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An Improved Closed-Form Solution for the Constrained

Minimization of the Root of a Quadratic Functional

Iqbal Owadally

Cass Business School, 106 Bunhill Row, London EC1Y 8TZ, United Kingdom

Abstract

The problem of minimizing the root of a quadratic functional, subject to a system of

affine constraints, occurs in investment portfolio selection, insurance risk theory, tomog-

raphy, and other areas. We provide a solution that improves on the current published

solution by being considerably simpler in computational terms. In particular, a succession

of partitions and inversions of large matrices is avoided. Our solution method employs

the Lagrangian multiplier method and we give two proofs, one of which is based on the

solution of a related convex optimization problem. A geometrically intuitive interpretation

of the objective function and of the optimization solution is also given.

Keywords: Minimization, Root of quadratic functional, Linear constraints, Portfolio

selection

1. Introduction

We consider the problem of constrained minimization of the function f : Rn → R

f(x) = µ
Tx+ λ

√
xTAx (1)

where λ > 0, µ is an n× 1 vector and A is a symmetric, positive definite n× n matrix. A

system of affine constraints is assumed:

Bx = c (2)
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where c is a non-zero m× 1 vector, B is an m×n rectangular matrix of the full rank with

m < n, so that x = 0n is not an admissible solution of equation (2). It is convenient to

introduce the following notation: 0n is the n× 1 vector of zeros, 1n is the n× 1 vector of

ones, In is the n× n identity matrix.

Landsman [1] provides a closed-form solution to this problem when m = 1, and Lands-

man [2] extends this to the case of m < n equality constraints. The purpose of this paper

is two-fold: (i) to develop an improved and simpler solution to this minimization problem,

thereby aiding with computational work as well as with intuition; (ii) to provide two dif-

ferent solution methods, both of which furnish greater insight and are more concise than

the method used in [1, 2].

The practical relevance of this minimization problem is discussed in some detail by

Landsman [1, 2]. We give only three examples here. First, in actuarial science, the objec-

tive function in equation (1) refers to the standard deviation premium principle which is

used when pricing non-life insurance risks [3]. Second, in financial economics, minimizing

this objective function yields an optimal investment portfolio when risk measures that are

translation-invariant and positive-homogeneous are used and when investment return dis-

tributions are elliptical [4, 5, 6]. The constraint in equation (2) then refers to a budget or

wealth constraint and to constraints on holdings of various asset classes and stock market

sectors. Finally, in geometric problems involving convex optimization, this minimization

problem occurs when relative projections onto closed convex sets are calculated [7, 8, 9].

Landsman [1, 2] discusses applications in tomography and other fields.

This paper is developed as follows. In section 2, we investigate the continuity, differ-

entiability and convexity of the objective function f(x) in equation (1). Armed with this,

we solve the minimization problem in section 3. We tackle directly the multi-constraint

problem set out in [2], which subsumes the single-constraint case in [1]. We provide an

improved and simplified solution, compared to [1, 2]. We also give two proofs, both based

on the Lagrangian multiplier method. The first is an indirect proof based on a standard

quadratic optimization problem, and the second is a direct proof. Finally, in section 4, we

compare our solution with [1, 2], we discuss the computational advantage of our solution,

2



and we also provide an intuitive geometric interpretation.

2. Properties of the Objective Function

Before proceeding with the minimization problem, we investigate the objective function

f(x) in equation (1). Landsman [1, 2] presumes continuity and differentiability of f(x)

on R
n. Landsman [1] also states that f(x) is strictly convex. These statements must be

qualified and we do this in the following two lemmas, supplemented by examples.

Lemma 1. Let x = (x1, x2, . . . , xn)
T where n ≥ 2. (i) z = ±λ

√
xTAx defines a quadric

conical hypersurface in n+ 1-space. It has an apex at the origin and is symmetrical in the

z-axis. (ii) z = f(x) describes a portion of a quadric conical hypersurface in n + 1-space.

It has an apex at the origin but is, in general, not symmetrical in the z-axis.

Proof: see Appendix A. Lemma 1 says that the objective function describes part of

a quadric conical hypersurface, essentially a cone in n + 1-space. The following example

illustrates Lemma 1 in 3-space.

Example 1. (a) Let n = 2, µ = ( 0
0 ) and A = ( 1 0

0 1 ) in equation (1). Then f(x1, x2) =

λ||x|| = λ
√

x2
1 + x2

2, where λ > 0. This defines the upper nappe of a double cone with

its apex at (0, 0) and its aperture governed by λ. That is, it is an inverted cone and, the

greater λ is, the more “pointed” the cone is. Notice that this is a circular cone, that is,

its directrix is a circle. (b) If A were changed to ( 2 0
0 1 ) (all else being the same), the cone

would appear to be squeezed in one axis and stretched in the other. That is, it would be an

oblique cone, whose directrix would be an ellipse. (c) If, on the other hand, µ were changed

to ( −λ
0 ) (all else being the same), then the cone would be superposed on a non-horizontal

plane, resulting in a “tilted” conical surface. The cone would rest on its side such that

f(x1, 0) = 0.

The second lemma below sets out the key properties of f(x) in equation (1) as regards

the minimization problem set out in section 1.
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Lemma 2. (i) f(x) is continuous on R
n. (ii) f(x) is differentiable everywhere on R

n

except at x = 0n. (iii) f(x) is convex on R
n. (iv) f(x) is continuous and piecewise linear

on the convex set V = {x ∈ R
n |bTx = 0 for any b ∈ R

n}. (v) f(x) is continuous,

differentiable and strictly convex on the convex set U = {x ∈ R
n |Bx = c} where B and c

are as in equation (2).

Proof: see Appendix B. Lemma 2 is easy to interpret in 3-space, with the help of the

conical surface visualization of Lemma 1 and Example 1, and is illustrated in the following

example by means of a two-variable function.

Example 2. Let f(x1, x2) = −x1+3x2+
√
m, where m = x2

1+2x1x2+2x2
2. We note that

m > 0 when x1 6= 0 and x2 6= 0, and that m = 0 when x1 = x2 = 0. The gradient of f is

∇f = ( −1
3 ) +m−1/2 ( 1 1

1 2 ) (
x1

x2
) (3)

which goes to infinity along both axes as both x1 and x2 approach zero. The Hessian of f

is

Hf = m−3/2
(

x2

2
−x1x2

−x1x2 x2

1

)

(4)

from which we observe that f11 = m−3/2x2
2 > 0, f22 = m−3/2x2

1 > 0, and f11f22−(f12)
2 = 0.

Hence Hf is positive semi-definite and f(x1, x2) is convex. Furthermore, if we restrict

f(x1, x2) to the plane x2 = −x1 which is orthogonal to ( 1
−1 ), then f = −3x1, which

is linear. On the other hand if we restrict f(x1, x2) to the plane x2 = 1 − x1, then

f = 3 − 4x1 + (x2
1 − 2x1 + 2)1/2. This is differentiable at all x1 ∈ R and is also strictly

convex since f ′′ = (x2
1 − 2x1 + 2)−3/2 > 0.

For the purposes of solving the minimization problem, the importance of Lemma 2

rests in part (v). First, this confirms that there is no troublesome feature of discontinuity

or non-differentiability when f(x) is minimized subject to the constraint in equation (2),

since x = 0n is not an admissible solution of constraint (2). Secondly, it guarantees that,

should we find a constrained extremum for f(x) in equation (1) subject to the constraint

in equation (2), this will be a unique constrained minimum.
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Incidentally, we can make more precise Landsman’s [1] argument that
√
xTAx and

f(x) are strictly convex because, for any u, v ∈ R
n and t ∈ R,

√

(u+ tv)TA(u+ tv) =
√

vTAvt2 + 2vTAut+ uTAu, (5)

exhibiting strict convexity as a function of t. The argument is true if one considers linearly

independent u and v only, for example, if one restricts
√
xTAx and f(x) to the convex set

defined by the constraint in equation (2). However, if v = θu, with θ ∈ R, then

√

(u+ tv)TA(u+ tv) = |1 + tθ|
√
uTAu, (6)

exhibiting piecewise linearity in t, as in point (iv) of Lemma 2.

3. Main Result

3.1. Solution of the Constrained Minimization Problem

Our main result is the solution of the constrained minimization problem described in

section 1 and appears in the following Theorem. In section 4 we discuss how this improves

and simplifies the original solution given in [2] .

Theorem 1. If λ >
√
τTAτ then the unique constrained minimum of f(x) in equation (1),

subject to (2), occurs at

x∗ = ρ +

√

ρTAρ

λ2 − τTAτ
τ (7)

where (i) ρ = A−1BTU−1c, (ii) τ = A−1BTU−1BA−1
µ−A−1

µ, and (iii) U = BA−1BT.

Furthermore, (a) ρ
TAτ = 0, (b) ρ

TAρ = cTU−1c, and (c) τ
TAτ = µ

TA−1
µ −

(BA−1
µ)

T
U−1(BA−1

µ).

Before proving Theorem 1, it is helpful to gather some facts from the linear algebra of

positive definite matrices in the following lemma.

Lemma 3. Let Σn be the set of real, symmetric, positive definite n × n matrices, and A

and B be as defined in equations (1) and (2) respectively. Define U = BA−1BT.

(i) A ∈ Σn ⇒ A−1 exists, A−1 ∈ Σn and (A−1)
T
= A−1. (ii) A ∈ Σn ⇒ BABT ∈ Σm.
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(iii) A ∈ Σn ⇒ U = BA−1BT ∈ Σm. (iv) A ∈ Σn ⇒ U−1 exists, U−1 ∈ Σn and

(U−1)
T
= U−1.

Proof of Lemma 3. Parts (i) and (ii) follow almost verbatim from Lemma 7, Theorems 8,

9 and 10 of Johnson [10] and can be shown using triangular factorization or the Cholesky

decomposition. Part (iii): A ∈ Σn ⇒ A−1 ∈ Σn (by (i)) ⇒ BA−1BT ∈ Σm (by (ii)).

Part (iv): A ∈ Σn ⇒ U ∈ Σm (by (iii)) ⇒ U−1 exists, U−1 ∈ Σn (by (i)). See also [11,

page 424].

We make repeated use of Lemma 3 in the following proofs, and we make two further

remarks about it here. First, Lemma 3 is concerned only with real matrices, that is,

matrices whose elements are in R. Secondly, one can consider positive definite matrices

that are not symmetric. We note that any quadratic form, such as xTAx in equation (1),

can be written as a symmetric quadratic form, and that any square matrix is the sum of

a symmetric and a skew-symmetric matrix [10].

We proceed to give two proofs of Theorem 1. The first proof is indirect and refers to the

solution of another optimization problem, whereas the second proof is a direct application

of the Lagrangian multiplier method. Both proofs are also briefer than the proof given

by Landsman [1, 2] for his solution of the minimization problem. A comparison of the

methods used here and the method used in [1, 2] is made in section 4.

3.2. A First Proof of Theorem 1

Consider the objective function g(x) = µ
Tx + 1

2
βxTAx, which differs from f(x) in

equation (1) by the absence of the square root of the quadratic form. The minimization

of g(x), subject to the constraint in equation (2), is a well-known convex optimization

problem [11, page 425], [12, section 8.2], [9, section 4.4]. Provided that β > 0, then g(x)

has a unique constrained minimum at

x = ρ+
1

β
τ (8)

where ρ and τ are defined in points (i) and (ii) respectively of Theorem 1.
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Employing the Lagrange multiplier method, we note that the first-order necessary con-

ditions for the constrained minimum of g(x) are given by ∂L
∂x

= 0n and ∂L
∂κ

= 0m where the

Lagrangian is L = g(x) − κ
T(Bx − c) and κ is an m × 1 vector of Lagrange multipliers.

Therefore, the optimal solution (x,κ) satisfies

µ+ βAx−BT
κ = 0n, Bx = c. (9)

Likewise, the first-order necessary conditions for the constrained minimum of f(x), from

equation (1), are

µ+ λ
(

xTAx
)−1/2

Ax−BT
γ = 0n, Bx = c (10)

where γ is another m× 1 vector of Lagrange multipliers. (The standard rules of differenti-

ation wrt. vectors are employed in the above when differentiating the relevant Lagrangians

wrt. x, κ and γ.)

Now, the solution (x, κ) of equation system (9) coincides with the solution (x∗, γ∗) of

equation system (10), such that x = x∗ and κ = γ
∗, provided that

λ = β
√
x∗TAx∗ = β

√

xTAx. (11)

It is straightforward to use Lemma 3, in particular (U−1)
T
= U−1 and (A−1)

T
= A−1,

to obtain that ρ and Aτ are orthogonal (ρTAτ = 0) and ρ
TAρ = cTU−1c and also to

find τ
TAτ , as in points (a)–(c) of Theorem 1. From equation (8), we therefore find that

xTAx = ρ
TAρ+

1

β2
τ
TAτ (12)

which, upon substitution in equation (11), yields

β =

√

λ2 − τTAτ

ρTAρ
, (13)

noting that β > 0 is a condition for a constrained minimum in g(x).

Since x∗ = x when equation (13) holds, we may substitute β from equation (13) into

equation (8) to obtain x∗ in equation (7) of Theorem 1.
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Finally, we observe that ρ
TAρ = cTU−1c > 0, from the positive definiteness of U−1

in point (iv) of Lemma 3 and the requirement that c 6= 0m in the constraint equation (2).

Since β > 0 in equation (13), it follows that λ >
√
τTAτ , which is the inequality condition

in Theorem 1. Whereas Lemma 2 guarantees uniqueness of the constrained minimum in

f(x) at x∗, the condition λ >
√
τTAτ guarantees its existence. 2

3.3. A Second Proof of Theorem 1

The second proof described here uses the Lagrange multiplier method to optimize f(x)

directly, with no reference to the optimization of g(x).

Define the Lagrangian L = f(x)−γ
T(Bx−c). Then ∂L

∂x
= 0n and ∂L

∂γ
= 0m lead to the

two equations in equation system (10). These must be solved simultaneously for x∗ and

γ
∗. At first sight, solving these equations directly seems difficult because of the presence

of
√
xTAx. We note, however, that (i)

√
xTAx is merely the root of a quadratic form,

which is a scalar, and (ii) the positive definiteness of A and the inadmissibility of x = 0n

as a solution of the constraint equation (2) mean that xTAx > 0.

From the first of the two equations in equation system (10), we find that

x∗ =
1

λ

(

x∗TAx∗)1/2 (A−1BT
γ
∗ −A−1

µ
)

(14)

and substituting in the second equation gives B 1
λ

(

x∗TAx∗)1/2 (A−1BT
γ
∗ −A−1

µ
)

= c.

This may be solved for γ∗:

γ
∗ = U−1

(

BA−1
µ+ λ

(

x∗TAx∗)−1/2
c
)

. (15)

Replacing γ
∗ from equation (15) into equation (14) leads in short order to

x∗ = ρ+
1

λ

(

x∗TAx∗)1/2
τ , (16)

where ρ and τ are as in points (i) and (ii) respectively of Theorem 1.

As in the first proof (section 3.2), we again use Lemma 3 to obtain ρ
TAτ = 0, ρTAρ =

cTU−1c and also to find τ
TAτ , as in points (a)–(c) of Theorem 1. Unlike in the first proof,
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however, we uncover directly from equation (16) a linear equation which is easily solved

for x∗TAx∗:

x∗TAx∗ = (ρTAρ) +
1

λ2

(

x∗TAx∗) (τTAτ ) (17)

x∗TAx∗ =
ρ
TAρ

1− 1
λ2τ

TAτ
(18)

Substitution of x∗TAx∗ from equation (18) into equation (16) immediately leads to x∗ in

equation (7) of Theorem 1.

Finally, we observe that: (i) ρ
TAρ > 0 for the same reason as in the last paragraph

of the first proof (section 3.2), and (ii) x∗TAx∗ > 0 because of the positive definiteness

of A and the inadmissibility of x = 0n as a solution of the constraint equation (2). We

conclude, from equation (18), that λ >
√
τTAτ . This is the minimization condition in

Theorem 1. Lemma 2 guarantees uniqueness of the constrained minimum in f(x) at x∗,

but the condition λ >
√
τTAτ guarantees its existence. 2

4. Discussion

4.1. Computational advantage

It is useful to compare our solution in equation (7) to the solution given by Landsman [2]

(after rewriting it in the notation of Theorem 1 in section 3 above):

x∗ = ρ +

√

ρTAρ

λ2 −∆TQ−1∆

(

∆TQ−1, −∆TQ−1D12

)T
(19)

In equation (19),

Q = A11 −A12D21 −D12A21 +D12A22D21

∆ = D12µ2 − µ1

and

A =





A11 A12

A21 A22



 , B =
(

B21, B22

)

D21 = B−1
22 B21, D12 = D21

T, µ
T =

(

µ1
T, µ2

T

)

9



In the above, matrices A, B and vector µ are partitioned by separating the first n − m

variables from the remaining m variables: see [2] for details.

It is immediately apparent that the solution in equation (7) is simpler to evaluate than

the solution in equation (19). In particular, the latter involves several partitioned matrices

and vectors whose parts themselves involve the inverses and products of other partitioned

matrices.

A typical investment portfolio may involve hundreds of stocks with several constraints

on stock sector holdings, so that matrices A, B and vector µ are large, that is, we have

large m and n in equations (1) and (2). The calculation of optimal portfolios is therefore

considerably speeded up with our solution. (See [2] for an example with only 10 stocks.)

It is worth mentioning that, before Landsman’s [1, 2] solution, only approximate numer-

ical methods were available and, with n ≥ 20, the computation could take a considerable

time, depending on the starting point of iterations [7].

A simplified closed-form solution, such as in Theorem 1, also enables us to carry out

basic perturbation analysis in applied problems, and investigate how optimal solutions

change as parameters vary: see [1] for an application. For example, λ in equation (1)

could stand for a measure of an investor’s risk aversion or for a quantile of risk under,

say, the Value-at-Risk measure [5, 6]. Evaluating the change in an investment portfolio or

insurance premium, for a small change in λ, is therefore of practical significance.

4.2. Method of proof

The method of proof used by Landsman [1, 2] is to substitute the constraint in equa-

tion (2) directly into the objective function in equation (1). Both of the proofs that we give

in sections 3.2 and 3.3 employ the Lagrange multiplier method and are briefer and more

elegant. The difficulty of handling the root of the quadratic form xTAx in equation (1) is

eased in our first proof by making reference to the known solution of another optimization

problem. It is tackled in our second proof by means of a direct substitution.

Furthermore, we have shown that, in order to solve the minimization problem described

in section 1, one merely needs to effect a substitution of parameters via equation (13) and
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then solve a standard quadratic optimization problem. For the first time, the parallel

between x∗ in equation (7) and x in equation (8) is clarified (see proof in section 3.2).

4.3. Existence and uniqueness of the minimum

In Lemma 2, we showed strict convexity of the objective function in equation (1) when

constrained by equation (2), and thus clarified the uniqueness of the constrained minimum.

In Theorem 1, we also made explicit a condition, λ >
√
τTAτ , for the existence of this

constrained minimum.

We note again that the condition λ >
√

∆TQ−1∆ derived in [2] is more difficult to

evaluate as it involves computationally expensive manipulation of large matrices.

With the help of Lemma 1, we can also give an intuitive geometric interpretation of

the condition λ >
√
τTAτ in Theorem 1. Roughly, the shape of the quadric conical

hypersurface made by f(x) in equation (1) in n + 1-space is governed by the following

parameters: λ determines “aperture” or “pointedness”, A determines “obliqueness”, µ

determines “tilt”. See Example 1.

In general, the restriction of a quadric hypersurface by a subspace is itself a quadric

hypersurface on that subspace [13, page 1301]. Thus, restriction of the objective function

in equation (1) by the constraint in equation (2) means that the conical hypersurface is

“sliced”, resulting in the multi-dimensional equivalent of a conic section. Roughly, the

“slicing angle” is governed here by B in equation (2).

In the elementary theory of conic sections [13, page 293] when a plane slices an upright

circular double cone, the “slicing angle” determines whether the conic section is a hyper-

bola, an ellipse or a parabola. By analogy, the condition λ >
√
τTAτ in Theorem 1 ensures

that, for given “obliqueness”, “tilt” and “slicing angle” parameters (A, µ, B respectively)

the “aperture” λ of the quadric cone is large enough that the resulting multi-dimensional

conic section has a minimum.

We illustrate this in 3-space by means of the following example.

Example 3. Let n = 2, µ = ( µ
0 ) and A =

(

a2 0
0 1

)

in equation (1). Let m = 1, B = ( 1, 1 )

and c = 1 (a scalar) in equation (2).

11



From point (c) of Theorem (1),

τ
TAτ = µ

TA−1
µ−(BA−1

µ)
T
U−1(BA−1

µ) =
µ2

a2
− µ

a2

(

1 + a2

a2

)−1
µ

a2
=

µ2

1 + a2
. (20)

Hence, the condition λ >
√
τTAτ simplifies to

λ >
|µ|√
1 + a2

. (21)

We may now verify inequality (21) using a simple geometric argument. The objective

function may be simplified to f(x1, x2) = µx1 + λ
√

a2x2
1 + x2

2 and the constraint is x2 =

1− x1. Letting x = x1 = 1− x2 and y = f(x1, x2) = f(x) and substituting the constraint

directly into the objective function yields

y2 − λ2(a2 + 1)x2 − 2µxy + 2λ2x− λ2 = 0 (22)

which is in the general form of a conic section [13, page 297]. Its discriminant is 4(µ2 +

λ2(a2 + 1)) > 0. The conic section is therefore a hyperbola. In general, µ 6= 0, and the

presence of the non-zero xy term in equation (22) indicates that the transverse axis of the

hyperbola is not vertical, that is, the hyperbola does not have a vertical or north-south

orientation in general. The existence of a minimum is not therefore guaranteed, in general.

There will be a minimum if one asymptote of the hyperbola is positively sloped and the

other is negatively sloped. The oblique asymptotes of the hyperbola in equation (22) are

easily found to be y = (µ ± λ
√
a2 + 1)x. Hence, the hyperbola will exhibit a minimum if

λ > −µ√
a2+1

and λ > µ√
a2+1

, which is equivalent to requiring that inequality (21) holds.

This therefore serves to confirm our geometric interpretation of condition λ >
√
τTAτ

in Theorem 1.

5. Conclusion

A closed-form solution to the minimization of the square root of a quadratic functional,

under a system of affine constraints, was given in this paper. We provided two proofs for

our solution. The first one leveraged the known solution of another convex optimization
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problem. The second one was a direct application of the Lagrange multiplier method. The

advantage of our method of proof is that it gives greater insight to the solution of the

minimization problem. Furthermore, we gave an intuitive geometrical interpretation to

the optimization problem by analogy with conic sections theory in elementary geometry.

Our closed-form solution is more concise than the solution in [2] and is computationally

simpler in that it does not involve repeated partitioning and inversion of large matrices. The

calculation of optimal investment portfolios or insurance premiums and the determination

of convex feasibility problems, as discussed in section 1 can therefore be considerably

simplified and speeded up.

The work in this paper can be extended in several directions in future. The optimization

problem was set out in a generic way, but applications in specific problems can yield further

problems of interest. For example, one can add inequality constraints, to represent practical

constraints on short-selling when optimizing investment portfolios, and apply the Kuhn-

Tucker method [9, page 243]. A proof of the optimal solution using the tools of analytical

geometry, building on the examples given in this paper, could also be developed.

Appendix A. Proof of Lemma 1

Part (i). First consider the hypersurface defined by z = ±λ
√
xTAx.

1. Define xn+1 = z. The equation xn+1 = ±λ
√
xTAx can be written as

xn+1 = ±λ
√

∑n
i,j=1 aijxixj, where aij = (A)i,j . Further, define an+1,j = ai,n+1 = 0 for

i, j ∈ [1, n] and an+1,n+1 = 1/λ2 and rewrite the equation as
∑n+1

i,j=1 λ
2aijxixj = 0. This

is an equation of the second degree in the form satisfied by a quadric hypersurface [13,

page 1300].

2. The origin, at xi = 0 for i ∈ [1, n+1], trivially satisfies the equation of this hypersurface

and thus belongs to the hypersurface.

3. Consider any point other than the origin that lies on the hypersurface. Represent this

by the end-point of a vector u ∈ R
n+1. Then, all points on the line segment from the
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origin to the end-point of vector u also lie on the hypersurface since

±λ

√

(kx)TA(kx) = ±kλ
√
xTAx = ±kxn+1 = ±k z (A.1)

for k > 0. All such line segments are generating lines, the hypersurface is a quadric

conical hypersurface, and the origin is a singular point called the apex or vertex [13,

pages 419, 1301].

4. z = ±λ
√
xTAx exhibits symmetry in the z-axis since

√

(−x)TA(−x) =
√
xTAx.

Part (ii). Next consider the hypersurface defined by z = f(x).

Again, define xn+1 = z. The equation xn+1 = f(x) = µ
Tx + λ

√
xTAx can be written

as xn+1 −
∑n

i=1 µixi = λ
√

∑n
i,j=1 aijxixj, where µi is the ith element of µ and aij = (A)i,j

as before. Define µn+1 = 0 and an+1,j = ai,n+1 = 0 for i, j ∈ [1, n + 1] and rewrite the

equation as
∑n+1

i,j=1((1 − µi)(1 − µj) − λ2aij)xixj = 0. This is an equation of the second

degree in the form satisfied by a quadric hypersurface [13, page 1300]. Since we take only

the positive square root in equation (1), xn+1 = f(x) describes only a portion of the quadric

hypersurface.

Points 2 and 3 above, about the origin and generating lines respectively, hold verbatim

for z = xn+1 = f(x), except that we replace equation (A.1) by the following:

µ
T(kx) + λ

√

(kx)TA(kx) = kµTx+ kλ
√
xTAx = kxn+1 = k z (A.2)

Finally, z = xn+1 = f(x) is, in general, not symmetrical in the z-axis since f(−x) =

µ
T(−x) + λ

√

(−x)TA(−x) = −µ
Tx + λ

√
xTAx 6= f(x), in the general case where

µ
Tx 6= 0. 2

Appendix B. Proof of Lemma 2

In equation (1) for f(x), we note that µTx is continuous, differentiable and linear on

R
n, so that we need only consider

√
xTAx. We also note that λ > 0, and that the sum of

a convex function and a (strictly) convex function is itself (strictly) convex, so that (strict)

convexity of f(x) follows from (strict) convexity of
√
xTAx.
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Part (i): Continuity. We observe that xTAx is a positive definite quadratic form and

is continuous on R
n. The square root function is continuous on R+. By the composite

function theorem [13, page 317],
√
xTAx, and hence f(x), are continuous on R

n.

Part (ii): Differentiability. The gradient of
√
xTAx is Ax√

xTAx
. This is finite for all x ∈ R

n

except for x = 0n where it is undefined. To inspect this further, consider the partial

derivative ∂(
√
xTAx)
∂xj

where xj is the jth element of x. Define ıj ∈ R
n as the vector of zeros

for all elements except for the jth element which is unity.

lim
h→0

1

h

(

√

(x+ hıj)
T
A(x+ hıj)−

√
xTAx

)∣

∣

∣

∣

x=0n

= lim
h→0

|h|
h

√

ıj
TAıj =











+
√

(A)jj if h → 0+

−
√

(A)jj if h → 0−
(B.1)

where (A)jj is the element of A in the jth row and jth column. This shows that the left-

and right-hand limits do not coincide at x = 0n. Hence,
√
xTAx and f(x) are differentiable

on R
n except at x = 0n.

Part (iii): Convexity. Consider the convex combination θu + (1 − θ)v, where 0 < θ < 1,

of u, v ∈ R
n.

[

(θu+ (1− θ)v)TA(θu+ (1− θ)v)
]1/2

=
[

θ2uTAu+ 2θ(1− θ)uTAv + (1− θ)2vTAv
]1/2

≤
[

θ2uTAu+ 2θ(1− θ)(uTAu)1/2(vTAv)1/2 + (1− θ)2vTAv
]1/2

= θ(uTAu)1/2 + (1− θ)(vTAv)1/2 (B.2)

where the inequality follows by virtue of the Cauchy-Schwarz inequality. (Recall also that

A is positive definite.) Hence,
√
xTAx is convex on R

n. The sum of a linear function and

a convex function, as in equation (1), is a convex function, and we conclude that f(x) is

convex on R
n.
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Part (iv): Piecewise linearity. Since V ⊂ R
n, we note that f(x) is continuous on V as per

part (i) of the Lemma, but it is also non-differentiable at x = 0n ∈ V .
Next, consider two non-zero u, v ∈ R

n on a surface V orthogonal to some b ∈ R
n.

They are linearly dependent and v = ku for some k ∈ R. Then,
√
vTAv = |k|

√
uTAu,

demonstrating piecewise linearity.

Two possibilities arise: (a) u and v are in the same orthant, whereupon k > 0,
√
vTAv = k

√
uTAu, and weak inequality in (B.2) converts to full equality. (b) u and

v are in different orthants whereupon k < 0,
√
vTAv = −k

√
uTAu, and weak inequality

in (B.2) converts to strict inequality (since |θ + k(1− θ)| < θ + |k|(1− θ)).

Part (v): Strict convexity. f(x) is continuous on U ⊂ R
n by part (i) of the Lemma.

Furthermore, in equation (2), c 6= 0n, hence 0n 6∈ U , and f(x) is differentiable on U by

part (ii) of the Lemma.

Next, consider two non-zero u, v ∈ U . We prove, by contradiction, that u, v ∈ U
⇒ u, v are linearly independent. Suppose that u, v ∈ U , so that both u and v satisfy

equation (2), and u, v are linearly dependent, so that v = ku for some k ∈ R, k 6= 0.

Then c = Bv = kBu = kc which is impossible since k 6= 0 and c 6= 0n. Hence, u, v ∈ U
⇒ u, v are linearly independent. Weak inequality in (B.2) may then be replaced by strict

inequality, by virtue of the Cauchy-Schwarz inequality, and hence
√
xTAx is strictly convex

on U . The sum of a convex function and a strictly convex function, as in equation (1), is

a strictly convex function, and we conclude that f(x) is strictly convex on U . 2
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