: 

 

    (2.2) 

By (2.2), assertion i) is now evident. Furthermore by (2.2), if  is a solution 

of the projective AD then 
1 2 3

1 2 3 1 2 32

1 2 3

,
 

 

z x x x
x x x x x x

x x x

¢¢ ¢¢ ¢¢Ù Ù
¢ ¢ ¢ ¢¢ ¢¢ ¢¢Ù Ù = Ù Ù

¢¢ ¢¢ ¢¢Ù Ù
 is a solution of the 

affine AD which is the assertion ii). 

W 
 

Definition(2.1) Let  and  be  

solutions (global optima) of the affine and the projective AD respectively, we call 

 the best decomposable approximation of  z and 1m , 2m  the respective 

affine and projective distances of z from the set of decomposable vectors in that 

is the Grassmann variety of the projective space .  

W 
Remark(2.1) The best decomposable approximation may not be unique for example 

if  , then  and 

. 

W 

In other words there are two decomposable approximations of z namely:  

 which equally approximate z. Now the projective AD formulation 

suggests that we may equivalently maximize . 

Thus we may define the three following  constrained maximization problems: 

 

M(1):    subject to . 
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M(2):    subject to   

M(3):    subject to   

Where [ ]1 2 3: :x x x  is the 3x6 matrix having as columns the vectors
1 2 3, ,x x x . As 

explained previously, the maximization problem M(1) is derived from the least 

distance projective formulation. The problems M(1) and M(3) are both relaxations of 

problem M(2). More importantly they all share a common solution. Therefore one 

may prefer to solving M(2) since it is computationally more robust given that we use 

orthogonal bases. 

 

Proposition(2.2) The three maximization problems M(1),M(2),M(3) attain the same 

global maximum value m which satisfies: 

i) 
22

2 1 /m m z= -                     

ii) 
2 2

1m z m= -  

Proof: Due to the inequality:  

                                                     

 

the problem M(4) defined as: 

     M(4):  subject to   

is a relaxation of all  M(1), M(2) and M(3).  M(4) can be equivalently expressed as  

    M(5):   subject to  . 

where QPR(y)=0 denotes the quadratic equations defining decomposability of y. 

Problem M(5) is defined on a compact set therefore it attains a global maximum m. 

We will prove that this is also a global maximum for all M(1), M(2) and M(3). Indeed 

by a rescaling argument a maximiser of M(4) must be located on the boundary 

. Furthermore, given a maximizer of M(4), expressed in matrix form 

by 0X , then  satisfies all constraints for M(1),M(2),M(3) 

and attains the same value m for all objective functions, therefore it is also a 

maximizer for the three problems. Taking into account we have that: 

 

we deduce that the maximum m of M(1)  is related to m2 by i). Furthermore, by 

Proposition(2.1) and part i) of the current proposition, part ii) readily follows.  

 

The above optimization problems may be solved utilizing known optimization 

algorithms such as those in [1], [3], or specialized methods for tensor problems as 
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those described in [2], [4], [11], [12]. Additionally since all problems are defined on 

smooth varieties (constraints) and the objective functions are polynomial (multi-

linear), it suffices to solve simultaneously the first order conditions and select those 

solutions that assign the highest value to the objective function as we know that the 

global optimum exist for all the problems. However the special skew symmetric and 

multilinear structure of the problems suggests that we may simplify it by contracting 

the 3-vector with one of the 1-vectors 
1 2 3{ , , }x x x  and then consider an equivalent 

problem in  which can be solved using matrix theory. In fact the least distance 

problem in  may be solved by the following theorem: 

 

Theorem(2.2) Let  then z can always expressed as: 

 

 

 

Where 1 1 2 2 3 3{ , , , , , }a b a b a b  is an orthonormal basis of   and the coefficients 1 2 3. ,s s s  

are three nonnegative numbers satisfying 1 2 3s ³ s ³ s .These numbers are derived 

from the 3 imaginary eigenvalue pairs 1 2 3. i , ii± s ± s ± s of the skew symmetric matrix 

Tz (this matrix has its ij-th element to be ijz if i<j, ijz-  if i>j and 0 otherwise) 

representing the 2-vector z. In this setting the closest decomposable vector to z is 

given by . Furthermore, the vectors 1 1,  a b  maximize the bilinear form 

 and the maximum value is 
1s . 

W 
The above theorem can be found in [10] as a consequence of Lemma 2.2 p 145  and 

Corollary 2.2 p.148.  

 

Based on the following definition of the Hodge*-operator which defines a duality in 

the exterior algebra and can be used as a generalisation of Kernel spaces or as in the 

present paper for contraction purposes so that the elements of are viewed as 

parameterised elements of : 

 

Definition(2) [5]: The Hodge *-operator, for a oriented n-dimensional vector space 
U  equipped with an inner product <.,.>, is an operator defined as: 

such that 
  a Ù  (b*)=<a,b> w where ,   

m
a b  U , nw U defines 

the orientation on U  and m<n. 

 

we may apply Theorem (2.2) Using the identity 

 

 and we may use Theorem(2.2) for the parameterized 2-vector  

Theorem (2.3) The optimization problem M(2) may be reduced to the following 

lower dimensional maximization problem: 

 

  such that   2

2 1 4 1 1( ) ( ) / 4,   1x f x x f x x- + =  
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where . If  is a solution of the above then 

 

i. m x=  

ii.  can be taken from the complex eigenvector  corresponding to 

the maximum eigenvalue pair im±  of 
1x

zT
¢
. The solution of M(2) is then 

. 

Proof:  Since 

 

the matrix 
1x

zT  has non-trivial kernel and as its spectrum is purely imaginary this 

kernel is at least two dimensional. Therefore the spectrum of 
1x

zT  is of the form 

( 1 2,i i± s ± s ,0,0). Then according to theorem (2.2) 

  with  1 2 0s ³ s ³  

 and { }1 1 2 2, , ,b ba a  are orthonormal. Then,  

  and  . 

Therefore 2 2

1 1 2 1( ),  ( )x xs s satisfy the equation  

                               2

2 1 4 1( ) ( ) / 4x f x x f x- +                                                             (2.3) 

For a fixed 1x  the solution of M(2) (according to Theorem 1) is . 

Therefore M(2) is equivalent to maximizing 1( )xs  when  where nS  is the n-

dimensional sphere. As 1( )xs  satisfies (2.3) the result is proved.  

W 
 

Corollary (2.1): The study of the problem M(2) can be reduced to 

           subject to  1x =                                        (2.4) 

                                                                                                                                   W 

The quadruple  defined in Theorem (2.3) provides the solution to the 

problem where m is the maximum value of the objective function and  are 

the three vectors realizing this maximum value ie the vectors forming the best 

decomposable approximation which is . 

 

Corollary (2.2) The optimal  may be calculated via a Krylov type of iteration  

 

W 
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The iteration converges to a vector 
1'x  which is one of the three vectors constituting 

the best decomposable approximation of z. The other two are found by applying 

Theorem (2.3) to the multi-vector . 

 

Next section describes the first order conditions for M(3) and its implication for a 

canonical decomposition of a 3-vector. 

 

3. The first order conditions and a canonical decomposition of a 3-vector 
 

Here we will consider the first order conditions for the optimization problem M(3) ie 

 

        subject to  

The Lagrangian of this problem is given by 

 

 

 

Theorem(3.1): The First Order Conditions (FOC) for M(3) are given by: 

 

 

  (3.1) 

,  

 

Proof : These conditions may by deduced from the identities: 

 

and taking into account that . For example may be calculated 

as follows: 

 

 
Proposition(3.1): If 1 2 3,  ,  ,  x x xl  satisfy the FOC for M3 then we have: 

 i)  

ii)  , 0 when i jx x i j= ¹  and when λ≠0 

Proof: i) If we apply the inner product by 1x   both sides of the first FOC  we get: 

 

which is equivalent to: 
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and this proves i). 

 

ii) If we apply the inner product by 
2x   both sides of the first FOC we get: 

 

which is equivalent to: 

 

As λ≠0 we must have 1 2, 0x x = . Similarly the other two inner products 

1 3,x x , 2 3,x x  are zero. 

 
Remark (3.1): Based on Proposition (3.1) if  1 2 3,  ,  ,  x x xl  satisfy the FOC for M(3) 

then 1 1 2 2 3 3/ ,  / ,  /x x x x x x  satisfy the constraints of M(2) and the simplified first 

order conditions: 

,    (3.20) 

These new conditions are not the FOC for M(2), however the solutions corresponding 

to the global maximum must coincide. From now on we will consider that 

1 2 3,  ,  x x x are orthonormal and satisfy the above simplified FOC. 

W 
 

If we define the annihilator set of an  as , then 

 

Proposition (3.2) Let 1 2 3,  ,  x x x be orthonormal vectors that satisfy the simplified FOC 

(3.2) and let 1 2 3,  ,  y y y  be orthonormal vectors that extend 1 2 3,  ,  x x x to an oriented 

orthonormal basis of 6¡ , and let  denotes the annihilator set. Then,   

 

Proof: Applying the Hodge star operator to the simplified FOC (3.2) we get: 

 

,     

                 

Therefore, 

       ,          

                

which proves the result. 

 

Lemma (3.1): Let . Then the following hold true: 
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i) If ,  then, 

                    ,  where,   

ii) If ,  then, 

       1 1 2 2a a x a x= Ù + Ù ,   where,  

                                                                                                                                     
Proof: 

Without loss of generality we assume that 2 1 1x x= =  

i) Consider an orthonormal  basis for  whose first vector is
1x . Expand 

  with respect to this basis.  Then 

  

Since   we must have   implying
2 0a =   and hence the result. 

ii) Consider an orthonormal  basis for  whose first two vectors are 
1 2,x x . 

Expand m na Î Ù ¡   with respect to this basis then , where 

 

Since  we must have  implying 3 0a =  and hence the 

result. 

 

Proposition (3.3): The set defined in Proposition(3.2) is given 

by: 

 

Proof 

  Let , then since by Lemma(3.1) 

         ,                     (3.3) 

Furthermore, we also have that ; by Lemma(3.1) the following also 

holds true 

         ,   

 

Since also  ,  by Lemma(3.1) we must have 

       ,   

Therefore,  

,   

Substituting all the above to (3.3) we get that  
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Conversely if a is an element of 

 

we can easily deduce that    

 

Definition(3.1):  We define the dot-exterior product “ ” as: 

, where 

                                

and the elements  may be considered as 

 matrices respectively. 

 
With the above definition we may state the following result. 

 

Theorem(3.2): Let 
1 2 3,  ,  x x x  and 1 2 3,  ,  y y y  as in Proposition(3.2) then  can be 

expressed as: 

    (3.4) 

where  and A is a real 3x3 matrix. 

Furthermore if z is expressed as in (3.4) with 1 2 3 1 2 3{ ,  ,  , ,  ,  }x x x y y y  being an oriented 

orthonormal basis for , then 1 2 3{ ,  ,  ,  }x x xl  satisfy the simplified FOC for the 

problem. 

Proof: Using Propositions(3.2) and (3.3) , *z  can be written as: 

 

Applying the Hodge-star operator both sides and rearranging the terms accordingly  

 

which in the formulation of definition(3.1), it may be written as the theorem states. 

Conversely if z can be written as eq(3.4) then it is easy to verify 1 2 3{ ,  ,  ,  }x x xl  satisfy 

the FOC.  

W 
The results so far indicate that the first order conditions imply a certain decomposition 

of z in terms of an orthonormal basis of  as a sum of 11 decomposable vectors with 

coefficients . The following results simplify this decomposition 
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into a sum of five decomposable vectors, by transforming appropriately the basis 

1 2 3 1 2 3{ ,  ,  , ,  ,  }x x x y y y . First we state the following Lemmas: 

Lemma(3.2): Let A ,B be  matrices representing two elements of 

( ) ( ),
p p

m n k nÙ Ù¡ ¡  respectively and T be a pxp matrix then the following identity holds 

true:  

                                       

 

Lemma(3.3): Let be the group of 3x3 orthogonal matrices SO(3) be the 

group of 3x3 special orthogonal matrices, C2 be the second order compound matrix 

and C3 be the third order compound matrix. Then the following hold true: 

i)  

ii)  

Proof: 

i) Based on Sylvester-Franke theorem we have 2

2det( ( )) det( ) 1C U U= =  

 

                                                

ii)  where  

 

 

 

Theorem (3.3). Let  which can be expressed as in theorem (3.2): 

 

If then z can also be written as: 

 

where 

 

Proof: Note that 
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As a result of the previous theorem and the singular value decomposition of the 

matrix A we may simplify the decomposition of z as a sum of 5 decomposable vectors 

as shown below. 

Theorem(3.4) For any  there exists an oriented orthonormal basis of 6¡  

{ }1 2 3 1 2 3, , , , ,x x x y y y such that  

       (3.5) 

Proof:  We start with a decomposition  

arising from the FOC. Consider now the singular value decomposition of 

A : and denote the sign of det(A)  as ( )sign A . Then A  can be written as: 

 

where 
1 1,U V  orthogonal and 

1 1det( ) det( ) 1U V= = . By applying Theorem (3.3) we get: 

 

Where  

Note that 

 

Therefore z is written as: 

 

 

Remark(3.2) This decomposition of z into 5 decomposable vectors is not unique as it 

can be formed for every 1 2 3, , ,x x xl  satisfying the FOC. Furthermore if we fix one 

solution of FOC then the SVD of the matrix A may not be unique (the case of 

multiple singular values). To get a canonical decomposition we impose two 

requirements, first to fix one solution of FOC (this can be done be choosing the global 

maximizer, provided it is unique) and second the corresponding matrix A to have a 

unique SVD (there are no multiplicities); Conditions for this to happen in terms of z 

are derived in the following chapters. 
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Corollary(3.1): For any  there exists an oriented orthonormal basis of 

 such that  

         (3.6) 

with . 

 

Proof: Construct l i
, 1 2 3 1 2 3, , , , ,x x x y y y  as previously for the solution of the FOC 

corresponding to the global maximum of M(3).  This way  has been 

constructed so λ is the maximum of the objective function 

. Thus we have that  

 

And this proves the first inequality. The second inequality is proved by the fact that 

the three numbers λ2, λ3, λ4 are related to the three singular values of the matrix A in 

descending order. 

 
A consequence of Corollary(3.1) is the following: 

Corollary(3.2) For any  there exists an oriented orthonormal basis of 

 { }1 2 3 1 2 3, , , , ,x x x y y y  such that  

   

with . 

 
Proof: 

As ,  we can easily deduce that 

.   

 

 

The above discussion and results imply the following algorithm for the construction 

of a canonical decomposition: 

Construction of Canonical Decomposition 

i) Construct the global maximize   of M(3) 

ii) Complete  to be an oriented orthonormal basis for . 

iii) Develop an expression of z of the form 

 

This can be done by multiplying 
  
z t  by C

3
([X,Y]) . The eleven nonzero coordinates are 

the coefficients of the above expression. 
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iv) Calculate the SVD of A:   

v) Calculate a new basis  such that   

vi) Calculate an expression of the form 

         

This can be done by the five non zero terms of the expression  

 
Example(3.1): Let  

. Then solving the 

maximization problem:   s.t. , we get: 

 

with maximum value λ= 23.0209 . Construct Y
t
 as the left null space of X  ie 

 

 

then z  is written as 

 

 

 

Next, we calculate a Singular Value Decomposition for the matrix A: 

 

 

 

 

We change the basis for colspan(X) , colspan(Y)  to ,  as follows: 
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With respect to the new basis, z  can be written as 

 

 

 

4. The structure of the Grassmann matrix 
 

The Grassmann matrix is the matrix representation of the multiplication operator ( ) 

[8], [9] that is: defined by . The transpose of this 

matrix 3 T

6 ( )F z  is the matrix representation of the operator  

        such that    

The singular values of this matrix are related to the decomposability properties of z    

[10]. To establish this we will examine the spectral properties of the operator  

       where   

 

Theorem(4.1): Let 

 

be the decomposition of z  as in Theorem (3.4). Then consider the 2-dim spaces: 

1 1 3( , )span x y=V , 2 2 2( , )span x y=V , 3 3 1( , )span x y=V  

These three subspaces are -invariant and  is an orthogonal decomposition 

of .  The restriction on F  on these subspaces has the following representation: 

 

, , 
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Proof: We calculate the value of F  on the basis of  

 

 

Therefore, 

 

Additionally we have, 

 

 

Therefore, 

 

 

Proving that 1V  is -invariant and  

 

The proof is similar for the other two subspaces. 

 
Corollary(4.2):  If we denote by T the matrix 

                                     

then  can be diagonalized as follows 
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Proof: 

As 1 1 3( , )span x y=V , 2 2 2( , )span x y=V , 3 3 1( , )span x y=V  and by Theorem(4.1) all three 

spaces are Φ invariant subspaces, using a change of basis by T the matrix Φ can be 

block diagonalised with the blocks defined by Theorem(4.1). 

 

Corollary(4.3): As , the six eigenvalues, { }mi , of 

F can be paired so that the sum of every pair is 
2

z . 

Proof: 

The restriction of Φ on every space  is given by the 2x2 matrices 

1 2 3, ,A A A respectively. The three pairs of eigenvalues of these three matrices are 

eventually the six eigenvalues of the matrix Φ. As the trace of each of the three 

matrices equals to
2

z  the result readily follows. 

 

Corollary(4.4) :The singular values of   can be grouped into three pairs such 

that the 2-norm of each pair is z . 

 

Proof: 

As the singular values of  are the positive square roots of the eigenvalues of the 

matrix Φ the result readily follows from Corollary(4.3). 

 
Theorem(4.2): Assume that the three blocks Ai  have the following  three pairs of 

eigenvalues 

 

Then  

Proof: As the traces of the three blocks are equal, to prove that  it 

is equivalent to prove that  det( ) det( ) , 1,2,3i jA A i j¹ = . One can easily calculate the 

following: 

   (4.1) 

which proves the result. 
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Theorem(4.3) Let  and 
1 2 3{ ,  ,  ,  }x x xl be the global optimum solution for 

M(3). Additionally let the related decomposition to this solution be: 

   

with the additional generic relation 1 2 3 4> l l > l > l  to hold true. Then the matrices 

  
 A

1
, A

2
, A

3
 defined as in Corollary (4.2) satisfy 1 2 3 det( ) det( )<det( )A A A< . Furthermore, 

the invariant subspaces  where the three blocks are defined can be 

uniquely associated with the eigenstructure of Φ. 

 

Proof: According to Corollary(3.1) the above decomposition of z satisfies the 

following property: 1 2 3 4 l ³ l ³ l ³ l . For a generic z the above inequalities are 

strict. In this case taking into account equations (4.1) in the proof of theorem(4.2) we 

have . If  

 

are the eigenvalues of Φ in descending order with corresponding eigenvectors 

 

then the eigenvalue pair that corresponds to 1 A  is the one whose product of elements 

attains the lowest value ie , as well as the corresponding 2-dim 

invariant subspace 
1V  is given by , similarly 

2 A  corresponds to the 

eigenvalue pair  and  and finally 
  
 A

3
 corresponds 

to the eigenvalue pair  and . 

 

The above result implies that the space  and the corresponding block 1A   

correspond to the pair of the highest and the lowest eigenvalues; the space  and the 

corresponding block 2 A correspond to the pair of the second lowest and second 

highest eigenvalues of Φ and the space  and the corresponding block 3 A correspond 

to the pair of the third and the fourth eigenvalues of Φ. 

 

 

Corollary (4.4): Let . When 3

6 ( )F z  has 6 distinct singular values the 

assumptions and the implications of Theorem(4.3) hold true. 

 

Corollary (4.5): Let  when  has 4 distinct singular values / 2z¹  

and a double singular value / 2z=  the assumptions and the implications of 

Theorem(4.3) hold true. 

 

If we define the characteristic polynomial of  as: 
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and the resultant: 

 

Then the set  contains all three-vectors whose Grassmann 

matrix has distinct singular values. This is a Zarisky open set in  by its 

definition. Let , then according to Corollary(4.4) we may apply theorem(4.3) so 

that if  

 

is a decomposition of z and if  are the right singular vectors of 

3

6 ( )zF  (corresponding to singular values in descending order) then: 

{ } { } { }6 1 1 3 5 2 2 2 4 3 3 1, { , }   , { , }  , { , }span u u span x y span u u span x y span u u span x y= = =  

If we relabel { }56 4 3 2 1, , , , ,u u u u u u  by { }1 3 5 6 4 2, , , , ,e e e e e e  we may derive the 

following theorem: 

Theorem(4.4): Let , then z can be written as 

 

where . 

Proof: To prove the result it is equivalent to prove that  

 

when the set of two out of the three indices i,j,l equals to one of the sets {1,2},{3,4} 

or {5,6}. Assume that i=1, j=2 then  up to sign. Then 

 

We may perform similar calculations for the other combinations and end up with the 

same result. As is a basis for  the only possible combinations 

with nonzero coefficients in the expansion of z are the ones that the present theorem 

states. 
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Corollary (4.5): There is a map where ( ), ,
, , 1,2

( ) i j k
i j k

T z w
=

= and 

 where ei are the right singular vectors of  as in 

Theorem(4.4). 

 

Corollary (4.6): All z in  acquire a decomposition in eight decomposable vectors if 

expanded on a special basis of  in terms of the right singular vectors of   

 

Next theorem states that the map T is not onto but the tensor W 

defined  where  defined by Corollary (4.5) 

satisfies certain conditions: 

Theorem(4.5): The tensor W satisfies the following conditions: 

 

Proof: Consider the expansion of z as in theorem(4.4) ie  

 

Then as ei’s are the right singular vectors of 3

6 ( )zF we have that: 

 

Writing the above three equalities in terms of the expansion of z we get 

 

which proves the result.  

 

The above results allow us to establish an effective algorithm to solve the minimum 

distance problem initially defined.  

 

5. An efficient computation of decomposition in  
 

Both the closest decomposable vector and the decompositions of multivectors rely on 

the calculation of an appropriate orthonormal basis 
  
{x

1
, x

2
, x

3
, y

1
, y

2
, y

3
}  of  . Due to 

Theorem(4.3) we may group the eigenvectors of F  into pairs 1 2{ , }e e , 3 4{ , }e e , 5 6{ , }e e  

so that the corresponding eigenvalues are complementary. In this case  

, , 
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Although this correspondence is unique when the singular values of  are 

distinct, it can still be carried out when there are multiplicities. 

Therefore, the maximizer   of  may be written as  

  ,  . 

Therefore, the original maximization problem in  is transformed 

into a much simpler maximization problem in , i.e. 

 

where  W  is the tensor 
  
W = (w

i, j ,k
) defined above, , 

, .   

 

This may be rewritten as: 

 subject to ||a||=||b||=||c||=1 

For a fixed a, this is the maximum singular value  of the matrix: 

 

And the optimal vectors b, c  correspond to the left and right singular vectors for this 

singular value. In this setting our optimization problem is reduced to: 

     (5.1) 

The square x=σ
2
 of the maximum singular value σ, satisfies the equation: 

 

As the function  , S
1
is the circle defined by 1a =  defined by: 

 

is a (generically
1
) smooth  real function defined on a compact and connected set so its 

image must be a closed finite interval. This function acquires a global maximum 

which must satisfy the first order conditions. Therefore we may calculate the solutions 

of the first order conditions and select the one that corresponds to the maximum x. 

One way to accomplish this, is to parametrise the circle ||a||=1 as: 

 

                                                 
1
 The quantity, d, under the root is a sum of squares and thus the points of the circle that d=0 are 

defined by more than two equations giving generically an empty set.  
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where 

 

As ( ) ( )x a x a- = we need only to consider . After the substitution  

( )2 21/ 1  ,  / 1a y y y= + +  

We may rewrite the optimization problem (5.1) in terms of (x,y) and obtain the 

following equivalent problem: 

 

The first order conditions of this problem are given by the following system of 

polynomial equations: 

( , )
0,    ( , ) 0

f x y
f x y

y

¶
= =

¶
 

whose solutions (x,y) along with the solutions at infinity form a finite set Σ of 

candidates for the global optimum for our problem. The optimum solution (x0,y0) is 

selected from Σ, as the pair (x,y) with the maximum x coordinate. The optimum 

singular value is given by: 

0 0xs =  

and the optimum pair 0 1 2( , )a a a= is given by: 

2 2

1 0 2 0 01/ 1  ,   / 1a y a y y= + = +  

using this pair a0 we calculate the singular value decomposition of the matrix A(a0). 

Its maximum singular value is by construction the σ0 and the corresponding left and 

right singular vectors are the optimal vectors b0, c0. The best decomposable 3-vector 

approximating z is given by: 

 

Furthermore the basis of  for the five vector decomposition of z in  is given 

by: 

1 2 3 1 2 3

1 1 2 2 1 3 2 4 1 5 2 6 2 5 1 6 2 3 1 4 2 1 1 2

{ , , , , , }

{ , , , , , }

x x x y y y

a e a e b e b e c e c e c e c e b e b e a e a e

=

+ + + - + - + - +
 

 

We may summarise the process of decomposition as it is indicated below: 

  

Steps 

1. Given a multi-vector z Calculate the Grassmann matrix then the matrix Φ and 

its eigenvalues and eigenvectors 

2. With the help of this eigenframe calculate the tensor W 

3. With the help of W calculate the parametrised matrix A(a) and solve the 

maximisation problem (5.1) 
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4. The solution of (5.1) leads to the calculation of the optimal vectors a,b,c. 

5. Using the vectors a,b,c and the eigenvectors of step 1 form an new basis 

1 1 2 2 1 3 2 4 1 5 2 6 2 5 1 6 2 3 1 4 2 1 1 2{ , , , , , }a e a e b e b e c e c e c e c e b e b e a e a e+ + + - + - + - +  for 
6¡  . 

The expansion of z in this basis gives us its optimal 5 decomposable vector 

decomposition, where the best decomposable approximation corresponds to 

  

 

Example (5.1): Consider z in   as in Example (3.1). The Grassmann matrix of z 

which is given by: 

 3

6

7 4 3 5 0 0

9 10 8 0 5 0

4 4 7 0 0 5

2 8 0 8 3 0

5 2 0 7 0 3

3 4 0 0 7 8

4 0 8 10 4 0

( ) 2 0 2 4 0 4

9 0 4 0 4 10

6 0 0 4 2 8

0 4 2 9 7 0

0 2 5 4 0 7

0 9 3 0 4 9

0 6 0 3 5 2

0 0 6 9 2 4

z

   
 
  
 
    
 
  
  
 
  
  
 

   
 

 
  
 

  
  
 

  
  
 

   

 

 

Its squared singular values are given by: 

 

[640.845, 552.444, 534.691, 149.309, 131.556, 43.155] 

 

We can pair the 1
st
 with the 6

th
, the 2

nd
 with the 5

th
 and the 3

rd
 with the 4

th
 so that their 

sum is equal to 684 the square norm of z. The corresponding 2-dimensional subspaces 

of  formed by the related eigenvectors can be given (in terms of their basis 

matrices): 

 

0.4631 0.0614733

0.724921 0.533318

0.322316 0.555798

0.212711 0.000833998

0.299763 0.630776

0.145039 0.0707275

 
 
 
 
 

 
 
    

 ,  

0.351728 0.293279

0.0751618 0.079233

0.237349 0.539815

0.734598 0.47046

0.231609 0.431891

0.470135 0.456559

 
 
 
  
 
 
 
  
 

 ,  

0.336006 0.677594

0.0726397 0.415762

0.482902 0.0791934

0.351291 0.265293

0.2548 0.455157

0.678455 0.290152

 
 

 
  
 
 

 
    

 

Based on this decomposition, the 3rd order homogeneous polynomial to be 

maximised is given by: 

 

  

F(a,b, c) = 3.455a
1
b

1
c

1
-10.670a

2
b

1
c

1
+ 4.838a

1
b

2
c

1
+ 0.329a

2
b

2
c

1
-

-2.289a
1
b

1
c

2
+ 0.722a

2
b

1
c

2
-1.604a

1
b

2
c

2
+ 22.942a

2
b

2
c

2

 



26 

 

Subject to ||a||=||b||=||c||=1. This is reduced to finding the matrix A(a) with the 

maximum possible singular value from the family of matrices: 

 1 2 1 2

1 2 1 2

3.45509 10.6705 2.28881 0.721638

4.8378 0.329252 1.60439 22.9425

a a a a

a a a a

    
 

   
 

subject to ||a||=1. This squared singular value x=σ
2
, satisfies the equation: 

 

After the substitution: 

2 2

1 21/ 1  ,  / 1a y a y y= + = +  

and taking the first order conditions, we obtain the following system of polynomial 

equations: 

2 2 2

1

2 2 3 4 4 2 4

( , ) 276.095 43.1547 2156.32 3933.13 684.

2. 31800.1 60046.8 640.845 0

f x y x x y y xy

x y y y xy x y

      

     
 

2 2

2

3 3 2 3

( , ) 2156.32 7866.26 1368. 4. 95400.3

240187. 2563.38 4 0

f x y y xy x y y

y xy x y

      

   
 

The real solutions (x,y) of this system of equations are: (529.961.-12.506), 

(124.818,3.613), (33.603,−0.0419), (11.381,−0.075), (0,−0.425), (0,0.160) and the 

solutions at infinity are: (113.967,∞), (526.878, ∞). The maximum squared singular 

value of A corresponds to the maximum x appearing to the set of solutions ie 

max 529.961 23.0209s = = . The optimal values for a are the ones corresponding to y= 

-12.506 ie 

2 2

1 21/ 1 ( 12.506) =0.08 ,    12.506 / 1 ( 12.506) 0.997a a= + - = - + - = -  

The optimal A(0.08,-0.997),  is given by: 

 
10.3611 0.901772

0.0573917 22.9974

 
 

 
 

The optimal b, c
t
 are the right and left singular vectors of A for σmax ie. 

 1 0.051b   , 2 0.999b   , 1 0.0252c   , 2 0.999c   

The basis matrix for the canonical decomposition  [X,Y]=[x1,x2,x3,y1,y2,y3] is given by: 

 

Giving rise to the basis matrices: 

 

0.320381 0.0729902 0.51918 0.527515 0.412056 0.417634

0.659757 0.411562 0.103485 0.24721 0.467446 0.324052

0.073135 0.514863 0.563751 0.00619919 0.638137 0.0670465

TX

     
 

   
   

 

    

0.461402 0.738143 0.308194 0.212623 0.283757 0.146777

0.369803 0.093548 0.478285 0.364243 0.231484 0.662932

0.327233 0.0812379 0.27962 0.694763 0.265296 0.505029

TY

  
 

    
    
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Using these matrices we may decompose z by multiplying z by C3([X,Y]). This way, 

we get only five non zero entries which induce the following decomposition: 

  

Furthermore the best decomposable approximation of z is the term . 

□ 

Conclusions 

The approximate decomposability of 3-vectors in  was considered. The first 

order conditions of the optimization problem, imply a decomposition of 3-vectors in 

five orthogonal decomposable 3-vectors. Utilizing the Grassmann matrix [8] of z, the 

problem can be reduced into a similar problem in the tensor space . The results 

leads to a computationally efficient method to calculate the best decomposable 

approximation of a 3-vector in  which then can be utilized to solve approximate 

frequency assignment problems. For this method to be applicable to such problems 

has to be modified so that it calculates best decomposable approximation of three-

vectors parameterised by a linear variety. Such approach is currently under 

investigation. 
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