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Abstract 

 

This thesis is about the measurement of health care output and the relationship 
between health care outcomes, physician practice patterns and individual physician 
characteristics within a very specific and particular health care sector, the health 
care sector on the Islands of Malta. 

Chapter 2 focuses on the appropriateness of introducing a Diagnosis Related Group 
(DRG) casemix classification system on Maltese data.  A number of tests are applied 
to gauge the ability of Grouper software to capture the heterogeneity between the 
obtained DRG groups and the degree of homogeneity gained in explaining resource 
use from the grouping of cases by DRG categories.  This serves to provide a measure 
of health care ‘output’ whilst providing a tool to help describe and manage resource 
use.  Chapter 3 of this thesis explores differences in the expected relationship 
between volume and competing risk outcomes and whether this relationship varies 
in view of different consultant job contract conditions.  Finally, Chapter 4 of this 
thesis studies the behaviour of individual consultants working in the context of the 
specific incentives and work practices of the Maltese health care system.  The role 
of the specific consultant job contract type is investigated to explain heterogeneity 
arising among treatment practice patterns over two specific periods related to the 
patients’ stay at the hospital: the first two days of hospital stay and their remaining 
stay. 
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This thesis is a compilation of three research papers that investigate differences in 

hospital outcomes and physician practice variation patterns observed within a very 

specific and particular health care sector.  The focus is the activity undertaken 

within the only publically funded general acute hospital on the Islands of Malta.  

Whilst acknowledging the importance of differences due to patient, physician and 

environmental characteristics that can help to explain variations in outcome, 

particular focus is given to variations arising from individual consultant and surgeon 

practice related characteristics, especially job volume levels and consultant job 

contract conditions.  Indeed, these particular characteristics of the health care sector 

are expected to influence and define the relationships between health care 

providers, the hospital and the patients.   

The thesis focuses on the measurement of output within the Maltese health care 

sector with an emphasis on the factors which are expected to affect hospital 

outcomes and practice variation among consultants within this hospital setting.  The 

analysis aims to assess the feasibility of introducing a casemix grouper software as 

a tool in obtaining a measure of current hospital output.  The ability to measure 

outcomes can lead to better accountability in the use of public funds which in turn 

would enable policy makers to achieve greater efficiency in the overall operation of 

the hospital whilst ensuring the sustainability of the health care system.    

The performance of the health care system can be improved only if its output is  

adequately measured.  This thesis also aims to understand the main factors which 

affect performance within the health care sector.  In view of the contribution of 

health professionals towards the overall running of the hospital, this study seeks to 

identify the influence of particular consulant characteristics on patient outcomes 
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and consultant practice patterns.  This is important so as to identify the existence, 

nature and possible channels of the contribution of health professionals towards 

outcome effectiveness. Variations in practice patterns are expected to have 

important consequences on the quality and cost of health care treatment.  The job 

contract type of consultants working with the public hospital is expected to be a 

determining factor in explaining the behaviour of the consultants.  The study aims 

to identify and measure the impact of job contract type on both patient outcomes 

and on practice behaviour patterns of consultants.  This understanding helps in the 

setting of policy, based on empirical findings, to address the needed reforms which 

have been at the top of the health care agenda over recent years.   

In the absence of a clearly defined casemix classification system for the Maltese 

health care sector, this thesis opens with an evaluation of the feasibility of 

introducing a casemix system based on Diagnosis Related Groups (DRGs).  DRGs 

have been advocated in the literature and used in a number of countries as a primary 

tool to assess the efficiency and effectiveness of hospitals in providing acute patient 

care.  The setting up of DRG groups could provide an effective measure of health care 

‘output’ for the hospital.   

DRG categories provide a measure for identifying hospital patient cases which 

involve the use of excess resources in comparison to the average patient case.  There 

is a continual strive to understand these differences in resource use, identify reasons 

for such differences and address such differences.  The measurement of ‘output’ 

within this setting would thus provide a consistent and reliable indicator for the 

analysis of differences in practice arising from factors which are not taken into 

account by the DRG grouping method.  Such factors are likely to include, amongst 
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others: the behavioural characteristics of the consultant and the surgeon when 

dealing with the patient.  This can have important consequences for the 

implementation of policy measures within the health care sector.     

The data collated and prepared for use in this thesis has been provided by the 

Clinical Performance Unit within Mater Dei Hospital,1 and cover a three year period 

(2009-2011).  The dataset provides information on individual patients admitted to 

hospital and the consultants and surgeons practicing within the hospital.  The data 

also identify the diagnosis (a six level digit code based on ICD-10)2 and procedures 

(a three level code based on ICD-9-CM)3 related to each patient admitted to hospital, 

the date of the patient’s admission and discharge, their age and sex, the final 

destination of the patient following discharge and all of the investigations and tests 

that were ordered and carried out during their hospital stay, including the date 

when the investigations were performed.   

Furthermore, the dataset includes a number of characteristics which describe the 

surgeons who carried out the procedures and the consultants who had overall 

responsibility for each of the patients treated at the hospital.  A data preparation 

exercise was undertaken to eliminate cases with invalid data and a number of 

technical edits and algorithms on the coding structure of the data were performed 

to ensure it was able to be used with the DRG Grouper software.  A set of diagnostic 

and procedural variables was also constructed. This included counts of diagnoses 

per patient, counts of procedures and also a range of differing counts of consultant 

                                                        
1 Mater Dei Hospital is the only public general acute hospital providing services on the Islands of 
Malta.   
2 International Classification of Diseases – 10th revision (WHO). 
3 International Classification of Diseases – 9th revision – Clinical Modification (WHO). 
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and surgeon volume measures.  The availability of individual level data provided a 

more robust dataset for estimation and analysis purposes. 

Consultants are major players in the overall running of a public hospital and their 

level of activity and behaviour decisions are expected to significantly influence the 

overall outcomes for patients.  Consultants are employed within the public hospital 

on one of two possible contract options: they can work exclusively with the public 

hospital or they can decide to opt for a contract which allows them to work in private 

practice alongside their public sector commitments.   It is expected that within the 

context and characteristics of the Maltese health care system, the prevailing 

consultant job contract conditions will explain some of the variation observed in 

practice patterns evidenced from the data.  

As suggested from a review of the literature, a first attempt by an organisation at 

implementing a DRG casemix system involves the use and application of a tried and 

tested casemix system imported from another country.  Chapter 2 of this thesis looks 

at the specific application of the MS-DRG4 (Version 27) Grouper system on the 

Maltese data and applies the Coefficient of Multiple Determination (R2) and the 

Coefficient of Variation (CV) to assess the heterogeneity between the obtained DRG 

classes and the degree of homogeneity gained in explaining resource use from the 

grouping of cases by DRG categories respectively.  The Length of Stay (LOS) at the 

hospital for each individual patient is used as a proxy for resource intensity use.  The 

results obtained from the study compare well with those obtained in other countries 

                                                        
4 Medical Severity Diagnosis Related Groups (MS-DRG) provided by the Centers for Medicare and 
Medicaid Services, Department of Health and Human Services, USA. 
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and this supports the view that the management of the health care system in Malta 

would benefit from the implementation of a DRG casemix system.  

Following on from the findings presented in Chapter 2, the analysis presented in 

Chapter 3 and Chapter 4 of this thesis focuses on a particular procedure, 

Percutaneous Transluminal Coronary Angioplasty (PTCA), performed within this 

particular hospital setting.  Chapter 3 looks at differences in the expected 

relationship between volume and competing risk outcomes and whether this 

relationship varies in view of different consultant job contract conditions. An 

extensive literature review summarises the wide-ranging work on the relationship 

between volume and outcome within varying hospital settings and between varying 

individual physicians.  Whilst acknowledging this relationship, the study specifically 

considers the strength of this relationship in the context of a single provider public 

hospital.  Furthermore, it was deemed important to look deeper into the resulting 

outcomes following a hospital intervention and analyse the factors which affect such 

outcomes.  

The main event of interest is  failure within the 60 day period following the discharge 

from hospital after the undertaking of a PTCA procedure.  Patients can be readmitted 

to hospital following discharge within the 60 day period or may otherwise die either 

during the hospitalisation period or within the 60 day period following discharge.   

The occurrence of the events readmission or death, are both treated as failure events.  

An event is considered to be a success if no event takes place within the 60 day time 

period following discharge.  In line with a number of suggestions in the literature, 

both non-parametric and semi-parametric survival analysis methods are applied to 

study the rates for the occurrence of the events of interest.  A multinomial logistic 
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model is also estimated to gauge the robustness of the results obtained from the 

survival analysis methods.  

The results obtained support the view that differences in outcomes for the event of 

interest are dependent on the patient volume levels of consultants and surgeons and 

also on the particular job plan contract type of the consultants.  Even within a single 

hospital setting, one would expect differences in the behaviour of consultants and 

surgeons when treating patients to occur. Variations in medical practice arise when 

patients with similar characteristics make use of different levels of hospital 

resources.  Such differences at the individual level are expected to have an impact 

on the overall performance, both in terms of quality and cost, of the health care 

system.  A reduction in variation would be expected to lead to an improvement in 

the overall efficiency of the health care system and would have an impact on patient 

welfare and overall health outcomes.  

Whilst many studies focus on the variation between hospitals, Chapter 4 of this 

thesis studies the behaviour of individual consultants working in the context of 

specific incentives and work practices of the Maltese health care system.  Within this 

context, the role of the consultant job contract type is expected to be a prime 

determinant of heterogeneity arising among treatment patterns.  Practice variation 

is measured by the number of investigations ordered and carried out on the patient 

undergoing a Percutaneous Transluminal Coronary Angioplasty (PTCA).  In the 

study, data were used to distinguish between ‘necessary’ investigations in the 

treatment of PTCA undertaken in the first two days of a patient’s hospital stay, and 

those undertaken afterwards and thus considered ‘less important’.  This paper 

contributes to the literature by analysing how practice variation differs by 
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consultant job contract type in relation to the different time periods during which 

the patient is in hospital.   

The consultant responsible for the admitted patient has direct control over the 

number of investigations carried out at the hospital.  Variation in such decisions 

could reflect consultant’s strategic behaviour due to his type of contract and/or 

consultant treatment preferences.  In this study, a theoretic utility function is 

developed to analyse the utility associated with the behaviour of doctors working 

within the context of a single hospital who choose to either work exclusively for the 

government or also practice in the private sector.  

In the literature, the variation in utility has been linked to physician and patient 

characteristics in addition to the organisational practices within the health care 

system.  Both the uncertainty of a choice of treatment and its resulting effect have 

been identified as prime determinants of variation.  Of importance to the study is 

the fact that due to the small size of the health care sector, patients are expected to 

be knowledgeable of physicians who carry out this particular procedure, whilst 

practicing physicians are concerned about their overall reputation.    

A two-stage multilevel modelling approach is used in Chapter 4 of this thesis to 

study the relationship between the specific consultant contract conditions and the 

number of investigations ordered by the consultant.  This level of analysis ensures 

that causes of variation, which might be omitted if the analysis is carried out at an 

aggregated level, are included and taken into account.  A one-stage multilevel model, 

including group level effects, is also used to gauge the robustness of the obtained 

results.  
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The results show that both the job contract type and the volume levels of the 

consultant significantly affect practice variation.  Furthermore, it was found that the 

responsiveness of practice variation to such characteristics varies in relation to the 

period of analysis, i.e. during the first two days of hospital stay compared to the rest 

of the days spent at hospital.    

This thesis concludes with a summary of the main findings and implications of the 

analysis undertaken and presented in the respective chapters.  In addition, some 

possible extensions to the research are discussed.  The need to be able to benchmark 

hospital activity against an ‘acceptable’ practice which is viable, is crucial 

information for the better management of the available limited resources and in 

monitoring health care providers’ behaviour effectively.  The understanding of the 

relationship between health care outcomes, patient, consultant and surgeon 

characteristics is crucial for the hospital authorities in the setting up of effective 

policy throughout the health care system.  
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Abstract 

The healthcare system in Malta is financed through public funds with free healthcare 

provided at the point of service.  The aim of this paper is to examine the feasibility 

of introducing a Diagnosis Related Groups (DRGs) casemix system for Malta, not 

necessarily for payment and funding purposes, but as a tool to help describe, 

manage and measure resource use.  

Like many other countries, Malta faces a growing concern of how to cope with the 

ever-increasing demands for health services within the context of limited resources 

available for health care needs. To date there has been no previous application of a 

casemix system for Malta. Based on the experience of other countries, a first step 

towards the use of a patient classification system normally involves the importation 

of a pre-existing casemix system already used and tested elsewhere.  This study 

evaluates the practicability of the MS-DRG (Version 27.0) Grouper casemix software 

developed in the US within the context of the existing acute hospital care sector in 

Malta.  

The classification of 151,615 individual patient cases admitted to hospital between 

2009 and 2011 resulted in 636 different DRG categories being defined. Around half 

of these DRGs accounted for 99% of the total activity at the hospital. 296 DRG 

categories had less than 15 cases over the period, which highlights the need to 

carefully deal with relatively small sized DRG groups. The patient Length of Stay 

(LOS) is the indicator used as a proxy for resource use and the extent to which the 

DRG system is able to explain resource use is measured by two coefficients: the 

Coefficient of Multiple Determination (R2) and the Coefficient of Variation (CV). In 

this study an initial R2 value of 0.19 was obtained and this improved to 
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approximately 0.25 when a number of trimming algorithm methods were applied to 

the data.  A good proportion of the resulting DRGs had a CV which was less than 1, 

indicating a considerable low degree of variability within the obtained DRG groups.  

Based on the analysis undertaken, there is good evidence to support the 

introduction and use of a DRG based system in Malta.  The derived DRGs will help to 

define the service mix of the hospital and can be further used by the management of 

the hospital to assess efficiency and effectiveness within the Maltese hospital 

setting.   
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2.1  Introduction and Motivation 

The ability to measure the outcome of health care is critical to improving the 

effectiveness, efficiency and accountability of any health care system.  Hospitals are 

deeply rooted in the political and administrative organisation of their country and 

typically account for the majority of spending by Government within the health care 

sector of a country.  As stated by Lord Darzi (2008) ‘we can only be sure to improve 

what we actually measure’.  Casemix systems, particularly Diagnosis Related Groups 

(DRGs), have been implemented in a number of countries as part of a reform process 

to improve efficiency within the health care sector.  DRGs help policy makers obtain 

an estimate of the activity undertaken within the hospital and thus assist in the 

understanding and measuring of the output of the hospital entity.   

Measuring health care output through the use of indicators such as the number of 

beds, deaths or discharges, although all valid, do not provide the necessary measure 

of output from the health care system. The primary focus of this paper is the 

measurement of output in the Maltese health care sector through the use of a DRG 

casemix system.   

This study seeks to assist policy makers in their endeavour to evaluate and adopt 

the appropriate policy guidelines to ensure the sustainability of the provision of free 

health care services.  By applying DRGs in this context, the study will contribute to 

the debate of the relevance of such systems when applied to small countries with 

very particular hospital characteristics.  Furthermore, a DRG casemix system would 

provide the necessary framework to studying the performance of physicians 

working within the hospital system.   
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To date, there has not been a study on the application of a DRG casemix classification 

system to health care in Malta.  Scheller-Kreinsen et al., (2009) noted that most 

countries which introduced DRG systems as part of their reform initiatives have 

often imported a pre-existing casemix system from another country even though it 

may not fully reflect their own health care practice patterns.  It is only later that 

countries decide to refine the implemented casemix system to better reflect their 

own health care system.  This paper explores the practicability of applying the 

Casemix Grouper5 software MS-DRG6 (Version 27.0) used in the US in the context of 

the Maltese health care sector data.  The derived DRG categories will be evaluated 

in terms of the homogeneity and power of the generated DRG groups to explain 

resource use.  The DRG casemix system is now in use in a number of countries and 

has been applied to a variety of health care systems.  

The multi-product nature of hospital output is a major factor to be dealt with when 

defining hospital activity.  Classes of patients with similar clinical attributes and 

similar processes of care provide the necessary framework to aggregate patients 

into case types or products which entail the use of similar resources.  DRGs provide 

a management tool which views the delivery of health care as a service, a production 

process in which outputs (health care episodes) are delivered to consumers 

(patients).   

The results presented in this paper show that there is a good basis for 

recommending the introduction of a DRG based system to describe the hospital 

                                                        
5 A DRG Grouper is an algorithm which takes clinical and demographic data as input and gives a 
corresponding Diagnosis Related Group as output. 
6 Medical Severity Diagnosis Related Groups (MS-DRG) is a grouper software provided by the Centers 
for Medicare and Medicaid Services, Department of Health and Human Services, USA. 
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output activities in the Maltese health care system.  This will help to partition the 

episodes of care in an informative and meaningful way for the better management 

of resources within the health care sector.  The formulation of DRGs would 

encourage administrators to view the use and costs of hospital services along 

product lines based on DRGs and in so doing, provide information on whether 

resources used for particular episodes of care are in line with what is expected for 

an average case within a particular DRG group. 

The paper is organized as follows: the following section, Section 2.2, provides an 

overview of the literature related to the process of introducing a DRG casemix 

system together with the expected consequences on hospital activity resulting from 

its implementation.  Section 2.3 gives a brief description of the main characteristics 

of the health care sector in Malta together with a detailed analysis of the available 

data and the necessary adaptations required to ensure that the grouper software is 

suitably applied.  The methodology used to assess the reliability of the obtained 

DRGs is described next, followed by a discussion of the results obtained when 

measuring hospital output within the Maltese acute health care sector using DRGs.  

Finally a number of conclusions are presented.   
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2.2  Literature 

Casemix is defined by Anderson (1984) as a system which “groups individual cases 

into a smaller number of case types so that the cases within a given group are 

homogeneous and the case types themselves are heterogeneous from other groups 

in some meaningful way”.  Patients within a clinical group are expected to have 

reasonably consistent resource consumption levels and such levels are expected to 

differ from other groups.  DRGs are a tool which describes the number and type of 

treated patients in a hospital setting.   According to Zhiping et al., (2004b) a casemix 

system has to have three important characteristics: clinical meaningfulness, 

resource use homogeneity and a manageable number of classes.  The DRG system is 

the most well known casemix system, designed to group together acute inpatients, 

who are similar clinically and who have a similar pattern of resource use.   

The first DRG classification system was designed in the United States following work 

at Yale University by Fetter, Thompson and Averill in 1969. The intended primary 

use was to achieve quality improvement and to review utilisation. However this 

changed in the funding of hospitals in the 1980s.  The constant rising cost of health 

care in the US was the primary motive for developing a prospective payment system.  

Scheller-Kreinsen et al., (2009) highlight three main reasons for the introduction of 

DRGs: increased transparency,  greater efficiency and supporting in-hospital 

management.   

Most EU nations recorded a period of recession throughout the 1980s and this was 

the time when most countries initiated a process of reform within their health care 

systems.  Given the fact that the acute hospital sector generally constitutes a major 

component of health care expenditure, most European governments sought to use 
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the introduction of a DRG system to primarily target improvements in efficiency, in 

resource allocation and cost containment within their respective health care system.  

Governments also sought other objectives, not primarily economic in nature, such 

as reductions in waiting lists and improvements in the quality of care.  The 1990s 

saw the implementation and application of DRG systems within most European 

countries such as the UK, Italy, France, Ireland and Portugal to mention just a few.  

As highlighted by Wiley (1999) this was at a time of increasing pressure on health 

care expenditure within a number of countries leading to the implementation of a 

number of reform options within the respective health care systems. 

The motives underlying the introduction and the development of DRG systems, 

together with the particular design features of the system, vary greatly across 

countries (HOPE, 2006).  The provision of health care systems, their historical 

background and cultural environment within which they operate, have impacted on 

the process of implementing a DRG system.   Within the setting of global budgets (as 

was the case seen in most European countries) the introduction of DRGs was mostly 

directed towards fairness and efficiency rather than cost containment. Countries 

adopting a DRG casemix system now had a way of obtaining information on 

individual services offered and also on the costs per case incurred (provided that 

these were available).   

In countries where the inpatient sector is dominated by the public sector and where 

most workers are on fixed salaries, the incentives of introducing DRGs tend to differ.  

Scheller-Kreinsen et al., (2009) concludes though that one would still expect DRGs 

to increase incentives for effective and efficient service delivery in such a setting.  

Introducing DRGs would also help to establish a financial mechanism which would 
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ensure that production costs, in terms of resource use were capped to a certain level.  

Once hospital activity levels and casemix have been determined, health authorities 

can allocate annual hospital budgets, both prospectively and retrospectively.  

Furthermore, the documentation needs associated with the setting up of DRGs 

would provide managers with the information needed to monitor and control the 

work of clinicians.  DRGs provide the information to help identify cases which could 

be judged as being relatively ‘in line with the norm’ in comparison with cases for 

which treatment is less efficient in terms of resource use. 

The widespread use of DRGs across countries is in itself a sign of the success of such 

systems in helping health services achieve pre-set targets of better management and 

greater efficiency levels.  However, the success of adopting DRGs depends on the 

interlinkages between the various entities which make up a health care system, in 

particular, the role of clinicians and the political commitment of governments to 

implement the necessary changes within the health care system.   

The introduction of a DRG system led to a number of benefits within the various 

health care systems in which they where introduced, in particular,  as presented in 

the literature these include:  reducing waiting times, increasing activity, stimulating 

provider competition and facilitating patient choice of hospital, controlling costs, 

improving transparency in hospital facilities and harmonising payment systems 

(Dismuke and Sena, 1999; Louis et al., 1999; Mikkola et al., 2002).  Furthermore, 

hospitals tend to be better at coding their activity in view of the fact that this would 

serve to ensure that funding is in line with the activity carried out within the 

hospital.  The better coding of activity undertaken within the hospital ensures that 

more accurate information and more transparency is achieved in terms of 
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undertaken activity.  The DRG system provides more data on hospital production 

and costs in comparison to other management systems.  The data used for the DRG 

system would serve as an instrument for the allocation of public hospital budgets 

funded by the national government.  

 Following the introduction of a new financing system based on DRGs,  Aparo et al., 

(2009) found significant lower costs per discharge and a reduction of more than 

50% in patient Length of Stay (LOS) having thus an impact on resource allocation 

within the hospital.  This study however fails to consider the possible impact on the 

quality of care.  DRG’s provide the necessary data which allows for the setting up of 

an appropriate benchmark in terms of resource use for each of the assigned DRG 

categories within the hospital setting.  The hospital would thus be in a position to 

plan prospectively in terms of resource usage.  

 There is broad agreement in academic and policy circles that the introduction of 

DRGs also affects provider behaviour (Scheller-Kreinsen et al., 2009).  The 

introduction of DRGs has led to an increased level of activity in the short term, which 

results from the fact that the introduction of DRGs provides an incentive for shorter 

hospital LOS periods (Dismuke and Sena, 1999; Louis et al., 1999; Mikkola et al., 

2002).  In a study of the impact on outcomes following the introduction of changes 

in the hospital payment system, Moreno-Serra and Wagstaff (2010) conclude that 

inpatient admissions do not seem to be affected by a shift from budgets to patient 

based payment methods whilst Average Length of Stay (ALOS) seems to be reduced 

by about 4%. 

DRGs offer hospital management not only the reason, but also the management and 

measurement tools needed to have better control over resource use.  In particular, 
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Berki (1985) finds that one could collect information on hospital resources used by 

individual physicians and those identified as using wasteful resources could be 

persuaded to change their practices.  Therefore, the success of introducing a DRG 

system should not only be gauged by changes in efficiency but also by the effect of 

incentives on provider behaviour that result from the introduction and  

implementation of the DRG system.   

Busse et al., (2006) balances the gains from DRG use of generating valuable 

information on costs, casemix and better cost control per diagnosis, against the 

problems resulting from cream skimming, up-coding or DRG creep, cost shifting and 

quality skimping.  Indeed physicians working within a health system, based on case 

mix classification, would prefer to treat low risk patients over other patients with a 

higher risk factor assuming that both are classified under the same DRG category. 

Furthermore there is also the possibility of shifting patients, which are relatively 

more costly to treat to other centres/hospital.  

There is infact an added incentive for the hospital concerned to up-code cases 

treated at the hospital.  DRG creep would help the hospital to attract more funds or 

would serve to justify the use of more resources within the hospital.  The fact that 

the use of resources is specifically set by the assigned DRG category reduces the 

incentive of practitioners to seek improvements in quality (referred to as quality 

skimping) over and above that required by the DRG assigned category.  This 

resultant unintended behaviour, which can arise after DRG implementation, is 

identified as a cause of concern.   

Kahn et al., (1990) find that after the adoption of the DRG based payment system 

patients were overall sicker at admission, the LOS of patients dropped, patients 
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became less stable at discharge whilst in-hospital mortality decreased.  Similar 

results were obtained by Louis et al., (1999) in a study using Italian data whereby 

the implementation of the DRG system resulted in a decrease in ordinary hospital 

admissions, a decrease in ALOS,  an increase in day admissions and greater severity 

of illness amongst hospitalised patients.  No change is noted in mortality and 

readmission rates.  Finger (2000) however, finds that the authorities in the US 

became concerned about the number of readmissions registered in hospital cases 

following the introduction of a DRG system.  The introduction of DRGs led to cost 

shifting whereby costs were shifted to other parts of the health care system away 

from the acute hospital (Jonsson, 1996; Morrissey et al., 1988) and/or cream 

skimming practised by hospitals as evidenced by  Bibbee and Padrini (2006).   

Experience shows that many countries introducing a DRG system share common 

difficulties, in particular the ever increasing demand to meet the expectations of 

their population in terms of health care needs and the pressure to curtail 

expenditure.  The response of countries varies in relation to the historical, cultural 

and political interlinkages within their particular societies.  What seems clear 

though is that most countries have turned towards DRGs and casemix tools to 

control costs, improve quality and achieve improved efficiency levels.  The DRG tool 

has been seen to be flexible enough to be adapted to support different country needs 

and health care system characteristics, whether tax-based, insurance based or even 

financed through budgeting practices or contracting.   
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2.3  The situation in Malta 

 

Malta has an integrated health care service, organized at a national level with one 

main acute general hospital which services the entire population.  Health services in 

Malta are provided mainly by the state with an increasing contribution from the 

private sector being registered over the most recent years.  Health care expenditure 

is primarily of a public nature, which expenditure is though complemented by 

private financing through out of pocket payments and private insurance.  The total 

expenditure on health as a percentage of GDP is of around 8% and two-thirds of this 

is state financed.  The statutory health care system is funded by general tax revenue, 

with all forms of taxation feeding into the Consolidated Fund from which the annual 

budget allocation for health is drawn.  The Ministry for Finance determines the size 

of the health care budget yearly.  There is no reimbursement system operating in 

the Maltese health care system as all public health care services are provided on a 

free basis at the point of use.  There are no co-payments for any part of the health 

care system.  

 
The public health care centres and hospitals provide free access to preventive, 

investigative, curative and rehabilitation services, irrespective of income or ability 

to pay.  Most hospital care is provided within the Mater Dei Hospital (MDH), which 

is the only acute general hospital in Malta.  It is estimated that over 80% of the 

population of the Maltese Islands rely on the health care services provided by the 

state.  MDH also offers services in all other specialties which include amongst others: 

radiology, ophthalmology, urology and pathology.  Given the geographical 

characteristics of Malta and particularly its relatively small size, the hospital caters 
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for all the needs of the population, even though some cases which require particular 

treatment or which are relatively uncommon are usually referred to specialized 

centres abroad.   

Although universal coverage for government health services exists, people tend to 

use the private sector for what they perceive to be more personal attention and care 

together with the desire to be seen by the consultant of their choice. Until fairly 

recently, direct out-of-pocket payment used to be the method of payment for all 

private health care services ranging from consultations to interventions.  The setting 

up of a number of private hospitals and clinics over the recent years has led to  

considerable changes within the private health care insurance market. 

 
Out of pocket payments are still though the predominant method of payment for 

private general treatment given that there are no incentives for people to take out 

private health insurance at present.  Private health insurance is mainly taken out for 

the eventuality of elective surgery, hospital care and medical treatment overseas. 

There exists a perception that “complex” interventions are only possible, or are safer 

if carried out at the public hospital.  Private insurance companies also offer a cash 

rebate per diem for insured persons who opt to make use of the state hospital to 

treat particular and specific conditions.  As a result, the state bears most of the brunt 

of the financial burden of health care. 

 
Consultants working at MDH are engaged as government employees, paid in 

accordance with a salary grade scheme which applies to all other government 

employees.  Consultants choose between two work plan options, public-only, 
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whereby consultants cannot undertake any private practice and dual practice 

whereby consultants can practice in both the private and the public sector.   

Within this context the Government of Malta is committed to keeping health care 

free at the point of delivery and it is the Government’s intention to improve 

resources and ensure that they are managed efficiently (Ministry of Health - 

Government of Malta, 2008).  A major challenge of the current health care system in 

Malta is to ensure the sustainability of the system whilst developing the necessary 

mechanisms to adequately measure quality and outcomes.  It is in this context that 

this paper evaluates the construction and relevance of DRG practicability for Malta's 

health care system.   

 

2.4  Data  

This study uses patient level data provided by the hospital management unit7 of 

MDH for the years 2009, 2010 and 2011.  Given the high degree of data 

fragmentation, a matching and database linking process was carried out to ensure 

that a workable dataset was available. This involved the use of a mapping algorithm 

to map the Maltese data to the requirements of the Grouper software. Three 

different datasets8 at the patient level were integrated together through the use of 

an encrypted patient ID code.  Data up to a six level digit diagnosis code, based on 

the ICD-109 classification system of the World Health Organisation (WHO), was 

made available for this study whilst data for procedure codes up to three coding 

                                                        
7 The Clinical Performance Unit (CPU). 
8 The Surgical and Operations Register, The Admissions and Transfers Discharge Database and the 
Hospital Activity Analysis Database. All databases are maintained by the CPU at MDH. 
9 International Classification of Diseases – 10th revision (WHO). 
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levels was based on the ICD-9-CM10 classification system.  A number of technical 

edits and assumptions, in consultation with the hospital management authorities, 

were applied to the dataset in order to obtain data in the requested classification 

system (ICD-9-CM) for the diagnosis codes required by the MS-DRG Grouper11 used 

in this study.  In particular, this involved eliminating cases with invalid data such as 

invalid age or sex, dealing with cases with a missing primary diagnosis, re-specifying 

the admitting diagnosis codes as well as fine-tuning the discharge status codes for a 

number of cases.  The DRG software was applied to a final dataset of 151,615 patient 

cases.    

Data drawn from the following categories at patient level were the main inputs for 

the DRG classification Grouper: admission and discharge date, age, sex, diagnosis 

and procedure codes together with discharge status.  Other data related to different 

consultant and surgeon characteristics and to investigations carried out during a 

hospital stay was provided.  The dataset used in this study relates to episodes of 

inpatient care for individuals who have been given a bed at MDH.  This includes day 

cases for which the LOS would be recorded as zero.   

LOS: The LOS variable is an important indicator of resource utilization. It is also 

easily extractable, well standardized and generally reliable.  LOS is a physical 

measure of hospital resource use and provides a suitable measure for intermediate 

                                                        
10 International Classification of Diseases – 9th revision – Clinical Modification (WHO). 
11 Data for diagnosis codes was initially converted from the ICD-10 coding structure to the ICD-10-
CM structure.  This involved a detailed and meticulous process of allocating cases from the more 
general ICD-10 structure to the more specific ICD-10-CM. A number of assumptions, based on the 
recommendations of the clinincal performance unit within the hospital, had to be implementated 
given the lack of required detail in the available ICD-10 database.   A backward mapping algorithm 
(General Equivalence Mapping (GEM)) provided by the Centers for Medicare and Medicaid Services 
(CMS) of the US government was then applied to the data to obtain data in the ICD-9-CM coding 
structure required by MS-DRG version 27.  
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products used in the treatment of the inpatient.  In the original design of the DRG 

system by Fetter and colleagues in 1969, the LOS variable was found to correlate 

well with resource consumption (Fetter et al., 1980).  Whilst recognising the 

shortcomings of using LOS as a proxy for resource intensity in the production of 

hospital products, Rhodes et al., (1997), highlight that it is nevertheless, in the 

absence of a practical alternative, the measure most often used.  Cost-accounting 

data for measuring resource consumption in the treatment of patients in Malta is 

not available12 and therefore in this study, the LOS variable will be the proxy 

variable for resource use. 

Outliers: Of particular interest and concern to the analysis of DRG groups is the 

treatment of outlier cases and their expected impact on the homogeneity of the 

assigned DRG groups.  The treatment of outlier cases in Malta’s context is of prime 

relevance given the relative small size of the health care sector and the likelihood 

that a considerable amount of DRG categories would only comprise relatively few 

observations.  As highlighted by Cots et al., (2003) outliers ought to be valued 

differently from inliers as their presence would lead to a mean value of resource use 

which is not representative of the DRG group. There is thus a case for removing 

outlier observations which cause much of this disturbance. 

A common approach applied in the literature is to remove at the outset values 

outside a pre-set limit given that they have an unrepresentative impact on the 

overall average within that particular group. The real reason for excluding such 

‘extreme’ cases (apart from the statistical problems which they cause) is that such 

cases represent unusual occurrences not necessarily predictable from diagnosis or 

                                                        
12 A cost accounting exercise is currently being undertaken at the Ministry of Health. 



43 

 

procedural information such as, lack of beds for transfer and lack of available 

services related to home assistance and care.     

The identification and removal of outlier observations  in statistical analysis helps 

to provide a sounder basis for examining the characteristics of a population under 

review (Reid et al., 1997).  Outliers (following the removal of the ‘extreme’ cases) 

can be defined as observations that appear to be different from other similar 

observations in the dataset or DRG group.  The inlier status of a patient is thus 

defined on the basis of the assigned DRG and on the population of episodes selected.  

Two types of outliers are identified: cases of patients with LOS which is much longer 

or shorter than the average (a stay outlier) or cases of patients with costs which are 

more or less than the average for that group (a cost outlier). Only stay outliers will 

be considered in this study. Lichtig (1986) and Reid et al., (1997) identify a number 

of reasons related to the existence of outliers: data errors, unusual combinations of 

clinical conditions, hospital-acquired complications and misadventures.  Some DRG 

categories might be more susceptible to problems of generating outliers, whilst 

treatment mishaps in particular categories can also be highlighted as possible 

causes of outlier cases.   

 

2.5  Methodology 

 

In this section the main features of the Grouper used to derive the DRG categories 

will be reviewed, highlighting the characteristics which will determine the assigned 

DRG groups.  An overiew of the trimming methods applied in this paper to identify 
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outlier cases are included in this section.  This is followed by a description of the 

Coefficient of Variation, (CV), and the Coefficient of Multiple Determination, (R2), 

used to assess the performance of the casemix classification Grouper.  

MS-DRG: The MS-DRG Grouper delivers the operational means of determining the 

types of patients treated and relates this to the resources consumed within the 

hospital.  The Grouper partitions the data, prepared to specification, in such a way, 

that information is provided to the user on the clinical inputs required and on the 

resources expected to be consumed by each episode in question.  Although all 

patients are unique, groups of patients have demographic, diagnostic, and 

therapeutic attributes in common that determine the intensity level of their 

resource usage.   

The guiding principle of DRG casemix systems is to divide patients into 

homogeneous groups in terms of age, sex, diagnosis, procedures and discharge 

status, groups which are clinically meaningful and relatively homogeneous in 

resource use.  Such characteristics are important in explaining resource use and are 

thus incorporated into the preset algorithm used to determine the particular DRG.  

MS-DRG executes an algorithm based on a number of characteristics reviewed in a 

particular order: presence of operating room procedure, principle diagnosis, age, 

sex, complication or comorbidity, various secondary diagnoses, and discharge 

status. 

The MS-DRG version chosen for this study uses the ICD-9-CM international coding 

classification for both diagnosis and procedures.  DRGs are formed by first allocating 

all possible diagnoses into 25 mutually exclusive Major Diagnostic Categories 
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(MDCs)13 reflecting the part of the body organ system which is being affected.  Cases 

with at least one operating room procedure are referred to as surgical and those 

with no procedures are treated as medical cases; these are characterised by the 

principle diagnosis for which patients are admitted.  Once the medical and surgical 

classes for an MDC are formed, each class of patients is evaluated to determine 

whether complications and comorbidities, the patient’s age or discharge status, 

consistently affect the consumption of hospital resources.  Grouping continues by 

assigning cases from the appropriate MDC categories to the particular DRG groups 

within each MDC based on those patient characteristics which are expected to 

impact on resource consumption patterns.  The DRG logic algorithm within MS-DRG 

defines around 1,000 different DRG groups.14  

Trimming: A number of techniques have been applied in the literature for defining 

outliers, many of which have a purely statistical underpinning (Bender and McGuire, 

1995; Coombes et al., 1995; Reid et al., 1997).  Lichtig (1986) uses multiples of the 

standard deviation of the original or logarithms of the data to define trimming 

points.   Reid et al., (1997) and Zhiping et al., (2004a) stress the use of an algorithm 

based on the interquartile range (IQR) whereby the low trim point is defined as Q1-

1.5*(Q3-Q1) where Q1 is the first quartile, Q3 is the third quartile and (Q3-Q1) is the 

interquartile range.  The high trim point is defined at 1.5*(Q3-Q1)+Q3.  Palmer et al., 

(2001) also use the interquartile range method to define an upper trim point beyond 

which all cases are defined as outliers.   

                                                        
13 A list of all the 25 Major Diagnostic Categories is provided in the Appendix to this chapter 
(Table2.8). 
14 The definitions manual with the full logic tables is provided by 3M Health Information Systems 
2010, USA.  
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The trimming methods described above are applied to the dataset, following the 

removal of cases considered by the management of the hospital as ‘extreme’ cases. 

Casemix systems have not been designed to deal with such cases and thus the 

removal of such cases has to be done arbitrarily.  It is within this context and in 

consultation with the management of the hospital that it was decided to remove 

from the data set all ‘extreme’ cases with a LOS in excess of 60 days.  

The exclusion of extreme cases is imperative for the elimination of outlier values 

that otherwise would have had a significant and unrepresentative impact on the 

average for the respective DRG groups.  Following the arbitrary elimination of the 

extreme cases a further process of distinction between inlier and outlier cases 

within the respective DRGs is carried out.  The trimming of outliers would remove 

from the DRG group, cases which do not appear to belong to the underlying 

distribution postulated by the LOS for the majority of the cases within the DRG. 

A number of trimming methods15 will be evaluated in this study.  These methods are 

applied to each of the particular DRG groups generated by the Grouper software.  

Two particular trimming methods stand out in the literature.  One is based on the 

distribution of the elements that make up the DRG group, attempting to make the 

arithmetic mean of the group more robust (referred to in this study as the GM2 and 

GM3 methods),  A second group of trimming methods is based on the interquartile 

range whereby a multiple of the range between the 25th percentile and the 75th 

                                                        
15 A number of trimming methods are tested:  
   GM2 =  geometric mean + 2*standard deviation 
   GM3 = geometric mean + 3*standard deviation 
   IR1.5 = 75th Percentile + 1.5*interquartile range 
   IR2.0 = 75th Percentile + 2*interquartile range  
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percentile is added to the 75th percentile (referred to in this study as the IR1.5 and 

the IR2.0 methods).  

The preferred method in this study, the IR1.5, also used by the British National 

Casemix Office and the Australia Department of Health and Family Services is based 

on the interquartile method (percentile methods).  This non parametric method 

makes no strong assumptions on the distributional form of the dependent variable 

and the trim points are not readily distorted by extreme values (Queensland Health, 

2004).  Furthermore, this method is relatively easy to understand apart from the 

fact that the method has a long history in the use of preliminary editing of data in 

statistical analysis (Palmer, Reid 2001).  The IQR method has been used in a number 

of evaluation studies for countries adopting DRG systems; Freeman (1991) used IQR 

for European data (UK, Norway, Spain), whilst Casas and Tomas (1993) used IQR for 

data on Ireland, Portugal, Switzerland and Spain.  The choice of this trimming 

method is also based on work by Soderlund (1996) for the National Health Service 

(UK) wherby the trimming method is chosen on the basis of the fact that such 

method should detect the greatest number of outlier cases whereby resulting in a 

more robust mean value for the DRG.   

Furthermore, given the characteristics of the dataset, this study will thus not apply 

a lower trim point to the data.  This strategy was also applied in a number of cases 

in the literature (Palmer et al., 2001).  Trimming at the lower end would result in 

deleting LOS data on patients which are very important for the overall 

understanding of LOS patterns in the hospital at large.  

 

The performance and adequacy of the MS-DRG Grouper to describe Maltese health 

care data, in terms of grouping episodes of care is evaluated through the use of the 



48 

 

CV and R2 statistics.  These are the two main statistical tools which are used for the 

evaluation of heterogeneity in LOS between DRG classes and homogeneity in LOS 

within DRG classes.   

CV: This statistic is used to measure the within group variability or homogeneity in 

terms of LOS within established DRG categories and is obtained by dividing the 

standard deviation of LOS by the mean of LOS for each of the DRG groups.  A value 

of zero is an indication that the group has no variance from the mean whilst a CV 

greater than 1 is an indication of heterogeneity within the group.  The homogeneity 

of the DRG groups adds to the robustness of the DRG design.  Fischer (2000) and 

Palmer et al., (2001) conventionally take a CV of less than 1 as an indication of DRGs 

with an acceptable degree of variation.  Other studies by (Aisbett et al., 2007; 

Ghaffari et al., 2008; Reid et al., 1991; Zhiping et al., 2004a) use the same criteria to 

assess the performance of the DRG classification structure.    

R2:  This statistic is a measure of the gain in explanatory power of the grouping 

classification in terms of resource usage (LOS in this case), which provides a 

measure of the extent to which the DRG system explains variation in resource use 

based on the characteristics of the individual patient.  Averill et al., (1998) describe 

R2 as the proportion of the variance of the whole population around the population 

mean (total variance) that is due to the variance of group means around the 

population mean (between group variance).  The extent to which variation of LOS 

occurs between casemix groups, rather than within them, determines the strength 

of the grouping system.  If n observations are divided into n different groups, and if 

all the variation is between groups and none within the group, then an R2 value of 1 

is obtained.  The higher this ratio, the more of the total variance is said to be 
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explained by the variance between groups as opposed to variance within groups and 

this is thus an indication that the groups are relatively heterogeneous between one 

another, as is required. 

As is common practice in casemix research, a regression16 model is used to explain 

the variation in resource use through the use of a LOS variable.  The assigned DRG 

index category for the individual patient case is the independent variable used in the 

estimation process.  This variable incorporates all the visit related information 

(including the patient characteristics) used by the grouper software to assign the 

particular DRG category.  Most LOS distributions are asymmetric, usually with a long 

right tail and some very large observations (Zhiping, 2004).  As clearly highlighted 

in most literature, the presence of even a few high observations (outliers) of the LOS 

dependent variable will greatly affect the R2 value due to the skewed nature of the 

distribution for the LOS variable.  The OLS method requires that the distribution 

assumption of normality in the error term holds and thus the emphasis of the 

analysis shifts to the trimmed data, after the treatment of such outliers.  The 

trimming and the removal of extreme cases significantly contributes towards the 

attainment of distributional properties which are more in line with the 

requirements of the OLS method (Reid et al., 1991).  

A high R2 is an indication that the DRG classification explains a significant proportion 

of the variation in LOS, and thus the DRG could be used as a suitable basis for 

explaining variations in resource use for different hospital outputs.  The explanatory 

power of the DRGs, represented by the R2 in this study is compared to that obtained 

                                                        
16 Based on the Ordinary Least Squares (OLS) method.  
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in other studies which seek to evaluate the appropriateness of introducing a casemix 

system within a health care setting.   

R2 values are also estimated for different MDC categories to show that variations are 

registered not only across DRG classifications but also for different MDCs. In line 

with the distributional property requirements of the applied estimation method, the 

trimming process applied within the MDC categories is expected to yield significant 

improvement in terms of such properties within the respective MDC groups.  Averill 

et al., (1998) highlight that there is a systemic variation in R2 across MDCs reflecting 

the fact that LOS is more predictable in some MDCs such as the circulatory system 

and less predictable in others such as mental health.  The R2 results obtained from 

this study, for the different MDC categories, are compared to similar results in the 

literature to gauge the adequacy of the DRG casemix system in such a context.   

 

2.6  Results 

This section commences with a general description of the hospital output results 

obtained from the DRG Grouper applied to the acute health care sector in Malta. 

Basic descriptive statistics for the most commonly assigned DRG cases are also 

provided.  There then follows a presentation of the results obtained for both the CV 

statistic and the R2 statistic under the different trimming options and for the various 

assigned MDC categories.  

2.6.1 General description of hospital output 

The classification of the 151,615 cases using MS-DRG resulted in 636 different DRGs, 

approximately 55% of which accounted for 99% of the total activity generated in 

the hospital.  Further analyses showed that around 2% of the DRGs represented 
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approximately 31% of the activity at the hospital.  There were 296 DRGs with fewer 

than 15 cases each over the three year period (1,481 patient cases in total).  Out of 

these, only 31 DRGs with fewer than 15 cases each had an ALOS shorter than 4 

days.17  This indicates that most of these cases are complex cases that absorb a 

significant amount of hospital resources to be treated.  DRGs with few episodes are 

harder to interpret, as utilisation measures obtained for them are subject to relative 

sample variation not reduced by the law of large numbers (Aisbett et al.,  2007).18 

This also applies to particular DRG groups with very low volumes, as can be found 

in health care systems with significantly large datasets as well as those like Malta.     

Table 2.1 shows information on the DRGs with the most common occurrences for 

the years 2009-2011.  The ALOS for each of the DRG categories and the size of each 

of the DRGs in percentage terms is given.  The ALOS varied between DRGs and the 

sensitivity of the ALOS to outliers within the DRGs categories was analysed further 

by applying a number of trimming options to the data.   

Table 2.1: DRGs with the 10 most common occurrences for the 2009-2011 period 

DRG 
 

Description Occurrences ALOS % of 
cases 

392 Esophagitis, Gastroent. & Misc. Digest Disorders 
w/o mcc 

9727 2.5 6.5 

313 Chest Pain 7508 1.9 5.0 
117 Intraocular procedures w/o cc/mcc 6776 0.5 4.5 
775 Vaginal delivery w/o complicating diagnoses 5437 2.7 3.6 
951 Other factors influencing health status 4125 0.6 2.7 
950 After care w/o cc/mcc  3531 0.3 2.3 
581 Other skin, subcut. tissue & breast proc. w/o 

cc/mcc 
3179 1.1 2.1 

293 Heart Failure and shock w/o cc/mcc 2728 6.4 1.8 
766 Cesarean section w/o cc/mcc 2445 6.6 1.6 
607 Minor skin disorders w/o mcc 2312 0.7 1.5 

Source: Analysis of MS-DRG Grouper output. 

                                                        
17 3.97 days is the ALOS when all patients in this study are taken into account. 
18 DRG categories with less than 15 cases over the 3 years of data are not considered in the analysis.  
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Table 2.2 shows the variation in ALOS when cases with different LOS periods were 

removed from the analysis.  When cases considered as extreme (more than 60 day 

LOS) were excluded from the analysis, the ALOS fell to 3.63 days.  In total there were 

519 cases which reported a LOS in excess of 60 days.  There are only 202 cases with 

LOS in excess of 90 days.  Approximately 44% of the cases accounted for short stay 

patients (0 or 1 day) and the ALOS, when excluding short stay patients, was 

observed to go up to 6.77 days.  Around 60% of the cases treated in the hospital had 

an ALOS of less than or equal to 2 days.  Most distributions of LOS were asymmetric, 

with a long right tail and some very large frequency observations.   

 

Table 2.2: ALOS (days) after removing outlier cases 

 All cases <120 days <90days <60days <30days 

Average length of stay  3.97 3.84 3.78 3.63 3.27 

Source: Analysis of hospital episode data. 

 

Figure 2-1 shows the frequency distributions for all cases with LOS which are less 

than or equal to 30 days.  All other cases with LOS in excess of 30 days had an 

occurrence of less than 1.5% in the overall dataset.   Patients with very large LOS 

were treated as extreme cases and were removed for analytical purposes, while 

others with atypical long or short stays, which are usually treated as outliers, were 

also trimmed.    
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Figure 2-1: Frequency distribution by LOS (less than 31 days) 

 
    Source: Analysis of hospital episode data. 

 

As part of the preliminary output, the MS-DRG Grouper initially assigned individual 

cases to one of 25 MDCs reflecting the part of the organ system which was being 

affected in the particular case. The study found that MDC 5 (Diseases and Disorders 

of the Circulatory System) was the MDC with the highest volume at 23,325 cases, 

accounting for 15.4 per cent of the total cases in the three year period.   

 
Table 2.3: MDCs with the 10 most common occurrences 

MDC Description Occurrences ALOS % of cases 
5 Circulatory System, Diseases & 

Disorders 
23325 4.8 15.4 

6 Digestive System, Diseases & 
Disorders 

20685 3.1 13.6 

14 Pregnancy, Childbirth, & The 
Puerperium 

10942 3.3 7.2 

9 Skin, Subcutaneous Tissue & Breast, 
Diseases & Disorders 

10723 2.5 7.1 

8 Musculoskeletal System & Connective 
Tissue, Diseases & Disorders 

10671 5.4 7.0 

2 Eye, Diseases & Disorders 10151 0.5 6.7 
23 Factors On Health Status & Other 

Contacts With Health Services 
9883 1.2 6.5 

4 Respiratory System, Diseases & 
Disorders 

9877 6.1 6.5 

11 Kidney And Urinary Tract, Diseases & 
Disorders 

9124 3.9 6.0 

1 Nervous System, Diseases & Disorders 7374 5.3 4.9 
Source: Analysis of MS-DRG Grouper output. 
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Table 2.3 and Figure 2-2 show that a significant proportion of hospital activity is 

grouped into a small number of MDC categories, in fact 81% of all the cases fell 

within 10 MDCs.  The variation in ALOS between different MDCs reflects the 

particular characteristics of each MDC group.  Groups with very low ALOS reflected 

treatment undertaken on a day care basis or treatment requiring only an overnight 

stay in hospital.  

 

Figure 2-2: Frequency distribution by MDC groups 

 

 Source: Analysis of MS-DRG Grouper output. 

 

The presence of outliers in the dataset is due to a number of factors, such as the age 

of the individual, case severity, the availability of discharge to other institutions, and 

the social circumstances of the patients admitted to hospital.  Table 2.4 shows the 

number of outliers identified using the trimming methods applied in the analysis.  It 

also includes the ALOS as a result of the trimming method adopted and the 

percentage of outlier cases which were trimmed.  A universal trim was applied to 

the data and cases with a LOS in excess of 60 days were removed from the analysis.  

This resulted in the removal of 519 cases. It is recommended that these cases are 

subjected to further study.  
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Table 2.4: Analysis of outlier cases by different trimming methods 

Trimming method No. of trimmed cases ALOS % of outlier cases 
universal >60 days 519 3.805 0.3 

GM2 7788 2.938 5.1 
GM3 4553 3.210 3.0 
IR1.5 15141 2.834 10.0 
IR2.0 12709 2.989 8.4 

Source: Analysis of MS-DRG Grouper output. 

 

The four trimming methods used in Table 2.4 were applied to the remaining cases 

and the resulting number of trimmed cases for each method is an indication of the 

variation in resource use within the particular DRGs. The IR1.5 method yielded a  

trim of around 10.0% of the available dataset.  This is in line with the guidelines 

provided by Palmer and Reid, (2001) and the percentage of cases trimmed with this 

method is similar to that in other studies found in the literature.  As a result the ALOS 

for the whole hospital fell to 2.8 days, or by around 25% implying that dealing with 

such outliers would lead to a reduction of around 1 day from the ALOS within the 

whole hospital; this represents a considerable saving in terms of resource use.   

 

2.6.2  Statistical Analysis of Goodness of Fit 

 

CV: The results presented in Table 2.5 stem from the derived DRG categories after 

the removal of extreme cases and those DRGs with 15 cases or less.  This is referred 

to as partial trimming and it was found that 42% of such DRGs had a CV which was 

less than 1.  When the IR1.5 trimming method was further applied to the data19, the 

proportion of DRGs with a CV of less than 1 rose to 85%, being the highest 

                                                        
19 The application of the other methods yielded the following percentages of cases with a CV < 1:  
GM2 – 78%, GM3 – 70% and IR2.0 – 82%.  
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proportion compared to the other trimming methods.  The lesser the variation 

within the grouped DRGs, the better the performance of the classification system 

(Palmer et al., 2001).  The IR1.5 method thus resulted in a significant number of 

DRGs (290) with a CV less than 1, highlighting the ability of the Grouper to produce 

homogeneous groups.    

Table 2.5: Distribution of the DRGs with CV>1 

           Partial trimming            After IR1.5 trimming 
               (no of cases)               (no of cases)  
       CV>5 1            CV 1-2   48 
       CV 3-5 7            CV<1   290 
       CV>2 35   
       CV>1 195   
       CV<1 143   

Source: Analysis of MS-DRG Grouper output. 

 

The results suggest that following the trimming process an acceptable level of 

variation exists within the DRG groups and that trimming is a necessary task to 

improve homogeneity within DRG categories.  The effect of trimming, especially by 

using the IR1.5 method, resulted in sizeable changes in the CV of the different DRG 

groups, helping to reduce the CV values by a significant amount.  It was also noted 

that the impact of trimming on the CV for each of the DRG categories was also 

sensitive to the trimming method applied. 

Aisbett et al., (2007) highlight that trimming would be useful if the removal of a 

small number of records greatly improves the Grouper’s R2 value and CV value for 

the specific groups.  This requires the analysis of both the full set of data (inliers and 

outliers) and then specifically the inliers to gauge the differences in the coefficient 

of multiple determination as a result of trimming.   
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 R2: Table 2.6 shows R2 values at different levels of trimming.  In the absence of 

trimming, the DRG classification serves to explain 18.6% of the variation in resource 

use as measured by LOS.  Trimming cases with a LOS greater or equal to 61 days 

improved R2 to 21.1% and, further trimming by using the IR1.5 method, resulted in 

a further improvement in R2 to around 25%.  Nothwithstanding the variations in the 

number of trimmed cases resulting from the use of the different trimming methods 

applied in Table 2.6,  the R2 statistics obtained are relatively similar.    

 

Table 2.6: R2 under different trimming methods 

 All cases <60 days GM2 GM3 IR1.5 IR 2.0 
R2 0.186 0.211 0.258 0.236 0.243 0.235 
No of Cases 151,615 151,095 143,624 146,859 136,271 138,703 

Source: Analysis of MS-DRG Grouper output. 

 

The resultant trimmed R2 values measure both the performance of the classification 

system (MS-DRG in this case) and also the characteristics of the patients trimmed.  

The results obtained suggest that the extra cases being trimmed under the choosen 

method (IR1.5) are in fact cases which should be removed from the dataset as they 

are not contributing to the performance of the classification system in explaining 

resource use.  This helps to obtain cases within the DRG groups which are more 

comparable in terms of resource use. 

 
Trimming increased the homogeneity within the DRG groups and the heterogeneity 

between groups. This further proves the ability of the derived DRGs to explain the 

differences in resource use.  Based on the above results it can be concluded that the 

DRG classification can explain close to 30% of the total variation in LOS and 

therefore resource use between cases across the hospital.  Further support of this 



58 

 

conclusion was obtained by analyzing variations in R2 across the different MDCs, an 

analysis which highlighted variations within different case specialties within the 

hospital.   

Table 2.7 shows the degree of variance within each MDC20, based on the allocation 

of cases to DRGs under different trimming scenarios.  The percentage of cases 

trimmed under the full trimming scenario as a proportion of all cases under each 

MDC category is also provided.  The percentage of cases trimmed varied between 

MDC categories and when all cases were taken together, an R2 of around 19% was 

obtained. This highlights the fact that a significant proportion of cases within each 

MDC exhibited resource allocations which varied from the expected average of the 

particular MDC group.  Figure 2.2 illustrates how R2 varied across MDCs (after full 

trimming was performed).  The higher R2 values indicate that resource use was 

more predictable in some MDCs and that in these MDCs, variation in resource use 

can be better explained by the DRG classification.    

In summary, it can be concluded that the trimming process yielded higher R2 values 

in the majority of the MDCs analysed, with the exception of a few cases.  It was also 

noted that there was a significant percentage point increase in R2 for a number of 

MDC categories (14, 20, 21, 4, 5, and 16) after the IR1.5 trimming method had been 

applied to the data.  One possible explanation for this is that once the removal of 

trim points was applied, the remaining cases in these particular MDCs had a high 

level of homogeneity within the group and higher levels of heterogeneity with the 

other groups.  This resulted in a significant improvement in R2 values.  The 

difference observed arose from the particular patient characteristics being treated 

                                                        
20 Table 2.8 in the appendix provides a description of the different MDC categories. 
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and also due possibly to differences in practice by physicians in the treatment of 

patients.   

 

Table 2.7: R2 by MDC categories under different trimming scenarios 

MDC All cases Partial 
trimming21 

             Full 
trimming22 

% of cases 
trimmed (full)23 

 % % % % 
All 18.6 21.1 25.6 18.7 
0 12.0 19.9 18.0 25.4 
1 9.2 16.5 20.0 16.2 
2 10.3 10.3 1.4 25.8 
3 24.0 31.8 40.9 30.2 
4 30.0 45.4 60.3 13.8 
5 19.7 34.0 47.2 15.0 
6 13.6 25.2 31.1 15.4 
7 32.7 43.5 53.5 9.9 
8 25.3 34.8 42.5 23.9 
9 5.3 14.7 14.3 20.3 

10 26.1 37.7 43.7 13.1 
11 13.6 31.1 38.1 21.1 
12 17.9 34.5 46.7 20.4 
13 19.5 39.6 48.3 18.1 
14 35.2 40.6 64.2 16.8 
15 39.1 52.3 58.5 11.7 
16 31.2 36.5 51.9 18.5 
17 19.5 28.5 22.0 20.7 
18 28.8 40.3 51.5 17.0 
19 36.5 58.1 63.8 25.4 
20 19.5 26.8 55.6 20.2 
21 14.1 26.9 48.4 11.7 
22 45.7 47.9 48.9 9.1 
23 4.5 17.2 8.7 23.0 
24 45.2 n/a n/a n/a 
25 48.5 40.1 n/a n/a 

n/a represent values which cannot be calculated given the small amount of cases within such MDCs. 
Source: Analysis of MS-DRG Grouper output. 

 

An analysis of R2 by MDC allows us to gauge whether the performance of the hospital 

is consistent across all types of cases.  More than 70% of the derived MDCs had an 

                                                        
21 Represents trimming of cases with more than 60 days LOS only. 
22 Represents trimming of cases with more than 60 days LOS, those with less than 15 cases within 

each DRG and using the IR1.5 method. 
23 Represents percentage of cases trimmed based on the full set of cases. 
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R2 value higher than 0.4 after the trimming process.  This indicates that in most of 

the MDCs the DRG classification can explain a significant part of the variation in LOS.  

Resource use is more predictable in some MDCs and less predictable in others.  A 

low R2 value was recorded for MDCs 0, 2, 9 and 23 after the trimming process.  For 

each of these MDCs, a low R2 value was recorded even when the untrimmed data 

was applied possibly indicating that in such cases the LOS variable might not be a 

good indicator of resource use.    

A number of reasons could account for these low MDC values.  One reason could be 

related to the particular set of grouping algorithms within these MDCs which did not 

specifically reflect the data of the Maltese health care sector.  Another reason is that 

the nature of treatment within these particular MDCs may have been different in 

terms of procedures used and would vary on a case by case basis depending on other 

factors, such as differences in consultant and surgeon practice styles.  Further 

analysis might therefore be needed to identify whether particular differences exist 

with the treatment of such categories in Malta and whether this is reflected in the 

assumptions taken into account by the MS-DRG grouping algorithm.     

 

2.7 Discussion 

Overall R2 values of around 0.3 were found for LOS using trimmed data.  The R2 

values obtained on untrimmed data were low (0.19) but this has to be viewed in line 

with the known quality limitations of the available hospital data.  R2 values also 

varied across the different MDC categories with some categories reaching levels 

close to 0.6 once trimming had been performed.  Casas & Tomas (1993) and Reid et 

al., (1997) highlight that R2 values based on untrimmed data may indeed be more 
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than 20 percentage points lower after outliers are removed.  The same studies by 

Casas & Tomas (1993) and Reid et al., (1997) suggest that cases removed as outliers 

have a substantial impact of around 25% on the ALOS.  The adequate treatment of 

such outliers would imply an average reduction of around 1 day from the ALOS at 

the Maltese hospital.  This is indeed a significant saving in terms of resource use 

within such a hospital setting. 

The R2 reported in this study compares well to that reported by Zhiping et al., (2004) 

in a Chinese hospital (0.12) using the Australian Refined DRGs (AR-DRG).  Other 

studies by Closon & Roger (1989) report an R2 value of 0.42 using Belgian data 

applied to the Health Care Financing Administration DRG (HCFA-DRG) Grouper 

software, whilst Casas & Tomas (1993) report R2 values of around 0.4 using data 

from Ireland, Portugal, Switzerland and Spain.   

Values for R2 tend to vary between different Groupers and significant variations are 

also observed following the implementation of trimming methods to the available 

data.  This conclusion is also evident in the work of Benton et al., (1998) who 

compare R2 values arising from different Groupers.  Reid et al., (1997) highlight the 

wide variation in R2 at the MDC level, using both US DRGs and Australian DRGs.  

More recent studies compare specific locally designed systems with the US Groupers 

or other international available DRG systems.  Sutch and Reid (2003) and Reid and 

Sutch (2008) quote a number of studies of this type, in particular work carried out 

on Welsh data using British Health Resource Groups (HRGs), US All Patient DRGs 

(AP-DRGs) and AR-DRGs.  R2 values ranging from 0.31 to 0.41 were reported.  

Furthermore, UK data applied to each of the three Groupers, yielded an overall R2 of 

around 0.45.   
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However, a number of data deficiencies in the dataset used for this research need to 

be highlighted to illustrate the need for improvements in coding practices.  

Currently, coding at MDH is not carried out to fulfil the requirement of setting up 

and maintaining a DRG system.  Therefore, shifting management thinking towards 

establishing such an objective would significantly help improve the data coding 

structures at the hospital.  Furthermore, a significant proportion of available data 

(around 40%) lacked some important coding information.  The success of a DRG 

system heavily depends on the quality of the coded data and the provision of 

additional years of data together with an improved coded dataset would help 

improve the accuracy of DRG Grouper outputs. The introduction of a well-defined 

purpose for current coding work would help improve the level of coding and ensure 

a more pragmatic picture of the activity levels within the hospital. 

 

2.8 Conclusion 

A health care Grouper software is considered to be useful if it partitions the hospital 

episode population in an informative way, both clinically in terms of inputs required 

and also in terms of the resources that are expected to be consumed (Aisbett et al.,  

2007).  Homogeneous DRG categories provide knowledge to the policy maker on the 

average utilisation rate of episodes of care and serve as a good benchmark for 

comparison and evaluation purposes. 

The CV and the R2 coefficients obtained as a result of this study provide a suitable 

basis for recommending the use of DRGs in the Maltese health care system.  The 

introduction of a DRG classification system can serve to explain some of the 

variation in the resource use within the hospital and is a positive step to further 
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helping the management of resource use within the health care sector.  The 

formulation of DRGs would encourage administrators to view the use and costs of 

hospital services along product lines based on DRGs and provide information on 

whether resources used for particular episodes of care are in line with what, on 

average, is expected.  This therefore is an added tool, available to policy makers, for 

the better use of hospital resources.  Furthermore, the implementation of a DRG 

system, apart from introducing a new purpose for the accurate collection of patient 

data, would also serve to make available to the hospital management authorities a 

greater range of information to control and monitor activities undertaken within the 

hospital. 

This study evaluated the use of a casemix system to describe hospital activity in 

Malta.  Viewing the output of MDH through the ‘DRG lens’ gives a clearer picture of 

what is being produced as a result of the investment made in this important and 

growing sector of the economy.  Policy makers require accurate information on 

hospital activity to manage limited resources and monitor health care providers 

behaviour effectively (Ghaffari et al.,  2008).  This study concludes that one 

‘particular’ Grouper software can be applied to the currently available data for the 

Maltese health care sector with relatively good results.  

Experience has shown that the introduction of such as system into a country is a 

long and complex process requiring a change in the political and cultural setting of 

the hospital services.  Results from this study show that a good foundation exists to 

start such a process and the creation of DRGs will be of benefit for management and 

implementation of policy in the Maltese health care sector.  The use of DRGs for 

financing purposes might still be far away but the introduction of this system for 
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policy and analysis purposes is to be encouraged.   As a start, the information gained 

from the setting of a DRG system could serve as an instrument for the allocation of 

public hospital budgets funded by the national government.  

 

In terms of further work, a study on the adoption of the grouping methodology to 

describe hospital output could be extended into a number of areas, initially by 

carrying out a comparison of the above results to those provided by other Grouper 

methodologies already applied in other countries.  The application of the data to 

different Grouper software used by other countries is to be encouraged to identify 

the applicability and readiness of the Maltese data and thus ensure realibility and 

consistency in the obtained results.  Furthermore, the availability of additional years 

of data and the expected improvement in the data recording systems should provide 

an added stimulus in realizing the benefits of such casemix systems.  The statistical 

tools applied in this paper show that the results obtained are comparable to those 

observed in other countries, and that these methods can indeed be used to analyze 

the Maltese health care sector.  

Considerable care should be taken in the interpretation of the results given the 

relatively small size of the dataset used in this study.  A more detailed analysis of the 

outlier cases and their impact on ALOS and resource use would further improve the 

understanding of hospital output.  Indeed, this study has shown that trimming 

options do affect the results and that other factors might have to be controlled for to 

fully understand differences in resource utilisation within hospital DRGs.  Further 

work on the variation in outcomes within a particular defined DRG category, due to 

differences in consultant and surgeon volume levels is described in later chapters of 
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this thesis.   Variation in outcomes and practice patterns arising from differences in 

consultant job contract conditions are also presented.   

The attention of governments to casemix use has been stimulated by the concerns 

of escalating health expenditure and the demand for transparent and efficient 

utilisation of resources in a period of increasing pressure to control health care 

spending.  Wilke et al., (2001) stress that every medical relevance relating to illness 

carries with it an economic relevance and thus there is a growing need to define 

valid and reliable measures of output.  This research is a first step in the laying down 

of an essential building block for the better understanding of the output currently 

being produced within the health care sector in Malta.  DRG classification increases 

transparency of operations and projects a clearer picture of the hospital’s activities.  

Defining the product categories of hospitals is a first and necessary important step.  

The introduction of a DRG system is also expected to have an effect on clinical 

behaviour and therefore have an effect on deviations from the optimum level of 

medical treatment.  The introduction of a DRG classification system would serve to 

create an economic underpinning to management decisions taken within the 

hospital setting.  All of these factors are ultimately expected to influence the overall 

outcome of medical interventions.  
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Appendix 

 

 
Table 2.8: A description of the MDC categories 

MDC 
CODE 

MDC DESCRIPTION 

00 UNGROUPABLE 

01 NERVOUS SYSTEM, DISEASES & DISORDERS 

02 EYE, DISEASES & DISORDERS 

03 EAR, NOSE, MOUTH, & THROAT, DISEASES & DISORDERS 

04 RESPIRATORY SYSTEM, DISEASES & DISORDERS 

05 CIRCULATORY SYSTEM, DISEASES & DISORDERS 

06 DIGESTIVE SYSTEM, DISEASES & DISORDERS 

07 HEPATOBILIARY SYSTEM & PANCREAS, DISEASES & DISORDERS 

08 MUSCULOSKELETAL SYSTEM & CONNECTIVE TISSUE, DISEASES & 
DISORDERS 

09 SKIN, SUBCUTANEOUS TISSUE & BREAST, DISEASES & DISORDERS 

10 ENDOCRINE, NUTRITIONAL, AND METABOLIC, DISEASES & DISORDERS 

11 KIDNEY AND URINARY TRACT, DISEASES & DISORDERS 

12 MALE REPRODUCTIVE SYSTEM, DISEASES & DISORDERS 

13 FEMALE REPRODUCTIVE SYSTEM, DISEASES & DISORDERS 

14 PREGNANCY, CHILDBIRTH, & THE PUERPERIUM 

15 NEWBORNS AND NEONATE CONDITIONS BEGAN IN PERINATAL PERIOD 

16 BLOOD, BLOOD FORMING ORGANS, IMMUNOLOGICAL, DISEASES & 
DISORDERS 

17 MYELOPROLIFERATIVE DISEASES & POORLY DIFFERENTIATED 
NEOPLASMS 

18 INFECTIOUS & PARASITIC DISEASES 

19 MENTAL DISEASES & DISORDERS 

20 ALCOHOLDRUG USE AND ALCOHOLDRUG INDUCED ORGANIC MENTAL 
DISEASES 

21 INJURIES, POISONINGS, AND TOXIC EFFECTS OF DRUGS 

22 BURNS 

23 FACTORS ON HEALTH STATUS & OTHER CONTACTS WITH HEALTH 
SERVICES 

24 MULTIPLE SIGNFICANT TRAUMA 

25 HUMAN IMMUNODEFICIENCY VIRUS INFECTIONS 
Source: MS-DRG Grouper manual, Centers for Medicare and Medicaid Services, USA 
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Abstract 

 

This paper provides insight into the relationship between volume and outcomes, within 

the context of competing risk events.  The majority of the literature on this subject has 

focused on analysing the volume-outcome relationship in a context of a number of 

hospitals but little is known of this relationship in the case of a single provider hospital.  

Therefore, the primary focus of this paper is to examine the prevalence of the volume-

outcome relationship within the context of a single and unitary general public hospital.  

There is also the uncertainty of the nature of the hospital/physician volume effect and 

the channels through which such an effect might operate.  In addition, this paper will 

contribute to the literature by analysing the role of the consultant job contract type and 

the impact that this has on the volume-outcome relationship. 

Data from the Maltese health care system are evaluated from patients who underwent 

Percutaneous Transluminal Coronary Angioplasty (PTCA) in the period 2009 to 2011.  

The main event of interest is failure within the first 60 day period following the 

undertaking of the PTCA procedure, where readmission or death over the same period 

are treated as possible failure events.  The procedure is deemed a success if no event 

occurs within the 60 day period following the undertaking of the PTCA.  The cumulative 

incidence function for the event of interest is used in this study to estimate the 

competing risk model.  These results are compared with other estimates obtained using 

the Kaplan-Meier method and the cause specific hazard function.  A multinomial logistic 
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model is estimated to gauge for the robustness of the obtained results based on the 

survival analysis methods.  

The results of the study support the view that there is some evidence of a difference in 

the hazard rate for the event of failure from the PTCA procedure which is dependent 

upon the volume of patients seen by consultants and surgeons and also by the job 

contract type of the consultants.  The study finds that there is a lower risk of failure for 

patients who were under the care of consultants who practice exclusively within the 

public sector compared to those being under the care of dual practice contract 

consultants.  There is also a higher hazard of treatment failure from the procedure if 

the patient is under the care of consultants with high patient volume levels or surgeons 

with low patient volume levels.  

Furthermore, an increase in the volume of patients seen by consultants has a different 

impact on the hazard of treatment failure depending on whether the patient is being 

seen by consultants on public-only or dual practice contracts.  As volume levels for 

consultants on public-only contracts increases the hazard of failing from the procedure 

increases.  The hazard of failing from the procedure for patients under the care of 

consultants on dual practice contracts remains relatively unchanged, even when 

volume levels change.  

The above conclusions are an important contribution towards understanding the 

relationship between volume and competing risk outcomes in the context of a single 

and unitary public hospital setting.   
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3.1 Introduction and Motivation 

 

The investigation of the relationship between volume and survival outcome in the 

provision of health care services has attracted a lot of interest from researchers over 

the years.  The majority of the literature finds a positive relationship between both 

hospital/physician volume and health care outcomes (Gandjour et al., 2003; Halm et al., 

2000).  Dudley (2000) states that the relationship between outcome and volume is so 

common and consistent over time that one would expect it always to hold in practice.  

Furthermore, if the procedure performed is complex then success is expected to be 

more dependent on the skill of the particular surgeon  (Srinivas et al., 2006).  There is 

though uncertainty as to the nature of this hospital/physician volume effect and very 

little is known as to the channels through which such an effect might operate.  In 

particular, two different explanations have been proposed to explain the volume-

outcome relationship: the practice makes perfect theory or the selective referral theory, 

as proposed by Luft et al., (1987).  

The majority of the literature has focused on analysing the volume-outcome 

relationship in a context of competing hospitals but little is known of this relationship 

in the case of a single provider hospital.  The primary focus of this study is therefore to 

understand the volume-outcome relationship within the context of a single and unitary 

general public hospital.  This study contributes to the literature by analysing the role 

played by the consultant job contract type and the impact which this has on the volume-

outcome relationship.   
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In line with the practice makes perfect hypothesis, the higher the volume levels of the 

consultant the higher would be the chance of outcome success following a hospital 

procedure.  Furthermore, based on the selective referral hypothesis, consultants with 

favourable outcomes are more likely to have higher volume levels.  Consultants 

working with the Government hospital are given an option to choose between two work 

plan types; public-only, whereby consultants cannot undertake any private practice and 

dual practice whereby consultants can practice in both the private and the public sector.  

Data on the job plan contract type of each of the consultants is provided by the hospital 

management for the purposes of this study. Consultants working only at the public 

hospital have all the necessary infrastructure to perform at the highest levels, whilst 

consultants on dual practice contracts have an incentive to achieve success in view of 

the expected impact on their private practice reputation given their performance 

within the public hospital.   

 

Differences in the probability of achieving an event success or a failure event are thus 

studied in relation to the volume and job contract type of the consultant.  A difference 

in the responsiveness of outcomes to volume changes is expected to exist in relation to 

the particular consultant job contract type.  This difference might be related to the 

current capacity levels at which the particular consultants are operating at and/or to 

the ability of the particular consultant to alter his performance at the hospital.   

 
To this end, the volume-outcome relationship will be evaluated in the context of 

competing events that follow the procedure for Percutaneous Transluminal Coronary 
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Angioplasty1 (PTCA) after controlling for a number of characteristics pertaining to the 

consultants, surgeons and to the patients undergoing treatment.  The study will review 

the role of a number of different volume measures and how each of these impact PTCA 

outcomes, taking possible competing risk events into account.   

The study will use data from the Maltese health care system, which has one large 

publically funded acute general hospital, the Mater Dei Hospital, which provides free 

services at the point of use.  In view of the available data, a distinction will be made 

between the consultant, who is primarily responsible for the patient case, and the 

surgeon who actually undertakes the procedure.  Patients are assigned to consultants 

on the basis of the diagnosis made and the date when they are admitted to hospital.   

Patients have little choice of the hospital they can attend, although they can decide to 

‘opt out’ and visit a private hospital/clinic2 if they so wish.  The majority of private 

hospitals are run and staffed by the same consultants and surgeons who provide 

services at the public hospital.   

The data cover the years 2009 to 2011 and are compiled on a patient level basis 

specifically for this study.  The outcome effectiveness of undertaking PTCA is measured 

by the complications-free or event-free survival probability.  The presence or 

occurrence of an event which is in competing risk to the event of interest, may preclude 

the incidence of the event of interest or may alter the probability of occurrence for this 

                                                        
1 PTCA is a common cardiac procedure to open up partially blocked arteries in the heart. The physician 
threads a catheter through a large artery in the patient’s arm or leg and into the artery which leads to the 
heart.  
2 A number of small private clinics/hospitals can be found in Malta. Activity levels in such sectors are 
relatively low and activity is serviced by a small private health insurance market. 
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event.  The main event of interest is failure within the 60 day period following the PTCA 

procedure, where readmission or death within the 60 day period are treated as two 

possible failure events.  The choice of the 60 day time period was based on the advice 

provided by the Clinical Performance Unit (CPU) of the hospital.  This time period was 

considered to best reflect the time frame which captures procedural related 

complications and activity which even though might not be necessarily arising from 

procedure related complications is still considered to be related to the needs of the 

same patients undertaking the PTCA procedure.   

According to the literature, the Cumulative Incidence Function (CIF) can be used to 

model competing risk events (Gooley et al., 1999; Prentice et al., 1978; Satagopan et al., 

2004; Schwarzer et al., 2001).  Other estimation techniques like the Kaplan-Meier (KM) 

method applied by Tai et al., (2001) and the Cause Specific Hazard Function (CSHF), 

used by Bakoyannis and Touloumi (2011), will also be applied for comparison 

purposes.  Furthermore, to test the robustness of the results obtained from the survival 

analysis methods a multinomial logistic model of outcomes is also estimated.3  

The results presented in this paper will show some evidence of difference in the hazard 

rate for the event of failure from the procedure which depends on the volume of 

patients seen by consultants and surgeons and also by the job plan contract type of the 

consultants.  The study finds that an increase in volume has a different impact on the 

hazard rate of the event of interest depending on whether the patient is being seen by 

a consultant on a public-only or a dual practice job contract type. 

                                                        
3 A detailed description of the results can be found in Appendix B to this chapter. 
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This paper is organized as follows: the following section, Section 3.2, provides an 

overview of the literature that relates to the volume-outcome relationship and gives 

special reference to competing risk events.  Section 3.3 describes the available 

population dataset and highlights some preliminary findings.  An overview of the 

methodologies for analysing competing risks data in the context of the possible 

strategies to model the covariates influencing outcomes is presented in Section 3.4 and 

Section 3.5 presents the key results of the study.  Finally, Section 3.6 presents the 

study’s conclusions.      

 

3.2 Literature  
 

Whilst the volume-outcome relationship is by no means universally accepted, it has in 

the literature been observed extensively in a variety of procedures.  This section 

presents an overview of the main theories underpinning this relationship focusing on 

the fact that most studies distinguish between a volume-outcome relationship either at 

the hospital or at the physician level.  Are doctors more effective in bigger hospitals 

with relatively high volumes?  Do particular characteristics, related to the doctor, and 

do the working conditions of physicians affect the volume-outcome relationship?  

Answering these questions is crucial for the drafting of health care policy. 

While it may be difficult to compare findings across a number of studies there does 

seem to be consensus among researchers that a positive relationship exists between 

procedure volume (at the level of the hospital and/or physician) and provider quality, 

as measured by a variety of patient outcomes.  An extensive literature review 
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undertaken by Halm et al., (2000) and Gandjour et al., (2003) supports the existence of 

a volume effect in most diseases and operation categories.  At the end of this section a 

review is provided of the different measurement options of outcome applied in this area 

of study.   

Theoretical underpinnings: The pioneering work by Luft et al., (1979) presents two 

hypotheses for the relationship between volume and outcome: the practice makes 

perfect theory and the selective referral theory.  The practice makes perfect theory 

assumes that as physicians and/or hospitals perform more operations, they become 

more skilful and thus their positive outcome rates would be expected to improve.  The 

performance of the physician is said to depend on the individual skills of the physician, 

the resources available to the physician at the hospital level and the ‘spill-over’ impact 

of both effects.  Srinivas et al., (2006) conclude that for primary Percutaneous Coronary 

Intervention (PCI), physician experience, measured by the frequency levels of 

performing a certain task, modifies the hospital volume-outcome relationship and 

serves to offset the risks associated with the treatment of primary PCI in low volume 

hospitals.  Hamad et al., (1988) show that in a single hospital setting, both low 

frequency and high frequency physicians can perform PTCA with success but for more 

complex cases, outcomes are likely to be better when the procedure is undertaken by 

more experienced physicians.   

Gowrisankaran et al., (2006) found that there was also an element of forgetting when 

explaining the volume-outcome relationship given that the success rate of the physician 

may deteriorate when they do not perform regularly.  Huesch and Sakakibara (2009) 
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proposed that it’s the most recent ‘on the job’ experience that is the most important 

factor affecting the outcome of the intervention.  Furthermore, Ramanarayanan (2008) 

finds that the experience and competence gained by cardiac surgeons carrying out 

CABG4 is not limited to the hospital in which the physician practises.  Indeed, the 

outcomes of a physician in a particular hospital are said to improve from the added 

volume experience of practicing in another hospital or health care setting.  This 

contrasts with earlier findings of Huckman and Pisano (2006) whereby improvements 

in performance are related to experience gained within the same hospital. 

On the other hand, physicians and hospitals with better outcomes are likely to receive 

more referrals and more of these referrals may be more appropriate patients for certain 

procedures.  Patients, if they have the option, are also inclined to show their preference 

for institutions or individuals who provide better outcomes, therefore suggesting the 

potential for selective referral.  Indeed, Hamilton and Hamilton (1997) found that the 

volume-outcome relationship for hip fracture patients in Quebec hospitals reflected 

differences between hospitals that are fixed over time.  This result is consistent with 

the selective referral hypothesis, identified by a number of authors, whereby high 

quality hospitals are likely to attract more patients (Farley and Ozminkowski, 1992; 

Hamilton and Hamilton, 1997; Hamilton and Ho, 1998).  Tsai et al., (2006) obtain 

similar results when they studied the effect of hospital volume on the 30 day mortality 

of patients with congestive heart failure, suggesting that causality runs from outcomes 

                                                        
4  Coronary Artery Bypass Graft. 
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to volume.  It is thus the personal characteristics of the physician and the hospital which 

explain the impact of volume on outcome.   

Hospital and/or physician volume:  The establishment of a hospital volume threshold 

level tends to affect outcomes.  Ritchie et al., (1993) use the rates of CABG interventions 

performed during the same hospital stay following a PTCA procedure, as a measure of 

outcome success and find that it is lower in hospitals in which more than 400 PTCAs 

are undertaken annually.  Both hospital PTCA volume and cardiologist PTCA volume 

are found to be inversely related to a negative outcome.  Shook et al., (1996) concludes  

that PTCA performed by high-volume operators was less likely to require emergency 

CABG and was also significantly associated with lower hospital morbidity and costs and 

shorter hospital Length of Stay (LOS).  Of particular relevance is work by Hannan 

(1997) on PTCA patients and Jollis et al., (1994,1997) for acute myocardial infarction 

and coronary angioplasty who conclude that volume and short-term complications are 

inversely related to a cardiologist performing more than 75 cases per year.5   

Patients treated by high volume physicians (after adjusting for potential confounding 

factors) have a much lower risk of mortality and of surgical complications associated 

with the treatment undertaken.  This is the conclusion of both Billingsley et al., (2007) 

and Vakili et al., (2001).  Furthermore, the risk of mortality is further reduced if such 

patients are treated in a high volume hospital.  One would expect though that an 

                                                        
5 The American College of Cardiology suggest hospitals undertaking a minimum of 200 PTCA procedures 
per year and an individual surgeon with a minimum of 75 PTCA cases per year. 
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increase in volume has a greater impact on the outcome of a small-volume hospital 

when compared to a large volume hospital.   

The relevance of the volume-outcome relationship in a setting of a single hospital centre 

is less well studied in the literature.  Ross et al., (2010) confirms a diminishing effect on 

volume beyond a particular threshold level for three specific conditions: acute 

myocardial infarction, heart failure and pneumonia.  In a hospital setting where volume 

levels differ across physicians, Kawabuchi and Sugihara (2006) find a non-linear 

volume effect whereby the principle of ‘the more the better’, applies only up to a certain 

volume level.  Congestion effects are then likely to set in.  

By focusing on a publically funded health care system, Simunovic et al., (1999) found 

that patients treated by high volume hospitals had a better outcome when treated for 

pancreatic resection.  There is emphasis on the fact that this relationship holds not only 

in the mixed public-private hospitals in the US, as studied by Glasgow and Mulvihill, 

(1996), Gordon et al., (1995) and Lieberman et al., (1995), but also in the publically 

funded hospital setting.  In a public setting there is expected to be less financial and 

logistical barriers to care and better outcomes are linked not only to higher volume 

levels but also to better expertise and resources available in such public institutions.  

The mechanism by which physician and provider characteristics influence outcomes in 

such a setting is also expected to differ from other hospital settings.   

It is evident that a certain amount of interaction between hospital volume and physician 

practice volume exists and that this impacts on health care outcomes.  Although early 

studies like Kelly and Hellinger (1986) find that the volume-outcome relationship 
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reflects hospital rather than physician characteristics, a more recent study by 

Birkmeyer et al., (2003) observed that links between hospital volume and operative 

mortality are largely influenced by surgeon volume, whereby the chance of survival, 

even in high volume hospitals, will most likely increase if treated by a surgeon with high 

volumes.  In 135 studies reviewed by Halm et al., (2000), a statistically significant 

relationship between higher volume and better outcomes was found for 71% of 

hospital volume studies verses 69% for clinician volume studies.  Other more recent 

studies assess simultaneously the impact of hospital and surgeon volume on outcomes 

and find that both high hospital and surgeon volume are linked to lower in-hospital 

mortality (Hannan et al., 2005; Joynt et al., 2011; Schrag et al., 2002; Schrag et al., 2003). 

Indeed, particular physician preferences in the treatment of cases are expected to have 

an impact on outcomes.  Being treated by a specialist in the field or by a more aggressive 

surgeon might have an impact on patient outcomes.  A conservative surgeon might opt 

for limited surgery, making a compromise between control of symptoms and ultimate 

survival, whilst an aggressive surgeon might perform more high risk surgery, increasing 

the risk of complications in an attempt to improve on the chance of survival.  McArdle 

and Hole (1991) reported an improvement in survival rates after colorectal surgery if 

the intervention was carried out by surgeons who had a special interest in the field.   

Advances in medicine and technology are also expected to have an impact on the 

strength of the relationship between outcome and volume levels.  Ho (2000, 2002) 

measured improvements in PTCA outcomes by reducing inpatient mortality and 

emergency bypass procedures and found that over time, the disparity in outcome 
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between low and high volume hospitals has narrowed.  The developments in 

technology may have reduced or eliminated the need to perform a high volume of 

procedures in order to obtain optimal outcomes.  Even though technology has by far 

improved the outcome within hospitals, the impact of volume both in terms of 

physicians and hospitals has still been found to be important.  McGrath et al., (2000) 

find that since the development of coronary stents, patients treated at high volume 

hospitals and by high volume physicians still tend to have better outcomes following a 

PCI.  Patients treated by high volume physicians are less likely to require CABG 

emergency treatment and have a lower risk of mortality within 30 days of intervention.  

The impact of volume on outcome is therefore still strong and significant.   

Measurement of outcomes: All possible outcomes need to be taken into account when 

considering the health consequences of a medical intervention.  Varadhan et al., (2010) 

demonstrate that any analysis into the impact of an intervention within the health care 

sector must consider the full set of possible outcomes which can arise following the 

intervention.  A competing risk is defined by Gooley et al., (1999) as “an event whose 

occurrence either precludes the occurrence of another event under examination or 

fundamentally alters the probability of occurrence of this other event”.  Competing risks 

are a common occurrence in medical research and the use of survival analysis 

techniques allow for the incorporation of the impact of all possible outcomes on the 

incidence of the particular event of interest.  

The outcome of care, as well as being measured by in-hospital mortality, should also 

focus on post-operative conditions together with any occurrences of complications 
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which result from the treatment undertaken.  The outcome of the procedure performed 

can be viewed in terms of the state of health of the patient prior to and post the 

procedure.  The study of outcomes, following a PTCA procedure, should not stop when 

the patient is discharged from hospital and survival analysis allow us to study and 

incorporate this time dimension into the analysis.  The choice of the outcome variable 

also has an impact on the assessment made in relation to the success or failure of the 

intervention.  Kawabuchi and Sugihara (2006) use death hazard ratios as a measure of 

outcome and conclude that there is no relationship between outcomes and PTCA 

hospital volume.  This confirms a previous study by Kimmel et al., (2002) which found 

no association between volume and 30 day post-discharge events.   

Since the seminal articles by Fix and Neyman (1951) and Prentice et al., (1978), the 

volume-outcome relationship in the context of competing events has been studied in 

the literature through the use of a number of survival analysis techniques mainly; the 

standard KM method, the CSHF and the CIF.  In the presence of competing events, 

patients are at risk of more than one mutually exclusive event and the use of the CIF is 

encouraged by a number of authors (Andersen et al., 2012; Arriagada et al., 1992; 

Furstova and Valenta, 2011; Gaynor et al., 1993; Gooley et al., 1999; Kim, 2007; Melberg 

et al., 2010; Satagopan et al., 2004; Southern et al., 2006; Teixeira et al., 2013).  In the 

case of more than one type of event (or failure) being present, if such events are 

somehow dependent on each other, then the KM estimate is found to be biased because 

the KM method censors all other events of interest as it assumes that they are 

independent from the primary event of interest (Arriagada et al., 1992; Tai et al., 2001).  

This was confirmed by Melberg et al., (2010) within the setting of a single hospital by 
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studying the impact of competing risk events on the outcome of patients undergoing 

revascularization for coronary artery disease over a 10 year period.  

Klein (2006) argues that in the study of competing risks of relapse and death in 

remission for bone marrow transplantation treatments, the CIF provides a natural way 

to identify the effect of covariates on the failure of treatment.  When competing risks 

events are present the use of survival analysis methods is encouraged and the use of 

the CIF is recognised in the medical and statistical literature as the right tool to use 

(Gooley et al., 1999).  Some authors make use of both the CSHF and the CIF function 

based on the proportional sub-distribution hazards model to evaluate the effect of 

covariates on the event of interest (Beyersmann et al., 2007; Teixeira et al., 2013).   

Cumulative incidence models measure the effect of the covariate on the specific event 

cumulative probability, and this covariate affect may be derived from the direct effect 

of making the event of interest more or less likely to occur, or the indirect effect of 

making competing events more or less likely to occur.  The CIF allows for the 

identification of risk factors for each of the competing events. On the other hand, the 

standard Cox hazard model is not designed to deal with the risk factors which 

contribute to a particular event in the presence of a competing risk.  The CSHF ignores 

competing risks and thus could be inaccurate for this reason.  The use of the CIF model 

is questioned though by Anderson et al., (2012) who argue that individuals who failed 

due to a competing risk should not be in the risk set used to estimate the sub-

distribution function for the event of interest.  
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3.3 Data 

The data used in this population based study comes from the Clinical Performance Unit 

(CPU) which is the unit responsible for collecting all clinical data for activity undertaken 

within the Mater Dei Hospital6 (MDH).  The unit of analysis is the patient and the 

analysis is performed for patients who entered hospital and underwent a PTCA 

procedure in the period 2009 to 2011.   

The following ICD-9-CM7  procedure codes where considered in this study: 0066, 3601, 

3602, 3604, 3606, 3609, 0045, 0046, 0047 and 8856.  The dataset contains 1,626 

hospital visits and identifies both the surgeon who carried out the procedure and the 

consultant who was responsible for the individual patient care for each PTCA patient.  

The dataset provided the information on patient, surgeon and consultant 

characteristics used to identify the main covariates of the study.  Table 3.1 presents a 

list of the principle variables used.  Of particular relevance to this study is the 

information on the job plan contract type of each of the consultants seeing patients 

undertaking a PTCA procedure8.  Consultants working with the Government hospital 

operate either under a, public-only, or a dual practice contract.   

 

 

 

 

 

                                                        
6 Mater Dei Hospital is the only general acute public hospital in Malta.  
7 International Classification of Diseases – 9th revision – Clinical Modification (WHO). 
8 Data on the contract type of each of the surgeons is not provided for this study.   
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Table 3.1: Definition and description of the principal variables 

Variable Description of variable  
 

General variables   
Surgeon The professional responsible for carrying out the 

procedure 
consultant  The professional responsible for the patient whilst in 

hospital for treatment 
Age Age of patient 
LOS The difference between the discharge and admittance date   
diagtotal Number of diagnoses per case 
public-only =1 for consultant exclusive public sector practice contracts 

=0 for consultant public and private practice contracts or 
dual practice 

countconst  Consultant total number of cases 
 

Outcome variables  
success 
 
 
failure 

A procedure that is deemed a success if no other event 
occurs within the 60 day period following discharge date, 
or within the hospitalisation period 
Representing the event whereby a failure (either death or 
readmission) occurs within the 60 day period following 
discharge date, or within the hospitalisation period 

death Patient died within the 60 day period following discharge 
date and/or during the hospitalisation period 

readmission Patient readmitted to hospital within the 60 day period 
following discharge 

  
Volume variables  
counts A cumulative count of cases seen by the surgeon up until the 

date of admission of the patient 
countc A cumulative count of cases under the responsibility of a 

consultant up until date of  patient admission 
vol90s Surgeon cumulative cases over the 90 days prior to the 

patient admission date 
vol90c 
 
cvol 
 
svol 
 

Consultant cumulative cases over the 90 days prior to the 
patient admission date 
=1 if countconst > 100 cases (high volume) 
=0 if countconst < 100 cases (low volume)  
=1 if surgeon volume > 225 cases 
 (high volume) 
=0 if the surgeon volume < 225 cases  
(low volume)  

                   

Source: Based on data drawn from the provided hospital episode database. 
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3.3.1 Measures for outcome indicators 

The event of interest in this study is the efficacy of the treatment, defined by the 

variable, failure, which is a measure of failing from the procedure within the 60 day 

period post the date of discharge or during the hospitalisation period.  A patient may 

die, either during the hospitalisation period or within 60 days from discharge date, 

death, or be readmitted into hospital within 60 days after discharge, readmission.  Both 

events would thus constitute an event  failure.  The time to the first observed event was 

calculated for each patient case and patient follow up was restricted by the latest 

available data9  (December 2011).   

PTCA related deaths are defined using the ICD-10 code provided from the Death 

Register made available by the Health Information Department within the Ministry of 

Health.10  Deaths related to other causes are not considered given that the specific 

interest of the study is to look only at the impact of the PTCA procedure.  Data is 

provided on a patient level basis and an encrypted identity card number allows for the 

identification of readmissions.  The procedural codes of those readmitted are checked 

to establish whether the readmission event is due to the originally undertaken PTCA 

procedure.  PTCA related readmissions are defined by observing the procedure codes11 

assigned to the readmitted patient cases.  Patients might need to return to hospital 

because of other reasons (not related to the PTCA) but given that the focus is on the 

                                                        
9 Data on the date of death were obtained from the Death Registry up to April 2012 and this was used to 
account for deaths post the 60 day discharge date. 
10 The cause of death codes (ICD-10) define deaths in relation to problems of the circulatory system. 
11 The procedural codes (0066, 3601, 3602, 3604, 3606, 3609, 0045, 0046, 0047 and 8856) are used to 
identify readmittance of patients due to PTCA related needs. An analysis of the data shows that there are 
no cases of patients who are readmitted to hospital and then die within the 60 day period. 
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specific PTCA procedure consequences the data used in the study only comprises 

patients readmitted for PTCA related factors. 

 

3.3.2  Measures of volume 

A number of volume measures are used in this study to test the robustness of volume 

indicators to explain the volume-outcome relationship.  In particular, as highlighted by 

Ho (2002) and given the availability of the data, measures of cumulative PTCA volume 

by surgeon, counts, and by consultant, countc, are used as a measure of learning by 

experience.  Alternative measures of volume, vol90s and vol90c are used to reflect the 

most recent activity levels (90 days) of the surgeon and the consultant preceding the 

date of patient admission to hospital.  The dummy variables cvol and svol  are 

constructed as indicators of the total volume levels of consultants and surgeons over 

the course of the three year activity within the hospital.  

 

3.3.3 Description of data and preliminary evidence 

 

Table 3.2 presents the principal characteristics of PTCA activity for the three years 

under study: volume levels, the mean age of patients, the Average Length of Stay (ALOS) 

and the volume and frequency rates for each of the events.   
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Table 3.2: Characteristics of PTCA activity  

Year No of 
cases  

Mean 
age 

ALOS Event success 
cases 

Event death 
cases 

Event 
readmission cases 

2009 
2010 
2011 
Total 

447 
581 
598 

1626 

62.03 
63.00 
63.04 
62.75 

3.98 
4.80 
4.60 
4.50 

 

402(89.9) 
547(94.2) 
564(94.3) 

1513(93.1) 

9 (2.0) 
12(2.1) 
7(1.2) 

28(1.7) 

36(8.1) 
22(3.8) 
27(4.5) 
85(5.2) 

Figures in parenthesis represent frequencies across rows. 
Source: Analysis of hospital episode data. 

 

It can be seen that the ALOS rises in 2010, compared to 2009, but falls marginally in 

2011.  A slight increase in the mean age of the patients and the total number of PTCA 

procedures undertaken over the three years is observed.  The proportion of the event 

success increases over the period.  The number of death and readmission cases 

registered, declines or is maintained at similar levels compared to 2009.  The 

predominant cause of death is I21.9 (acute myocardial infarction) which accounted for 

more than 50% of the deaths falling within this category.12  The average rate of the 

event success over the three year period is 93.1% of cases compared to less than a 2% 

rate for deaths and a rate of around 5% for re-admissions within the 60 day interval 

period.   

 

3.3.4  Data descriptive statistics at the surgeon level 

Table 3.3 presents details of the events of interest by volume of surgeon activity 

categorized into two groups: those dealing with less than 225 cases (defined as low) 

                                                        
12 All other deaths fall within the ‘Cerebrovascular’ diseases category and the ‘Ischaemic’ heart disease 
category.  
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and those dealing with more than 225 cases (defined as high) over the three year period 

(undertaking more than 75 cases per year).   

 
Table 3.3: Surgeons undertaking PTCA procedure (2009-2011) 

Surgeon   
category  

 volume 
of cases 

success  
cases 

death 
cases 

readmission  
cases 

mean 
age 

ALOS 
days 

Low 471 90.7 2.1 7.2 60.4 5.4 
High 
All 

1155 
1626 

94.0 
93.1 

1.6 
1.7 

4.4 
5.2 

63.7 
62.7 

4.1 
4.5 

Figures for the competing events represent relative percentages across the row. There are 3 surgeons   
with high volume levels and 9 with low volume levels.  
Source: Analysis of hospital episode data.  

 

Patients who are treated by high volume surgeons spend, on average, fewer days in 

hospital and the average age of such patients tends to be higher when compared to 

those treated by a surgeon in the low volume category.  The proportion of success is 

highest among the high volume surgeon group suggesting a lower risk of failure for 

patients being seen by surgeons with high volume levels A patient seen by a high 

volume surgeon would on average have an overall lower risk of death or readmission, a 

lower overall LOS and a higher probability of a successful outcome.   

 

3.3.5 Data descriptive statistics at the consultant level 

Table 3.4 presents the frequency of events of interest by consultant with low or high 

patient volume levels.  Consultants were also characterized by their job contract plan; 

public-only or dual practice contracts.13  The data show that all consultants on public-

                                                        
13 Data was not available for the number of hours spent practicing in the private sector for dual practice 
contract consultants.  
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only contract arrangements have low patient volume levels.  The mean age and ALOS 

for each category of consultants is also shown.   

 
Table 3.4: Consultants responsible for the PTCA procedure (2009-2011) 

Consultant number of 
 consultants  

volume 
of cases 

success 
cases 

death 
cases 

readmission 
cases 

mean  
age 

LOS 
days 

All 35 1626 93.1 1.7 5.2 62.7 4.5 
low 31 337 94.4 1.8 3.9 63.8 6.9 
high 4 1289 92.7 1.7 5.6 62.5 3.9 

public-only 4 87 97.7 - 2.3 61.6 5.8 

dual practice 31 1539 92.7 1.8 5.4 62.8 4.4 
Figures for the competing events represent relative percentages across the row. All public-only 
consultants fall within the low volume category. 
Source: Analysis of hospital episode data. 

 

Similar rates of death are observed for patients under the care of low and high volume 

consultants.  Slightly higher rates of success are observed for patients under the care of 

low volume consultants.  This result differs from that derived for surgeons and from 

that expected by the practice makes perfect hypothesis.  A possible explanation could 

be the fact that consultants on exclusive public sector contracts have higher success 

rates compared to dual practice consultants and all consultants employed on a public-

only contract fall within the low volume category.  Consultants with low volume levels 

are perhaps better able to manage the cases under their responsibility which possibly 

leads to higher rates of success. 

Patients under the care of consultants with public-only contracts have lower rates of 

readmission compared to patients under the care of consultants on dual practice 

contracts.  Patient readmission rates are higher within the high volume group whilst the 

mean LOS is lower compared to the low volume group.  This is evidence to suggest that 
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there is a role for the consultant job contract type to explain volume-outcome 

relationships.  There are no cases of death recorded within the category of patients 

under the care of consultants on exclusive public sector contracts.   

 

3.4  Methodology 

 This section describes the empirical framework used to model competing risk events 

in relation to the patient, consultant and the surgeon characteristics, all of which are 

expected to have an impact on the event of interest.   

The majority of the literature that deals with the use of competing risk events, 

concludes that the use of the KM method may not be the most appropriate method to 

use in such circumstances.  Teixeira et al., (2013) and Kim (2007) note that the KM 

technique and its complement (1-KM) have been applied assuming that all other 

competing events, apart from the event of interest, are censored and thus are non-

informative to the analysis of the event of interest.  In such cases this would imply that 

such patients would still be in a position to get the event, given that they are treated as 

censored, and this would lead to overestimating the probability of failure from the 

event of interest.   

The majority of the literature distinguishes between the use of the CSHF and the CIF to 

model competing risk data.  Indeed, many studies, (Furstova and Valenta, 2011; Gooley 

et al., 1999; Kim, 2007; Klein, 2006; Melberg et al., 2010; Pintilie, 2007; Putter et al., 

2007; Satagopan et al., 2004; Southern et al., 2006; Varadhan et al., 2010)  recommend 

the use of the CIF to deal with issues of competing risk data given that such a function 



95 

 

also incorporates relevant information arising from other competing risk events.  This 

involves the estimation of the likelihood of one event taking into account information 

with respect to other events.  Bakoyannis (2012) defines the cause specific hazard as 

“the instantaneous failure rate from a specific cause i given that no failure from any 

cause has yet occurred”, treating observations with failures from all other causes but 

the event of interest as censored.   

Subjects would be censored if they experience an event rather than the event of interest 

(competing risk).  Thus for example when analysing the risk of getting an event 

readmission, subjects who get the event death would be treated as censored.  Under the 

CSHF method, patients who achieve other events rather than the event of interest 

within the 60 day period are censored (this though allows them to achieve the event of 

interest in future days).  Patients would also be censored if the study ends before the 

passage of the 60 day period and the event of interest does not occur.  

 The CIF is on the other hand based on a risk set which is not natural as it includes not 

only subjects who have not yet failed but also subjects who have failed from other 

causes.  This proposition allows for a patient experiencing a competing risk event to be 

censored but in an informative manner.  In estimating the CIF, the occurrence of a 

competing risk event is an event in itself and is thus informative to the determination 

of the probability of failing from the particular event of interest.  This would ensure that 

the impact from each of the competing events on the event of interest is taken into 

account and that any effects which may arise from the relationships between the 

covariates of the model are included.  The effect of covariates on the CIF for competing 
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risks would be derived directly from the CIF.  In view of such characteristics, the CIF 

has been recognised in both the medical and the statistical literature as the right tool to 

use in such circumstances (Gooley et al., 2001). 

The KM and CSHF assume that censoring does not affect potential failure times.  The 

assumption of independence of different event types may not be clinically meaningful, 

particularly in this study whereby the individual is studied over time and the events 

which occur following the patients’ hospitalization are considered to be a result of the 

PTCA procedure performed.  The time to the event of interest and the time to the 

competing events are correlated up to a certain degree.  If patients, who have 

experienced a competing event are  treated as censored then the possibility of achieving 

the event of interest for such patients would still exist, potentially leading to an 

overestimation in the probability of this event.   

 

3.4.1 Modelling based on cause-specific hazards 

The cause specific hazard is denoted by hj(t) which expresses the joint probability 

distribution of failure time T and failure C for a cause j in the knowledge that there are 

other possible competing events.  The adopted function censors those who have 

experienced other events prior to the event of interest.  The function also models the 

effect of covariate effects, X, on the cause specific hazard.  The addition of factors X 

affecting the instantaneous failure rate from a specific cause of type j is given by the 

conditional cause specific hazard:  hj(t/X) 
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In addition to estimating the cause specific hazard of the event of interest, the CSHF 

across different groups is compared.  It is of particular interest in the context of this 

study to look at patients under the care of consultants and surgeons with different 

volume levels and consultants with varying job contract conditions.  Furthermore, the 

study incorporates the effect of covariates, such as the age of the patient, and the 

hospital LOS, on the event of interest.  Within this framework, as discussed by Prentice 

et al., (1978) a semi-parametric Cox regression model (assuming proportional hazards) 

with a completely flexible unspecified baseline hazard is defined.14  The effect of 

covariates on the cause specific hazard for cause j given covariates vector X is modelled 

by: 

 XBthXth T

jojj exp)()/( ,                                                 (2) 

The first term of the right hand side of the function expresses the baseline hazard 

(where all covariates are set to zero).  The term exp(Bj), represents the relative change 

in the cause specific hazard for the jth cause due to a one unit increase in the 

corresponding covariate.  This identifies any possible factors which could explain the 

occurrence of the event of interest in the presence of competing risks.   

A Cox proportional hazards model is estimated separately for each competing event.  As 

stated by Bakoyannis and Touloumi (2011), cause specific hazard functions, being 

                                                        
14 The assumption of proportionality is tested as it is important to understand that there could be a 
changing effect of a covariate over time rather than a constant hazard assumption over time.   
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instantaneous risk functions, do not quantify the overall benefit or harm of an exposure 

(be it a treatment or a particular characteristic) to the patient.  The inferences from this 

approach need to be evaluated cautiously because the assumption of independent 

competing events is strongly needed when estimating the CSHF.  Covariate effects in 

the CSHF pertain to the event of interest only, without consideration to how the 

covariates act on competing events.  The CSHF ignores the impact from competing risk 

events and  thus could lead to inaccurate conclusions.  The extent to which this model 

characterizes the covariate’s influences solely on risk of the event of interest depends 

on how causes of failures may be inter-related.  Interpreting the cause specific hazard 

as an increase or a decrease in apparent risk has to be treated with caution.   

 

3.4.2 Modelling the cumulative incidence function  

In view of the strong assumptions of independence between events to allow for the 

interpretation of the CSHF, an alternative measure of the distribution of risk; the sub-

hazard distribution function is advocated in the literature.  This serves to deal with the 

limitations raised by Klein (2006) that the CSHF does not directly model the effect of 

covariates on the CIF.  Fine and Gray (1999) developed a model that builds on the Cox 

proportional hazards model and directly links the regression coefficients with the CIF 

whereby all competing events are assumed to have an impact on the coefficients.  In 

such a case, there is a one-to-one relationship between the sub-hazard and the 

cumulative distribution.  Furthermore, it can be noted that the effect of a covariate on 

the CSHF may differ from the effect on the CIF.   
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Competing risk models have the advantage of taking into account the fact that the 

presence of an event which is in competing risk to the event of interest, may preclude 

the incidence of the event under study and may thus alter the probability of occurrence 

for this event.  It is thus more appropriate to estimate event rates by evaluating a CIF 

by taking into account other events within a competing risk framework.  When 

competing risks are present then the way in which covariates are associated with the 

cause-specific hazard may not coincide with the way these covariates are associated 

with the cumulative incidence.  A covariate that has no direct influence on the hazard 

of a primary event can still be significantly associated with the cumulative probability 

of that event, if the covariate influences the hazard of a competing event.  Some effect 

will also arise from the association between covariates and the cause specific hazard 

for the competing events. 

 

The CIF gives the probability of a subject failing due to a cause j in the presence of all 

the competing events before (or up to) time t: 

),()( jJtTptFj                                                      (3) 

The sub-distribution hazard for event j is defined as the probability for a subject to fail 

from cause j at a time t, given the subject experienced no failure prior to t or that if 

failure occurred, it is from another cause prior to t:   
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The risk set is thus a non-natural set as it still includes subjects who fail from another 

cause apart from j and are thus not physically available to fail together with subjects 

who have not yet failed.  The CIF is estimated for each of the events of interest whereby 

individuals experiencing competing events are still held within the risk set so that they 

can be adequately counted as having no chance of failing from the event of interest.  The 

weights used to keep such subjects in the risk set decrease over time as the likelihood 

for these subjects to be censored increases.  Furthermore, when patients fail because of 

competing events, the covariate values for such subjects continue to be used in 

subsequent risk calculations.  Lau et al., (2009) provides an illustration comparing the 

different risk sets for both cause specific and the sub-distribution hazard.  Both risk sets 

would be equal until observing the first competing event and would be smaller in all 

time points for the sub-distribution hazard thereafter.   

The proposed model by Fine and Gray (1999) for the sub-distribution hazard is a Cox–

type semi-parametric proportional hazards model: 

 XBthXth sdT

j

sd

oj

sd

j exp)()/( ,        (sd denotes sub-distribution)  (5) 

The first term on the right hand side of this function denotes a baseline sub-hazard 

function with all covariates set to zero.  X is the covariate vector and the values of B are 

the covariate effects obtained in relation to competing risks j.  This model uses the 

partial likelihood principle15 such that one can assume a constant difference between 

the cumulative incidence functions independent of time t.  The CIF allows for the 

                                                        
15 The log(-log) transformation. 
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incorporation of the relevant information arising from other competing risk events 

when estimating the likelihood of the event of interest.  Sub-distribution hazard rates 

are assumed to be proportional for all the included covariates.  Based on this model, the 

CIF becomes:  





 

t
sd

jj dsXshXtCIF
0

)/(exp1)/(                                         (6) 

The CIF for competing risk j is therefore a function of the sub-hazard only for cause j, 

with the integral on the right hand side of the function being the cumulative sub-

distribution hazard function (Cleves et al., 2010).  The CIF is estimated directly from the 

regression coefficients obtained by the method proposed by Fine and Gray (1999) and 

the effects of covariates on the cumulative incidence function could thus be derived 

directly from the model for, )/( Xshsd

j .   

 

3.5  Results and Discussion  

This section presents the results of the impact of a number of covariates on the event 

of interest, primarily different consultant and surgeon volume levels.  In addition, 

variations in the relationship between consultant volume levels and the events of 

interest due to varying consultant job contract conditions are included.  Results based 

on the CSHF and the CIF using both non-parametric and semi-parametric methods are 

provided.  The conclusions derived from the estimated multinomial logistic regression 

model are presented in Appendix B of this chapter. 
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3.5.1 Non-parametric estimation 

3.5.1.1 The Cause Specific Hazard Function 

Figure 3-1 illustrates the CSHF of the event failure, representing the risk of failing from 

the PTCA procedure.16  The results show that the hazard of failing from the intervention 

within the 60 day period increases as t approaches the 60 day point mark with as 

expected, higher risk in the first few days following the procedure.  Indeed,  Figure 3-2 

illustrates the hazard estimate for the event death, and shows the relatively high risk of 

dying in the immediate days following the undertaking of the procedure .  The hazard 

from this event falls as t increases.  Figure 3-3 shows the hazard estimates for the event 

readmission which increases with t up to around the 50 day point.  

    Figure 3-1: Hazard for event failure                     Figure 3-2: Hazard for event death 

                                   
              

         
Figure 3-3: Hazard for event readmission 

                                                                 

                                                        
16 The hazard estimate for the risk of failing from the undertaken procedure is composed from the 
addition of the hazard of events death and readmission. 
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In addition to estimating the CSHF for the different failure events, results are presented 

for differences in the hazard rates for the event failure17 when different consultant and 

volume characteristics are considered.  In particular, three groups of characteristics are 

identified: patients under the control of consultants with a low/high volume level of 

patient activity, patients being seen by surgeons with a low/high volume level of patient 

activity and patients being seen by consultants with different job plan contracts.  It can 

be concluded from Figure 3-4 that the rate of failing from the treatment procedure is 

higher if the patient is seen by consultants on high volume levels (cvol=1).  The hazard 

of failure for patients being seen by surgeons at higher volume levels (Figure 3-5) 

compared to patients seen by low volume surgeons varies as t changes.  Figure 3-6 

represents differences due to the job plan contract type of the consultant.18  

 

                 Figure 3-4                                      Figure 3-5                                      Figure 3-6 
    By consultant volume                  By surgeon volume                   By consultant job plan                
   levels (CSHF)                             levels  (CSHF)                 contract type (CSHF) 

                   
 

 

                                                        
17 The other representations for the separate failure events readmission and death are included in 
Appendix A to this chapter in Figure 3-19 and Figure 3-20 respectively.  
18 This primarily represents the ‘readmittance’ activity and the fact that there are a relatively small 
number of consultants on a public-only contract type. There are no cases of patients who experience the 
event death and are under the care of public-only contract type consultants.  
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The results of the log-rank test for equality of the hazard associated with the event of 

interest for the different groups are presented in Table 3.5.  The results show that 

surgeon volume has a marginally significant effect on the cause specific hazard for the 

event failure.  However, no significant effect of differences in the consultant and 

surgeon characteristics were observed for the hazard functions of the other specific 

events.   

Table 3.5: Log rank test for equality of the cause specific hazard 

p-value Event  
failure 

     Event  
     death 

Event  
readmission 

Consultant volume 0.3231      0.9214 0.2273 
Surgeon volume  0.0785*      0.4234 0.1163 
Consultant contract type 0.1144      0.2085 0.2767 

* Significant at the 10% level of significance. 
 
 

3.5.1.2 The Cumulative Incidence Function   

Figures 3-7, 3-8 and 3-9 show the CIF for the different events of interest.  The 

cumulative incidence of failing from the PTCA procedure within the 60 day period 

increases as t gets closer to 60 days.19  The treatment failure probability can be 

separated into the failure from getting the event readmission or death.   The cumulative 

probability of failing from each of the  events, death and readmission, within 60 days 

also increases as the 60th day following discharge day is approached.   

 

 

                                                        
19 The results obtained from the CIF are compared to those obtained from the use of the KM method and 
it is found that as expected the (1-KM) method overestimates the incidence of the event failure.  
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                     Figure 3-7                                Figure 3-8                                 Figure 3-9 
         CIF for event failure                     CIF for event death               CIF for event readmission

    

The impact of differences in the consultant and surgeon volume levels together with the 

impact of differences in the consultant job plan contract type on the CIF for the failure 

event20 is shown in Figures 3-10, 3-11 and 3-12.  The incidence of failing following the 

PTCA procedure is higher if the patient is under the care of consultants with high 

volume levels.  The incidence of failure for patients being seen by surgeons at higher 

volume levels (Figure 3-11) compared to patients seen by low volume surgeons varies 

as ‘t’ changes.  Figure 3-12 represents differences due to the job plan contract type of 

the consultant.21  

 

 

 

                                                        
20 The results for the events readmission and death are included in Appendix A to this chapter in Figure 
3-21 and Figure 3-22 respectively. 
21  This primarily represents the ‘re-admittance’ activity and the fact that there are a relatively small 
number of consultants on a public-only contract type. There are no cases of patients who experience the 
event death and are under the care of public-only contract type consultants. 
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             Figure 3-10                          Figure 3-11                                  Figure 3-12 
CIF by consultant volume       CIF by surgeon volume        CIF by consultant job contract     
                         type      
                  

                   

 

Using the p values obtained from the Pepe and Mori (1993) test, as presented in Table 

3.6, it can be concluded that there is a statistical difference in the CIF curves based on 

the volume levels of the consultant for the event readmission.   

Table 3.6: Pepe and Mori (1993) test comparing the cumulative incidence for the two 
groups: consultant and surgeon volume levels 

p-value Event  
failure 

      Event 
       death 

Event 
 readmission 

Consultant volume 0.1196        0.9606 0.0028** 
Surgeon volume  0.4285        0.4166 0.8343 
Consultant contract 
type 

0.00002***        0.00001** 0.01988** 

*** p<0.01, ** p<0.05, * p<0.1. 

 

The differences in the CIF based on the volume levels of the surgeon were found to be 

statistically insignificant whilst the difference in the CIF curve based on the consultant 

contract type is accepted for all event types. 
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3.5.2  Semi-parametric estimation: the CSHF and the CIF   

This section discusses the CSHF and the CIF taking into account differences in 

consultant and surgeon characteristics whilst also controlling for patient related factors 

of age and LOS.22  Covariates are chosen on the basis of a number of regression 

estimations and are dependent on those factors which are expected to affect hazard and 

incidence rates.  Results are also presented for the compounding interaction effects of 

the consultant job contract category on the relationship between the event of interest 

and the different measures of volume.  The results from each of the semi-parametric 

estimation methods are compared for robustness purposes to the obtained estimates 

based on a multinomial logistic model.23   

 

3.5.2.1 Modelling the CSHF 

This section provides the results for the CSHF estimated using the Cox multivariable 

regression model for the failure event.  The events death and readmission constitute a 

failure and a separate CSHF for each of these possible failure events is estimated.  The 

results are presented using different sets of volume variables to capture the robustness 

of the volume measures used.  The effect of the consultant job plan contract type on the 

cause specific hazard is included together with an interaction term to study whether 

differences in the consultant contract type modify the relationship between the volume 

                                                        
22 The total number of diagnosis for the particular patient, diagtotal, to represent the severity of illness 
for the patient, was also tested in the various estimations undertaken.  
23 A full description of the results obtained using a multinomial logistic model is provided in Appendix B 
to this chapter. The results obtained using this method serve to overall confirm the results obtained 
through the CSHF and the CIF.  
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variable and the event of interest.  Tables 3.7, 3.8 and 3.9 present the results for the 

different CSHF’s obtained using the different volume variables under consideration.  

The results in Table 3.7 show that there is a lower (and significant) risk of failing from 

the procedure for patients seen by consultants on public-only job contracts compared 

to patients under the control of dual practice contract consultants (the hazard rate of 

failing falls by 72%).  The hazard rate for the volume variables countc and counts are 

both insignificant and close to 1 indicating that the rate of failure is expected to stay 

fairly flat as volume levels increase.  As expected the covariates for age and LOS 

positively affect the hazard rate for the event death.  The proportional hazard 

assumption24 is clearly accepted for the estimation is columns 3-6 whilst only accepted 

marginally in the first two columns of the same table.  

 

Table 3.7: Cause Specific Hazard at particular event of interest (countc and counts) 

 (1) (2) (3) (4) (5) (6) 

                Event 

Variable 

Failure Failure Re-admit Re-admit Death Death 

public-only 0.281* 0.326 0.390 0.443 - - 

age 1.003 1.004 0.984 0.984 1.068*** 1.070*** 

LOS 1.041*** 1.043*** 1.025 1.027 1.060*** 1.063*** 

countc 0.999  0.999  0.998  

counts  0.999  0.999  0.999 

Observations 1,619 1,619 1,619 1,619 1,619 1,619 

Hazard ratios are reported, *** p<0.01, ** p<0.05, * p<0.1. 
The baseline, public-only=0, indicates consultant is on a dual practice contract.  

 

 

 

 

 

 

                                                        
24 Obtained using the estat phtest command in Stata. Data provided in Appendix C to this chapter. 
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Table 3.8: Cause Specific Hazard at particular event of interest (vol90c and vol90s) 

 (1) (2) (3) (4) (5) (6) 

                 Event 

Variable 

Failure Failure Re-admit Re-admit Death Death 

public-only 0.355 0.325 0.466 0.439 - - 

age 1.003 1.003 0.983 0.983 1.066*** 1.066*** 

LOS 1.046*** 1.044*** 1.030* 1.028* 1.069*** 1.065*** 

vol90c 1.004  1.002  1.007  

vol90s  1.000  0.999  1.002 

Observations 1,619 1,619 1,619 1,619 1,619 1,619 

Hazard ratios are reported, *** p<0.01, ** p<0.05, * p<0.1. 
The baseline, public-only=0, indicates consultant is on a dual practice contract.  

 

 

Table 3.9: Cause Specific Hazard at particular event of interest (cvol and svol) 

 (1) (2) (3) (4) (5) (6) 

              Event 

Variable 

Failure Failure Re-admit Re-admit Death Death 

public-only 0.437 0.294* 0.599 0.402 - - 

age 1.004 1.005 0.984 0.985 1.068*** 1.069*** 

LOS 1.050*** 1.042*** 1.034* 1.026 1.070*** 1.062*** 

cvol 1.433  1.447  1.388  

svol  0.703*  0.721  0.678 

Observations 1,619 1,619 1,619 1,619 1,619 1,619 

Hazard ratios are reported, *** p<0.01, ** p<0.05, * p<0.1. 
The baseline, public-only=0, indicates consultant is on a dual practice contract.  
The baseline, cvol=0 indicates consultant low volume, svol=0 indicates surgeon low 
volume. 

 

Table 3.8 presents the results when the volume variables representing the most recent 

activity of surgeons and consultants prior to the hospital admittance date of the patient, 

vol90c and vol90s are considered.25  There is no statistically significant relationship 

between the event of failure and the most recent activity volume levels of both 

                                                        
25 The proportional bazard assumption is rejected in columns 1,2 whilst the assumption holds for column 
3-6, (obtained using estat phtest command in Stata). The relevant data is provided in Appendix C to this 
chapter.  
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consultants and surgeons.  As expected, the hazard rate for the event of death is 

significant for both changes in age and LOS. 

This results in Table 3.9 show that the hazard rate of failing is lower if a patient is under 

the care of a consultant on a public-only contract.  There is a lower hazard rate of failing 

from the procedure if the patient is seen by a surgeon on a high volume level, possibly 

suggesting that the practice makes perfect hypothesis holds in this case.  On the other 

hand, there is a higher hazard rate of failing from the procedure (however insignificant) 

if the patient is under the care of a consultant with high volume levels.  The proportional 

hazard assumption26 is accepted for the estimation is columns 3-6 whilst rejected in the 

first two columns of the same table. 

We included the interaction term in order to determine whether the consultant job plan 

can modify the effect of volume on the hazard for each of the events of interest.  The 

results are presented in Table 3.10.  We found that if volume (represented by countc) is 

increased by one unit and all other variables are held constant, the hazard of failing 

remains practically the same for those patients under the care of consultants working 

on dual practice contracts.  If volume is increased by one unit and the patient is under 

the responsibility of a consultant on a public-only contract, then the hazard rate of 

failing is equal27 to 1.107.  This rate varies for different levels of volume due to the 

interaction effect. The rate of failing from the procedure undertaken for a change in 

volume is slightly higher for those patients seen by consultants on public-only contracts 

                                                        
26 Obtained using the estat phtest command in Stata. Data provided in Appendix C to this chapter. 
27 Obtained as the exp((-0.001+0.103)*counc). Values represent the coefficients corresponding to the 
hazard rates provided in Table 3.10. 
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compared to those patients under consultants with dual practice contracts.  If a patient 

is moved from a consultant with a dual practice contract to a consultant with a public-

only contract, at a volume level set to zero and holding all other variables constant, the 

hazard of failing decreases (by around 93%).  However, the effect of the consultant 

contract type on the hazard rate of failing changes with changes in volume levels due to 

the interaction effect.28    

Table 3.10: Cause Specific Hazard at particular event of interest - with interaction terms 

 (1) (2) (3) (4) (5) (6) 

                      Event 

Variable 

Failure Failure Re-

admit 

Re-

admit 

Death Death 

age 1.003 1.003 0.983 0.983 1.068*** 1.066*** 

LOS 1.041*** 1.047*** 1.026 1.030* 1.060*** 1.069*** 

public-only 0.067 0.081* 0.081 0.089 - - 

countc 0.999  0.999  0.998  

countc x public-only  1.108  1.121  0.864  

vol90c  1.003  1.002  1.007 

vol90c x public-only  1.214*  1.243**  1.000 

Observations 1,619 1,619 1,619 1,619 1,619 1,619 

    Hazard ratios are reported, *** p<0.01, ** p<0.05, * p<0.1.  
    The baseline, public-only=0, indicates consultant is on a dual practice contract.  
 

Similar results (column 2) are obtained when using the volume indicator, vol90c, which 

represents the number of cases seen by the consultant in the last 90 days prior to the 

patient’s admission to hospital.  An insignificant hazard rate of failing is obtained with 

respect to changes in volume for patients who are under the care of consultants on dual 

practice contracts.  If volume is increased by one unit and the patient is under the 

responsibility of a consultant on a public-only contract, then the hazard rate of failing is 

                                                        
28 exp((-2.696+(0.103*countc)). Values represent the coefficients corresponding to the hazard rates 
provided in Table 3.10. 
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equal29 to 1.217.  This rate varies for different levels of volume due to the interaction 

effect.  A significant hazard rate of failing for patients under the care of consultants on 

public-only contracts is recorded when the volume variable, vol90c, is used.  If a patient 

is moved from a consultant with a dual practice contract to a consultant with a public-

only contract, at a volume level set to zero and holding all other variables constant, the 

hazard of failing decreases (by around 92%).  The results also show that the likelihood 

of the event death is significantly affected by the LOS and the age covariates.  The 

proportional hazards assumption30 is rejected (at the 90% level of significance) for the 

representations in column 1 and column 2 whilst accepted for all other columns in 

Table 3.10.  The robustness of these results has been assessed in relation to estimates 

obtained from a multinomial logistic model31. The results obtained from the CSHF are 

broadly in line with those derived from the multinomial logistic model. 

The marginal effect of changes in the volume indicator, countc is not constant and varies 

for different values of volume.  The predictions32 of the hazard for the event of interest 

at different volume levels of countc, at each of the different consultant job plan 

contracts, are presented in Figure 3-13 and Figure 3-14.  

 
 

 

                                                        
29 Obtained as the exp((0.003+0.194)*counc). Values represent the coefficients corresponding to the 
hazard rates provided in Table 3.10. 
30 Obtained using estat phtest command in Stata.  Data provided in Appendix C to this chapter. 
31 A detailed description of the results is presented in Appendix B to this chapter. 
32 Based on equation (1) in Table 3.10. 
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Figure 3-13: The hazard function of failing from the procedure for different volume 
levels for consultants on public-only contracts33 

 

Figure 3-14: The hazard function of failing from the procedure for different volume 
levels for consultants on dual practice contracts34 

 

                                                        
33 The different volume levels applied reflect the current volume levels of the consultants operating 
under the public-only contract type.   
34  The different volume levels applied reflect the current volume levels of the consultants operating 
under the dual practice contract type.   
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The results in Figure 3-13 show that as volume levels for consultants on public-only 

contracts increase, the hazard of failing from the procedure increases.  This reflects the 

positive interaction term for patients under the care of consultants on public-only 

contracts.  The hazard of failing for patients under the care of consultants on dual 

practice contracts (Figure 3-14) is only affected marginally when volume levels for 

these consultants on such contract type increase.  This suggests that changes in failure 

outcomes are more sensitive to changes in volume levels of consultants on public-only 

contracts. 

 

3.5.2.2 Modelling the CIF  

 

Tables 3.11, 3.12 and 3.13 present the results of a series of CIFs based on the approach 

proposed by Fine and Gray (1999) to model each of the events using various volume 

measures: countc and counts, vol90c and vol90s,  and cvol and svol.  Table 3.14 shows 

how the consultant job plan contract type modifies the effect of the volume covariates 

on the outcome events.  Variables for patient age and LOS at the hospital are considered 

as the main covariates in the different specifications.35   

As shown in Table 3.11, the sub-hazard for the volume variables countc and counts are 

both insignificant and close to 1 indicating that as the volume of the consultant and 

surgeons increase by one unit the incidence rate for failure is expected to stay fairly flat, 

when keeping all other variables constant. Furthermore, assuming the same level of 

                                                        
35 The total number of diagnosis for the particular patient, diagtotal, which represents the severity of the 
patient case, was also tested in the various estimations undertaken. 
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volume for the consultant in column 1, the sub-hazard rate of failing from the procedure 

is lower for patients being seen by consultants on public-only contracts compared to 

dual practice contracts.  The sub-hazard of failing from the procedure is also lower 

(however insignificant) for patients being seen by consultants on public-only contracts 

compared to dual practice contracts when assuming the same level of volume for the 

surgeon in column 2.  The study found that the incidence of the event failure is affected 

by the LOS covariate whilst the specific event of failure death is affected by the age and 

the LOS covariates.   

Table 3.12 presents the results obtained when the number of cases seen by the 

consultant vol90c and the number of cases seen by the surgeon, vol90s are taken as the 

volume measures.  Insignificant sub-hazard values were obtained for the volume 

measures so that the most recent activity volume levels of the consultant and the 

surgeon did not have an impact on the incidence rate of failing following a PTCA 

procedure.  Keeping all variables constant, the sub-hazard rate of failing from the 

procedure is lower (however insignificant) for patients being seen by consultants on 

public-only contracts compared to dual practice  contracts.  In line with the previous 

table, the results in table 3.12 show that the incidence of the event failure is affected by 

the LOS covariate whilst the specific event of failure death is affected by the age and the 

LOS covariates.   
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Table 3.11: Cumulative Incidence Function at particular events of interest (countc and counts)  

 (1) (2) (3) (4) (5) (6) 

               Event 

Variable 

Failure Failure Re-

admit 

Re-

admit 

Death Death 

 

age 1.004 1.004 0.982* 0.983 1.068*** 1.0699*** 

LOS 1.041*** 1.043*** 1.021* 1.023* 1.060*** 1.0626*** 

public-only 0.281* 0.326 0.370 0.436 - - 

countc 0.999  0.999  0.998  

counts  0.999  0.999  0.999 

Observations 1,619 1,619 1,619 1,619 1,619 1,619 

Coefficients reflect Sub-Hazard Ratios,*** p<0.01, ** p<0.05, * p<0.1. 
The baseline, public-only=0, indicates consultant is on a dual practice contract. 

 
 

Table 3.12: Cumulative Incidence Function at particular events of interest (vol90c and vol90s) 

 (1) (2) (3) (4) (5) (6) 

Event 

Variable 

Failure Failure Re-

admit 

Re-

admit 

Death Death 

age 1.003 1.003 0.982* 0.982* 1.067*** 1.067*** 

LOS 1.047*** 1.044*** 1.026** 1.024** 1.069*** 1.065*** 

public-only 0.355 0.325 0.459 0.432 - - 

vol90c 1.004  1.003  1.008  

vol90s  0.999  0.999  1.001 

Observations 1,619 1,619 1,619 1,619 1,619 1,619 

Coefficients reflect Sub-Hazard Ratios,*** p<0.01, ** p<0.05, * p<0.1. 
The baseline, public-only=0, indicates consultant is on a dual practice contract. 

 

 

Table 3.13: Cumulative Incidence Function at particular events of interest (cvol and svol) 

 (1) (2) (3) (4) (5) (6) 

Event 

Variable 

Failure Failure Re-

admit 

Re-

admit 

Death Death 

age 1.004 1.005 0.983 0.984 1.068*** 1.069*** 

LOS 1.050*** 1.042*** 1.030** 1.022* 1.070*** 1.062*** 

public-only 0.437 0.294* 0.587 0.395 - - 

cvol 1.433  1.438  1.390  

svol  0.703*  0.725  0.676 

Observations 1,619 1,619 1,619 1,619 1,619 1,619 

Coefficients reflect Sub-Hazard Ratios,*** p<0.01, ** p<0.05, * p<0.1. 
The baseline, public-only=0, indicates consultant is on a dual practice contract. 
The baseline, cvol=0 indicates consultant low volume, svol=0 indicates surgeon low volume. 
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The volume variable is in Table 3.13 measured using a constructed dummy variable 

which distinguishes between high and low volume consultant and surgeons operating 

at the public hospital.  There is a lower hazard rate of failing from the procedure if the 

patient is seen by a surgeon on the high volume level, svol, possibly suggesting that the 

practice makes perfect hypothesis holds in this case.  On the other hand, there is a 

higher hazard rate of failing from the procedure (however insignificant) if the patient 

is under the care of a consultant with high volume levels, cvol.  The results in Table 3.13 

(column 2) show that keeping all variables constant, the sub-hazard rate of failing is 

lower and significant if a patient is under the care of a consultant on a public-only 

contract.  As expected, the cumulative incidence rate of the event death  was found to 

be affected by both age and LOS.  

 
Table 3.14: Cumulative Incidence Function at particular events of interest-with interaction terms 

      (1) (2) (3) (4) (5) (6) 

     Event             

Variable 

         Failure Failure Re-admit Re-admit Death Death 

age 1.003 1.003 0.982* 0.982* 1.068*** 1.067*** 

LOS 1.042*** 1.047*** 1.022* 1.027** 1.0604*** 1.069*** 

public-only 0.067** 0.081*** 0.136** 0.146** - - 

countc 0.999  0.99  0.998  

countc x public-only 1.108**  1.072*  0.993  

vol90c  1.003  1.002  1.008 

vol90c x public-only  1.214***  1.150***  1.000 

Observations 1,619 1,619 1,619 1,619 1,619 1,619 

Coefficients reflect Sub-Hazard Ratios,*** p<0.01, ** p<0.05, * p<0.1. 
The baseline, public-only=0, indicates consultant is on a dual practice contract. 
 
 

Table 3.14 introduces into the study the effect that the consultant job plan has on the 

relationship between volume and the incidence of the event of interest.  The 
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specification in column 1 shows that if volume is increased by one unit and the patient 

is under the control of a consultant on a dual practice contract, with all other variables 

kept constant, the incidence rate of failing from the PTCA procedure is practically 

unchanged.  If volume is increased by one unit and the patient is under the 

responsibility of a consultant on a public-only contract, then the incidence rate of failing 

is equal36 to 1.107.  The magnitude of this change varies for different levels of volume 

due to the interaction effect.  The incidence rate of failing increases significantly for 

patients being seen by consultants on public-only contracts for a unit change in volume 

compared to patients being under the control of consultants on dual practice contracts.  

The sub-hazard for failing from the procedure for patients under the care of consultants 

with exclusive public sector contracts, at zero volume levels and keeping all other 

variables constant, is lower for patients under the care of consultants on public-only 

contracts compared to dual practice contracts.  The magnitude of this change varies and 

depends on the particular volume level due to the interaction effect.37   

Results based on vol90c (column 2) indicate that the effect of a one unit change in 

volume on the incidence rate of failing for patients under the care of consultants on 

public-only contracts is equal38 to 1.218.  A small positive sub-hazard of failing for 

patients is obtained with respect to volume changes when consultants overseeing the 

patients are on dual practice contracts.  The sub-hazard of failing, at zero volume levels 

                                                        
36 Obtained as the exp((-0.0011+ 0.1029)*countc). Values represent the coefficients corresponding to the 
sub-hazard ratios provided in Table 3.14. 
37 exp((-2.6955+(0.1029*countc)). Values represent the coefficients corresponding to the sub-hazard 
ratios provided in Table 3.14. 
38 Obtained using exp((-0.0008333+0.0779643)*vol90c). Values represent the coefficients 
corresponding to the sub-hazard ratios provided in Table 3.14. 
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and keeping all other variables constant, for patients under the care of consultants with 

exclusive public sector contracts is lower when compared to those patients under the 

care of consultants on dual practice contracts.  The sub-hazard of failing for patients 

under the care of consultants with public-only contracts is around 8% of that for 

patients under the care of consultants who can carry out private practice.  

 
The results show that there is a significant sub-hazard of failing from the event re-

admission for patients with public-only contracts.  Patients under the care of consultants 

who have a public-only contract have a lower sub-hazard for the event re-admission 

compared to those patients who are under the care of dual practice contract 

consultants.  Furthermore, we find positive and significant values for the sub-hazard of 

the interaction term in columns 3 and 4.  If volume is increased by one unit and the 

patient is under the care of a consultant on a public-only contract then the incidence 

rate of being re-admitted is higher compared to the same volume increase of one unit 

for consultants with dual practice contracts.  The robustness of these results has been 

assessed in relation to estimates obtained from a multinomial logistic model.39  The 

results obtained from the CIF are broadly in line with those derived from the 

multinomial logistic model. 

 
The Fine and Gray (1999) model assumes that the effects of the covariates are 

proportional to the sub-hazard of the particular event of interest.  The assumption of 

proportional hazards was tested for a possible changing effect of the covariates over 

                                                        
39 A detailed description of the results is presented in Appendix B to this chapter. 
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the time period.  The plot of the Schoenfeld residuals40 (based on the results presented 

in column 1 in Table 3.14) shown in Figure 3-15, was used to test the proportional 

hazards assumption underpinning the CIF.  Results show that there is an indication of 

no violation of the proportionality assumption.  The assumption of proportionality was 

also tested by introducing time varying coefficients for all of the covariates in the model.  

Figure 3-16 illustrates the Schoenfeld residuals after the time varying coefficients are 

taken into account.  Some of the tested time varying coefficients turned out to be 

statistically significant thus suggesting the rejection of the proportionality assumption.   

 
 
     Figure 3-15: Schoenfeld residuals                         Figure 3-16: Schoenfeld residuals with                                    
        time varying coefficients 

                       
 
 
The marginal effect of changes in the volume indicator, countc is not constant and varies 

for the different values of volume.  Figure 3-17 and 3-18 show predictions41 of the 

incidence rate for the event of interest failure at different volume levels of countc, for 

each of the consultant job plan contract types.  We found evidence of differences in the 

                                                        
40 Based on Grambsch and Therneau (1994). 
41 Based on equation (1) in Table 3.14. 
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CIF for the event of interest, at different levels of volume for particular job plan contract 

types. 

Figure 3-17: Volume variation for consultants on public-only contracts42 

 

Figure 3-18: Volume variation for consultants on dual practice contracts43 

 

                                                        
42 The different volume levels applied reflect the current volume levels of the consultants operating 
under the public-only contract type.   
43 The different volume levels applied reflect the current volume levels of the consultants operating 
under the dual practice contract type.   
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Figure 3-17 shows that the incidence of failure increases if the volume of consultants 

on public-only contracts increases.  This is in line with the results obtained on the 

interaction term for the consultant job plan contract type which shows that the impact 

of a change in volume on the incidence rate of failing for patients under the care of 

consultants with exclusive public sector contracts, is higher. Figure 3-18 provides 

evidence that changes in the volume levels of consultants who undertake private 

practice has little impact on the incidence rate of failing from the procedure 

undertaken.  The incidence of failing for patients under the care of consultants on dual 

practice contracts only changes marginally when volume levels of these consultants 

change.   

3.6 Conclusion 

This study focused on understanding the volume-outcome relationship in the context 

of competing events following a PTCA procedure. The impact of patient focused 

covariates such as age and LOS is included in the analysis.  Furthermore, we studied 

whether the consultant job plan contract type can modify the effect of changes in 

volume on the hazard rate of each of the events of interest.   

Both non-parametric and semi-parametric survival analysis methods were used in the 

study together with the use of a multinomial logistic model to test for the robustness of 

the obtained results.  Results based on the non-parametric CSHF and the CIF show that 

there is a slightly higher rate of failure following the PTCA procedure for patients who 

are under the care of consultants with high volume levels.  The results obtained from 

the non-parametric methods, in relation to the variation in failure rates due to 
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difference in job plan contract type, are to be treated with caution and one 

acknowledges the contrainst due to the significantly limited dataset available.  

The results obtained from the semi-parametric models show that there is a lower risk 

of failure from the PTCA procedure for patients being under the care of consultants with 

public-only job contracts compared to patients under dual practice consultants.  Some 

evidence of higher risk of failure for patients under the care of consultants with high 

volume levels is also noted.  Furthermore, a change in volume was found to have an 

even higher impact on the sub-hazard rate for failing if patients were under the 

responsibility of consultants practicing exclusively in the public sector. This could 

indeed reflect the capacity constraints within which consultants working at the public 

hospital operate, whereby added activity for such consultants could lead to an impact 

on overall outcomes.  On the other hand, one finds some evidence of a lower risk of 

failure for patients seen by surgeons with high volume levels, possibly implying some 

evidence of the presence of the practice makes perfect hypothesis.  Also, and not 

surprisingly, our findings show that the likelihood of death of a patient undergoing a 

PTCA procedure is affected significantly by their age and LOS at hospital. 

The results based on the multinomial logistic estimations confirm the results obtained 

from the CSHF and the CIF functions.  One finds that there is a lower risk for a patient 

to register a failure event  after the PTCA procedure if the patient is under the care of a 

consultant on a public-only contract with the public hospital.  Patients being seen by 

consultants on high volume levels are more likely to have an event failure during the 60 

day period.  Moreover, a change in volume was found to have an even higher impact on 
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the incidence for failing if patients were under the responsibility of consultants 

practicing exclusively in the public sector compared to dual practice consultants.  

The survival models used assume  homogeneity where all individuals are subject to the 

same risks embodied in the hazard function.  When we introduce covariates we relax 

this assumption by introducing observed sources of heterogeneity.  There could though 

also be unobserved sources of heterogeneity that are not being captured by the 

covariates.  A problem of concern is the omission of variables (counfounders) that affect 

the event of interest variable and that such variables are likely to be correlated with the 

included control variables.  Indeed, there could be an intrusive effect of omitted 

variables and as stated by Heckman and Singer (1981) the estimates of the parameters 

of duration models, are influenced by the distribution of unobservables as this could 

lead to estimates which poorly describe the true behavioural models generating 

duration data. 

 
Furthermore, in this study we have controlled for a range of patient and consultant 

characteristics which could possibly influence the volume-outcome relationship, 

particularly, patient age, severity of illness and consultant job contract type. One 

recognises that there are though a number of other factors which consultants put into 

the balance when making a choice between a dual practice contract and a public-only 

contract with the public hospital.  The observed impact on outcomes may thus be due 

to factors other than the direct variation arising from the particular job contract type.  

The data for consultant job contract type may be thus capturing factors which affect the 

actual decision of the consultant to choose the particular type of job plan contract.   
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The identification of the volume-outcome relationship could in the context of this study 

be partly controlled by the fact that there is only one single public hospital on the island 

which deals with the health care needs of the Maltese population.  Consultants cannot 

move to other public hospitals and all consultants considered in this study work within 

the same public sector structure.  This reduces the possible biases which can arise when 

patients could be referred to hospitals with different characteristics thus possibly 

affecting outcomes.  Furthermore, the size of the sample used within this study is 

constrained by the fact that the sample includes all the existing PTCA activity carried 

out by consultants within the hospital over the three year period, thus serving to reduce 

potential biases in sample selection.  

 
It is indeed possible that consultants with different skills and work/leisure preferences 

have a tendency to opt for a particular type of contract type and thus outcomes are also 

influenced by such factors rather than just the particular job contract type.  Consultants 

might base their choice of job contract type also on what they perceive to be the mostly 

sought out form of contract type requested and desired by their patients.  Patient 

preferences will thus have an impact on consultant job contract type.  Furthermore, one 

could consider data in relation to years of experience at the job (to measure skills) and 

an indicator of work/leisure preferences to help disentangle the confounding impact of 

such factors on outcomes.  Determining the possible reasons underlying the decision 

by consultants to work under the conditions of a particular type of job contract could 

add to a better explanation of the drivers of the relationship between outcomes and the 

consultant job contract type.  This is important especially for policy related reasons.  

Further work in this area would be a possible extension to this research work. 



126 

 

These conclusions contribute towards a better understanding of the existence, nature 

and possible channels for explaining the relationship between volume and competing 

risk outcomes within a unique public hospital setting like that of Malta.  Furthermore, 

this study helps provide evidence on some of the factors which are likely to have an 

impact on treatment effectiveness.  In particular, further investigation into the 

behavioural patterns of consultants and surgeons within such a hospital setting would 

serve to obtain a better understanding of the contribution of health professionals 

towards outcome effectiveness.  A possible further extension for this study could be to 

incorporate additional information on the characteristics of the surgeons working 

within the hospital and thus to analyse their particular impact of patient outcomes.  One 

would expect that even within a single hospital setting, differences in the behaviour of 

consultants and surgeons at an individual level exist and such differences could have 

an impact on outcome.  The broadening of this study to include other procedures within 

the hospital, apart from PTCA, would help set up effective policy initiatives within the 

health care sector.   
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Appendix A 

This appendix includes the non-parametric CSHF and CIF for each of the events of 

interest: failure, death and readmission. The impact of changes in consultant volume 

levels, surgeon volume levels and consultant job plan contract type on the CSHF and CIF 

are presented.  

Figure 3-19: Cause Specific Hazard Function – for the event readmission 

 
 

Figure 3-20: Cause Specific Hazard Function – for the event death 
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Figure 3-21: Cumulative Incidence Function – for the event readmission 
 

 
 

Figure 3-22: Cumulative Incidence Function – for the event death 
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Appendix B 

 

The results obtained from a multinomial logistic model for outcomes within the 60 day 

period following the undertaking of the PTCA procedure are presented in Tables 3.15, 

3.16 and 3.17.  This is carried out to check for the robustness of the results obtained  

using the survival analysis estimation methods.  To this effect results are compared to 

the estimation results obtained from the use of the CSHF and the CIF presented in 

Sections 3.5.2.1 and 3.5.2.2.  Tables 3.15, 3.16 and 3.17 present the result of outcomes 

at 60 days for the estimations carried out using the different volume measures: countc 

and counts, vol90c and vol90s and cvol and svol respective.  This type of modelling 

structure also allows for the control of the possible influence of additional variables on 

the failure event.  

 
The first two columns within the tables represent the event failure which could 

constitute either of the events death or readmission.  Columns 3-6 within each of the 

tables represent separate estimations for each of the possible events which could lead 

to failure.  

 
The results in Table 3.15 confirm that there is a lower risk for a patient failure event 

after the PTCA procedure if the patient is under the care of a consultant on a public-only 

contract with the public hospital.  As the volume of the consultant increases (countc) 

and the volume of the surgeon (counts) increases given that the odds ratio is very close 

to one then there is not likely to be any difference to the probability of failure.  The 
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relative risk of the particular failure from event death is expected to be higher as age 

and LOS increase.    

 
Similar results are obtained in Table 3.16 which presents the relative risk of failure 

when the volume variables representing the most recent activity of consultants and 

surgeons prior to the patient hospital admittance date (vol90c and vol90s) are 

considered.  These results are also comparable to the results in Table 3.8 using the CSHF 

and Table 3.12 using the CIF within the main text of the Chapter.  

 

The results in Table 3.17 confirm the results obtained in Table 3.9 and Table 3.13 

whereby the event failure for a patient is less likely if a patient is under the control of 

public-only contract consultants.  Patients being seen by consultants on high volume 

levels are more likely to have an event failure (although insignificant). Patients being 

seen by surgeons on high volume levels are less likely to have a failure event during the 

60 day period.  The results also confirm that the relative risk of failure from death is 

expected to be higher as age and LOS of patients increase.    
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Table 3.15: Multinomial logistic regression (countc and counts) - odds ratios 

 (1) (2) (3) (4) (5) (6) 

        Event 

Variable 

Failure Failure Re-admit Re-admit Death Death 

age 1.002 1.003 0.984 0.985 1.068*** 1.070*** 

LOS 1.051*** 1.054*** 1.034* 1.036* 1.078*** 1.081*** 

public-only 0.234** 0.286* 0.313 0.379 - - 

countc 0.998*  0.999  0.998  

counts  0.999*  0.999  0.998 

Constant 0.066*** 0.060*** 0.169*** 0.155*** 0.000*** 0.000*** 

Observations 1,626 1,626 1,626 1,626 1,626 1,626 

         *** p<0.01, ** p<0.05, * p<0.1 

          The baseline, public-only=0, indicates consultant is on a dual practice contract. 
 
  

Table 3.16: Multinomial logistic regression  (vol90c and vol90s) - odds ratios 

 (1) (2) (3) (4) (5) (6) 

        Event  

Variable 

Failure Failure Re-admit Re-admit Death Death 

age 1.001 1.002 0.983 0.984 1.067*** 1.066*** 

LOS 1.057*** 1.055*** 1.038* 1.037* 1.088*** 1.084*** 

public-only 0.298* 0.282* 0.376 0.370 - - 

vol90c 1.002  1.000  1.008  

vol90s  0.998  0.997  1.002 

Constant 0.050*** 0.056*** 0.140*** 0.150*** 0.000*** 0.000*** 

Observations 1,626 1,626 1,626 1,626 1,626 1,626 

         ***   p<0.01, ** p<0.05, * p<0.1 

  The baseline, public-only=0, indicates consultant is on a dual practice contract. 
 

 

Table 3.17: Multinomial logistic regression  (cvol and svol) - odds ratios 

 (1) (2) (3) (4) (5) (6) 

        Event 

Variable 

Failure Failure Re-admit Re-admit Death Death 

age 1.002 1.004 0.984 0.986 1.068*** 1.069*** 

LOS 1.061*** 1.053*** 1.044** 1.035* 1.088*** 1.080*** 

public-only 0.380 0.252* 0.507 0.334 - - 

cvol 1.424  1.436  1.412  

svol  0.668*  0.678  0.657 

Constant 0.037*** 0.062*** 0.096*** 0.157*** 0.000*** 0.000*** 

Observations 1,626 1,626 1,626 1,626 1,626 1,626 

        ***   p<0.01, ** p<0.05, * p<0.1 

  The baseline, public-only=0, indicates consultant is on a dual practice contract. 
     The baseline, cvol=0 indicates consultant low volume, svol=0 indicates surgeon 

          low volume. 
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The effect on the occurrence of a failure event, arising from differences in the consultant 

job plan type, given a change in volume is studied by adding an interaction term to the 

analysis.  Results are shown in Table 3.18.  These results can be compared to those in 

Table 3.10  (based on the CSHF) and Table 3.14 (based on the CIF).  Overall similar 

conclusions can be made when interpreting such results.  If volume is increased by one 

unit and the patient is under the care of a consultant with a dual practice contract, with 

all other variables kept constant, the risk of failure is practically unchanged.  If volume 

is increased by one unit and the patient is under the care of a consultant on a public-

only contract then the relative risk of failure is expected to increase by a factor of 

1.06944.  The impact of a change in volume on the relative risk of the event failure is 

found to be higher for patients under the care of public-only consultants.  The relative 

risk of patients from the event failure for patients under the care of consultants with 

public-only contracts is less compared to those being under the care of dual practice 

consultants (at zero volume levels and keeping all other variables constant).  In view of 

the interaction term applied within the multinomial logistic regression model, the 

magnitude of this change varies at the particularly set volume levels. 

 
 
 
 
 
 
 
 
 
 

                                                        
44 Obtained as exp(-0.002+0.069)* countc). Values represent the coefficients corresponding to the sub-
hazard ratios provided in Table 3.18. 
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Table 3.18: Multinomial logistic regression output (with interactions) 
 (1) (2) (3) (4) (5) (6) 

                Event    

Variables 

Failure Failure Re-admit Re-admit Death Death 

age 1.002 1.002 0.984 0.983 1.068*** 1.067*** 

LOS 1.052*** 1.058*** 1.034* 1.039** 1.078*** 1.088*** 

public-only 0.087 0.090* 0.125 0.115 - - 

countc 0.998*  0.999  0.998  

countc x public-only 1.072  1.066  1.006  

vol90c  1.002  0.999  1.008 

vol90c x public-only  1.162  1.156  1.022 

Constant 0.066*** 0.050*** 0.168*** 0.139*** 0.000*** 0.000*** 

Observations 1,626 1,626 1,626 1,626 1,626 1,626 

 Coefficients reflect odds ratios,  *** p<0.01, ** p<0.05, * p<0.1 

 The baseline, public-only=0, indicates consultant is on a dual practice contract. 
 
 

Similar conclusions are derived from the results in columns 3-6 of Table 3.18 for the 

different particular failure events of death and readmission when compared to results 

in Tables 3.10 and 3.14.  The public-only variable coefficients are though not 

statistically significant in most of the cases. 
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Appendix C 

Table 3.19: Proportional Hazard test based on the ‘estat phtest’ command in Stata. 

p value Table 3.7 Table 3.8 Table 3.9 Table 3.10 

Equation 1 0.0567* 0.0524* 0.0174** 0.0814* 

Equation 2 0.0543* 0.0253** 0.0360** 0.0573* 

Equation 3 0.9272 0.9049 0.1387 0.9239 

Equation 4 0.9242 0.6843 0.3506 0.8030 

Equation 5 0.9328 0.9951 0.9928 0.9743 

Equation 6 0.6706 0.8029 0.9905 0.9990 

                      *** p<0.01, ** p<0.05, * p<0.1 
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Abstract 

 

This paper reviews the behaviour of consultants working in the context of very specific 

incentives and work practices within the Maltese Islands’ only public hospital.  It 

focuses on the extent to which the consultants’ job plan affects practice variation.  We 

exploit the data available on the investigations carried out at patient level in the 

undertaking of the Percutaneous Transluminal Coronary Angioplasty (PTCA) 

procedure.  These investigations were further subdivided into two categories: those 

performed within the first two days of hospital stay and those performed during the 

remaining hospital stay period.  Practice variation within each of the two categories is 

analysed in this paper.  The analysis found that the job contract type of the consultant 

had a significant effect on practice variation even after controlling for patient casemix.  

Furthermore, the impact on practice variation due to differences in job contract type 

was significantly different when the investigations were compared before and after the 

first two days of hospital stay.   
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4.1 Introduction and Motivation 

Variations in practice patterns have important consequences for the quality and cost of 

health care treatment.  Medical variation is the difference in the use of health care 

services or resources between individuals or groups of patients who share a similar 

health status or medical condition.  In the literature, such variation in practice patterns 

has often been linked to patients not receiving the best possible care or receiving extra 

care, which in turn leads to inappropriate and inefficient use of available resources.  Is 

variation always necessarily bad? Some variation might be expected in a health care 

setting but it is the magnitude of the variation which causes concern.  Wennberg and 

Gittlesohn (1973) have argued that a reduction in variation will lead to improved 

efficiency, have an impact on patient welfare and thus have an impact on health 

outcomes.   

This paper studies the behaviour of consultants working in the context of very specific 

incentives and work practices created within Mater Dei Hospital (MDH), the only 

publically funded general acute hospital on the Islands of Malta.  The consultant is the 

hospital professional who is primarily responsible for the patient care.  Although many 

studies focus on variation between hospitals or between different geographic areas, 

this study will look at variation at the individual consultant level within a single 

hospital.  Work by (Ellis and McGuire, 1986; Harper et al., 2001) and Jacobs et al., (2006) 

shows a preference for comparison between departments rather than whole hospitals 

to ensure that similar specialty activities are analysed.  In this study it will be assumed 

that consultants decide on treatment practices after considering all the conditions and 
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characteristics of the health care system within which they practice.  The importance of 

the consultant contract job type in explaining practice heterogeneity will be the study’s 

primary focus.  

Data from the Maltese health care system is used in this study.  Patients are assigned to 

consultants, who take on the responsibility for the patient’s case on the basis of the 

diagnosis made and the date in which they are admitted to hospital.  Patients have no 

choice of the hospital they can attend, although they can decide to ‘opt out’ and visit a 

private hospital/clinic1, if they so wish.  

In this paper, practice variation will be measured using the number of investigations 

ordered and performed on a patient who undertook a PTCA proceduce during their 

hospital stay.  PTCA is a procedure used to widen narrowed arteries.  In the procedure 

the cardiologist inserts a catheter with a deflated balloon at its tip into the narrowed 

artery.  The balloon is then inflated, helping to compress the plaque and thus enlarge 

the blood vessel.  Blood could then flow more easily.  In comparison to open heart 

surgery this procedure is less invasive and in general considered to be less expensive.  

The choice of the PTCA procedure for this study was made for a number of reasons. 

PTCA is a relatively standard procedure for patients with fairly similar characteristics. 

This makes it a good candidate for testing for the effect of variation in treatment which 

could be possibly linked to medical practice.  Given that it’s a fairly standard procedure 

one would expect the treatment to be offered to such patients to be relatively similar. 

                                                        
1 A number of small private clinics and hospitals can be found in Malta. Activity levels in such sectors are 
relatively low and it very much depends on a small private health insurance market.  
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There is in fact a very limited number of ICD-9-CM specific codes which are used to 

define this procedure.  This should make the group easier to manage, thus treating a 

less diverse set of patients limiting heterogeneity in the treatment process across this 

particular procedure.  Furthermore, PTCA is a procedure performed by highly trained 

and specialised doctors whose abilities and good judgement are considered to be of 

importance to the success of the intervention.   

 
The consultant responsible for the admitted patient has direct control over the number 

of investigations carried out at the hospital.  Variation in such decisions could reflect a 

consultant’s strategic behaviour due to their type of contract and/or the consultant’s 

treatment preferences.  The relationship between the specific consultant contract 

conditions and the number of investigations ordered by the consultant will be tested in 

the empirical part of this paper.   

 
This paper will add to the literature by analysing how practice variation differs by 

consultant job contract type in relation to the different time periods during which the 

patient is in hospital.  The available data allow for the number of investigations carried 

out at the hospital to be further subdivided into activity undertaken in the first two days 

of the patient’s stay in hospital and that carried out in the remaining time the patient 

spends at the hospital.  These sub-samples of data will be used to identify whether 

differences in the number of investigations within each period vary with different 

consultant job contract types.   

The activity undertaken in the first two days following admission is considered by the 

consultant to be an absolutely necessary part of the procedure that is being performed.  
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Some of the investigations performed in the remaining part of the hospital stay, though 

important for the success of the procedure, might reflect behaviour variation in 

consultant practice.  This paper will test how much of this variation is due to the 

particular job contract type of the consultant.  A two-stage multilevel modelling 

approach will be adopted given that patient level data can be clustered within 

consultant categories.2 This will identify variation arising from patient characteristics 

and/or from consultant related differences.  An Estimated Dependent Variable model 

(EDV) will be used to identify reasons for consultant related variations.  This level of 

analysis ensures that the causes behind such variations are clearly identified, which 

otherwise might not be the case if the analysis is undertaken at an aggregated level. 

The results presented in this paper will show that both the job contract type and the 

volume levels of the consultant significantly affect practice variation.  The existence of 

higher practice variation linked to consultant characteristics in the post two day 

hospital stay period is also verified.  The fact that patients are being seen by consultants 

who can dual practice increases the practice variation especially within the post 2 day 

hospital stay period.  There is a compounding impact of the job plan contract type on 

the relationship between volume and practice variation whereby the responsiveness of 

practice variation to volume changes is positively stronger for consultants working 

exclusively with the public hospital. 

The paper is organized as follows: the following section, Section 4.2, provides an 

overview of the literature relating to consultant behaviour variation within a number 

                                                        
2 A one-stage multilevel model is also estimated to check for the robustness of the results.  
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of institutional settings, identifying the main sources of variation and how these impact 

on consultant behaviour.  Section 4.3 introduces a theoretical model specification which 

will be used to motivate the empirical approach, described in Section 4.4.  Section 4.5 

describes the available population based dataset highlighting some descriptive 

information.  This is followed by a discussion of the key results derived from the 

estimations.  The final section, Section 4.7, presents the study’s conclusions.   

 

4.2  Literature  

 
In this section a review of the literature that relates to the identification of the most 

important factors that influence practice variation is presented.  The modelling of these 

factors within a utility function for the consultant, as reviewed by a number of authors, 

is then critically assessed.  This section closes with an assessment of the expected 

consultant behavioural responses that result from changes in the main determinants of 

utility. 

Determinants of practice variation: The literature on health care practice variation is 

extensive and diverse, and primarily seeks to identify the determinants of care 

variation.  The interaction between the patient and the consultant partly explains 

behaviour but there is also an impact from the joint interaction among consultants, 

patients and the hospital.  The variation in hospital and consultant utilization rates 

across different areas of clinical practice has been widely documented and three key 

variables are identified as influencing the consultants’ strategic behaviour: consultant 
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and patient characteristics, current practices within the organization and 

environmental setting characteristics.   

Grytten and Sorensen (2003) show that practice variation by diagnosis and treatment 

type explains more than 40% of the variation in expenditure on laboratory 

investigations, consultations and expenditure on specific procedures in Norway.  

Variation is said to persist even when age, gender, and socio-economic variables are 

controlled for.  Practice patterns are the result of the training and clinical experience 

gained by consultants and there are a number of consultant practice patterns which 

persist over different clinical scenarios, as highlighted by O’Neill and Kuder (2005).  In 

a paper by Mercuri et al., (2012), practice variations exist even in very small geographic 

areas despite adjustment for casemix and the fact that consultants operate using similar 

resources.  In a number of other studies which deal with variations in practice style 

within particular centres (de Jong et al., 2006; Hayward et al., 1994; Westert et al., 

1993), mixed results are obtained with consultants choosing a patient Length of Stay 

(LOS) which is in line with the Average Length of Stay (ALOS) of the particular hospital 

in which they operate.   

The majority of the literature focuses on patient and consultant behaviour under 

different institutional frameworks.  Early studies in the ‘60s and ‘70s linked variation 

to patient context and circumstantial differences (Andersen and Newman, 1973; 

Anderson and Mooney, 1990; Ro, 1969; Wennberg and Gittlesohn, 1973) whereas more 

recent research (Allard et al., 2011; Biglaiser and Ma, 2007; Hennig-Schmidt et al., 2011; 

O'Neill and Kuder, 2005) has associated variation to the differences in behavioural and 
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distributional factors related to remuneration systems and workload levels for 

consultants rather than differences related to patient related illness.  The consultant 

treatment and referral decisions serve to influence the patient’s expected utility and the 

prevalence of treatment variation leads most scholars to conclude that uncertainty is 

the main factor leading to variation from what constitutes the optimal treatment 

process.   

The consultant is an agent of an uninformed patient and Wennberg (1985) claims that 

uncertainty is the most important factor influencing physician behaviour.  This 

uncertainty could be related to the initial health status or unknown patient preferences, 

described by Pauly (1980) as irreducible uncertainty, or even the absence of 

information on the consequences of health care treatment that is shared equally by the 

doctor and the patient.  The unexplained residual variance in the function used to 

explain practice differences would serve as a proxy for the uncertainty attributed to 

physician practice style.  However, practice style maybe just one of all possible 

divergences and thus one cannot attribute all variation to this factor.   

Indeed, consultants are assumed to not only consider their own welfare but to balance 

their own gained welfare against the welfare of their patients in their decision making.  

Ellis and McGuire (1986) build a model on the premise that benefits to the patient and 

to the hospital are the main arguments in the utility function of the consultant.  The role 

of ethics in the treatment of patients is given priority by Evans (1974) whilst financial 

returns are considered as the main variable influencing consultant behaviour by Pauly 
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and Redish (1973) and Pauly (1980).  The concern for the social good as a determinant 

of utility gained by a consultant is also considered by Eisenberg (2002).    

A consultant’s instructions and advice are an institutional reality in the health care 

sector and Farley (1986) concludes that the pattern of medical treatment is largely 

determined by consultants and not by the result of marginal choices made by patients.  

Eisenberg (2002) finds that around 90% of the health care expenditure is a direct result 

of consultant decisions in the choice of clinical practice.  Although this does not prevent 

patients from being involved in the decision making process, in most cases it means that 

the course of treatment is not controlled by the patient even though it is the patient who 

decides when to seek and start treatment.  This puts consultants in a position where 

they can actually allocate resources.  Indeed, consultants adopt their own individual 

strategies in their endeavour to maximize their own utility function against a number 

of constraints.    

Particularly in view of the given size of the market, it is likely that the consultant 

undertaking the procedure in question holds information on other consultants offering 

the same or similar services.  Competition among experts serves to limit the potential 

exploitation of the consumer (Winand, 1997; Wolinsky, 1994)  and as noted by Pauly 

and Satterthwaite (1981), the amount of information which patients have of the 

practice of the consultants in relation to the number of consultants available in the 

market also affects consultant decisions.  It is likely that in cases where there are only 

a few consultants operating in a particular field, each of the consultants would have a 

reputation which is well known within the community and most patients would also be 
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well informed about such consultant characteristics.  Consultants expect to be judged 

by their patients on the basis of the benefit or gain they expect to receive from 

treatment.    

Modelling of consultant behaviour:  Consultants have different beliefs, work within 

different hospital environments and job contract conditions and consider their own 

income streams in their decision making.  Nevertheless, they are all expected to take 

into account the benefit to the patient in their decision making.  Consultant behaviour 

has over the years mainly been modelled on income, leisure and inducement, whereby 

income and leisure are expected to positively impact utility whilst inducement is 

expected to impact it negatively (Pauly and Redisch, 1973; Evans, 1974; Pauly, 1980; 

Wilensky and Rossiter, 1983; Ellis and McGuire, 1986; McGuire and Pauly, 1991; 

Blomqvist and Leger, 2005; Gruber and Owings, 1996; Grytten and Sorensen, 2003; 

Rickman and McGuire, 1999)).  De Jaegher and Jegers (2000) add to this that the 

number of patients in the clientele of the consultant should be considered as part of the 

utility function of the consultant. 

Papers by Evans (1974) and Fuchs (1978) model consultant behaviour by maximizing 

a utility function which includes income and inducement as arguments of interest.  

McGuire and Pauly (1991) model consultant behaviour by adding leisure to the utility 

function.  Target income behaviour and profit maximization lie at opposite ends of a 

spectrum of income effects.  Evans (1974) defines inducement as the “persuasive 

activity of the consultant to shift the patient’s demand curve according to the 

consultants self-interest”.  
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Indeed, inducement could be a source of additional income to the consultant.  However, 

because of ethical considerations, this is assumed in most work to negatively affect 

overall consultant utility.  In this context inducement means a loss in utility and 

consultants balance the marginal utility of income against the disutility of exploiting 

patients to obtain it (Evans, 1974; Pauly, 1980; Wilensky and Rossiter, 1983).  There is 

a moral cost of providing inappropriate medical treatment and there is an expected cost 

due to peer review, loss of reputation and loss of future patients.  According to Dranove 

(1988), there are decreasing returns to consultant inducement because patients can 

begin to disbelieve their consultant and decide to shift to  another consultant.   

On the determinants of doctor’s behaviour and dual practice: It is of interest to evaluate 

the response of consultant behaviour to changes in the factors which affect utility.  The 

behaviour of the consultant (to hospitalize, to treat or to take time to diagnose 

carefully) is influenced by both the financial and non-financial incentives of the job.  Do 

consultants actually seek to achieve some level of target income?  If consultants are 

employed on a fee per patient system then greater competition will make consultants 

further exploit the ‘information advantage’ i.e. their knowledge and information they 

have to hand, to see more patients (Feldman and Sloan, 1989; Rice and Labelle, 1989).  

On the other hand, if consultant income is independent of output, there is no incentive 

to induce activity within the same public hospital.  Some level of inducement to the 

private sector may still be evident although difficult to measure.  Indeed, one needs to 

distinguish between volume (first visit) inducement and intensity response 

inducement.  Wennberg et al., (1982) assumes that practice style affects only intensity 

demand, a finding confirmed by the work of Mitchell and Sass (1995) and Mitchell et 
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al., (2000), whereby supplier inducement effects were found for the provision of 

laboratory investigations and ancillary services.    

Consultants on a fixed salary are expected to offer the most comprehensive treatment 

option to their patients by engaging in the provision of a complete set of possible 

investigations together with the basic necessary procedures.  This is in contrast to 

providing only a minimum number of investigations over and above the basic necessary 

procedures.  The provision of the most comprehensive treatment serves to enhance the 

consultant’s image and reputation as highlighted by Gonzalez (2004) apart from the 

fear of dealing with a malpractice lawsuit, as identified by Gal-Or (1999).  It is common 

in some hospital settings that health care authorities set out treatment guidelines to 

support the diagnosis of patients so as to ensure a streamlined level of service.  Carlsen 

et al., (2003) finds some contradicting evidence, whereby the effect of payment 

schemes on the number of consultations and the number of ordered laboratory 

investigations is not found to be as strong.   

Consultant behaviour is also expected to be influenced by the particular and specific 

conditions of work that defines the relationship between the consultants and the 

provider of health care services.  In the literature there are mainly two distinguishable 

substitution effects that affect the labour supply of doctors: one is between labour and 

leisure and the other between public and private sector health care practices.  Of 

particular relevance to this study is the latter given that the majority of consultants 

working at the public hospital have dual practice contracts.  This particular contract 

type, dual practice, means that the consultant, apart from being an agent of the patient 
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and the public hospital, has also to consider his own return from private practice in 

decisions to maximize his utility.   

A number of papers have dealt with consultants’ response to the form of consultant job 

contract type (Blomqvist, 1991; Ellis and McGuire, 1990; Ellis and McGuire, 1986).  In 

their review of the dual practice literature, Socha and Bech (2011) did not find 

conclusive evidence as to the effect of dual practice on public health care although the 

negative effects seem to be apparent.  In fact, dual practice consultants are expected to 

have good income opportunities within the private sector and might decide to 

concentrate more of their efforts in their private sector activity with negative 

implications on availability, costs and quality for the public health care sector.   

 
Patients treated at the public hospital are assigned to consultants who are either 

engaged by the hospital on a public-only contract or on a dual practice contract.  The 

consultant is the key decision maker who selects the level of services provided to a 

patient.  The income earned by the consultant from the public hospital is independent 

of the number of cases seen or the number of investigations ordered. However, 

consultants who dual practice are also interested in their future private income stream 

and this is expected to be affected by their overall success and reputation gained from 

the activity undertaken at the public hospital.  Gonzalez (2004) concludes that when 

allowing dual practice,  consultants use the public sector to improve their reputation 

and thus earn more revenue from their private practice. 

. 
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The prevalence of dual practice contracts may indeed present a puzzle as it is at odds 

with basic labour supply theories which predict that individuals normally prefer to 

work for longer hours in their higher paid job instead to undertaking multiple jobs 

(Lang 1994).  Indeed, theories of incentive design predict that employers seek to ensure 

that their workers do not divert their attention to other tasks or jobs (Holmstom 1999).  

There must be some form of complementarity in allowing dual practice in terms of 

benefits for the consultants and the government/hospital alike.  A number of models of 

dual practice reviewed by Eggleston (2006) conclude that this depends on the ability of 

the government to monitor activity within the hospital whereby the potential social 

costs of dual practice have to be set against the costs of enforcing stricter restrictions. 

 
The possibility of dual practice gives a kind of performance based incentive to 

consultants to increase their effort levels.  When allowing private practice the 

government is giving out a salary together with a non-wage ‘benefit’ to the consultants. 

This ensures that the government recruits good quality doctors at relatively modest 

rates.  The possibility of private practice is seen by consultants as an opportunity to 

increase strategic influence, clinical autonomy and the realisation of individual 

aspirations as a clinician.  Higher skilled consultants potentially anticipate higher 

earnings from private practice and thus the possibility of dual practice for high skilled 

consultants is more valued if the individual thinks that he is in a better position to have 

a lucrative private clinic clientele.  As consultant skill increases the marginal benefit of 

private practice is expected to  increase. 
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The temptation to earn private profits also serves to attract the best consultants to the 

public hospital, thus enhancing the quality of the public service.  Gonzalez (2004), finds 

that there is an incentive for dual practice doctors to enhance their reputations by 

practising ‘over provision’ of health care services to earn a good reputation and thus 

support their private practice.  The consultants private practice could indeed be using 

public facilities to treat private pay patients (Gruen 2002, Ferrinho 2004).  

Furthermore, results of tests carried out at the public hospital could be discussed at the 

private clinic (Mitchell JM 1995 and MsGuire 2002).  Such a practice is not without its 

drawbacks as consultants could practice skimping during their work hours in the public 

hospital.  Physicians using public resources to treat their private clients would clearly 

undermine the efficiency of the overall public health care service apart from gaining 

from a cost advantage over those who only practice privately.  

 
Bir and Eggleston (2003) consider access enhancement whereby public providers 

practicing dual practice make use of the public services to treat their private patients.  

Furthermore, in the context of free public care provision and the availability of private 

care, Brekke and Sorgard (2007) conclude that allowing dual practice would lead to the 

use of the public health services by those who would have otherwise purchased care 

from the private sector.  This has the effect of crowding out private financing and creates 

a burden on society as a result of the additional taxation which will be needed to finance 

the increase in public expenditure.  Moonlighting by consultants might though lead to a 

more efficient health care service within the public sector, as savings made as a result 
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of patients deciding to use private treatment, could be used to improve the quality of 

the public health care (Biglaiser and Ma, 2007). 

Bloor et al., (2004) looked at the variation in activity rates of consultant surgeons 

working in the National Health Service (NHS) in the UK.  Consultants with freedom to 

carry out private practice had high NHS activity rates compared to those hired on a full-

time contract.  Furthermore, if private sector activity is reduced this would not 

necessarily increase NHS activity and this could become a possible barrier to increasing 

productivity within the NHS.  Consultants only involved in public health care provision 

are assumed by Socha (2010) to be more mission oriented and thus better represent 

the interests of the public.  Gonzalez (2005) concludes that dual practitioners are 

usually assumed to try to maximize income which favours longer waiting times in order 

to boost their private practice income through cream skimming.  The reputation of such 

consultants in the public hospital is also at stake and such consultants are inclined to 

provide the best service at the public hospital to improve their reputation. 

The current literature acknowledges that the availability of patient level data allows the 

partitioning of practice variation into that which arises from individual factors and that 

which is attributable to providers within which such individuals are clustered.  The 

methods adopted in the treatment of hierarchical structured data vary in relation to the 

aims of the study and the limitations imposed by the available data sources.  The use of 

a single level model which ignores the natural clustering of the data structure assumes 

that units are independent.  This approach ignores that the patient clustering imposes 

some correlation structure on the data and this invalidates classical OLS assumptions 
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leading to inefficient estimates.  Moreover, a single level approach to the analysis of 

such hierarchically structured data will fail to exploit the full richness of the 

information contained within and between the various levels of data.  However, the 

particular sample size considerations of this dataset might suggest that there could be 

potential gains of ‘borrowing strength’ across groups and thus seek to increase 

efficiency for the obtained estimates through the use of a single level model. 

 
Another approach suggested by Rice and Leyland (1996) is to undertake an aggregate 

level analysis by using group level mean values.  Amongst the drawback with this 

method are the problems envisaged by the so called ecological fallacy3 and the fact that 

statistical estimates can be unreliable resulting in large standard errors (often due to 

the high collinearity between explanatory variables).  It is also of concern that the 

aggregation of variables tends to provide unreliable estimates when the number of 

individuals within the higher level groups are small as inference would be based on 

small samples.  This is a cause of concern in view of the sample properties of the dataset 

used in this study.  Olsen and Street (2008) recommend the use of panel data estimators 

within a multilevel modelling framework given that the number of consultants is too 

small to apply models at the consultant level with averaged patient data.   

 
Multilevel models address the estimation problems that arise from the correlation 

structure of clustered data, attributing variability in the dependent variable to the 

specific hierarchical levels of the model.  The application of multilevel modelling 

                                                        
3 Ecological fallacy refers to the case where aggregate level associations are wrongly inferred to exist at 
the individual level.  
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techniques in the field of health economics has become more common following the 

work of (Rice and Jones, 1997; Rice and Leyland, 1996).  Individual patients (micro 

units) can be clustered within particular groups (macro units) on the basis of the 

common characteristics which they possess.  Individuals under the control of a 

particular consultant are expected to receive similar treatment compared to patients 

with similar conditions but under the responsibility of different consultants.  

The use of the multilevel modelling technique allows the researcher to investigate the 

nature of the between group variability and the effects of group level characteristics on 

individual outcomes thus capturing more information from the hierarchically clustered 

available data (Hvenegaard et al 2009). Various types of estimators have been 

suggested in the literature to estimate the consultant effect parameter4 with the 

random or fixed component effects commonly used to obtain the consultant effect.  The 

choice of whether a random effects or a fixed effect component model is to be used 

requires careful consideration and the choice of method may be determined by the data 

generating process and also the type of inference sought.  In this regard, the fixed effects 

model allows for the separation of the effect of patient characteristics from consultant 

characteristics which could be correlated with patient characteristics (Cookson and 

Laudicella 2011). 

 

                                                        
4 Schmidt and Sickles (1984) propose the use of a fixed effects model, Kumbhakar and Lovell, (2000) 
propose the use of a random effects model estimated by GLS, Pitt and Lee, (1981) propose the use of a 
random effects model estimated by Maximum Likelihood. The pros and cons of each of these model 
specifications are summarized in a table provided by Jacobs et al., (2006) pp. 74. 
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Laudicella et al., (2010) find that the health care resource group of the patient captures 

much of the variation in the costs of treatment in the NHS, however, other factors are 

also important in explaining such differences.  In fact, more information could therefore 

be obtained from the available patient level data if the hierarchically clustered data is 

taken into account.   

 

4.3 Theoretical model 

 
In order to motivate our empirical question of whether there is variation in practice at 

a consultant level due to contract variation, we model a basic utility maximization 

problem of a consultant providing services within the unique public hospital.  The 

consultant is employed in the public sector and can practice some form of dual practice 

i.e. working a number of hours per week working in the private sector.  Consultants 

operate under a contract, C, that can be a full time contract with the public hospital or 

part time, which allows them to practise in the private sector.  The consultant has a 

number of decision variables under his control, primarily the number of investigations, 

T, that are ordered to be performed at the hospital, and the level of effort the consultant 

devotes to the health care system, e.   

As the consultant’s private sector activity cannot be observed, the focus of the study 

will be on consultant behaviour within the public sector.  The consultant obtains utility, 

U(), from his income, Y, where UY>0, and a reputation gained from his rate of success in 

the provision of health care services, S, where US>0. His income is contingent on the 

type of contract he has, C.  Success, S, is dependent positively on the number of 
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investigations, T, the consultant’s experience measured as volume of patients treated, 

V, patient casemix characteristics, M, and the effort exerted, e.  Finally, effort, e(), creates 

disutility, Ue<0 and depends positively on volume, eV>0, the consultant type of contract, 

C and on patient casemix characteristics, M.  Thus, a function of utility can be expressed 

as:  

                                  𝑈 = 𝑈(𝑌(𝐶), 𝑆(𝑇, 𝑉, 𝑀, 𝑒), 𝑒(𝑉, C, 𝑀))    

The constraint the consultant faces is the number of hours/activity he can work in each 

sector and the amount of leisure time he desires.  The type of contract chosen by the 

consultant significantly affects the number of hours available to treat patients within 

the private sector.  Thus, the consultant chooses an optimal number of investigations 

T* and e* in the public sector that maximizes his utility subject to his time and income 

constraints, ie., those solving the problem  

𝑀𝑎𝑥𝑇.𝑒 𝑈(𝑌(𝐶), 𝑆(𝑇, 𝑉, 𝑀, 𝑒), 𝑒(𝑉, 𝐶, 𝑀))    , subject to time and income constraints 

which also depend on the type of contract, C.    

The First Order Conditions, (FOC), of this maximization problem5 implicitly define 

reduced forms for how the optimal number of investigations, T*, and the effort level, e*, 

depend on the exogenous variables, i.e. C,V,M.  

                                                        

5 i.e., 0


 T

S
U

dT

dU
s



 and 0. 


 e

U

e

S
U

de

dU
s








, where the signs below each expression indicate 

the sign of the marginal utility terms.                         

 



165 

 

As we do not observe effort e , the empirical section associated with this study will 

concentrate on estimating the reduced form of the consultant’s number of 

investigations, T*, which depends on C and V, given the consultant and patient 

characteristics.  This also takes into account the particular characteristics of the Maltese 

health care setting whereby the number of investigations ordered by the consultant, T* 

is expected to be the prime variable available to the consultant to impose his sytle of 

treatment onto the patient.  To illustrate this we will use data on patients who have 

received PTCA treatment within the public hospital.  The focus will be the number of 

investigations ordered by the consultants and administered during the patients’ stay in 

hospital. 

 

4.4 Empirical approach  

 
This section describes the empirical approach used to investigate consultant practice 

variation by using the number of investigations performed at patient level.  This 

involves looking at the importance of consultants’ contract type as the prime 

determinant to explain practice variation.  The clustering of patients under different 

consultants imposes a correlation structure on the data, reflecting the shared 

experiences of being treated by the same consultant.  Two randomly selected 

individuals treated by the same consultant would be expected to receive more similar 

treatment than two individuals being treated by different consultants.  The variation in 

treatment between consultants could also depend on the fact that consultants also treat 

a different mix of patients.   



166 

 

The possibility of using patient level data ensures that more detailed information rather 

than just DRG related data could be used to obtain information on the patient 

(Hvenegaard et al., 2009).  The use of the available administrative (not sample) patient 

level data helps to deal with differences in patient characteristics whilst offering 

analytical advantages in terms of analysis of consultant characteristics affecting 

practice variation.  Inference about the variables of interest will be more robust if based 

on individual rather than aggregated data as standard errors will be more precisely 

estimated (Rice and Leyland 1996).   

Given an individual based dataset, a two stage model is used to reflect the literature on 

the use of Estimated Dependent Variable (EDV) models in applied political studies, as 

presented by (Karen and Shively, 2005; Laudicella et al., 2010; Lewis and Linzer, 2005) 

as well as a number of studies relating to pupil achievement within the education 

system6, as reviewed by Rice and Leyland (1996).  

A first stage regression of the number of investigations will be undertaken at patient 

level against a number of patient characteristics which are likely to explain and 

determine the number of investigations for the patient: 

                  ijjijxij xy                                (1st stage regression) 

where yij, is the number of investigations carried out for patient i as ordered by 

consultant j and this is the variable of interest used to measure variation in practice 

style.  The vector of patient characteristics, xij, comprises the patient’s age and a 

                                                        
6 Karen and Shively (2005)  and Lewis and Linzer (2005) discuss the use of EDV models within a two-
stage approach providing consistent and efficient estimates.  
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measure of severity represented by the Charlson Comorbidity Index.  The term µj is a 

consultant time-invariant fixed effect7 that captures unobserved heterogeneity across 

consultants over and above that described by the explanatory variables in the 

regression.  This term provides each consultant’s average contribution to the number 

of investigations per case after controlling for the explanatory factors which also affect 

the number of investigations undertaken.   

The proportion of variance attributed to the consultant can be judged as an indicator of 

the degree of influence of the consultant on the number of investigations 

recommended.  A second stage regression will deal with factors which explain such 

variation: 

           jjjj vC  321

^

       (2nd stage regression) 

where j

^

  represents the consultant fixed effects estimated from the first stage 

regression, χj is a vector of variables capturing particular consultant characteristics, 

apart from the job contract type of the consultant, Cj, which is reviewed separately in 

this study.  A number of different measures of consultant volume levels constitute the 

vector χj .  Of primary interest to this study is the relevance of the consultant job contract 

type, Cj, to explain variations in j

^

 .  The use of the Efron robust standard error is 

implemented to deal with the heteroscedastic sampling errors of the estimated 

dependent variable which might result in biased standard errors for the second stage 

                                                        
7 The purpose of the estimation process is to generate inferences about individual consultants.  The table 
provided by Jacobs et al., (2006) provides a summary of the advantages and disadvantages of the 
different model specifications.  
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regression.  The use of Efron heteroscedastic standard errors applied in this study are 

said to yield consistent standard error estimates even in small samples (Lewis and 

Linzer 2005)8, even though the OLS estimator may be inefficient. 

The approach described above makes use of the multi-level structure of the available 

data to analyze data grouped into hierarchical macro units (consultants), with a 

number of micro units (patients) within each, to obtain the consultant fixed effects.  The 

subscript j introduces an important characteristic to the regression as it allows the 

intercept and coefficients to vary across consultants to ensure that independently 

distributed consultant fixed effects are obtained (Laudicella et al., 2010).  The two stage 

model has the advantage of allowing for the partition of the overall variation into that 

due to differences in patients and that arising from differences in the consultant 

propensity to prescribe investigations or tests.  In this instance, higher level effects are 

not viewed as nuisance parameters but are of central importance to the analysis.  This 

would lead to a better exploration of the relationship between individuals and the 

contexts in which they belong.  Another advantage of the two-stage model is that it 

parallels closely the data generation process, which consists of aggregating patient data 

into consultant clusters. 

Two assumptions are important to note with regards to the data used in the model.  

Separability is assumed between the variables of interest to ensure that the influence 

of patient characteristics can be singled out and removed from the influence of 

                                                        
8 Efron standard errors are based on the Jacknife technique of Efron (1982) and are typically more 
accurate than the White standard errors (McKinsie and White 1985) in samples smaller than 250 
observations (Long and Ervin 2000). Lewis and Linzer (2005) recommend the use of the Efron residuals 
in their tested scenarios undertaken using a small sample (n=30). 
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consultant characteristics on the number of investigations per case.  Furthermore, it is 

assumed that consultants share the same number of investigations function.  This 

assumption can be used to describe how variables at the consultant level influence the 

consultant decisions with regards to the number of investigations and thus provide 

information on the factors which determine the variation in the average number of 

investigations 
j

^

  across different consultants.   

The use of the two-stage model is in this paper evaluated against the use of a one-stage 

multilevel model9 which includes group level predictors as explanatory variables.  

Jusko and Shively (2005) show that in general there are potential efficiency gains from 

estimating both the bottom and top level parameters in a single stage model.  Lewis and 

Linzer (2005) state that this especially holds when the amount of information available 

to estimate the bottom level effects in each top level group is small. 

Any efficiency gains from running a single stage model would have to be evaluated 

against the possible loss in the efficiency of parameter estimates within the two stage 

model.  It could well be that the extra effort to fit the more complex single stage 

hierarchical model would provide less of benefit in comparison to the simple two stage 

Estimated Dependent Variable (EDV) model.  The two–step strategy is seen by Jusko 

and Shively (2005) as a go between those who are concerned with the fact that the 

complexities of the individual (patient) cases must be taken care of together with the 

need to draw broad comparisons across consultants.  

                                                        
9 

ijjjzijxij zxy    whereby ‘yij ‘ is the dependant variable,  ‘xij‘ is the explanatory 

variable at the patient level,  ‘zj’ is the explanatory variable at the consultant level, ‘µj’ is the residual fixed 
parameter at the consultant level and ‘ϵij’ is the residual parameter at the patient level.  
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One can raise questions about the accuracy of the estimates and the associated standard 

errors given the relatively small sample sizes usually encountered in such studies.  Of 

particular concern to the data described above is what constitutes a sufficient sample 

size for accurate estimation and evaluation purposes.  Issues related to sample size 

within a multilevel regression model have been given particular attention in the 

literature10.  

 
Although the results in the literature are not completely in agreement with each other, 

they all seem to conclude that in general, the estimates from regression coefficients 

(OLS) are generally unbiased although less efficient because of the generally larger 

sampling variance.  A large number of groups appears to be more important than a large 

number of individuals per group.  As to the variances, estimates of the lowest level 

variances are generally accurate but the group level variances are sometimes 

underestimated. Busing (1993) and Van der Leeden and Busing (1994) suggest a 

sample size of 100 to achieve accurate group level variances. 

 
Kreft (1996) suggests a rule of thumb, the 30/30 rule, whereby a sample of at least 30 

groups with at least 30 individuals per group is recommended.  Within the context of a 

one stage multilevel model this advice seems to be sound if the interest is in the fixed 

parameters.  If the interest is in the random part, i.e. the variance and covariance 

components and their standard errors, the number of groups should be considerable 

higher.  This advice is also repeated in other more recent work by (Bell et al., 2010) 

                                                        
10 Mass and Hox (2004, 2005), Snijders (2005), Bell et al., (2010),  Hox (2010),  Snijders and Bosker 
(2012). 
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which bases such conclusion on the work of Hox (1998), Maas and Hox (2002 and  

2004).  Hox (1998) also recommends that at least 20 observations at level 1 and 50 

groups at level 2 are necessary when examining interactions across levels.  Similar 

conclusions are given by Maas and Hox (2004) whereby if one is only interested in the 

fixed effects of the model, then even ten groups can lead to good estimates. 

 
The question of what constitutes a sufficient sample size for accurate estimation will 

remain.  Increasing the size of the number of groups is usually difficult in practice due 

to cost related issues and due to the fact that for some studies this is impossible given 

that all the groups possible are already incorporated within the database.  The size of 

the sample within this study is constrained by the fact that this study, which focuses on 

the particular PTCA activity undertaken within the hospital already includes all the 

existing consultants within the hospital.  Given that the objective of the paper is to study 

the behaviour of consultants in Malta, the size of the hospital automatically leads to a 

restriction on the possible size of the sample.  Although one would ideally adhere to 

these sample size guidelines, the nature of the research in question makes these sample 

size suggestions difficult to achieve.  Olsen and Street (2008) show that the comparison 

of organisations, when the number of organisations is small, is possible and better 

inference could be made if patient level data is used.  There is indeed an element of 

compromise which needs to be achieved between the accuracy of the estimates and the 

possible use of such estimates for policy recommendation purposes. 
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4.5 Data and variables  

The data used in this study come from the Clinical Performance Unit (CPU) within the 

principal hospital of Malta.  The database used is an administratively provided data set 

of all the PTCA activity undertaken at the public hospital.  The unit of analysis is the 

patient and the analysis is performed for patients who entered hospital and underwent 

a PTCA procedure between 2009 and 2011.  The following ICD-9-CM procedure codes 

were considered in this study: 0066, 3601, 3602, 3604, 3606, 3609, 0045, 0046, 0047 

and 8856.  Table 4.1 provides the main descriptive statistics for the variables under 

consideration.   

Table 4.1: Definitions and sample statistics of the main variables 
Variable  Definition Mean Std.dev. 

inv  Number of investigations  for patient i  35.3 32.1 
invf2d  Investigation in first 2 days at the hospital  23.1 14.1 

inva2d  Investigation after first 2 days at the hospital  16.8 26.7 
countconst  Consultant total number of cases  299 176 
countc  A cumulative count of cases under the 

responsibility of a consultant up until  date of 
patient admission 

150.4 133.7 

vol90c  Consultant cumulative cases over the  
90 days prior to the patient admission date   

26.1 17.4 

age  Age of patient  62.7 10.5 
diagtotal Number of diagnoses per case 1.12 0.94 
CharlsonI  Charlson Comorbidity Index    

public-only  =1 for exclusive public sector practice contracts  
=0 for public and private practice contracts or dual 
practice 

  

cvol  = 1 if countconst > 100 cases (high volume)  
= 0 if countconst < 100 cases (low volume)    

  

Source: Based on data drawn from the provided hospital episode database. 

 

The dataset identifies the consultant for each PTCA patient and contains a total of 1,626 

hospital visits.  The dataset provides information at patient level for age, together with 
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a number of consultant characteristics used to identify the main covariates of the study.  

Data are also available at a patient level for the number of diagnoses per case, diagtotal, 

the number of investigations11 carried out at a patient level, inv, and the date when each 

of the investigations was undertaken.  This gives the ability to distinguish between 

those investigations undertaken in the first two days of hospital admission, invf2d, and 

those investigations carried out during the rest of the patients’ hospital stay, inva2d.   

These patients are clustered into 35 different consultants, four of which have a public-

only type of contract compared to the rest who can dual practice.  Consultants choose 

between two work plan options, public-only, whereby consultants cannot undertake 

any private practice and dual practice whereby consultants can practice in both the 

private and the public sector.  Data on the job plan contract type of all the consultants 

undertaking PTCA activity is provided for this study. 

All consultants carrying out the PTCA treatment at the public hospital are included in 

the dataset and thus the complete population of the PTCA activity undertaken at the 

hospital is considered.  The analysis of the number of investigations ordered and 

carried out at the hospital on a patient level shows that there is considerable variation 

among patients in the number of investigations ordered by consultant with the average 

being 35 but with a large standard deviation of 32.   

                                                        
11 Table 4.13 in Appendix B of this chapter identifies the main investigations/tests carried out for PTCA 
patients.  Data on the resources allocated to each of the investigations was not made available for this 
study and thus no particular weighting structure was applied to the different investigations carried out 
for the patients undertaking a PTCA. 
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Based on advice provided by hospital practitioners, the investigations that take place 

within the first two days of a patient’s hospital stay are considered as absolutely 

necessary and variation between consultants in the ordering of such investigations is 

not expected to be large.  On the other hand, investigations carried out during the rest 

of the patient’s hospital visit, though important for the success of the procedure, might 

reflect an element of consultant practice behaviour.  The average number of 

investigations within the first two days of hospital stay is of 23 with a standard 

deviation of 14.1.  The average number of investigations within the post 2 day hospital 

stay is of 17 with a standard deviation of 26.7.  The variation noted in the number of 

ordered investigations within the post 2 day period is relatively higher.  

The number of investigations ordered by the consultant is also expected to be 

dependent on volume levels and a number of volume measures were constructed to 

test the robustness of this relationship.  The four volume measures applied in the study 

are defined in Table 4.1.  An analysis of the available data shows that there are no 

consultants on public-only contracts with high volume levels, cvol=1, whilst consultants 

on dual practice contracts fall both within the high and the low volume categories.  

There are 4 consultants with high volume levels.  The average age of patients 

undertaking this procedure is around 63 years and the majority of patients treated are 

males (77% males and 23% females).  The ALOS of patients admitted for this procedure 

is 4.5 days.  Most of the cases treated have just one diagnosis which reflects the fact that 

patients treated are clear identifiable cases which are in need of a PTCA intervention.  

The Charlson Comorbidity Index, referred to as Charlsonl is used as a measure of 

severity of patient illness.  The concentration of volume within a few number of 
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consultants is expected given the ‘small’ nature of the Maltese hospital setting and the 

particular procedure under study. The procedure under study (PTCA) is a relatively 

complex intervention which requires a considerable degree of skill by the doctor.   

 
The consultant responsible for the patient has direct control over the number of 

investigations performed for the admitted patient and differences in this variable are 

an indication of the behaviour of the consultant on how to best treat the patient.  

Physicians are not constrained by the hospital in their treatment recommendations and 

will consistently apply their ‘rules’ of practice when treating similar patients 

(Weinstein 2004).  Information on the variation in individual physician behaviour is 

thus approximated by using the variation in the number of investigations ordered by 

the consultants.  The number of investigations ordered is thus one of the few channels 

available for the consultant whereby his treatment style could be imposed on the 

overall process of treatment undertaken by the patient.  This could help explain some 

element of practice variation once the differences in patient characteristics are 

controlled for.   

 
Patients admitted for the PTCA procedure remain under the care of the same consultant 

throughout their entire hospital visit which ensures that treatment can be attributed to 

just one consultant.  It is important to note that all investigations considered in this 

study are undertaken at the public hospital.  It has not been possible to differentiate 

between investigations undertaken in the public sector but which could have instead 

been carried out in the private sector once the patient is discharged from hospital. 

 



176 

 

Table 4.2 shows data for the mean number of diagnosis per patient, the Charlson 

Comorbidity Index, the total mean number of investigations performed and the 

investigations performed in the pre- and post- 2 day hospital stay period.  The mean 

LOS for the different category type of patients is also provided.  Table 4.2 also shows 

variations for patients who are under the care of consultants with varying job contracts  

and volume characteristics.   

 
 

Table 4.2: Descriptive statistics for variables of interest by consultant job plan  

Source: Analysis of the hospital episode database. 
 *All consultants falling under the public-only category have low volume levels. 

 
Patients being seen by consultants on public-only contracts (row 2) compared to those 

on dual practice contracts (row 3) tend on average, to have a higher number of 

diagnoses and a higher overall average LOS.  The overall number of investigations 

ordered for such patients tends on average, to be lower.  It is particularly interesting to 

note that whilst there is minimal difference in the number of investigations performed 

within the first two days of admittance (22.01 compared to 23.14) between patients 

Row  Mean no 
of 

diagnosis 

Charlson 
Index 

Mean no of 
investigations 

(total stay) 

Mean 
LOS 

invf2d inva2d  

1 All patients 1.12     0.407 35.3 4.5 23.07 16.82 
2 public-only  & 

low volume*  
1.21     0.402 32.8 5.78 22.01 14.08 

3 dual practice-
All  

1.11     0.407 35.4 4.43 23.14 17.02 

4 dual practice & 
high volume  

1.07     0.408 36.2 3.86 24.33 16.32 

5 dual practice &  
low volume  

1.34     0.404 32.7 7.34 19.0 19.59 

6 low volume-All 1.31     0.403 32.8 6.98 19.73 18.18 
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seen by consultants on different job plans, this difference widens when the number of 

investigations performed at the hospital in the period post the first two days of 

admittance is considered (14.08 compared to 17.02).   

Consultants on dual practice contracts who have a high volume of patients, as defined 

by cvol (row 4) tend to order more investigations on average and their patients spend 

fewer days in hospital compared to patients seen by low volume consultants also on 

dual practice contracts (row 5).  Furthermore, patients under the care of consultants on 

dual practice contracts and with high volume (row 4) have, on average, the highest 

mean number of investigations for all categories.  The consultant contract type tends to 

influence the time period when investigations are performed (rows 5 against row 2), 

where more investigations, on average, take place in the first two days following 

hospital admittance for patients under the care of public-only contract consultants.  

Patients under the care of consultants with low patient volume levels but who have the 

possibility of undertaking private practice, have more investigations performed 

towards the end of their hospital stay.   

Figure 4-1 shows the variation in the number of total investigations carried out during 

the full hospital stay for patients grouped by consultant and also the variation by job 

contract type.  Figures 4-2 and 4-3 separate the investigations into those carried out 

prior and post the 2 day hospital stay mark, showing also the variation by job contract 

type in each case.   
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Figure 4-1: Variation in number of total investigations by consultant (left) and by 
consultant job plan contract type (right)   

. 

Figure 4-2: Variation in number of investigations for all consultants (left) and by 
consultant job plan type (right) for the first 2 days of hospital stay   
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Figure 4-3: Variation in number of investigations for all by consultants (left) and by 
consultant job plan type (right) after the first 2 days of hospital stay   

 

Variation is present in all the representations although as expected the variation in the 

number of investigations per patient in the post 2 day hospital admission period is 

greater.  Indeed, part of this variation might be explained by the behavioural 

characteristics of the consultants themselves particularly the job contract type of the 

consultant.  There is an indication of a greater degree of variation in the number of 

investigations for patients seen by consultants on dual practice contracts.   
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4.6 Results and Discussion 

 
The initial set of results in this section present the 1st stage regression used to obtain 

estimates of the consultant fixed effects.  The 2nd stage regression results are then 

estimated; first considering all the investigations carried out during the patient stay at 

the hospital and then re-estimated to check the robustness of the results when different 

investigation period dates are considered.  The compounding effect of the consultant 

job plan on the relationship between volume and practice variation is estimated 

considering all investigations that took place over the full hospital stay period and then 

re-estimated to incorporate the different dates when the investigations were 

performed.12  The resulting marginal effects on practice variation arising from changes 

in volume for different job plan contract conditions are also presented.  

 

4.6.1 First stage regression  

 

Table 4.3 shows the 1st stage regression results for three different investigation period 

dates: all cases taken together, inv; those performed within the first two days, invf2d; 

and those performed after the first 2 days, inva2d.    

 

 

 

                                                        
12 The results of the estimated one-stage multilevel model used to check for the robustness of the results 
obtained from the two-stage estimation method are included in Appendix C of this chapter.  
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Table 4.3: First stage regression results  
 (1) (2) (3) 
Dependent variable inv invf2d inva2d 
age 0.186** -0.099*** 0.385*** 
CharlsonI 17.870*** 10.388*** 4.483** 
Constant 13.798** 23.452*** -10.088 
Observations 1,162 1,160 864 
R-squared 0.105 0.199 0.032 
sigma_u 29.64 6.839 27.96 
sigma_e 29.90 12.36 25.57 
rho 0.496 0.234 0.544 

   *** p<0.01, ** p<0.05, * p<0.1. 

 

Table 4.3 shows that age and the measure of severity are statistically significant in 

explaining the number of investigations for PTCA patients.  Column (2) shows that age 

is negatively related to having investigations performed within the first 2 days and this 

is possibly related to the fact that differences could exist in the number of investigations 

ordered due to age concerns.  The variable rho, is of particular interest as it gives a 

measure of the variation of j

^

 , or the extent of variation from the average for different 

consultants13.   

From column (1) it can be noted that around 50% of the variation in the number of 

investigations is due to consultant level variation rather than the characteristics of 

patients.  When investigations during the first two days of admission are considered, 

column (2), the variation shown by the difference in consultants is around 25% 

compared to around 54% for the investigations performed after the first two days, 

column (3). There is a greater proportion of variation in the number of investigations 

                                                        

13 where j

^

  represents the consultant fixed effects estimated from the first stage regression. 
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occurring at the consultant level in the post 2 day hospital stay period.  The 

investigations ordered and carried out by the consultant during the first two days of 

hospital stay are as expected very much dependent on the patient characteristics.  To 

this effect a higher R2 value is reported in column (2) compared to column (3), and this 

is substantiated by the lower ‘rho’ value representing variation due to consultant 

factors reported in column (2).  It is in this context that investigations carried out during 

the first two days of patient hospital stay are referred to as ‘absolutely necessary’ so as 

to indicate that these tests are absolutely necessary in terms of the particular treatment 

needs of the patient.  Absolutely necessary tests are tests which are considered to be 

indispensable for the overall treatment of the patient and such test would be expected 

to be carried out in the first days of the patient hospital stay.  

 
If the consultant had to order tests which might also be important for the treatment of 

the patient but which are not ‘absolutely necessary’ then the hypothesis here is that 

these are ordered in the post 2 day period.  In the post 2 day period the role of 

consultant decisions in the choice of investigations ordered and carried out is expected 

to be higher.  One would expect more flexibility in the choice of tests/investigations for 

consultants in the post 2 day hospital stay period.   

 

4.6.2 Second stage regression – all investigations 

 

In the 2nd stage regression the influence of particular consultant characteristics on the 

variance in j

^

  was analyzed.  The estimate of the fixed effect component resulting from 

the 1st stage regression equation was retained and used as an input for the 2nd stage 
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regression results, as presented in Table 4.4.  A number of volume indicators, cvol, 

countconst, countc and vol90c, were applied to test the robustness of the volume 

measure in explaining consultant practice variation.   

Table 4.4: Second stage regression results – all investigations 
 (1) (2) (3) (4) 
Dependent      
variable j

^


 j

^


 j

^


 j

^


 

public-only -0.5016 -1.6432 -0.9989 -1.1670 
cvol -0.1342    

countconst  -0.0049**   
countc   -0.0046**  
vol90c    -0.0385** 
Constant 0.1313 1.3879* 0.6830 0.9653 
Observations 1,162 1,162 1,162 1,162 
R-squared 0.0002 0.0113 0.0055 0.0070 

*** p<0.01, ** p<0.05, * p<0.1,    
The baseline, public-only=0, indicates consultant is on a dual practice contract.  

 
 
The results presented in Table 4.4 show that the job contract type of the consultant, is 

not statistically significant in explaining the variance in 
j

^

  when investigations over the 

entire hospital stay are considered.  This indicates that the variation arising from 

consultant practices as identified in the 1st stage regression is not due to the differences 

in the job contract type of the consultant.  However, some evidence is found of lower 

practice variation when consultant volume levels increase.14   

 
4.6.3 Second stage regression – with dated investigation categories 

 
Table 4.5 shows variation in consultant practice when the number of investigations 

carried out on patients are divided into those which are performed in the first two days 

                                                        
14A statistically insignificant coefficient is obtained when the cvol indicator is used as a measure of  
volume. 
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of hospital stay (columns 1-4) and those performed in the post 2 day hospital stay 

period (columns 5-8).  It can be seen that there is a statistically significant effect of the 

consultant contract type on the variation in j

^

  in column (1).  However, the consultant 

job plan contract type variable is statistically insignificant when other volume 

indicators are taken into account, suggesting that the job plan type of the consultant 

does not explain practice variation in the first two days of hospital stay.  Whilst 

recognizing that the consultant job plan type variable is not significant in explaining 

variation in the investigations carried out during the first two days of hospital stay, a 

significant and positive relationship is found between volume levels of the consultants 

and practice variation.    

Table 4.5: Second stage regression results – investigations (<2 and >2 days) 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 <2 days <2 days <2 days <2 days >2 days >2 days >2 days >2 days 

 
Dependent  
variable j

^


 j

^


 j

^


 j

^


 j

^


 j

^


 j

^


 j

^


 

public-only 2.109*** 0.382 0.1620 0.2913 -5.029*** -4.199*** -3.293*** -3.515*** 
cvol 2.75***    -3.362**    
countconst  0.0017***    -0.007***   
countc   0.0015***    -0.0069***  
vol90c    0.016***    -0.057** 
Constant -2.147*** -0.4601* -0.2186 -0.402** 2.812** 2.154** 1.1604* 1.568* 
Observations 1,160 1,160 1,160 1,160 864 864 864 864 
R-squared 0.187 0.012 0.0057 0.0118 0.03 0.025 0.016 0.018 

  *** p<0.01, ** p<0.05, * p<0.1. 
  The baseline, public-only=0, indicates consultant is on a dual practice contract.  

 

A negative and statistically significant coefficient on the job plan contract type variable 

is obtained in columns (5) to (8) of Table 4.5.  Consultants on public-only contracts have 

lower levels of practice variation.  The contract type of the consultant explains a 

proportion of the variation observed in the number of investigations performed on the 
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patient.  This supports the preliminary evidence found in the data whereby patients 

under the care of consultants on exclusive public sector contracts have fewer 

investigations in the post 2 days of their hospital stay.  The fact that patients are being 

seen by consultants on dual practice contracts serves to positively explain part of the 

variation in practice patterns for the post 2 day hospital stay period.   

A negative coefficient is observed for the different volume indicators.  This suggests that 

lower consultant volume levels lead to higher practice variation when dealing with 

investigations carried out in the post 2 day hospital stay period.  This is in contrast to 

the positive relationship observed between volume and practice variation in the first 

two days of hospital stay and could be explained by the fact that consultants with lower 

volume levels might decide to use such lower overall activity levels to increase the 

number of investigations ordered in the post 2 day hospital stay period.  Both the 

consultant job plan type variable and each of the volume variables are important to 

explain practice variation.   

 

4.6.4 Second stage regression – all investigations with interaction term and 
marginal effects  

 

Table 4.6 shows the estimation results when the interaction term between the volume 

variable and the consultant job plan type variable is applied to all the investigations 

carried out on the patient during the full hospital stay.  The average marginal effects 

arising from these results are provided in Table 4.7.     
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The estimation result identifies the compounding effect of the job plan type variable on 

the relationship between volume and practice variation.  A number of different volume 

indicators were tested to assess the robustness of the volume indicator.  An interaction 

term for cvol was not included given that there were no consultants on public-only 

contracts who performed more than 100 cases over the three year period. 

Table 4.6: Second stage regression results – all investigations – with interactions 
 (1) (2) (3) 
 
Dependent variable j

^


 j

^


 j

^


 

public-only -22.8746*** -4.9670*** -5.3864*** 
countconst -0.0050**   
public-only#countconst 0.8987***   
countc  -0.0047**  
public-only#countc  0.3330***  
vol90c   -0.0450** 
public-only#vol90c   0.9323*** 
Constant 1.4212* 0.6948 1.1255 
Observations 1,162 1,162 1,162 
R-squared 0.0616 0.0125 0.0349 

*** p<0.01, ** p<0.05, * p<0.1. 
 The baseline, public-only=0, indicates consultant is on a dual practice contract.  

 

The results in columns (1) to (3) show a negative value for the public-only coefficient 

which reflects a lower level of practice variation for those patients being seen by 

consultants on public-only contracts compared to consultants on dual practice contracts 

when volume is set to zero.  The three measures of volume are negative and significant.  

This represents the slope coefficient for patients being seen by consultants on dual 

practice contracts.  The value of the public-only by volume interaction term is positive 

and significant in all cases representing the difference in the responsiveness of practice 

variation to volume changes when consultants on public-only contracts are considered, 

compared to those consultants who are on dual practice contracts. 
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Table 4.7: Marginal effects (all investigations) 
  (1) (2) (3) 
Volume 
measure 

Type of 
Contract 

 
dy/dx 

 
dy/dx 

 
dy/dx 

countconst dual practice -0.005**   
 public-only 0.894***   
countc dual practice  -0.005**  
 public-only  0.328***  
vol90c dual practice   -0.045** 
 public-only   0.887*** 
Observations  1,162 1,162 1,162 

*** p<0.01, ** p<0.05, * p<0.1. 

 
The average marginal effects provided in Table 4.7 confirm that there is a significant 

difference in the slope of the volume indicators for different job plan contracts.  A fall 

in volume leads to an increase (though minimal) in consultant practice variation for 

those on dual practice contracts.  This relationship is positive (and stronger) for those 

on public-only contracts implying that increases in volume levels for consultants on 

public-only contracts will have a greater impact on practice variation15.  The results are 

consistent for all three measures of volume.   

Furthermore, there is a significant difference in practice variation levels for patients 

seen by consultants on different contract types.  Figure 4-4 represents the difference in 

practice variation levels for patients being seen by consultants on different contract 

types as volume16 levels change.  Different measures of volume: countconst, countc and 

vol90c are represented in each of the plots.  The plots of the confidence interval for the 

difference between the two groups is also shown and whenever the 95% confidence 

                                                        
15 The value of 0.894 in column 1 of Table 4.7 shows that when the volume for consultants on public-only 
contracts (represented by ‘countconst’) changes by one unit (and all other variables are kept fixed) there 
is an increase in practice variation of 0.894. 
16 The chosen value for the volume indicators represents the range of possible volume levels in the 
dataset with values taken between 5 and 50 cases, using multiples of 5 cases.   
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interval for the difference does not include zero, then the difference can be considered 

to be statistically significant.  

Figure 4-4: Differences in practice variation levels (inv) between public-only and dual 
practice contracts for different volume indicators at different volume values  
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Data for the discrete change from the base level for each of the volume indicators is 

included in the Appendix17 to this chapter.  At very low levels of volume there is a 

negative difference between investigations ordered by public-only and dual practice 

consultants.  The number of investigations ordered by public-only consultants are less 

than those ordered by dual practice consultants at low volume levels.  As levels of 

volume for consultants on public-only contracts rise investigations increase by more 

than investigations ordered by dual practice consultants and thus the difference 

becomes positive.  A possible explanation for this could be the fact that as volume 

increases the possibility of ordering investigations by dual practice consultants is 

reduced as public-only consultants increase their number of investigations ordered.  

The differences in practice levels between public-only and dual practice contract 

consultants increased as the value of volume increased.  This difference was found to 

be statistically significant18 for most of the different values of volume and for each of 

the volume indicators applied.    

 

4.6.5 Second stage regression - with dated investigation categories – with 
interactions and marginal effects 

 
Table 4.8 shows the results for the compounding effect of the consultant job plan type 

on the relationship between volume and practice variation for different dated 

investigation periods.  The results, based on investigations undertaken in the first 2 

                                                        
17 Refer to Table 4.10. 
18 The differences in effect on practice variation between consultants on different contract conditions are 
illustrated for the different volume levels with confidence interval bands to indicate the statistical 
significance of such differences.   
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days following admittance to hospital, are presented in columns (1) to (3), whilst 

columns (4) to (6) show the results for investigations occurring after the first 2 days of 

hospital stay.  A number of different volume indicators were applied to test the 

robustness of the volume indicator.  An interaction term on the cvol variable was not 

applied.19 

 
Table 4.8: 2nd stage regression results – investigations with interactions (<2 and >2 days) 

 (1) (2) (3) (4) (5) (6) 
 
 
Dependent variable 

<2 days 

j

^


 

<2 days 

j

^


 

<2 days 

j

^


 

>2 days 

j

^


 

>2 days 

j

^


 

>2days 

j

^


 

public-only -9.045*** -1.6291** -1.346*** -21.139*** -6.324*** -7.161*** 
countconst 0.002***   -0.0072***   
public-only#countconst 0.399***   0.7062***   
countc  0.0015**   -0.0069***  
public-only#countc  0.1503***   0.2499***  
vol90c   0.014**   -0.0638*** 
public-only#vol90c   0.362***   0.7489*** 
Constant -0.4453* -0.2132 -0.3398* 2.1835** 1.1715* 1.7246* 
Observations 1,160 1,160 1,160 864 864 864 
R-squared 0.1047 0.0190 0.0511 0.0548 0.0196 0.0374 

*** p<0.01, ** p<0.05, * p<0.1. 
The baseline, public-only=0, indicates consultant is on a dual practice contract.  

A positive and significant volume coefficient for the interaction term is obtained in all 

specifications, indicating a positive difference in the responsiveness of practice 

variation when patients are under the care of public-only contract consultants in 

comparison to those on dual practice contracts.  The responsiveness of practice 

variation to changes in volume for patients seen by consultants on dual practice 

contracts varies between the two periods of investigation; it is positive and significant 

for investigations in the first two days of hospital stay but negative for investigations in 

the remaining hospital stay period.  We found  that as volume levels of consultants on 

                                                        
19 There are no consultants on exclusive public contracts who perform more than 100 cases and thus the 
cvol volume variable is not used as an interaction term. 
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dual practice contracts decreased, higher practice variation was observed in the post 2 

day hospital stay period.  

 
The average marginal effects provided in Table 4.9 show a significant difference in the 

slope of volume indicators for different consultant job plan contracts.  Results are 

presented for the different investigation periods.  Columns (1) to (3) show that there is 

an increase in practice variation as volume increases for consultants on dual practice 

contracts.  A similar relationship (although stronger) is obtained for those on public-

only contracts with increases in practice variation expected as volume increases.  The 

results are consistent for all three measures of volume used in the analysis.   

Table 4.9: Marginal effects – investigations (<2 and >2 days) 
Volume Type of  (1) (2) (3) (4) (5) (6) 

measure  contract dy/dx dy/dx dy/dx dy/dx dy/dx dy/dx 

  <2 days <2 days <2 days >2 days >2 days >2 days 

countconst dual practice 0.002***   -0.007***   

 public-only 0.401***   0.699***   

countc dual practice  0.002**   -0.007***  

 public-only  0.152***   0.243***  

vol90c dual practice   0.014**   -0.064*** 

 public-only   0.376***   0.685*** 

Observations  1,160 1,160 1,160 864 864 864 

*** p<0.01, ** p<0.05, * p<0.1 

 
 
The specifications in columns (4) to (6) show that practice variation increases with a 

fall in volume for patients seen by consultants on dual practice contracts.  For 

consultants on public-only contracts practice variation is expected to increase as 

volume increases. The results are consistent for all three measures of volume used in 

the analysis.  The coefficients obtained for consultants on public-only contracts are 

greater in magnitude when compared to those obtained for dual practice consultants.  
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There is a difference in the impact on practice variation when volume changes for 

consultants on dual practice contracts if investigations over the two different periods 

are compared.   

The results in Table 4.8 also show that for both investigation periods, a negative and 

significant coefficient value for the consultant job plan variable was obtained.  This 

indicates a lower constant level of practice variation for patients seen by consultants 

on public-only contracts compared to consultants on dual practice contracts when the 

volume is set to zero.  A greater negative level effect of public-only contracts on practice 

variation was found for the post 2 day hospital stay period.   

The difference in practice variation levels between consultants with different job plan 

contracts varied for different values of volume.  The lines in Figures 4-5 and 4-6 

represent the difference in practice variation (both for invf2d and inva2d) for patients 

being seen by consultants on different job contract types as volume20 levels change.  

Different measures of volume: countconst, countc and vol90c are represented in each of 

the figures.  The plots of the confidence interval for the difference between the two 

groups of consultant job contract types is also shown and whenever the 95% 

confidence interval for the difference does not include zero, then the difference can be 

considered to be statistically significant.  Figures 4-5 and 4-6 indicate that there is 

indeed difference in practice variation (both in invf2d and inva2d) between patients 

under the care of consultants on different job plan contracts as volume levels change. 

                                                        
20 The chosen value for the volume indicators represents the range of possible volume levels in the 
dataset with values taken between 5 and 50 cases, using multiples of 5 cases.   
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Figure 4-5: Differences in practice variation levels (invf2d) between public-only and 
dual practice contracts for different volume indicators at different volume values 
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Figure 4-6: Differences in practice variation levels (inva2d) between public-only and 
dual practice contracts for different volume indicators at different volume values 
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The results presented in the Appendix21 show the discrete change in practice variation 

from the base level considering different volume measures for investigations 

performed in the pre- and post 2 day hospital stay period.  The difference in practice 

levels for patients seen by consultants on public-only contracts compared to dual 

practice contracts was found to be negative for very low levels of volume but increased 

with higher levels of volume.  The differences in practice levels between public-only and 

dual practice contract consultants increased as the value of volume increased.  This 

difference is statistically significant22 for the majority of the different values of volume 

tested.  Some statistically insignificant differences are recorded at very low volume 

levels.    

 

4.7 Conclusion 

 
This paper studies the behaviour of consultants working under very specific incentives 

and work practices created within the context of an acute general public hospital, the 

only acute general hospital on the Islands of Malta.  Variations in practice patterns have 

important consequences for the quality and cost of health care treatment.  Differences 

in practice variation, represented by the number of investigations performed on the 

patient, have been attributed to individual patient characteristics, consultant 

characteristics and their integrated effects.    

                                                        
21 Refer to Table 4.11 and Table 4.12. 
22 The differences in effect on practice variation between consultants on different contract conditions are 
illustrated for the different volume levels with the confidence interval bands to indicate the statistical 
significance of such differences.   
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The theoretical model suggests an empirical framework for investigating the role of the 

number of investigations in explaining practice variation for the treatment of PTCA.  A 

multilevel modelling approach was used to test this hypothesis linking practice 

variation in the behaviour of the consultant to the consultant job contract type. 

The available data allowed the study of the variation at the individual patient level on a 

consultant by consultant basis.  A number of data limitations have to be highlighted. 

Data on activity by consultants working in the private sector were not available and this 

prevented the study of the behaviour of the consultant when such activity levels 

changed.  Furthermore, data is not available on how many of the patients who receive 

PTCA treatment at the public hospital, seek private sector intervention prior or post to 

their admittance to the public hospital.  The number of investigations ordered during 

the hospital stay period could depend on patient private sector visits however, this is 

not controlled for within the regression analysis.  Of particular interest to this study 

would be a measure of how much of the currently undertaken investigations within the 

public hospital could in fact be carried out within the private sector setting.  The shift 

of activity from the current public hospital setting to the private setting will help to free 

up resources within the public hospital.  No conclusions could thus be drawn on the 

merits of undertaking any of this activity in the private sector once the patient is 

discharged from hospital.  

 
The possibility of distinguishing between patients who had visited a private consultant 

prior to the public hospital visit and those who visit the consultant post discharge 

would serve as an additional control variable to better understand the possible reasons 
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of practice variation amongst PTCA patients.  Moreover the available data allows only 

for the separation of consultants between those who can and those who cannot practice 

privately but does not provide information on the amount (hours per week) of private 

sector activity carried out by the dual practice consultants.  There could indeed be an 

element of practice variation which depends on the size of the private sector practice 

of the consultant.  

 
No particular weighting structure is applied to the different investigations ordered and 

carried out for the patients undertaking a PTCA within this study.  There could indeed 

be a case in favour of weighting tests/investigations on the basis of some agreed rule.  

Data on costs associated with each of the tests could be suggested as a possible 

weighting rule, or the use of an indicator which measures the relative importance of the 

particular test for the overall treatment of the patient.  A limitation of the study is that 

such information is not available and thus the weighting of tests is left as a point for 

further research.  

 
In view of the very limited data available on surgeons working within the hospital, 

surgeon characteristics are not controlled for in this study.  It is the consultant who is 

responsible for the patients who orders such investigations but information on 

surgeons (who work under the control of the consultant) could also be a source of 

explanation of practice variation.  Further research in this area would incorporate the 

role of surgeon characteristics, primarily surgeon volume levels and the surgeon job 

plan contract type to help in the explanation of practice variation patterns.   
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In this study we have controlled for a range of patient and consultant characteristics 

which influence practice variation, particularly patient age, severity of illness, 

consultant volume levels and job contract type.  One though recognises that there are a 

number of other factors which consultants put into the balance when making a choice 

between a dual practice contract and a public-only contract with the public hospital.  The 

observed impact on practice variation may thus be due to factors other than the direct 

variation arising from job contract type.  There may potentially be other explanations 

as to why variation in practice differs between consultants rather than the job contract 

type on which this study focuses.  

 
It is indeed possible that consultants with different skills and work/leisure preferences 

have a tendency to opt for a particular type of contract type and thus their practice 

decisions are also influenced by such factors rather than just the particular chosen job 

contract type.  Consultants might base their choice of job contract type also on what 

they perceive to be the mostly sought out form of contract type requested and desired 

by their patients.  Patient preferences will thus have an impact on consultant contract 

type.  Data on patient preferences for being treated by dual or public-only consultants 

is not available.  Furthermore one could consider data in relation to years of experience 

at the job (to measure skills) and some form of indicator of work/leisure preferences 

to help disentangle the confounding impact of such factors on practice variation 

between consultants.  Work in this area is a possible avenue for further research.  

 
Issues related to the sample size of the available data are a source of concern.  Indeed, 

the small sample size used in this work is the result of the particular characteristics of 
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the single hospital and the procedure under study.  The results obtained show that 

despite the limitations arising from the small number of consultants, significant results 

are found for the estimated coefficients.  Indeed, the results derived from the two stage 

model are robust when compared to estimates derived from the one-stage multilevel 

approach.  A possible suggestion for future work would be to carry out the analyses 

across a whole department or unit rather than basing the analysis on a single 

procedure.  This would help to increase the sample size, both at the patient and at the 

consultant level.  There is though a drawback related to the fact that differences across 

departments would be expected to be bigger given the diverse range of patients treated.  

In addition any possible policy recommendations under such conditions have to be 

made with caution given the variation in treatments being offered at each department.  

There is indeed an element of compromise which needs to be achieved between the 

accuracy of the estimates and the possible use of such estimates for policy 

recommendation purposes.  Policy recommendations are thus to be devised with 

caution and in recognition of such characteristics.   

 
The results indicate that a proportion of the practice variation occurs at the consultant 

level, after controlling for a number of individual patient characteristics.  Indeed, this 

variation differs when the data for investigations is categorized into investigations 

occurring within or after the first 2 days of hospital stay.  The results indicate that 

greater variation occurs at the consultant level when investigations in the post 2 day 

hospital stay period are considered.  This is the period which is most likely to be used 

by the consultants to put into practice their particular style of treatment.   
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The results also suggest that when investigations in the post 2 day hospital stay period 

are analyzed, the job plan contract type of the consultant has an effect on practice 

variation.  Indeed, lower practice variation was observed amongst patients under the 

care of consultants on public-only contracts.  Changes in volume have contrasting 

impacts on practice variation, with a negative impact obtained when dealing with 

investigations occurring after the 2 day stay period at the hospital.  A reduction in 

consultant volume levels is likely to cause an increase in practice variation.  The 

relationship between consultant volume and practice variation is positive when 

investigations in the first two days of hospital stay are considered.   

There is also a compounding effect of the consultant job plan on the relationship 

between volume and practice variation.  A positive coefficient describes the 

responsiveness of practice variation to changes in volume when patients are under the 

care of public-only contract consultants in comparison to those on dual practice 

contracts.  An increase in volume levels for consultants on public-only contracts will 

lead to a positive increase in practice variation.  The responsiveness of practice 

variation to changes in volume levels for patients seen by consultants on dual practice 

contracts varies between the two periods of investigation.  It can be concluded that as 

volume levels of consultants on dual practice contracts decrease, higher practice 

variation results in the post 2 day hospital stay period. 

Furthermore, it was found that there was a difference in practice variation levels 

between public-only and dual practice contract consultants.  This difference varied for 

different values of volume.  The difference in practice levels for patients being seen by 



201 

 

consultants on public-only contracts compared to dual practice contracts was found to 

be negative for very low levels of volume but increased and turned positive with higher 

levels of volume.  The differences in practice levels between public-only and dual 

practice contract consultants increased as the value of volume increases.  

Finally, we found that a greater proportion of variation in practice patterns, particularly 

in the post 2 day hospital stay period, could be explained by consultant characteristics.  

Patients seen by consultants who can practice privately were more likely to receive 

more investigations in their patients’ last days of hospital stay compared to other 

patients.  Furthermore, there is the impact of changing volume levels on explaining 

practice variation with differences arising for different periods of investigation and for 

different consultant job contract conditions.  The results obtained lead to the conclusion 

that the job plan contract type of the consultant is important in explaining variations in 

the number of investigations undertaken especially in the post 2 day hospital stay 

period. 
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Appendix A 

Table 4.10: Differences in practice variation levels – all investigations 

Differences in practice variation levels (All investigations) between job plan contract types at 
different values for the volume measure (from 5 to 50 cases in multiples of 5 cases), countconst 

 

 

Differences in practice variation levels (All investigations) between job plan contract types at 
different values for the volume measure (from 5 to 50 cases in multiples of 5 cases),  countc  

 

 

Differences in practice variation levels (All investigations) between job plan contract types at 
different values for the volume measure (from 5 to 50 cases in multiples of 5 cases), vol90c 

 

Note: dy/dx for factor levels is the discrete change from the base level.

                                                                              

         10      22.06203   .7488711    29.46   0.000     20.59427    23.52979

          9      17.56837   .7507431    23.40   0.000     16.09694     19.0398

          8      13.07471   .7550195    17.32   0.000      11.5949    14.55452

          7      8.581045   .7616597    11.27   0.000      7.08822    10.07387

          6      4.087383   .7706026     5.30   0.000      2.57703    5.597737

          5     -.4062786   .7817693    -0.52   0.603    -1.938518    1.125961

          4      -4.89994    .795066    -6.16   0.000    -6.458241    -3.34164

          3     -9.393602    .810388   -11.59   0.000    -10.98193   -7.805271

          2     -13.88726   .8276226   -16.78   0.000    -15.50937   -12.26515

          1     -18.38093   .8466531   -21.71   0.000    -20.04034   -16.72152

         _at  

1.cjobplan    

                                                                              

                    dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]

                          Delta-method

                                                                              

Note: dy/dx for factor levels is the discrete change from the base level.

                                                                              

         10      11.68154    3.07257     3.80   0.000      5.65941    17.70366

          9      10.01668   2.676223     3.74   0.000     4.771374    15.26198

          8      8.351814   2.286553     3.65   0.000     3.870252    12.83338

          7      6.686952   1.907654     3.51   0.000     2.948019    10.42589

          6      5.022091    1.54746     3.25   0.001     1.989125    8.055056

          5      3.357229   1.222615     2.75   0.006     .9609487     5.75351

          4      1.692368   .9693339     1.75   0.081    -.2074918    3.592227

          3      .0275061   .8538719     0.03   0.974    -1.646052    1.701064

          2     -1.637355   .9291144    -1.76   0.078    -3.458386    .1836754

          1     -3.302217   1.158481    -2.85   0.004    -5.572797   -1.031637

         _at  

1.cjobplan    

                                                                              

                    dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]

                          Delta-method

                                                                              

Note: dy/dx for factor levels is the discrete change from the base level.

                                                                              

         10      41.23055   5.170939     7.97   0.000     31.09569     51.3654

          9      36.56886   4.612031     7.93   0.000     27.52944    45.60827

          8      31.90717    4.05539     7.87   0.000     23.95875    39.85558

          7      27.24547   3.502096     7.78   0.000     20.38149    34.10946

          6      22.58378   2.954031     7.65   0.000     16.79399    28.37358

          5      17.92209   2.414758     7.42   0.000     13.18925    22.65493

          4       13.2604    1.89181     7.01   0.000     9.552521    16.96828

          3       8.59871   1.403557     6.13   0.000     5.847789    11.34963

          2      3.937019   1.002063     3.93   0.000      1.97301    5.901027

          1     -.7246725   .8254847    -0.88   0.380    -2.342593    .8932478

         _at  

1.cjobplan    

                                                                              

                    dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]

                          Delta-method
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Table 4.11: Differences in practice variation levels – investigations <2 days  

Differences in practice variation levels (<2 days investigations) between job plan contract types at 
different values for the volume measure (from 5 to 50 cases in multiples of 5 ), countconst 

 

Differences in practice variation levels (<2 days investigations) between job plan contract 
types at different values for the volume measure (from 5 to 50 cases in multiples of 5), countc 

 

Differences in practice variation levels (<2 days investigations) between job plan contract types at 
different values for the volume measure (from 5 to 50 cases in multiples of 5), vol90c 

 

 

 

 

 

Note: dy/dx for factor levels is the discrete change from the base level.

                                                                              

         10      10.90904   .2604502    41.89   0.000     10.39857    11.41951

          9      8.913641   .2415601    36.90   0.000     8.440192     9.38709

          8      6.918243   .2281032    30.33   0.000     6.471169    7.365317

          7      4.922845   .2210738    22.27   0.000     4.489548    5.356141

          6      2.927447   .2210858    13.24   0.000     2.494126    3.360767

          5      .9320486   .2281382     4.09   0.000     .4849059    1.379191

          4     -1.063349   .2416152    -4.40   0.000    -1.536907   -.5897923

          3     -3.058748   .2605217   -11.74   0.000    -3.569361   -2.548134

          2     -5.054146   .2837745   -17.81   0.000    -5.610333   -4.497958

          1     -7.049544   .3103984   -22.71   0.000    -7.657913   -6.441174

         _at  

1.cjobplan    

                                                                              

                    dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]

                          Delta-method

                                                                              

Note: dy/dx for factor levels is the discrete change from the base level.

                                                                              

         10      5.885778   1.295169     4.54   0.000     3.347293    8.424263

          9      5.134285    1.12205     4.58   0.000     2.935107    7.333462

          8      4.382791   .9515917     4.61   0.000     2.517706    6.247877

          7      3.631298   .7855292     4.62   0.000     2.091689    5.170907

          6      2.879805   .6273627     4.59   0.000     1.650196    4.109413

          5      2.128312   .4848818     4.39   0.000     1.177961    3.078662

          4      1.376818   .3763443     3.66   0.000     .6391971     2.11444

          3      .6253252   .3363899     1.86   0.063     -.033987    1.284637

          2     -.1261681   .3868847    -0.33   0.744    -.8844481     .632112

          1     -.8776613   .5011983    -1.75   0.080    -1.859992    .1046694

         _at  

1.cjobplan    

                                                                              

                    dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]

                          Delta-method

                                                                              

Note: dy/dx for factor levels is the discrete change from the base level.

                                                                              

         10      16.73957   2.235455     7.49   0.000     12.35816    21.12098

          9      14.93103   1.991878     7.50   0.000     11.02702    18.83504

          8      13.12249   1.749086     7.50   0.000     9.694342    16.55063

          7      11.31395   1.507455     7.51   0.000     8.359389    14.26851

          6      9.505407   1.267652     7.50   0.000     7.020855    11.98996

          5      7.696867   1.030952     7.47   0.000     5.676239    9.717495

          4      5.888327   .8001124     7.36   0.000     4.320136    7.456519

          3      4.079787   .5821494     7.01   0.000     2.938795    5.220779

          2      2.271247   .3987673     5.70   0.000     1.489677    3.052816

          1      .4627069   .3170679     1.46   0.144    -.1587348    1.084149

         _at  

1.cjobplan    

                                                                              

                    dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]

                          Delta-method
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Table 4.12: Differences in practice variation levels – investigations >2 days 

Differences in practice variation levels (>2 days investigations) between job plan contract types at 
different values for the volume measure (from 5 to 50 cases in multiples of 5), countconst 

 

Differences in practice variation levels (>2 days investigations) between job plan contract 
types at different values for the volume measure (from 5 to 50 cases in multiples of 5), countc 

 

 Differences in practice variation levels (>2 days investigations) between job plan contract 
types at different values for the volume measure (from 5 to 50 cases in multiples of 5), vol90c 

 

 

 

                                                                              

         10      14.17023     .99855    14.19   0.000     12.21311    16.12736

          9      10.63923   .9827194    10.83   0.000     8.713132    12.56532

          8       7.10822   .9751988     7.29   0.000     5.196866    9.019575

          7      3.577214   .9761802     3.66   0.000     1.663936    5.490492

          6      .0462075   .9856382     0.05   0.963    -1.885608    1.978023

          5     -3.484799   1.003333    -3.47   0.001    -5.451296   -1.518302

          4     -7.015805    1.02884    -6.82   0.000    -9.032295   -4.999316

          3     -10.54681   1.061596    -9.93   0.000     -12.6275   -8.466121

          2     -14.07782   1.100955   -12.79   0.000    -16.23565   -11.91999

          1     -17.60882   1.146235   -15.36   0.000     -19.8554   -15.36224

         _at  

1.cjobplan    

                                                                              

                    dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]

                          Delta-method

                                                                              

Note: dy/dx for factor levels is the discrete change from the base level.

                                                                              

         10      6.172578   2.827144     2.18   0.029     .6314776    11.71368

          9      4.922915   2.473065     1.99   0.047     .0757959    9.770033

          8      3.673252   2.127191     1.73   0.084    -.4959668     7.84247

          7      2.423589   1.794273     1.35   0.177    -1.093122    5.940299

          6      1.173926   1.483062     0.79   0.429    -1.732822    4.080673

          5     -.0757375   1.210417    -0.06   0.950    -2.448111    2.296636

          4     -1.325401   1.008131    -1.31   0.189    -3.301301    .6504997

          3     -2.575064   .9236499    -2.79   0.005    -4.385384   -.7647431

          2     -3.824727   .9876803    -3.87   0.000    -5.760544   -1.888909

          1      -5.07439   1.176213    -4.31   0.000    -7.379725   -2.769054

         _at  

1.cjobplan    

                                                                              

                    dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]

                          Delta-method

                                                                              

Note: dy/dx for factor levels is the discrete change from the base level.

                                                                              

         10      30.28542   4.052277     7.47   0.000     22.34311    38.22774

          9      26.54076   3.607063     7.36   0.000     19.47105    33.61048

          8       22.7961   3.165559     7.20   0.000     16.59172    29.00048

          7      19.05144   2.729567     6.98   0.000     13.70159    24.40129

          6      15.30678   2.302221     6.65   0.000     10.79451    19.81905

          5      11.56212   1.889396     6.12   0.000     7.858969    15.26527

          4      7.817456   1.503105     5.20   0.000     4.871425    10.76349

          3      4.072794   1.169931     3.48   0.000     1.779771    6.365817

          2      .3281328   .9476628     0.35   0.729    -1.529252    2.185518

          1     -3.416529   .9204895    -3.71   0.000    -5.220655   -1.612402

         _at  

1.cjobplan    

                                                                              

                    dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]

                          Delta-method
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Appendix B 

 

Table 4.13:  Main investigations ordered for patients undergoing PTCA treatment 

Investigation/test name Number of investigations carried out 
Renal Profile (Serum) 6785 

CK (Serum) 6783 
Estimated GFR 5657 

Full Blood Count 3465 
APTT 3130 

Troponin I 2796 
Coagulation Screen 2419 

Chest X-Ray 1035 
Magnesium (Serum/Plasma) 1010 

Lipid Profile (Serum) 956 
Glucose - Random (Urgent) YELLOW CAP 925 

Liver Profile (Serum) 894 
Calcium and Phosphate (Serum) 699 

CKMB Isoenzyme (Serum) 654 
CKMB/CK Ratio (Serum) 652 

Amylase (Serum/Plasma) 495 
Glucose - Random (Plasma) 486 

Type and Screen 445 
INR 443 

Osmolality Calculated 412 
Thyroid Function Test 401 

Calcium (Serum) 337 
Alpha-Hydroxybutyric Acid (Serum) 334 

TSH and FT4 302 
Antibody Screen. 298 

AST (Serum) 297 
C-Reactive Protein (Serum) 279 

Prothrombin Time (PT) 244 
Protein and Albumin (Serum) 206 

Source: Analysis of hospital episode data. 
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Appendix C 

 

In view of the envisaged statistical concerns expected due to the relative small size of 

the dataset, a one-stage multilevel model was used to check for the robustness of the 

effect of job contract type and consultant volume levels on the number of investigations 

ordered by consultants within the public hospital.  Tables 4.14-4.16 below represent 

the results obtained.23  Table 4.14 presents the results when all the investigations 

carried out during the hospital stay period are taken into account.  Table 4.15 presents 

the results when the investigations during the first two days of hospital stay are taken 

as the dependent variable.  Table 4.16 presents the results based for the investigations 

carried out in the post 2 day hospital stay period.   

 
The results in Table 4.14 (all investigations) show that age and the measure of severity 

(Charlsonl) are positive and statistically significant in explaining the number of 

investigations for PTCA patients.  The results in columns 2-5 are roughly in line with 

those obtained from the two stage estimation process showing that the job contract 

type of the consultant is not statistically significant in explaining differences in the 

number of investigations when the full set of investigations carried out during the 

patient hospital stay is considered.  The robustness of the results obtained for the 

                                                        
23 To ease in the comparison of results the tables include a reference heading within each column to 
indicate the comparable column of results already presented in Section 4.6 of the study.  
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various volume indicators using the two stage regression is questioned when such 

results are compared to the values obtained from the one-stage multilevel model 

estimation.  Whilst similar results in terms of magnitude of effect are obtained the 

volume coefficients are found to be statistically insignificant (columns 2-5). 

 
The results in column 6-8 of Table 4.14 include the interaction term between the 

various volume indicators used and the job contract type of the consultant. These 

results are comparable to the results in Table 4.6.  The robustness of the age and 

severity measures is confirmed.  A negative and significant coefficient for patients being 

seen by public-only contracts is also obtained in column 6 using the one-stage multilevel  

modelling approach24.  The results obtained for the different volume measures in 

columns 6-8 are similar to those obtained under the two stage modelling framework 

(although statistically insignificant) 25.  Similar results are recorded for the public-only 

by volume (countconst) interaction term between the two estimation methods.  This 

represents the difference in the responsiveness of practice variation to volume changes 

when consultants on public-only contracts are considered compared to those 

consultants on dual practice contracts.  

 
The results within the lower section of the table (the random effects parameters) show 

that the standard deviation of the error term at the consultant level is significant 

although very small (indicating very slight variation in the intercept due to the 

                                                        
24 The coefficient for public only contracts in columns 7-8 are insignificant.  
25 This confirms some of the concerns related to the use of the two stage approach – of obtaining biased 
standard error values, thus leading to inaccurate ‘p’ and ‘t’ values.  
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consultant effect).  The Intraclass Correlation Coefficient (ICC)26 measures the 

proportion of the variance explained by the grouping structure.  Very low values for the 

ICC are obtained using the results obtained from Table 4.14.  This indicates that a very 

low proportion of the variance is explained by the grouping structure.   

 

                                                        
26 Estimated using the formulation in Hox (2010) ‘Multilevel Analysis –Techniques and Applications’ 
Second Edition, pg 15.    
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Table 4.14:  One-stage multilevel model results with ‘inv’ as the dependant variable 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p-values in parentheses,  * p<0.10, ** p<0.05, *** p<0.010 

The baseline, public-only=0, indicates consultant is on a dual practice contract. 

sd(_cons) refers to the standard deviation at the consultant level, sd(residual) refers to the standard deviation at the patient level.  

 (1) (2) (3) (4) (5) (6) (7) (8) 

Reference table in Chapter Table 4.3 (1) Table 4.4 (1) Table 4.4 (2) Table 4.4 (3)  Table 4.4 (4)  Table 4.6 (1) Table 4.6 (2) Table 4.6 (3) 

 inv inv inv inv inv inv inv inv 

Fixed effect parameters         

age 0.159* 

(0.0568) 

0.158* 

(0.0602) 

0.155* 

(0.0634) 

0.158* 

(0.0576) 

0.157* 

(0.0599) 

0.160* 

(0.0545) 

0.161* 

(0.0541) 

0.156* 

(0.0613) 

CharlsonI 18.15*** 
(0.0000) 

18.17*** 
(0.0000) 

18.27*** 
(0.0000) 

18.08*** 
(0.0000) 

18.21*** 
(0.0000) 

18.04*** 
(0.0000) 

18.13*** 
(0.0000) 

18.30*** 
(0.0000) 

public-only  

 

-0.617 

(0.8768) 

-1.690 

(0.6582) 

-0.126 

(0.9728) 

-0.890 

(0.8115) 

 

 

 

 

 

 

cvol  
 

-0.290 
(0.8984) 

 
 

 
 

 
 

 
 

 
 

 
 

countconst  

 

 

 

-0.00512 

(0.3381) 

 

 

 

 

-0.00514 

(0.3353) 

 

 

 

 

countc  

 

 

 

 

 

0.00209 

(0.7742) 

 

 

 

 

0.00222 

(0.7596) 

 

 

vol90c  

 

 

 

 

 

 

 

-0.0251 

(0.6422) 

 

 

 

 

-0.0212 

(0.6959) 

public-only  

 

 

 

 

 

 

 

 

 

-22.68** 

(0.0500) 

7.631 

(0.2473) 

1.862 

(0.6940) 

public-only#countconst  

 

 

 

 

 

 

 

 

 

0.888* 

(0.0546) 

 

 

 

 

public-only #countc  

 

 

 

 

 

 

 

 

 

 

 

-0.651 

(0.1559) 

 

 

public-only #vol90c  

 

 

 

 

 

 

 

 

 

 

 

 

 

-0.607 

(0.3451) 

Constant 15.32*** 

(0.0050) 

15.64*** 

(0.0078) 

16.94*** 

(0.0030) 

15.11*** 

(0.0064) 

16.03*** 

(0.0046) 

16.75*** 

(0.0033) 

14.93*** 

(0.0070) 

15.94*** 

(0.0048) 

Random effects parameters         

sd(_cons) 0.000000449*** 
(0.0001) 

0.00000592*** 
(0.0026) 

1.31e-09*** 
(0.0000) 

3.90e-08*** 
(0.0000) 

0.000000159*** 
(0.0005) 

8.58e-08*** 
(0.0002) 

0.000000143*** 
(0.0002) 

0.000000294*** 
(0.0001) 

sd(residual) 30.44*** 

(0.0000) 

30.44*** 

(0.0000) 

30.43*** 

(0.0000) 

30.44*** 

(0.0000) 

30.44*** 

(0.0000) 

30.38*** 

(0.0000) 

30.41*** 

(0.0000) 

30.43*** 

(0.0000) 
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The results in Table 4.15 deal with the investigations carried out over the first two days 

of hospital stay.  The results obtained for the age and severity variables using the one-

stage multilevel modelling approach are broadly in line with those obtained using the 

two stage approach.  Age is negatively related to having investigations performed 

within the first 2 days of hospital stay.  A positive and significant coefficient is obtained 

for the severity variable.  The results in columns 2-5 are roughly in line with those 

obtained from the two stage fixed effect estimation process showing that the job 

contract type of the consultant is not statistically significant in explaining differences in 

the number of investigations during the first two days of hospital stay.  The robustness 

of the results obtained for the volume indicators in the two stage estimation method 

(measured by cvol and countc) are confirmed from the results obtained from the one-

stage multilevel model estimation (same sign and magnitude).  

 
The results in column 6-8 of Table 4.15 include the interaction term between the 

various volume indicators used and the job contract type of the consultant.  The 

robustness of the age and severity measures is confirmed.  There is some variation in 

the results obtained for the coefficient value of the consultant job plan contract variable.  

The results in columns 6,7,8 compared to those obtained from the two stage modelling 

framework show that the original results lack some robustness.  The significant and 

positive volume coefficient (measured by countconst) for the interaction term, indicates 

a positive difference in the responsiveness of practice variation when patients are 

under the care of public-only contract consultants in comparison to those on dual 

practice contracts.  
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The results within the lower section of the table (the random effects parameters) show 

that the standard deviation of the error term at the consultant level is not significant 

indicating no variation in the intercept due to the consultant.  Very low (close to zero) 

ICC values are obtained when using the results from Table 4.15, thus indicating a low 

proportion of the variation being explained by the consultant grouping structure.  
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Table 4.15:  One-stage multilevel model results with ‘invf2d’ as the dependant variable 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Reference table in Chapter Table 4.3 (2) Table 4.5 (1) Table 4.5 (2) Table 4.5 (3)  Table 4.5 (4)  Table 4.8 (1) Table 4.8 (2) Table 4.8 (3) 

 invf2d invf2d invf2d invf2d invf2d invf2d invf2d invf2d 

Fixed effect parameters         

age -0.110*** 

(0.0013) 

-0.106*** 

(0.0019) 

-0.107*** 

(0.0016) 

-0.111*** 

(0.0011) 

-0.108*** 

(0.0016) 

-0.107*** 

(0.0017) 

-0.111*** 

(0.0011) 

-0.107*** 

(0.0016) 

CharlsonI 10.56*** 
(0.0000) 

10.47*** 
(0.0000) 

10.51*** 
(0.0000) 

10.42*** 
(0.0000) 

10.50*** 
(0.0000) 

10.46*** 
(0.0000) 

10.42*** 
(0.0000) 

10.50*** 
(0.0000) 

public-only  

 

1.953 

(0.2528) 

0.999 

(0.5843) 

0.895 

(0.6126) 

0.901 

(0.6123) 

 

 

 

 

 

 

cvol  
 

2.856*** 
(0.0078) 

 
 

 
 

 
 

 
 

 
 

 
 

countconst  

 

 

 

0.00428 

(0.2309) 

 

 

 

 

0.00401 

(0.2296) 

 

 

 

 

countc  
 

 
 

 
 

0.00705** 
(0.0455) 

 
 

 
 

0.00708** 
(0.0451) 

 
 

vol90c  

 

 

 

 

 

 

 

0.0496 

(0.1066) 

 

 

 

 

0.0517* 

(0.0995) 

public-only  
 

 
 

 
 

 
 

 
 

-8.158 
(0.1209) 

1.729 
(0.5434) 

1.514 
(0.4871) 

public-only#countconst  

 

 

 

 

 

 

 

 

 

0.393* 

(0.0654) 

 

 

 

 

public-only #countc  
 

 
 

 
 

 
 

 
 

 
 

-0.0710 
(0.7079) 

 
 

public-only #vol90c  

 

 

 

 

 

 

 

 

 

 

 

 

 

-0.143 

(0.6190) 

Constant 23.45*** 
(0.0000) 

21.77*** 
(0.0000) 

22.60*** 
(0.0000) 

22.98*** 
(0.0000) 

22.61*** 
(0.0000) 

22.65*** 
(0.0000) 

22.94*** 
(0.0000) 

22.55*** 
(0.0000) 

Random effects parameters         

sd(_cons) 1.696 

(0.2029) 

0.970 

(0.9631) 

1.632 

(0.2037) 

1.625 

(0.2127) 

1.620 

(0.2060) 

1.446 

(0.3645) 

1.656 

(0.1955) 

1.701 

(0.1710) 

sd(residual) 12.35*** 

(0.0000) 

12.35*** 

(0.0000) 

12.34*** 

(0.0000) 

12.33*** 

(0.0000) 

12.34*** 

(0.0000) 

12.33*** 

(0.0000) 

12.33*** 

(0.0000) 

12.33*** 

(0.0000) 

p-values in parentheses,  * p<0.10, ** p<0.05, *** p<0.010 

The baseline, public-only=0, indicates consultant is on a dual practice contract. 

sd(_cons) refers to the standard deviation at the consultant level, sd(residual) refers to the standard deviation at the patient level.  
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The results in Table 4.16 deal with the investigations carried out during the post 2 day 

hospital stay for the patient.  Results show that both age and the measure of severity 

are positive and statistically significant in explaining the number of investigations for 

PTCA patients carried out in the post 2 day hospital stay period.  The results in column 

2-5 for the coefficient of the public-only variable and the various volume indicators are 

roughly in line in terms of magnitude and sign when compared with those obtained 

when undertaking the two stage estimation procedure.  The statistical robustness of 

the results obtained from the two stage method is though questioned given that the 

coefficient obtained on the public-only variable and the various volume indicators lack 

statistical significance.  

 
The results in column 6-8 of Table 4.16 include the interaction term between various 

volume indicators and the job contract type of the consultant.  The LR test carried out 

between these three specifications and the comparable specifications in columns 3-5 

confirm an improvement in specification (LR values of 0.11, 0.0235, 0.0481 

respectively).  The robustness of the age and severity measures is confirmed.  Results 

show that similar coefficients in terms of magnitude and sign (although insignificant) 

are generally obtained for each of the volume indicators using the one-stage multilevel 

modelling approach.  This measures the responsiveness of the number of investigations 

to changes in volume of patients seen by consultants on dual practice contracts.  The 

results obtained in column 6 show a significant and negative coefficient for the 

consultant job plan variable (-21.12), indicating a lower level of investigations for 

patients seen by consultant being under the care of consultants who have public-only  

contracts compared to dual practice contract consultants.  This result confirms the 
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conclusions obtained in column 4 of Table 4.8.  A similar result (although of a smaller 

magnitude and statistically insignificant) for the coefficient of the job plan variable is 

obtained when the volume indicator being considered is vol90c.  A positive although 

statistically insignificant coefficient for the interaction term between the volume 

measure countconst and job plan is obtained raising some robustness issues with the 

coefficients of the two stage model.  There are some concerns with regards to the 

interaction terms obtained in columns 7 and 8 of Table 4.16 in comparison to the results 

obtained for similar estimations using the two stage approach.  A negative and 

significant coefficient for the interaction term is obtained when the one-stage multilevel 

modelling approach is applied indicating a negative difference in the responsiveness of 

the number of investigations ordered as volume changes for patients who are under the 

care of public only contract consultants. 

 
The results within the lower section of the table (the random effects parameters) show 

that the standard deviation of the error term at the consultant level is significant 

indicating some variation in the intercept due to the consultant effect.  The Intraclass 

Correlation Coefficient (ICC) obtained for the results in Table 4.16 particularly for the 

estimations carried out in column 4, 7 and 8 show that some of the variance in the 

number of investigations carried out in the post 2 days hospital stay period is indeed at 

the consultant level.  
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Table 4.16:  One-stage multilevel model results with ‘inva2d’ as the dependant variable 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Reference table in Chapter Table 4.3 (3) Table 4.5 (5) Table 4.5 (6) Table 4.5 (7)  Table 4.5 (8)  Table 4.8 (4) Table 4.8 (5) Table 4.8 (6) 

 inva2d inva2d inva2d inva2d inva2d inva2d inva2d inva2d 

Fixed effect parameters         

age 0.363*** 
(0.0000) 

0.344*** 
(0.0000) 

0.355*** 
(0.0000) 

0.364*** 
(0.0000) 

0.357*** 
(0.0000) 

0.362*** 
(0.0000) 

0.373*** 
(0.0000) 

0.376*** 
(0.0000) 

CharlsonI 4.086** 

(0.0101) 

4.576*** 

(0.0050) 

4.391*** 

(0.0065) 

4.253*** 

(0.0089) 

4.358*** 

(0.0068) 

4.210*** 

(0.0092) 

4.287*** 

(0.0081) 

4.452*** 

(0.0056) 

public-only  
 

-5.188 
(0.1913) 

-4.242 
(0.2627) 

-6.208 
(0.2835) 

-3.806 
(0.3016) 

 
 

 
 

 
 

cvol  

 

-3.582 

(0.1297) 

 

 

 

 

 

 

 

 

 

 

 

 

countconst  
 

 
 

-0.00726 
(0.1867) 

 
 

 
 

-0.00721 
(0.1893) 

 
 

 
 

countc  

 

 

 

 

 

0.00415 

(0.6626) 

 

 

 

 

0.00569 

(0.5549) 

 

 

vol90c  
 

 
 

 
 

 
 

-0.0713 
(0.1909) 

 
 

 
 

-0.0476 
(0.6413) 

public-only  

 

 

 

 

 

 

 

 

 

-21.12* 

(0.0613) 

4.173 

(0.6234) 

-0.515 

(0.9523) 

public-only#countconst  
 

 
 

 
 

 
 

 
 

0.704 
(0.1125) 

 
 

 
 

public-only #countc  

 

 

 

 

 

 

 

 

 

 

 

-1.005** 

(0.0207) 

 

 

public-only #vol90c  
 

 
 

 
 

 
 

 
 

 
 

 
 

-2.200*** 
(0.0044) 

Constant -8.417 

(0.1224) 

-4.629 

(0.4352) 

-5.953 

(0.2969) 

-5.686 

(0.3385) 

-6.344 

(0.2598) 

-6.307 

(0.2688) 

-5.333 

(0.3816) 

-4.089 

(0.5171) 

Random effects parameters         

sd(_cons) 0.000000241*** 

(0.0000) 

8.43e-08*** 

(0.0002) 

4.18e-08*** 

(0.0000) 

8.065*** 

(0.0096) 

0.00000233*** 

(0.0034) 

8.70e-08*** 

(0.0000) 

10.63*** 

(0.0000) 

13.29*** 

(0.0000) 

sd(residual) 26.39*** 

(0.0000) 

26.35*** 

(0.0000) 

26.36*** 

(0.0000) 

26.02*** 

(0.0000) 

26.36*** 

(0.0000) 

26.32*** 

(0.0000) 

25.80*** 

(0.0000) 

25.63*** 

(0.0000) 

p-values in parentheses,  * p<0.10, ** p<0.05, *** p<0.010 

The baseline, public-only=0, indicates consultant is on a dual practice contract. 

sd(_cons) refers to the standard deviation at the consultant level, sd(residual) refers to the standard deviation at the patient level.  
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The results from the one-stage multilevel modelling approach provide some element of 

robustness check for the coefficients derived from the two stage modelling approach.  

The results show that the small sample sizes available and used within this study might 

be a constraint to the statistical significance of the obtained results.  An increase in the 

sample size may indeed help to obtain more robust estimates.  Policy recommendations 

based on the above results are thus to be articulated with caution and in recognition to 

this important limitation.  
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This study was set out to assess the activity undertaken within the very specific and 

particular health care sector in Malta.  To this effect, the measurement of hospital health 

care output, through the applicaton of a DRG system, serves as a tool to help describe, 

manage and measure resource use.  The study also sought to evaluate and understand 

the relationship between health care outcomes and the behaviour of physicians 

working at the public hospital.  Of specific interest to the study is the role of the specific 

consultant job contract type arrangement in explaining  hospital outcomes.  The 

relationship between the health care providers, the hospital authorities and the 

patients is expected to influence the current and future workings of the Maltese health 

care system.  It is the scope of this study to contribute towards a better understanding 

of this relationship as this leads to improvements in the setting of policy within the 

health care sector.  

This section presents the conclusions of the chapter specific analysis carried out within 

this thesis.  The potential implications on the overall running of the health care system 

is discussed and the relevance of the conclusions within the context of the known 

literature is assessed.  Whilst acknowledging that this study has encountered a number 

of limitations, a number of recommendations, both for further research and for policy 

implementation purposes, are proposed for consideration of the health care 

authorities. 

In the context of the available data for the Maltese health care sector, the results of the 

research show that there is a firm basis for the implementation of a DRG casemix 

classification system, at least initially to help describe and manage resource use.  Every 
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medical case treated at a hospital carries with it an economic component and the use of 

DRGs would allow hospital management authorities to think along product lines.  In the 

context of the ever escalating health care expenditure and the increasing pressure to 

control spending, DRGs provide policy makers with an additional tool to achieve more 

transparent and efficient resource use.  

The application of the MS-DRG (Version 27) Grouper software, although not specifically 

configured for the Maltese health care system, proved to be a good starting point given 

that this was the first occasion for Maltese data to be applied to a casemix Grouper 

software.  As noted in the literature, a health care Grouper software is considered useful 

if it partitions the hospital episode population in an informative way, both in terms of 

the clinical inputs required and also the resources that are expected to be used in the 

treatment of patients.  The Coefficient of Variation (CV) and the Coefficient of Multiple 

Determination (R2) applied in this analysis showed that the derived DRGs carried a 

certain degree of homogeneity within the set groups and also demonstrated an 

adequate degree of heterogeneity when compared to the other derived DRG categories.  

An R2 obtained of approximately 0.3 compared well with studies reported for other 

countries.  Furthermore, following a data trimming exercise, around 85% of the DRG 

cases had a CV of less than 1 implying that the DRGs obtained were homogeneous 

within the groups identified.   

One recognizes that most LOS distributions used in this study are asymmetric and the 

presence of high outlier values has a significant impact on the R2 values obtained.  In 

view of the characteristics of the data under analysis and given the relative smallness 
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of the dataset, outlier values are removed from the study and various trimming 

algoritms are applied.  Nothwithstanding this process, the distributional properties of 

the data where found to still not fully satisfy the estimation requirements and this is 

considered as a limitation of this study.  One though finds that the use of the MDC 

categories in such instances helps to achieve better distributional properties for the 

data in hand.  

Homogeneous DRG categories provide the policy maker with an additional tool to gauge 

efficiency in the treatment of cases as it identifies those cases that use more hospital 

resources than the average case.  However, the variation in resource use may also be 

due to other factors not specifically captured by the DRG classification.  These include 

the individual and behavioural characteristics of the consultants and surgeons working 

within the hospital.  The DRG system provides a solid basis for studying the 

performance of the consultants and surgeons working within the hospital.  The 

variation in health care outcomes and practice patterns arising due to such factors was 

studied in Chapters 3 and 4 as part of this research.  

In view of the fact that this study is the first application of a casemix system grouper to 

the Maltese health care system, one recognises the limitations imposed by the 

deficiencies in the current available dataset.  The data used for this study were not 

collected specifically for the application of a DRG system and therefore, considerable 

improvements in the configuration of the DRG categories will be made if missing or 

miscoded data is kept to a minimum.  It is positive to note that nothwithstanding such 

limitations, the results obtained are fairly in line with other literature focusing on 
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similar countries.  The experience from other health care systems shows that the 

introduction of the DRG system will itself lead towards an improvement in the data 

collection process.  This is a positive implication of the introduction of the DRG system.  

The success of the DRG system depends primarily on the quality of the collected data 

and thus the collection of more accurate information will serve to provide an added 

instrument for the allocation of the public hospital budget.  This  provides a better 

picture of the current hospital outputs being derived for the amount of resources 

invested by the government in the health care system.  

The research undertaken reveals that there is a need to adequately deal with outlier 

cases especially in view of the size of the Maltese health care sector.  In fact, dealing 

with defined outliers would result in average savings of approximately 1 day in terms 

of length of stay for the hospital.  Based on insights gained from this study, further work 

on the understanding of the factors which underpin the presence of outliers is 

recommended.  Indeed, given the small size of the dataset, the applied trimming options 

have an impact on the results, apart from the fact that there could be other factors which 

need to be controlled for when trying to understand the underpinning differences in 

resource utilisation within DRGs.  Furthermore, with DRGs in place, the Maltese 

hospital authorities would be in a better position to plan for cases which are likely to 

end up as outlier cases.  Also of interest for further study is the fact that a number of the 

obtained DRG groups include only few episodes of care, primarily due to the given size 

of the health care sector.  This entails a further challenge to the use of DRG’s  when 

applied to aid in the process of budget allocation for the different health care activities 

undertaken within the hospital.  
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In the author’s view, although the introduction of such a system in Malta may be a long 

and complex process, which will require both the commitment of the hospital 

management team and hospital practicing professionals, a functioning casemix system 

would serve to benefit the entire health care provision system in Malta.  In view of the 

current economic and political commitments, the use of the casemix system for 

financing purposes may be still far from materializing however having a DRG system in 

place would lead to more informed decisions and potentially better policy.  On a 

practical level, the information gained from the setting of a DRG system could serve as 

an instrument for the allocation of public hospital budgets. Activity that can be 

measured can be managed more effectively and efficiently.   

It is recommended that a different DRG Grouper software system, rather than the MS 

DRG (Version 27.0), should be applied to the data to obtain further evidence in relation 

to the gains of applying a casemix system.  This would serve to further assess the quality 

of the available data.  It is recommended that one should consider possible adaptations 

to the already available casemix Groupers used by other countries to make them more 

appropriate to the particular data and characteristics of the Maltese health care system.  

Most countries adopting a DRG system have chosen to go down this route.  

Furthermore, this study would benefit from the incorporation of additional years of 

data as this would help to assess the consistency of hospital activity measurement for 

the years under study.  

The incentives and benefits resulting from the introduction of the DRG casemix system 

are expected to have a significant impact on the economic underpinnings of the health 
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care system.  The benefits expected to be achieved within the health care system 

following the introduction of DRG’s are based on the experience of other countries and 

reflect the realities of the current state of the Maltese health system.  The experience 

gained from other countries shows that such a development will have an impact on both 

resource use and the overall management of the available resources.  The most recent 

developments within the Maltese health care system are increasingly pointing towards 

the need for the adoption of a DRG casemix system.   

Chapter 3 of this thesis focused on competing risks events to assess the nature of the 

volume-outcome relationship for consultants and surgeons practicing at the hospital 

level.  Whereas most of the literature has sought to analyse the volume-outcome 

relationship amongst different hospitals, this study specifically looked at 

understanding the volume-outcome relationship at the individual consultant and 

surgeon level operating within a single and sole public hospital setting.  A number of 

different volume measures where adopted to assess the sensitivity of the results to 

changing volume definitions.  The impact of different consultant job contract conditions 

on the relationship between the event of interest and volume levels was of particular 

interest. 

Data for PTCA activity undertaken between 2009 and 2011 within the Maltese health 

care sector were applied to both non-parametric and semi-parametric survival analysis 

methods.  Both methods confirmed differences in the treatment failure probability due 

to differences in consultant and surgeon volume levels and variations in the consultant 

job contract characteristics.  The robustness of the results obtained using the survival 
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modelling methods where confirmed though the use a multinomial logistic model.  The 

research found that the treatment failure probability was slightly higher if the patient 

was under the care of consultants with high patient volume levels or if the procedure 

was performed by surgeons with low volume levels.  The results obtained for patient 

outcomes as surgeon volume levels increase support the practice makes perfect 

hypothesis.  The same result cannot be confirmed when consultant volume levels are 

considered.   

The research also concluded that the rate of failure from the treatment procedure was 

slightly lower if patients were seen by consultants operating exclusively with the public 

sector.  Consultants on public-only contracts had low patient volume levels compared 

to consultants on dual practice contracts and this could be one possible explanation for 

this result.  Furthermore, this would imply that consultants on public-only contracts are 

in a better position to manage there public hospital workload given that they are fully 

focused on their practice within the public hospital.  The performance of dual practice 

contract consultants within the public hospital, as viewed by the patient in general, is 

of concern to such consultants as this is expected to have an impact on their reputation.   

Furthermore, the impact of changes in volume on the hazard rate of the events of 

interest was found to be affected by the consultant job plan contract type.  The analysis 

showed that there was only a slight increase in the incidence of failure from the 

intervention for the patient under the control of a consultant on a dual practice contract, 

if volume was increased.  If a patient was under the control of a consultant with a public-

only contract, then the incidence of failing increases by more when volume changed 
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compared to those patients under consultants with dual practice contracts.  A unit 

change in volume was found to have a bigger impact on the hazard rate of failing if 

patients were under the care of consultants with public-only job contracts.  The clear 

policy implication from this conclusion is that policies aimed at varying patient volume 

levels for consultants on public-only job contracts could result in an impact on outcomes 

and have to be treated with extreme caution.  The research also showed that the 

likelihood of the event death is primarily affected, as expected,  by the covariates for age 

and patient LOS at the hospital.  

Whilst noting the conclusion from this study one acknowledges a number of limitations.  

The survival models used assume homogeneity where all individuals are subject to the 

same risks embodied in the hazard function.  This study controls for a range of patient 

and consultant/surgeon characteristics however there could indeed still be unobserved 

sources of heterogeneity in the estimations.  The empirical estimates obtained from 

these models are sensitive to the choice of the ‘a priori’ identifying assumptions and the 

distributional assumptions of the unobservables can have an impact on the results 

obtained.  This could lead to estimates which poorly describe the true behavioural 

models generating survival analysis data. 

 
There is also concern that potential confounding effects on the volume-outcome 

relationship can arise from the fact that the consultant choice of contract type depends 

on particular issues which would indirectly influence the outcome of the procedure. 

The ability to disentangle and single out the factors affecting the choice of contract type 

by the consultant would help to gauge their particular impact on outcomes which 
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impact would have otherwise been incorporated within the consultant’s chosen job 

contract type.  Morover, the available data lacks information on the contract type 

conditions of the surgeons working within the public hospital.  A possible extension for 

this study could be to incorporate additional information on the characteristics of the 

surgeons working within the hospital and thus to analyse their particular impact of 

patient outcomes and how surgeons and consultants interact when treating a patient.  

 
The importance which consultants place on the role of their involvement within the 

private sector for their personal career development could also be a factor which affects 

the choice of job contract type.  Further work in this regard should be considered.  To 

this effect, data on the different skill levels of consultants, such as the number of years 

of practising as consultants and the university institution from which they obtained 

their training, would be possible proxies.  Furthermore, the collection of information in 

terms of their work and leisure preferences and the number of hours spent working 

within the private sector could serve as indications of the importance which 

consultants place on their activity in the private sector.   

 
We do not have data on patient preference for being treated by dual or public-only  

consultants.  However, consultants might base their choice of job contract type also on 

what they perceive to be the mostly sought out form of contract type requested and 

desired by the patient.  The patient’s preference can have an influence on consultant 

practice as patients with certain preferences might seek out care from consultants on 

particular job contract types.  If patients have the ability to somehow influence the job 
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contract type decision of who is responsible for their treatment then this could have an 

impact on overall outcome differences between consultants.   

Nevertheless one recognises the unavailability of data in this regard and this makes it 

difficult to single out the potential confounding effects.  Work in this area is being 

suggested as one of the possible avenues for future research. Whereby one can study 

the identification of patient preferences which are expected to influence the decision of 

consultants to choose one type of contract over another and the impact of this on the 

volume-outcome relationship.  Determining the causes of the effect of contract type on 

outcome is important especially for policy reasons.  

 
The fact that this study focuses on a single hospital setting, whereby no other public 

sector hospitals exist would serve to reduce the possible confounding effects which 

arise from the choice available to consultants to practice in other public sector 

institutions.  The identification of the volume-outcome relationship could in the context 

of this study be partly controlled by the fact that there is only one single public hospital 

on the island.  Furthermore, the size of the sample used within this study is constrained 

by the fact that the sample includes all the existing PTCA activity carried out by 

consultants within the hospital over the three year period, thus serving to reduce 

potential biases in sample selection.  

The above results provide an important contribution towards understanding the 

possible interlinkages which exist within the setting of the single hospital in relation to 

consultant and surgeon volume levels and to other consultant related characteristics.  

One would expect that even within a single hospital setting, differences in the behaviour 
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of consultants and surgeons at an individual level exist and such differences could have 

an impact on outcome.  Decisions by policy makers to implement measures which are 

likely to affect the volume levels of both surgeons and consultants working within the 

hospital should therefore also consider the specific job working conditions of the 

consultants.  The widening of this study to other specific procedures within the hospital 

would help policy makers improve their assessment of the sensitivity of changes in 

volume and other consultant and surgeon characteristics on hospital outcomes. This 

contributes towards the setting up of effective policy initiatives within the health care 

sector. 

Chapter 4 of this thesis studied the heterogeneity in practice patterns, analysed at the 

individual consultant level within the single hospital setting.  The emphasis was on 

whether variation depends on the consultant job plan contract type after controlling 

for patient and consultant characteristics.  In the developed theoretical model 

consultants are assumed to gain utility from the income earned and the reputation 

gained  from the success achieved when exerting effort in the provision of health care 

services.   

The empirical analysis used data drawn from investigations on patients who received 

PTCA treatment between 2009 and 2011.  These investigations were further 

subdivided into those performed within the first two days of hospital stay and those 

performed during the rest of the patients’ hospital stay period.  The analysis implicated 

that after controlling for a number of patient characteristics, a proportion of the 

observed practice variation occurred at the consultant level.  Furthermore, practice 
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variation was found to differ by consultant job contract type and varied in magnitude 

in relation to the period when the investigations were undertaken.   

The use of the available administrative (not sample) patient level data helps to deal 

with differences in patient characteristics whilst offering analytical advantages in terms 

of the analysis of consultant characteristics which are expected to affect practice 

variation.  The two stage model used in this study is based on the individual based data 

thus  allowing for the partitioning of the overall variation into that due to differences in 

patients and that arising from differences in the consultant propensity to prescribe 

investigations or tests.  The results from the two-stage model are evaluated against 

those based on a one stage multilevel model which includes group level predictors as 

explanatory variables. 

As expected, a proportion of the variation in investigations carried out in the post 2 day 

hospital stay period could be attributed to consultant related differences.  The variation 

in practice patterns, during the post 2 days of hospital patient stay was found to be 

negatively related to the fact that consultants operate on exclusive public sector 

contracts.  Patients under the care of consultants who also practiced privately were 

likely to register higher variation in practice patterns for investigations carried out in 

the post two day hospital stay period.  From this observation it can be implied that 

consultants are more likely to use the post two day hospital stay period to implement 

their own style and treatment preferences when dealing with patients. 

The relationship between consultant volume levels and practice variation also differed 

under the different periods of study.  A positive relationship between volume levels and 
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practice variation was found for investigations carried out in the first two days of 

patient hospital stay.  On the other hand, greater variation was found in the number of 

investigations carried out in the post two day patient hospital stay period when 

consultant volume levels fell.  A possible explanation for this is that consultants with 

lower patient volume levels would have more flexibility to order additional 

investigations for their patients during the patients’ post two day hospital period. 

The job plan contract type of the consultant was found to have a compounding effect on 

the relationship between volume and practice variation.  An increase in the volume 

levels of consultants who can only practice in the public hospital will lead to an increase 

in practice variation.  The research found that the response of practice variation to 

changes in volume levels for consultants on dual practice job contracts varied between 

the two different periods.  In particular, an increase in volume would lead to an increase 

in variation during the first two days of hospital stay and a fall in variation during the 

rest of the hospital stay period.  Therefore it can be concluded that consultants on dual 

practice contracts would increase variation in practice if they had lower volume levels 

in the post two day patient hospital stay period.  

The difference in practice variation levels between consultants with different job plan 

contracts also varied at different values of volume.  The difference in practice variation 

was found to be negative at very low levels of volume for patients being seen by 

consultants on public-only contracts compared to dual practice contracts.  However, this 

difference turned positive and increased as values of volume levels increased. 



239 

 

A number of data limitations have to be highlighted. Data on activity by consultants 

working in the private sector was not available and this prevented the study of the 

behaviour of the consultant when such activity levels changed.  There could indeed be 

an element of variation in practice patterns which depends on the size of the activity in 

the private sector for the consultants who also practice within the public hospital.  

 
Furthermore, information is not available on how many of the patients who receive 

PTCA treatment at the public hospital, seek private sector intervention prior or post to 

their admittance to the public hospital.  Of particular interest to this study would be a 

measure of how much of the currently undertaken investigations within the public 

hospital could in fact be carried out within the private sector setting.  The shift of 

activity from the current public hospital setting to the private setting will help to free 

up resources within the public hospital having significant implications on the overall 

running of the hospital.  Due to the lack of data, no conclusions could be drawn on the 

merits of undertaking any of this activity in the private sector once the patient is 

discharged from hospital.  

 
A possible extension of this study is to focus on the relative importance of each of the 

investigations being carried out at the public hospital,  No particular weighting 

structure is applied to the different investigations ordered and carried out for the 

treatment of PTCA within this study.  Work on the weighting of investigations and its 

resulting impact on practice patterns is left as a point for further research.  

 
In view of the very limited data available on surgeons working within the hospital, 

surgeon characteristics are not controlled for in this study.  It is the consultant, who is 
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responsible for the patient, who orders such investigations.  Surgeons, who work under 

the control of the consultant, could also be a source of explanation of practice variation.  

Further research in this area would incorporate the role of surgeon characteristics and 

specifically the surgeon job plan contract conditions to help in the explanation of 

practice variation patterns.   

 
Furthermore, whilst noting that in the study we have controlled for a range of patient 

and consultant characteristics one though recognises that there are a number of other 

factors which consultants put into the balance when making a choice between a dual 

practice contract and a public-only contract with the public hospital.  The observed 

results may thus be due to factors other than the direct variation arising from job 

contract type.  Data for consultant job contract type may be thus capturing factors 

which affect the actual decision of the consultant to choose the particular type of job 

plan contract.  There may potentially be other explanations as to why variation in 

practice differs between consultants rather than the job contract type variable 

identified in this study.  Work on the identification of factors which determine the 

consultants choice of contract condtions and the impact on practice variation is a 

possible area for further research. 

 
Issues pertinent to what constitutes a sufficient sample size for accurate estimation and 

evaluation purposes have been reviewed.  The size of the dataset in this study is in fact 

constrained by the characteristics of the Maltese health care sector.  Better inference is 

expected to be achieved if patient level data is used in such instances.  A possible 

suggestion for future work would be to carry out the analyses across a whole 
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department or unit rather than basing the analysis on a single procedure.  This would 

help to increase the sample size, both at the patient and at the consultant level.  A 

possible drawback would be related to the fact that differences across departments 

would be expected to be bigger given the diverse range of patients treated.  Any possible 

policy recommendations under such conditions have to be made with caution given the 

variation in treatments being offered at each department.  There is indeed an element 

of compromise which needs to be achieved between the accuracy of the estimates and 

the possible use of such estimates for policy recommendation purposes. 

 
In view of the envisaged statistical concerns expected due to the relative small size of 

the data, a one stage multilevel model was used to estimate the effect of job contract 

type and consultant volume levels on the number of investigations ordered by 

consultants within the public hospital.  The results obtained from the one stage 

multilevel modelling approach provide some element of robustness check for the 

coefficients derived from the two stage modelling estimations.  The results show that 

the small sample size available and used within this study might be a constraint to the 

statistical significance of the obtained results.  The complete population of the PTCA 

activity undertaken at the hospital is considered in this study and thus the option of 

increasing the sample size under current conditions is not available.  Policy 

recommendations are to be articulated with caution and in recognition to this 

important consideration.  

The above findings provide interesting results in terms of understanding the role of 

consultant volume levels and job contract conditions to explain practice variation 
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within this particular hospital setting.  Practice variation has implications on efficiency 

levels within the hospital apart from the expected impact on patient outcomes.  The 

study of the impact of practice variation amongst consultants on patient outcomes 

within this setting is an area for further research.  

Further work, applied to other specific procedures within the hospital setting, would 

provide policy makers with a better view of the importance of specific consultant 

characteristics in explaining differences within other treatment practices offered at the 

hospital.  This would give policy makers the opportunity to better appreciate the role 

of individual consultant characteristics in explaining variation in practice patterns 

within the whole hospital.  

In summary, the research undertaken and described in this thesis recommends a 

number of important policy considerations that will benefit both the health care setting 

in Malta and health care practice in general.  A hospital cannot be managed efficiently 

without an adequate measure of output.  Furthermore, it is only by fully understanding 

the impact of certain characteristics of consultant and surgeon working patterns on 

patient and hospital outcomes, that effective policy options could be formulated.  The 

findings of this thesis may contribute towards the design of policies which are based on 

the knowledge gained of the link between the variation in practice patterns and 

volume-outcome relationships to the different consultant job contract types.  The 

conclusions of this thesis help in setting policy strategies based on evidence informed 

research within the health care sector. 

 


