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Abstract

In this thesis, VehicleSim multi-body software is used to extend and modify an ex-

isting motorcycle model by including different non-conventional suspension systems.

Girder and Hossack double wishbones front suspension systems are designed, imple-

mented and tested. Using a synthesis of mechanism methodology, they are designed

with different kinematic configurations that allow different behaviours of the motor-

cycle front end. By means of CAD tools and finite element analysis, realistic three

dimensional models of the suspension systems designs are developed. The dynami-

cal properties of the mechanical assemblies are obtained from the CAD models and

used to build a realistic mathematical model of a sport motorcycle fitted with theses

alternative suspension systems. Dynamical and stability analyses of the alternative

front suspension systems are performed. For the different kinematic configurations,

anti-dive properties and variation of the motorcycle’s handling geometric parameters

are studied by non-linear dynamical simulations. Stability analyses are performed

by means of the motorcycle linear models eigenvalues.

Passive interconnection of front and rear suspension systems of a sport motorcy-

cle is also investigated. The effects of an interconnected suspensions system on the

motorcycle in-plane motions are studied by means of reduced order linear models.

The baseline model is modified to include passive interconnection forces between

the front and rear suspension systems. The possible improvement introduced by an

interconnected suspensions system in terms of suspension accuracy is investigated

through non-linear simulations with delayed step tyres inputs. Appropriate values

of the interconnection passive components for different possible mechanical imple-

mentation are found by means of optimization processes. Linear stability analyses

are performed for each of the different optimal interconnected configurations. Non-

linear frequency analyses of the motorcycle wheels and chassis responses are also

performed considering the delay between the front and rear tyre inputs. Non-linear

simulations with variable frequency sinusoidal road inputs are run for this purpose.

Finally, modal analyses of the motorcycle model are carried out for variable in-

terconnection parameters in order to understand the effect of the interconnected

suspensions system on the motorcycle’s motion.
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Chapter 1

Introduction

1.1 Preliminaries

Motorcycles are a largely extended means of transport used around the world.

Whilst in some developing countries motorcycles are essential for commuting and

transportation, in developed countries, these machines have been more associated

to sport and leisure activities, although the popularity of these vehicles for commut-

ing has increased globally over the years. Whatever the motorcycle’s use might be,

there exist safety hazards associated with these vehicles. Some of them depend on

the interaction with other vehicles, the state of the roads and unpredictable traffic

events. But other risks depend solely on the motorcycle’s design and dynamics.

In order to gain a complete understanding of these machines’ behaviour, motor-

cycle dynamics have been thoroughly studied in the past. Substantial amount of

research has been carried out to date by taking advantage of the relatively recent

automated multi-body mechanical systems software and high fidelity motorcycle

models. Nowadays, these models are able to simulate the behaviour of real ma-

chines accurately over a wide range of normal operating conditions. These tools

allow the study and evaluation of different experimental mechanisms and devices

before prototyping and physically testing them on a real motorcycle, which becomes

an advantage over the trial-and-error methods traditionally employed by manufac-

turers in the past.

The aim of this thesis is to investigate alternative suspensions systems for sport

motorcycles taking advantage of a high fidelity model developed by (Sharp et al.
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2004) which has been extensively used and validated by many, e.g. (Shaeri et al.

2004), (Evangelou et al. 2006), (Sharp 2007), (Evangelou et al. 2008), (Evangelou

et al. 2010) and (Sharp 2012). In here, the Sharp motorcycle model has been mod-

ified to include the dynamics corresponding to two alternative suspension systems

and, in this way, explore the impact these would have on the motorcycle dynam-

ics and stability. Two reduced models are as well derived in order to facilitate the

analysis of certain features that will be presented in this thesis.

Suspension systems are probably the most relevant elements influencing motor-

cycle dynamics. They are responsible for the isolation of the motorcycle’s chassis

from the road irregularities, keeping certain comfort levels for the rider whilst al-

lowing the wheels to follow the road profile as close as possible. Several isolation

methods and devices have been developed along the history of these machines. How-

ever, nowadays the most extended configurations consist of two separate suspension

systems, one for the front and the other for the rear motorcycle’s ends. For the

rear suspension system, most motorcycle manufacturers have adopted a swinging

arm with a mono-shock system. It consists of a single shock-absorber connected

to the rear swinging arm through a mechanical linkage that provides progressive

stiffness-damping properties to the rear suspension structure. On the other hand,

the telescopic fork is the manufacturers’ most common option for the front suspen-

sion system in the commercial and racing motorcycles. This system consists of a

pair of sliding tubes inside two stanchions which contain springs and dampers which

are responsible for the shock absorption.

Although the contemporary high end telescopic fork suspension systems are engi-

neered with the most advanced technology and provide excellent performance, they

are limited in some features by their geometrical conception. Unlike the rear swing-

ing arm, that can provide a good anti-squat behaviour depending on its design, the

telescopic fork suspension system is not compatible with anti-dive characteristics

for realistic head angles. On the other hand, a progressive stiffness and damping

behaviour cannot be implemented in the telescopic fork suspension design as it can

be done with mono-shock system on the rear suspension.

There exist alternative suspension systems based on mechanical double wishbone

linkages that overcome the telescopic fork geometrical limitations and introduce new
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features. The two most representatives systems, due to their mechanical simplic-

ity and kinematics configuration possibilities, are the ”girder” and the ”Hossack”

suspension systems. An extensive description of them is given in Chapter 4, where

their kinematic and dynamic behaviours are investigated. These suspension systems

present several advantages in terms of their construction. The mechanical simplicity

and the increase in the overall rigidity allow for lighter and cheaper implementations

maintaining high performance levels and a large number of design options.

However, nowadays, the girder suspension system is rarely seen in custom mo-

torcycles whilst the Hossack suspension system is only adopted in a few commercial

models. BMW marketed this suspension system as ”Duolever” and included it on its

high end sport-touring machines. On the other hand, Bultaco Motors has recently

launched two new electric commuter prototypes incorporating the ”Dual Link Evo-

lution” front suspension system, which is a Hossack system. None of the commercial

models adopting this solution are sport motorcycles, nevertheless some experimental

racing motorcycles have been developed and fitted with this system obtaining good

racing results. It is the case of the electric e-Moto created by LGN Tech Design,

from which Bultaco Motors takes its technology (Bultaco Motors 2015).

The system’s stability is a fundamental aspect on the motorcycle’s design in order

to guarantee the machine performance and, more importantly, the rider’s safety.

The machine’s stability can be greatly affected by modifications on the suspension

system. However, a lack of research about the alternative suspension systems effects

on the motorcycles’ stability was found in the literature. There exist some studies

on the performance and response of some alternative suspension systems including

the Hossack system. (Mavroudakis & Eberhard 2006) and (Watanabe & Sayers

2011) obtained promising results for this type of suspension system. Nevertheless,

stability analyses of sport motorcycle including either girder or Hossack systems

have not been found. One of the goals of this thesis has been to create realistic

mathematical models of a sport motorcycle including the girder and the Hossack

suspension systems and to investigate the potential advantages and disadvantages

that these types of systems may introduce in the sport machines from a kinematics

and dynamics point of view, with special attention to their effects on the motorcycle’s

stability.
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Another main goal of this research is to investigate the improvements on the

suspension’s overall performance that an interconnected suspension system could

introduce in the sports motorcycles. As it has been said before, the standard con-

figuration for all the commercial models consists of independent suspension systems

for the front and rear motorcycle ends. In the car industry, it is very common the

inclusion of anti-roll bars connecting the two wheels of the front and rear axle sepa-

rately. This method allows to obtain independent stiffness and damping properties

for bounce and roll movements that otherwise would be coupled. The connection

between the front and rear ends is not as common as the anti-roll bars, although

there exist some remarkable examples, such as the case of the historical Citroën

2CV. Nowadays, Creuat Suspension Technology (Creuat 2015) has developed a pas-

sive integral interconnected suspension system that connects the four wheels of a

car allowing higher levels of suspension settings and performance (see Fontdecaba i

Buj 2002).

In the two-wheeled vehicles field, the interconnection of front and rear ends

has not been explored except for a couple of individuals’ bicycle demonstrators.

Interesting results are presented in their respective web pages (RaerDesign 2015)

and (Toptrail 2015). In this thesis, the research of this new suspension configuration

is extended to the sport motorcycles case. It is organized in three chapters for three

different approaches to the interconnected suspension system dynamics.

The present research is intended to explore the promising features of three alter-

native suspension systems. All of them are passive systems easy to be implemented

in any motorcycle. Furthermore, they might be combined in order to enhance their

individual characteristics. Although further research work is required for the imple-

mentation of these systems on specific real motorcycle models, this thesis can be a

starting point for this research. It demonstrates the advantage that these systems

provide to the sport motorcycles and points out the issues that need to be carefully

considered in their design and development.

As a result of this research, some academic publications were made during the

time it was carried out: (Moreno-Ramı́rez et al. 2011), (Moreno-Ramı́rez et al.

2012b), (Moreno-Ramı́rez et al. 2012a), (Moreno-Ramı́rez et al. 2014), (Garćıa-

Fernández et al. 2014) and (Moreno-Ramı́rez & Tomas-Rodŕıguez 2014). Never-
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theless, by the time this thesis is completed, more relevant results are been written

into various journal articles.

1.2 Summary of objectives

With the aim of simplifying the understanding of the contents of this thesis, the

main goals and objectives can be summarized as follows:

a) Investigate two existing alternative front suspension methods for sport motorcy-

cles: girder and Hossack suspension systems.

b) Contribute to the current knowledge on motorcycle modelling by implementing,

in a widely accepted benchmark model (Sharp et al. 2004), the dynamics and

kinematics of the two alternative suspension systems under study.

c) Analyse the stability characteristics of a sport motorcycle fitted with either girder

or Hossack suspension systems.

d) Investigate a new arrangement in which front and rear suspensions become in-

terconnected through passive components.

e) Introduce the interconnected suspensions system as a new feature in the motor-

cycle’s existing model.

f) Study the possible improvements this new arrangement may imply in terms of

performance and stability.

g) Understand the effect of the interconnection system on the motorcycle’s linear

motion associated to its normal modes.

1.3 Structure of the thesis

Chapter 2 contains a thorough literature review of the state of the art in the field

of motorcycle dynamics and stability as well as alternative suspension systems.

Chapter 3 provides a description of the simulation model used to carry out the

research presented in this thesis as well as details of the modelling software used for

these purposes.

Chapter 4 provides an extensive description of the girder and Hossack suspension

systems. The systems’ modelling and their kinematic and dynamic behaviours are
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studied in this chapter as well as their effect on the motorcycle’s stability.

In Chapter 5, the interconnected suspension system is defined for a sport machine

with conventional mono-shock and telescopic fork suspensions. Then, following the

approach in (Fontdecaba i Buj 2002), two motorcycle’s reduced models are used in

order to investigate the interconnected suspension system configuration possibili-

ties in terms of bounce and pitch in-plane normal modes resonance frequency and

damping ratio.

In Chapter 6, the accuracy of the interconnected suspension system is studied

for different road inputs for a wide forward speed range. Optimal values of the in-

terconnection parameters for different possible configurations of the interconnected

suspension system are obtained, resulting in a significant suspension accuracy im-

provement for all of them. Finally, the system’s frequency response is investigated

taking into consideration the coupling between the front and rear wheels motion.

In Chapter 7, a stability analysis of the interconnected suspension system is car-

ried out for different running conditions. Special attention is paid to the motorcy-

cle’s normal modes evolution for different values of the interconnection parameters.

The normal modes are studied in terms of resonance frequency and damping ratio

through the motorcycle’s state space eigenvalues. On the other hand, the pattern

of motion evolution of each normal mode provided by the associated eigenvector is

investigated in order to understand how the motorcycle’s motion is affected by the

interconnected suspension.

Chapter 8 summarizes the conclusions obtained and gives an account of further

research lines.
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Chapter 2

Literature Review

This chapter is intended to provide a general view of the most relevant literature on

the different areas involved in the research presented in this thesis. The evolution of

motorcycle mathematical models, the theoretical and experimental results that have

configured the scientific knowledge on motorcycle stability and the study of motor-

cycle alternative suspension systems in the framework of modelling and stability

analysis are covered in chronological order.

Evolution of motorcycle mathematical modelling

Research on two-wheeled vehicles motion has been conducted for over a century.

One of the earliest works on bicycle dynamics is found in (Rankine 1869). In this

article, the author explained the constant lean angle under steady-cornering assum-

ing an inverted pendulum approximation for the bicycle model, although the formal

justification of this approximation was performed later by (Routh 1899). At the

same time (Whipple 1899) presented the first analysis of a bicycle self-stability con-

cept using the Routh-Hurwitz stability criterion to determine the stability regimes

of the proposed bicycle model. In his work, (Whipple 1899) presented the bicycle

linearised equations of motion under straight running conditions. Although these

equations contained two typographical errors, as (Hand 1988) pointed out, once

these errors are corrected, the equations presented by (Whipple 1899) correspond

with the accepted benchmark equations obtained by (Meijaard et al. 2007).

The early research on bicycle and motorcycle dynamics progressed slowly and

contradictory results were obtained at first. For those readers interested in detailed
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historical development of this topic, comprehensive reviews of the existing literature

can be found in (Meijaard et al. 2007) and (Limebeer & Sharp 2006).

A significant step forward in the motorcycle theoretical analysis was presented

by (Sharp 1971). In this paper, a Lagrangian analysis of a motorcycle-rider system

was performed by the author. The motorcycle model consisted in two rigid frames

articulated by an inclined steering axis where the rider was considered to be rigidly

attached to the rear frame. The tyres forces and moment were defined as linearly

dependent on the camber and the side-slip angles. A first order differential equation

that modelled the tyre relaxation properties was used to obtain the instantaneous

tyres forces and moments from the steady state angles. Yaw, roll, steer and lateral

motion were the four degrees of freedom allowed in the system. Only straight running

conditions with small perturbations were considered in this contribution. A linear

analysis was carried out, obtaining the eigenvalues of the linear system as functions

of the forward speed for a range of different constant speeds. Two different cases

regarding the steering degree of freedom were considered. One of them assumed the

steering to be locked. This is, no degree of freedom was allowed for the steering.

In this case, a ”fixed control” analysis was performed. In the other case, the front

frame was considered free to rotate about the steering axis allowing a ”free control”

analysis.

The predicted instability through the entire speed range under study made the

”fixed control” characteristic unattractive. However, the ”free control” analysis

returned relevant results. Important modes were predicted along the entire speed

range, being some of them oscillatory. These were ”capsize”, ”weave” and ”wobble”.

Capsize is a low speed instability experienced by the motorcycle falling onto its side.

It is easily controlled by the rider by means of the weight and steering torque. Weave

is a low frequency oscillating mode in which roll, yaw and steer degrees of freedom

are the most relevant involved motions. Its typical resonance frequency was found

to be about 2 Hz − 3 Hz, being well damped at moderate speeds whilst it becomes

less damped and possibly unstable at high speeds. The resonance frequency of

the wobble mode is higher, about 7 Hz − 9 Hz. The main degree of freedom

involved in this mode is the steering oscillation relative to the rear frame. In (Sharp

1971) the study of model predicted that wobble was highly damped for low speeds
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whilst it became less damped at higher speeds. This model represented minimum

requirements that led to qualitative correct predictions; in fact, the tyre relaxation

was an important new feature in the model that introduced the destabilization of

the wobble mode, approximating the theoretical results to the physical observations.

(Sharp 1971) used this model to demonstrate the impact of a steering damper

on the weave and wobble modes. An increase on the steering damper coefficient

stabilized the wobble mode whilst destabilized the weave mode and vice versa. The

author demonstrated the critical effect on the motorcycle stability of the steering

angle, the trail and the front frame moment of inertia about the steering axis. (Sharp

1971) obtained the stability characteristics for many other parameters variation with

results that qualitatively agreed with real motorcycle behaviour.

(Cooper 1974) investigated the effect of aerodynamic forces on a high-speed mo-

torcycle stability and performance. Several wind tunnel experiments were performed

for a wide range of motorcycle-rider configurations. Steady aerodynamic forces and

moments were measured on each of their three components for different values of con-

stant wind speed. The results suggest that the main aerodynamics influence comes

from drag, lift and pitching moment, which affects the tyre side forces through the

change produced in the tyre load changing with the speed. (Cooper 1974) included

these aerodynamic forces and moment in the (Sharp 1971) motorcycle dynamical

model in order to investigate the high speed weave stability problem. The stability

analysis performed by the author showed low weave damping at high speed when

unsteady aerodynamic forces were included. However, these results did not reveal

considerable changes in the wobble mode stability.

Aiming to investigate the components flexibility on the motorcycle lateral dy-

namics, (Sharp 1974) extended the original motorcycle model to introduce a tor-

sional degree of freedom between the rear wheel and the rear frame. This newly

considered motion was restrained by a linear spring and a linear damper. The

results showed that whilst the capsize and wobble modes remained relatively unaf-

fected, the weave mode damping would deteriorate at medium and high speeds for

reduced stiffness in the new degree of freedom.

(Jennings 1974) observed how the weave mode was modified under cornering

conditions and how the suspension systems were relevant in their initiation and
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maintenance. After several laboratory experiments and riding tests in the front and

rear suspension dampers, the author concluded that motorcycle suspension damping

characteristics do influence the system weave stability on cornering. It was also

noticed that as the speed was increased, a weave oscillation appeared for smaller

roll angles. Later, by means of mathematical analysis, (Sharp 1976a) demonstrated

the possible interaction between pitch and weave modes for high forward speeds

due to the proximity of the natural frequencies of both modes under this running

condition. Whilst the interactions between the in-plane and out-of-plane degrees of

freedom were weak for straight running condition, they became more relevant for

higher values of roll angle in steady-cornering.

(Sharp 1976b) was the first attempt to study the effect of the acceleration and

deceleration on the motorcycle dynamics. The author found some unsubstantiated

results due to the simple approach used in this work, where the acceleration was con-

sidered as a parameter in the equations of motion and the lateral and longitudinal

equations were defined as uncoupled. However, the stabilising effect of the accelera-

tion on the capsize mode became evident. This result suggested the main influence

on the capsize mode of a roll angle to yawing moment feedback term introduced by

the rear frame inertia.

(Roe & Thorpe 1976) pointed out the existing inconsistency between the the-

ory predictions and the observed wobble oscillations. The authors measured the

steer angle fluctuations on different machines ridden in free steering control, this

is, hands off. They observed that the wobble mode self-excitation became stronger

at midrange speeds whilst the theory at the time predicted higher speeds for this

instability to appear. The experiment showed that by the stiffening of the telescopic

forks and increasing the rear frame torsional stiffness, the vehicle stability could be

considerably improved.

The discrepancy between the theory and the observation regarding to the wobble

mode was explained by (Sharp & Alstead 1980). The motorcycle theoretical model

at that time assumed the chassis to be rigid. (Sharp & Alstead 1980) improved

the existing models by introducing frame flexibility and by using a more elaborated

tyre model based on the ”taught string” theory previously developed by (Sharp &

Jones 1977) which included considerations of tread width, longitudinal tread rubber
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distortion and tread mass gyroscopic effects. The tyre parameters were adjusted ac-

cording to the load and a parabolic approximation to the exact response was carried

out. The frame torsional flexibility was addressed under three different approaches.

In the first of them, torsional flexibility of the front frame about an axis parallel

to the steering axis was included in the model. The second configuration consisted

in the lateral flexibility of the wheel relative to the forks along the spindle axis.

Finally, the third of them included torsional flexibility at the steering head about an

axis normal to the steering axis and belonging to the motorcycle symmetry plane.

The new degree of freedom motion was restrained by linear springs and damper in

all cases. The stability analyses of four different large production motorcycle mod-

els were performed by obtaining the linear models eigenvalues for straight running

conditions. The two first frame flexibility modelling proposals did not return sat-

isfactory results able to predict wobble mode behaviour. However, the rear frame

torsional flexibility about an axis perpendicular to the steering axle obtained the

required results, for which the wobble mode damping was reduced at midrange for-

ward speeds and increased at higher speeds, without affecting its natural frequency

in a strong manner. Also, the weave mode damping at higher speeds was slightly

reduced, becoming closer to the experimental observations. In the light of those

results, it was suggested that higher values of torsional stiffness would increase the

motorcycle stability. The main results of this work were independently confirmed

by (Splerings 1981).

By static and dynamic loading at the wheel rim of a large conventional road mo-

torcycle, (Giles & Sharp 1983) obtained its rear and front frame stiffness properties.

A sinusoidally driven shaker introduced dynamic loads on the frame. The deflection

of the chassis was obtained by using an accelerometer and the frequency response

information was obtained through the electronic data processing, which returns a

single resonance frequency for the front frame about 12 Hz. It was concluded that the

lumped mass assumption was correct for the frame flexibility modelling. However,

the location of the twist axis at the steering head of the front frame and the value of

the torsional stiffness predicted by the static and dynamic loading were remarkably

different. Regarding to theoretical wobble mode prediction, these differences were

shown to be very significant.
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Moving forward in the motorcycle stability analysis and building on his previ-

ous work (Koenen & Pacejka 1980) and (Koenen & Pacejka 1982), (Koenen 1983)

developed a mathematical model which considered small perturbations about the

straight running conditions but also about the steady cornering conditions. The

author calculated the eigenvalues of the small perturbation linearised motorcycle

model and obtained consistent results for straight running conditions with the con-

ventional knowledge of that time. Whilst weave and wobble modes were predicted

varying with speed, the front and rear suspension pitch and wheel hop modes de-

pended very slightly on it. However, for the steady cornering conditions, it was

predicted that the stability of the cornering weave mode would be hardly affected if

the suspension dampers were removed. This results were contrary to the previous

experiences of (Jennings 1974).

At that time, a considerably number of tyres models were available. These mod-

els can be categorized in three groups: 1) physically founded models which require

computation for their solution. For example, the multi-radial model developed by

(Sharp & El-Nashar 1986) and (Sharp 1992). 2) Sufficiently simplified physically

based models which allow analytical solution, such as the brush model described in

(Fujioka & Goda 1995). 3) Formula based empirical models as described in (Bakker

et al. 1989), (Pacejka & Bakker 1992) and (Pacejka & Besselink 1997).

The more relevant and widely used tyre model nowadays falls in the third cate-

gory. It is the so called Magic Formula model and it matches a real tyre behaviour

with high accuracy. The steady state longitudinal force, side force, aligning moment

and overturning moment are described as functions of longitudinal slip, side-slip,

camber angle and normal load. The model parameters are constrained to prevent

unrealistic behaviour in any operating condition. The other two models will not be

considered, however, the interested reader is referred to (Pacejka & Sharp 1991) for

a detailed review.

The magic formula model was developed representing a car tyre behaviour, where

side-slip is the dominant input. For motorcycles, large camber angles are common.

Aiming to overcome this deficiency, (de Vries & Pacejka 1998) updated the origi-

nal equations to make them suitable for the motorcycle case. By means of a tyre

test trailer, the authors performed a series of measurements on public roads. They
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acquired steady state forces and moments for front and rear tyres for different side-

slip angles, camber angles and normal load values. The data obtained were used for

identification of the different parameters. Physically correct representations outside

the measured data range were also sought. Two different dynamic models were con-

sidered in order to process the results: one of them was a first order relaxation model

consistent with the ”taut string” theory. The other was a rigid ring model which

was found to describe very accurately the tyre response. Using velocity independent

tyre parameters only, it provides results with a high precision for a greater range of

frequencies than for the relaxation model. Magic formula equations for motorcycle

tyres were further improved in (Tezuka et al. 2001) and (Pacejka 2002).

By this time, several computer softwares for assisted mechanical modelling were

already available. One of them was AutoSim. This tool was developed by Mechanical

Simulation Corporation. It was a symbolic code generation language designed for

multi-body modelling and built on top of the artificial intelligence standardised

language Common LISP (Steele 1990). It follows a tree topology for the multi-body

system description, so that the constituent system bodies were arranged in a parental

structure (Sayers 1991). The method to obtain the equations of motion is based

on (Kane & Levinson 1983) and (Kane & Levinson 1985), which is an alternative

statement of the Jourdain’s virtual power principle. Compared to the Lagrange’s

energy-based method, the Kane’s equations becomes a more efficient method as it

needs significantly less operations to obtain the equations of motion. The AutoSim

package became a powerful and efficient tool for the multi-body modelling. Its input

was in the form of a high level intuitive language whilst its outputs could be either

a low-level computer language code, such as FORTRAN or C, ready to compile and

solve the equations to obtain motion time histories, or a MATLAB M-file containing

symbolic state-space description for linear analysis in the form of matrices A, B, C

and D. AutoSim evolved to the newer VehicleSim software suite that keeps a high

backwards compatibility. Its core features are maintained but the whole tool has

been widely improved with the addition of external advanced features, such as the

Simulink compatibility or the VS Browser. It consists in a graphical user interface

built in different solvers that allows the end user to run the different simulations with

different external inputs and events directly from it. VehicleSim is the multi-body
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modelling tool used in this thesis.

(Sharp & Limebeer 2001) used AutoSim to reproduce the (Koenen 1983) motor-

cycle model as accurate as possible using the same parameters values. Equivalent

straight running and steady cornering root-loci were calculated. The predictions ob-

tained were not the same but they were qualitatively equivalent to those in (Koenen

1983).

(Sharp & Limebeer 2001) investigated the inconsistency between the experimen-

tal measurement obtained by (Jennings 1974) and (Weir & Zellner 1979) and the

(Koenen 1983) prediction regarding to the negligible influence of the suspension

damping on the weave mode under steady cornering conditions. Root-loci for sus-

pension damping variation under cornering were calculated obtaining a significant

relevance of this parameter on the weave mode. This work pointed out the need

for a computer assisted method for the analysis of the, each time more complex,

motorcycle models and reveals a possible error in (Koenen 1983) calculations. In-

deed, a variable geometry active rear suspension was demonstrated to stabilise the

cornering weave (Sharp 2000).

(Cossalter & Lot 2002) implemented an eleven degrees of freedom nonlinear mo-

torcycle model in a Fortran code named Fatbike. An original tire model which took

into account the tires geometric shape and the elastic deformation of its carcasses

was developed, describing the tire dynamics in a similar manner than the existing

relaxation models. The approach followed by the authors allowed to obtain simple

equations of motion based on the natural coordinates. A set of fully cartesian co-

ordinates were used to describe each rigid body. Then, the links between the rigid

bodies are described with algebraic equations. Although with this approach the

coordinates were redundant, it allowed to reduce the complexity of the equation of

motion. As a result, the FastBike performance becomes fast enough to run real time

simulations, becoming an adequate engine for motorcycle simulators. Real experi-

ments for slalom and lane change manoeuvres were carried out and then compared

to the equivalent simulations using the FastBike code. The results showed a good

agreement between both numerical and experimental tests.
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Motorcycle dynamics and stability

Once the computer assisted modelling tools became a standard and the mathemat-

ical models reach an adequate fidelity, the research on motorcycle dynamics and

stability could move forward. External events, experimental motorcycle designs

and, in general, different conditions from the classic steady cornering and constant

forward speed could be now investigated.

(Limebeer et al. 2001) used the model developed by (Sharp & Limebeer 2001)

to revisit motorcycle stability under acceleration and braking firstly presented by

(Sharp 1976b). The authors proposed that the stability properties of an accel-

erating/braking motorcycle are equivalent to those of a constant speed machine

running uphill/downhill. They gave a summary of some of the problems that ap-

pear with time-varying systems in classical control theory and numerically showed

that both the constant speed motorcycle running uphill/downhill eigenvalues and

the frozen-time eigenvalues of the accelerating/braking machine can qualitatively

predict the transient of the accelerating/braking motorcycle when it is perturbed.

These results demonstrated qualitatively the acceleration/braking action effects on

motorcycle stability, coinciding with recorded motorcyclists’ experience.

(Limebeer et al. 2002) investigated the road undulations effects on the motorcycle

stability with special emphasis on cornering conditions and on the mechanism by

which the road undulations can affect the motorcycle lateral dynamics. The coupling

terms between the in-plane and out-of-plane dynamics allow an energy transmission

from the road to the out-of-plane degrees of freedom. So that a perturbation in

the road profile can induce steering oscillations. It was found that both wobble

and front hope modes resonance frequencies are mostly dominated by the front

wheel road input and an adequate design of the front end can address some of the

difficulties experienced with these modes. Regarding to the weave mode, it was

found that both front and rear wheels’ road inputs affect in a similar manner to

its resonance frequency and stability problems related to this mode appear more

difficult to be resolved.

(Evangelou 2003) used AutoSim to develop both linear and nonlinear models for

the hand derived motorcycle models presented in (Sharp 1971) and (Sharp 1994).

Then, a more comprehensive model, based on previous work (Sharp & Limebeer
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2001) was extended. Using the advanced model, the author investigated the accel-

eration and braking on motorcycle stability. The result confirmed those obtained

by (Limebeer et al. 2001) showing the equivalence between uphill/downhill and ac-

celeration/braking. Furthermore, the wobble mode was proved to be significantly

destabilised when the motorcycle brakes on a level surface or descends an incline at

constant speed, whilst it becomes more stable for opposite running conditions, this

is when the machine accelerates or ascends an incline. Regarding to the weave mode,

the inclines, acceleration and deceleration do not present significant influence on its

damping and frequency. Finally, (Evangelou 2003) improved further the advanced

motorcycle model including a more precise tyre modelling based on Magic Formula

methods combined with modern tyre data. A more realistic tyre-road contact ge-

ometry, parameters describing a modern high performance motorcycles and other

features of contemporary machines designs were also included.

(Sharp et al. 2004) improved the advanced model presented by (Evangelou 2003)

and set up a high fidelity mathematical model of a sport motorcycle dynamics based

on the parameters of a Suzuki GSX-R1000 motorcycle. The new model is used for

steady turning, stability, design parameter sensitivity and response to road forcing

calculations. The predictions of this model are in agreement with observations

of motorcycle behaviour, suggesting that, despite improvements in frame designs

over recent years, the frame flexibility represents an important study field in the

motorcycle dynamics.

(Evangelou et al. 2006) presented a framework to design steering passive com-

pensators to stabilize the wobble and weave modes simultaneously. By means of

classical passive filter techniques, the authors designed and tested several compen-

sator designs with optimized parameters. To do so, the force-velocity to current-

voltage pairing was introduced to obtain an electro-mechanical correspondence be-

tween resistor, inductors and capacitors to dampers, springs and inerters. This last

component was developed by (Smith 2002) and became an essential component in

this work.

The road camber influence on the motorcycle stability was investigated by (Evan-

gelou et al. 2008) by means of the GSX-R1000 motorcycle model developed by (Sharp

et al. 2004). In order to obtain the steady-state running conditions, a circular cone
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was used as road surface. This allows the vehicle to keep a constant forward speed

and roll angle, being the road camber constant. The results showed that at low

speed both weave and wobble modes stabilities reach their maximums when the

motorcycle symmetry plane and the road surface are perpendicular. However, for

high speeds the opposite behaviour was found. The weave and wobble modes sta-

bility increased for higher values of the motorcycle roll angle relative to the road

plane. And for those running conditions in which the machine was perpendicular

to the road, the damping of these modes was minimized. Therefore, the positive

road camber usually adopted in the road designs to enhance the friction limit of

the four-wheeled vehicles and to aid the rain drainage becomes detrimental for the

motorcycles stability.

An example of the high relevance achieved by the computer assisted multi-body

models in the motorcycle dynamics research can be appreciated in (Cossalter et al.

2008). The chatter of motorcycles consists in a vibration of the front and rear un-

sprung masses during the machine braking manoeuvres with a resonance frequency

about 17 Hz − 22 Hz, depending on the motorcycle characteristics. In this paper

the authors could study the chatter phenomenon from experimental evidences but

also from a numerical point of view. This led on to a better understanding of this

phenomenon and also allowed to propose a physical interpretation of it.

Other oscillatory phenomenon that can affect the motorcycle stability is the burst

of oscillations appearing under high-speed cornering and firm-acceleration conditions

as a consequence of wobble and weave modes interaction. Whilst the wobble mode

frequency decreases under these conditions, the weave mode frequency increases and

a destabilizing interaction can occur at certain point. (Evangelou et al. 2010) and

(Evangelou et al. 2012) studied this source of instabilities and proposed a method to

suppress them by means of a mechanical compensator. Assuming that the bursting

occurs on a time scale over which the variation in the speed could be neglected, the

authors utilized time invariant models with constant motorcycle forward speed in

the design process of the proposed compensator. In order to maintain the constant

speed requirement for the time invariant model, the influences of the acceleration

and braking in the system were modelled as d’Alambert inertial forces applied to

the mass centre of each of the bodies constituting the motorcycle model. The design
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and optimization of the compensator was made from robust control theory in order

to address the inevitable uncertainties and nonlinearities affecting the machine local

behaviour. It was found that the resulting compensator was a simple mechanical

network comprising a linear spring in series with a damper.

Alternative suspension systems

A high fidelity motorcycle model combined with computer assisted modelling and nu-

merical simulation tools bring the possibility of testing new ideas, concepts and mo-

torcycle arrangements before a more resources-demanding prototyping stage. Sev-

eral authors have taken advantage of these tools obtaining satisfactory results in

their research.

(Mavroudakis & Eberhard 2006) investigated a number of alternative motorcy-

cle’s front suspension systems modelled as a highly detailed multi-body system. The

suspension systems were compared in terms of kinematics and dynamics in order

to improve the insight into the aspects that need to be considered if one of these

alternative systems is to be adopted in an eventual motorcycle design. The pa-

per included four suspension systems alternative to the conventional telescopic fork

and presented their responses to different motorcycle manoeuvres, highlighting the

performance potential of such systems. However, stability analyses of the different

suspension arrangement were not performed in this work.

Following the ideas in (Sharp 2000), (Evangelou 2010) proposed a variable ge-

ometry active rear suspension system to control the weave oscillations on sport

motorcycle operating at high speeds. The design analysis makes use of the pre-

viously used model based on the Suzuki GSX-R1000 motorcycle. Its conventional

monoshock rear suspension arrangement was modified and extended allowing the

variations of the leverage ratio between the spring damper unit and rear wheel

vertical displacement. An actuator varies the geometry by controlling the displace-

ment between the moving parts related to the shock-absorber junction. Classical

Bode-Nyquist frequency response ideas were used to develop the control strategy

and an integrator anti-windup scheme was introduced in the system to satisfy the

limited displacement space, and to limit the maximum actuator force and power

requirements. So that a feasible device of practical dimensions could be designed.
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Simulation results demonstrated that significant improvements could be obtained

with this kind of actuators.

BikeSim is a VehicleSim tool (formerly named AutoSim) specifically designed to

simulate the dynamic behaviour of motorcycles whose mathematical model is based

on a core model developed and validated by Prof. Robin Sharp, Prof. David Lime-

beer and Dr. Simos Evangelou, at Imperial College, London, using the AutoSim

code generator. (Watanabe & Sayers 2011) described the modelling methods used

in the commercial BikeSim simulation package to represent alternative front and rear

suspension motorcycle arrangements. More precisely, these alternative systems cor-

responded to the Duolever and Paralever BMW’s suspensions designs. The Duolever

is a Hossack front suspension system redesigned and re-branded by BMW, whilst

the Paralever is the commercial name of its four-bar linkage rear suspension system.

Different simulations for braking, acceleration, and cornering manoeuvres were per-

formed comparing the dynamical responses of the conventional and the multi-link

suspension systems. The results showed that alternative suspension systems could

provide advantages over conventional suspension systems. Similar comparisons were

made with a chain-drive powertrain and a shaft-drive powertrain, which demon-

strated the need for a multi-link rear suspension system when a shaft-drive is used

for the powertrain. Although the VehicleSim tool presents exceptional capabilities in

terms of model linearisation and state space representation and a high compatibility

with scientific software such Matlab-Simulink, a stability analysis is not performed

in this paper.

Finally, it is important to mention the work done by (Fontdecaba i Buj 2002).

Although this work was orientated to four-wheeled vehicles, the approach followed

by the author in the study of an interconnected suspension system represents the

starting point for a part of the research developed in the current doctoral thesis.

(Fontdecaba i Buj 2002) presented an interconnected suspension system for four-

wheeled vehicles based on passive components. The author first exposed the theory

behind the interconnection system by means of a four degrees of freedom car model

for which the wheel masses were neglected and whose main general motions were

bounce, pitch, roll and axle crossing. These motions were defined as functions of

the individual wheel displacement, thus a change of basis on the model degrees of
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freedom allowed to obtain the adequate individual terms for each wheel suspension

system that could define the general motions independently. This was possible

thanks to the interconnection terms in the dynamics equations between the four

wheel suspension forces. Experimental tests were conducted by an independent

third party company on a 1990 Range Rover model fitted with an interconnected

suspension system to prove that the free axle crossing configuration proposed by the

theory became an advantage in terms of traction, comfort and performance of the

whole suspension system. The results also highlighted the two major improvements

of this system. On one hand, the better weight distribution on static and dynamic

conditions reduced the effect of road irregularities on the vehicle steering control.

On the other hand, the availability of new parameters allowed configuring the four

normal modes stiffness and damping characteristics independently. However, as it

will be shown in Chapter 5, the introduction of the wheels degrees of freedom into

the interconnected suspension models, increases the complexity of the normal modes

and make the independent tuning of these modes to be a complicated task.
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Chapter 3

Description of the Motorcycle

Model

The different mathematical models derived in this thesis for the analysis of alter-

native suspension systems are modifications of the model presented in (Sharp et al.

2004). This mathematical model was built during several years of research under-

pinned by wide literature and experimental data. In Chapter 2 it was introduced

the evolution of the previous motorcycle models, which explained different phe-

nomenologies of two-wheeled vehicles dynamics but presented some lacks. (Sharp

et al. 2004) developed a consistent model whose predictions closely follow the re-

sults obtained in numerous experiments carried out within the motorcycle dynamics

field and which was able to address the contradictions found in previous models.

This model has been extensively used in the past in several contributions such as

(Shaeri et al. 2004), (Evangelou et al. 2006), (Sharp 2007), (Evangelou et al. 2008),

(Evangelou et al. 2010) and (Sharp 2012). Furthermore, it has been widely tested

and adopted by the industry. BikeSim software is a motorcycle dynamics simulator

which is based on this model and it is used by a large number of manufacturers

to obtain high fidelity prediction on the dynamics of their machines (Mechanical

Simulation Corporation 2015).

In order to obtain a high-fidelity representation of the motorcycle dynamics,

(Sharp et al. 2004) used in their model the parameters of a Suzuki GSX-R1000 K1

motorcycle, which is the superbike manufactured by Suzuki in 2001 (see Fig. 3.1).

With 170 kg of mass, powered by an in-line four cylinder and four stroke engine with
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988 cc able to deliver 160 hp, this machine is a good representative of contemporary

commercial high performance motorcycles.

Figure 3.1: GSX-R1000 motorcycle. www.gsxr.es

3.1 Baseline model

The motorcycle consists of seven bodies: rear wheel, swinging arm, main frame

(comprising rider’s lower body, engine and chassis), rider’s upper-body, steering

frame, telescopic fork suspension and front wheel. It involves 13 degrees of freedom:

three rotational and three translational for the main frame, two rotational for the

wheels spin, one rotational for the swinging arm, one rotational for the rider’s upper

body, one rotational for the frame flexibility, one rotational for the steering body

and one translational for the front suspension fork. What follows in this section is

a description of the model developed by (Sharp et al. 2004).

3.1.1 Parametric description

A precise parametric description of a real motorcycle was preformed in (Sharp et al.

2004). A Suzuki GSX-R1000 was acquired and its key geometry points and the

dynamical properties of the different motorcycle parts were obtained in a process

combining the technical information in the workshop manual with the direct mea-

surements of the main motorcycle parts mechanical properties, which were disas-
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Figure 3.2: GSX-R1000 geometrical description. Blue circles are plotted on the bodies’
centre of masses. The diameters are proportional to the corresponding bodies’ masses

Point Description

P1 Aerodynamic reference point.

P2 Twist axis joint with rear frame.

P3 Centre of mass of front frame steer body.

P4 Joint between front suspension and steer bodies.

P5 Centre of mass of front suspension body.

P6 Centre of mass and attachment point of the front wheel.

P7 Centre of mass and attachment point of the rear wheel.

P8 Centre of mass of the main frame.

P9 Attachment point for rider on rear frame.

P10 Centre of mass of the rider’s upper body.

P11 Point of attachment for swinging arm onto main frame.

P14 Centre of mass of swing arm.

Table 3.1: GSX-R1000 geometrical model main points.
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sembled from it to individually test them. The elastic properties of the suspension

elements were tested in a standard dynamic materials testing machine obtaining

the stiffness and damping parameters values of the corresponding elastic elements.

Being these the front and rear shock absorbers and the steering damper unit. On

the other hand, the main frame’s torsional stiffness, between the steering head and

the power unit, was estimated from previous works, (Giles & Sharp 1983) and (Koe-

nen 1983), based on different motorcycles models. The flexibility is modelled as a

rotation degree of freedom restrained by a parallel spring/damper system between

the front and the rear frames about the twist axis. This axis is contained in the

motorcycle’s symmetry plane, perpendicular to the steering axis and passes through

the joining points of the steer body.

The rider’s upper body has a degree of freedom relative to the main frame

rotating about its x axis, whilst the lower body is considered as part of the main

frame. A parallel spring/damper system restraints the upper body. Their stiffness

and damping coefficients are obtained from the experimental results of (Nishimi

et al. 1985), by identifying the rider’s stiffness and damping parameters in forced

vibration on a motorcycle frame. The three aerodynamic coefficients (drag, lift and

pitch) are obtained from wind tunnel testing data of a Triumph motorcycle which

presented similar style and dimensions to the GSX-R1000 (Sharp 2001).

Figure 3.3: GSX-R1000 parental structure.

Figure 3.2 represents the main geometric points and axes in the motorcycle’s

geometry. The centre of mass of each of the seven constituent bodies is represented
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as a blue circle with a diameter proportional to its mass. Table 3.1 contains the

indexes of these points. In terms of multi-body systems, the motorcycle can be

modelled with the parental structure shown in Fig. 3.3.

3.1.2 Tyres modelling

The tires modelling is a fundamental part on the motorcycle modelling process.

Following the work presented by (Cossalter et al. 1999), (Cossalter & Lot 2002)

and (Cossalter et al. 2002), the (Sharp et al. 2004) model includes tyres width in

their descriptions – contrary to the models existing by that time where the tyres

were commonly assumed as thin. In the wide tyre model, the lateral migration of

the contact point occurs automatically, so that the overturning moment appears as

a consequence of that displacement, whilst a realistic self aligning moment results

from the application of the longitudinal forces to the cambered tyre.

(Sharp et al. 2004) modelled the tyres forces applying Pacejka’s ”Magic For-

mula” (Pacejka 2002). This is a set of parametric equations relating load, slip ratio

(longitudinal slip), slip angle and camber angle to longitudinal force, side force and

aligning moment. Very limited parameter values were found in the literature, but

taking advantage of the amount of relevant experimental data available, the equa-

tion parameters could be identified. The steady-state force and moment system for

any realistic operating condition can be calculated with a complete set of parameters

values for a given tyre. To determine a full set of these parameters for modern front

and rear high performance motorcycle tyres, the already available data such those

on (de Vries & Pacejka 1998) and (Pacejka 2002) were used in (Sharp et al. 2004).

Different optimization processes were used to improve iteratively the elements of a

starting vector of parameters appearing in the equations, which finally return close

predictions to the data measured.

3.1.3 Monoshock rear suspension

For the GSX-R1000 motorcycle, a single spring-damper unit with a mechanical

linkage connection to the swinging arm is used as rear suspension system. Figure 3.4a

shows a sketch with the geometric description of this monoshock system, whilst

Fig. 3.4b shows a 3D model of the assembly. It involves a closed kinematic loop
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(a) (b)

Figure 3.4: a) Monoshock geometrical description. b) Monoshock 3D model.

that provides variable stiffness and damping responses depending on the swinging

arm position. (Sharp et al. 2004) performed a geometric pre-analysis of this system

and coded the resulting equations into the model programming. Those equations

must be solved in-line during the simulations. A resulting rear suspension moment

is applied to the swinging arm reacting on the main frame depending on the rotated

angle and the rotational speed.

3.1.4 Forward speed and roll angle controllers

Forward speed controller

In the (Sharp et al. 2004) model the forward speed is maintained by a driving torque

applied to the rear wheel and reacting on the main frame. This torque is modelled

as a proportional-integral (PI ) controller on the speed error with fixed gains. This

representation corresponds to a shaft drive system. However, the baseline motor-

cycle model uses a chain drive to transmit the torque to the rear wheel. This can

represent considerable differences on the machine dynamics under heavy acceleration

manoeuvres. Nevertheless, these kind of manoeuvres are not considered neither in

(Sharp et al. 2004) nor in this thesis and little differences between the two transmis-

sion systems appear on the different manoeuvres under study in both works. In the

baseline model, the target forward speed was provided as data in a table function,

with time being the independent variable. However, in this thesis this model has
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been modified to support a speed reference depending on only two parameters: a

constant initial speed and a linear speed ratio corresponding to the acceleration. In

this way, a linear function of the forward speed with respect of time is obtained.

Roll angle controller

For some manoeuvres, the motorcycle is not self-stable; in order to stabilise the

machine in such situations, (Sharp et al. 2004) implemented a roll angle feedback

controller. This allows to obtain different steady turning equilibrium states through

simple simulations, which will not be stable without the roll angle controller. The

controller developed was a proportional-integral-derivative (PID) feedback of mo-

torcycle lean angle error to steering torque. The lean angle target is set by an initial

value and a constant change rate. Thus, the target lean angle is a ramp function

of time which can be easily modified. The PID gains are defined as speed adaptive

in order to achieve an effective stabilisation of the motorcycle for the difficult cases

involving very low or very high speeds. Finally, the steering control torque is applied

to the steer body reacting on the rider’s upper body.

3.1.5 Braking system

A full braking system is modelled in (Sharp et al. 2004) as two torques that oppose

the wheels’ spin. The front wheel braking torque reacts to the suspension body and

is proportional to the front braking force applied by the rider. The rear wheel brak-

ing torque reacts on the swinging arm and is proportional to the rear braking force

applied by the rider. The relations that convert both rider braking forces into the

wheels braking torques are mathematically calculated from the braking system: this

is, hydraulic circuit, braking pads areas, friction coefficients and braking disk diam-

eters. The desired front/rear braking distribution is modelled as two rider braking

forces defined as constant inputs that the user must provide during simulation if a

braking manoeuvre is performed.

3.1.6 Road input

In the (Sharp et al. 2004) model, the road inputs are defined as vertical compres-

sions of the tyres’ carcass produced by a road elevation and they do not take into
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account the contact point longitudinal displacement that an eventual step input may

produce. In order to simulate a sinusoidal road perturbation, the model includes

a built-in sinusoidal function which acts as tyres’ inputs. This capability was first

introduced in (Limebeer et al. 2002) and exploited further in (Shaeri et al. 2004)

where road undulations influence on motorcycle stability was investigated. The si-

nusoidal function can be activated/deactivated and programmed with the desired

frequency and amplitude characteristics.

3.2 Additional features

In the present work some capabilities which extend the (Sharp et al. 2004) model

are needed in order to run the adequate simulations. (Sharp et al. 2004) model

was built taking advantage of the Autosim multi-body software developed by (Me-

chanical Simulation Corporation 2015). This software has evolved to an even more

powerful tool called VehicleSim. Nowadays, the modifications introduced in Vehi-

clesim software allow new capabilities that have been exploited to perform three

main modifications, regarding to the road inputs and the braking control, as part

of the work of this thesis.

3.2.1 Modifications on the braking system

In Chapter 4 two alternative front suspension systems are tested on the GSX-R1000

baseline model. Apart from these motorcycle’s front end modifications, which are

explained in chapter 4, other common parts have been modified. The first of them

is the braking system. In order to study the response of the new suspension systems

and their anti-dive properties, a braking system capable of delivering a constant

deceleration is needed. For this purpose, the speed reference input is now defined

depending on two parameters: the initial speed and the acceleration. With these

two constant inputs, a speed ramp function is obtained. The driving torque control

remains as described in section 3.1.5 whilst the braking system is slightly modified

following the work in (Evangelou 2003). The rider’s braking forces inputs are sub-

stituted by a braking distribution ratio that the user may set for each simulation.
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The braking torque is now calculated by the same PI controller than the driving

torque. If the acceleration is set as negative, the driving torque is switched off,

whilst the braking torques are applied, depending on the braking distribution ratio,

to the front and rear wheels reacting in the front suspension body and the swinging

arm respectively. In the case that the acceleration is set as positive, the braking

torques are switched off and the speed controller output is applied to the rear wheel

through the driving torque reacting on the chassis (main body) in a similar manner

than in the baseline model.

3.2.2 Modifications on the road input

The second baseline model modification corresponds to the road input on the tyres.

Previously, these inputs were defined as a vertical compression of the tyre carcass

introduced by a built-in sinusoidal function. Now, taking advantage of VS Browser

(the simulation tool included in Vehiclesim) capabilities, this function can be sub-

stituted by two variables (one for each wheel, front and rear), whose values are read

from an external table by the solver program during the simulation. The road profile

can be externally designed and imported into the final simulation. In Chapter 6,

the motorcycle model is tested through a variable sinusoidal road profile specifically

designed in order to have a constant frequency density. The road profile is designed

in Matlab as a two-dimensional table containing distances and heights. Then, it is

exported as a plain-text comma-separated values file (csv file) to the VS Browser,

which takes from this file the value of the height for each of the wheels input vari-

ables depending on its longitudinal position for each simulation’s time step. Taking

advantage of this modification, an optimized road profile could be used for the sim-

ulations.

3.2.3 Two dimensional step bump input

The third modification introduced by this thesis into the baseline motorcycle model,

is also related to the road input modelling. In this case, the objective is to consider

the effect of the longitudinal contact point migration produced by a step bump.

In Chapter 4 and Chapter 6 the different suspension systems are tested in straight

forward running simulations passing through a step bump with a considerable height.
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(a) (b) (c)

Figure 3.5: Motorcycle front wheel passing through a step bump in three different stages.

Several strategies are considered to find the best computing approximation. It

was found that the most natural manner to reproduce a road step bump into the

model was by introducing additional radial forces applied to the centre of the wheels

in parallel to the forces generated in the tyres carcasses by the original model. In

this context, two complementary descriptions of the step are needed as inputs to

correctly track its position. The first input is a ramp table of coordinates (x, z)

whose values allow to calculate the distance from the centre of the wheels to the

step corner. The height of the ramp has the same value as the step height (hst),

whilst the ramp horizontal distance (lst) can be any value larger than the rear tyre

radius (rr), which is the largest of both tyres. The second input is a pair of constants

containing the lst and the hst values. The input table is externally introduced during

the simulation, the equation in the solver need these values to correctly read the

table’s information. The table’s values are plotted in Fig. 3.5 in magenta overlapped

to the actual step bump which is represented in solid black. The projection of the

front wheel centre on the road, used to read the table values for its corresponding

position in the x direction, is plotted with dashed green lines. Finally, the distance

between the wheel centre and the step corner (dsf ) is represented by a dashed blue

line. In order to simplify the description of this feature, only the front wheel is

explained here, nevertheless the same development can be applied to the rear wheel.

If the step corner is located at the global coordinates (xb, zb), where the zb coor-

dinate takes the value of the step height (hst), then the input table must take the

values on Table 3.2. During the simulation, the centre of the wheel is dynamically

tracked. The z coordinates of the input ramp table is read for the x coordinates of
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x z

(−∞, xb − lst) 0

[xb − lst, xb] (x− xb + lst) · hstlst
(xb,+∞) hst

Table 3.2: Input values table for the two dimensional step bump description.

the wheel (xwf ) and is stored in roadf variable to calculate the step corner position

relative to the wheel’s centre by means of Eq. 3.1 and Eq. 3.2.

xsf = xfw + lst − roadf ·
lst
hst

(3.1)

zsf = hst (3.2)

Whilst xsf value is the horizontal relative distance from the front wheel centre to

the step corner, the value of zsf is the step corner z coordinates which is constant.

The absolute x coordinate of the front wheel is xfw. With these coordinates the

relative distance between the wheel’s centre and the step corner (dsf ) is computed.

Note that for the interval (−∞, xb− lst] the relative coordinates of the step take the

values ((xfw + lst, 0). On the other hand, for the interval [xb,+∞) the coordinates

correspond to (xfw, hst). The force produced by the carcass compression (Ftf ) is

calculated by Eq. 3.3, which represents the Hook’s law applied to the existing length

difference between the nominal tyre radius and the distance dsf . The front tyre’s

stiffness coefficient is ktf . The tyres’ elastic force only appears under the carcass

compression. However, when the distance dsf is larger than the tyre radius, the

computed force Ftf is positive. In order to properly model this force, a discontinuity

must be added to the model, so that the force magnitude can only achieve either

zero or negative values.

Ftf =

 −ktf · (rf − dsf ) : dsf < rf

0 : dsf ≥ rf
(3.3)

Figure 3.5 represents the three different stages in which the wheel passes through

the road step bump. In Fig. 3.5a the wheel’s centre has gone through the first table
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values different from zero. The distance to the step corner is larger than the wheel

radius (rf ) and thus, the force appearing on the tyre is the normal load provided

by the nominal force calculations and plotted with a red arrow. In Fig. 3.5b, the

tyre has impacted with the step corner, dsf is shorter than the wheel’s radius and,

consequently, the corresponding radial force is applied to the wheel’s centre. The

figure shows the force’s vertical and horizontal components with red arrows. In

Fig. 3.5c the wheel’s centre has overcome the step corner. Equation 3.1 returns a

step corner x coordinate value which is equal to the wheel’s centre x coordinate for

any position of the wheel after this point. Consequently, the horizontal component of

the radial force becomes zero. Only the wheel vertical displacements will affect this

force. At this last stage, the radial force is equal to the normal load provided by the

tyre nominal force calculations. Being the two forces (the nominal model carcass

load and the new step radial force) applied in parallel, the nominal normal load

becomes zero as the tyre is separated from the nominal ground. And the resultant

force, represented by the red arrow, is now that corresponding to the radial force

applied to the wheel’s centre.

This road step bump model does not consider manoeuvres in which the motor-

cycle is leant. It is only suitable for straight forward running simulations in which

this kind of bumps are tested. However, it introduces a higher level of accuracy in

the road step bump description compared to the former description in which the

longitudinal forces were not considered.

3.3 Reduced models

The GSX-R1000 mathematical model is a three dimensional high fidelity model able

to reproduce realistic motorcycle dynamics. However, for some part of this work, a

reduced model is needed in order to study the motorcycle’s in-plane dynamics with

approximate analytic equations. This is the case of Chapter 5, where the front and

rear suspensions interconnection are studied through two reduced in-plane models.

One of them is a uni-body model with two degrees of freedom, vertical displacement

and rotation about y axis. The other one is a four degrees of freedom model including

the main frame and the two wheels.

Figure 3.6 shows a sketch of a motorcycle reduced model composed by three
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Figure 3.6: Motorcycle’s reduced model with four degrees of freedom.

bodies and four degrees of freedom. These are the front and rear wheels verti-

cal displacements, the main frame vertical displacement and the main frame pitch

rotation.

Parameter Value Units Description

mm 208.80 kg Main body mass.

Im 42.35 kgm2 Main body inertia moment.

mfw 19.15 kg Front wheel mass.

mfw 17.61 kg Rear wheel mass.

lf 0.663 m Distance from the center of mass to front end.

lr 0.659 m Distance from the center of mass to rear end.

kf 29.96 kNm−1 Front suspension stiffness coefficient.

kr 19.30 kNm−1 Rear suspension stiffness coefficient.

cf 2.56 kNsm−1 Front suspension damping coefficient.

cr 3.57 kNsm−1 Rear suspension damping coefficient.

kfw 130.00 kNm−1 Front tyre stiffness coefficient.

krw 141.00 kNm−1 Rear tyre stiffness coefficient.

Table 3.3: GSX-R1000 four degrees of freedom reduced model dynamical parameters.

The wheels’ motion in this model are considered as vertical with linear stiffness

and damping forces acting between the main body and the wheels. On the other
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hand, the tyres’ forces are modelled as linear springs whose stiffness coefficients

are the corresponding to those in the original GSX-R1000 model. The dynamic

properties of the reduced model are obtained from the original model as it is shown

in Appendix A. The suspensions coefficients and the masses and inertia moment of

the four degrees of freedom reduced model are shown in Table 3.3.

Figure 3.7: Motorcycle’s reduced model with two degrees of freedom.

The four degrees of freedom model can be reduced to a simpler model of two

degrees of freedom. This model (shown in Fig. 3.7) comprises the main body and

the front and rear suspension systems only.

Parameter Value Units Description

mm 208.80 kg Main body mass.

Im 42.35 kgm2 Main body inertia moment.

lf 0.663 m Distance from the center of mass to front end.

lr 0.659 m Distance from the center of mass to rear end.

kf 24.35 kNm−1 Front suspension stiffness coefficient.

kr 16.98 kNm−1 Rear suspension stiffness coefficient.

cf 2.56 kNsm−1 Front suspension damping coefficient.

cr 3.57 kNsm−1 Rear suspension damping coefficient.

Table 3.4: GSX-R1000 two degrees of freedom reduced model’s dynamical parameters.

In this case, the masses of the wheels are not taken into account, considering

that they are significantly smaller than the main body mass. Consequently, each

stiffness coefficient of the front and rear suspension is calculated as the resultant

stiffness coefficient of two in-line springs. These two spring coefficients correspond
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to the tyre stiffness and to the reduced suspension spring coefficient in the four

degrees of freedom model. The values of the damping coefficients remain similar to

those of that model. The parameters of the two degrees of freedom model are shown

in Table 3.4.

3.4 Simulations tools

3.4.1 VehicleSim

The GSX-R1000 mathematical model is built and simulated taking advantage of

the VehicleSim multi-body simulation software from (Mechanical Simulation Cor-

poration 2015). This suite consists of two separated tools. One of them is VS Lisp

and the other is VS Browser. VS Lisp is the tool used to generate solvers for the

different vehicles models under study. It uses a computer language designed to au-

tomatically generate computationally efficient simulation programs for mechanical

systems composed of multiple rigid bodies. VS Lisp can be used in two possible

ways: First, the symbolic equations generated by VS Lisp can be directly obtained

and used with other software. The second option allows to build new solvers with

the same architecture and behaviour as those existing in commercial packages such

as CarSim and fully compatible with the VS Browser.

VS Browser is the main program included in all the VehicleSim products, that

provides a graphical context with a standard graphical user interface from which the

nonlinear simulation can be run and the different databases can be managed. This

includes the solvers created with VS Lisp, the external inputs and events and data

post processing and visualization. VS Browser has a high flexibility; it allows from

introducing on-line model parameters up to third party software compatibility. This

is the case of Matlab-Simulink, that can be directly connected to the VS Browser

through its own Simulink block. This last feature is very helpful for the nonlinear

optimization processes exploited in Chapter 6. On the other hand, once a model

solver has been built, it can be tested for different running conditions and for different

inputs using the imported tables and events. Furthermore, the parameters defining

the model dynamics, such as the suspensions or the aerodynamics coefficients, can

be modified directly on VS Browser without modifying the model solver. Figure 3.8

35



shows the most used functionalities in the VS Browser front end.

Figure 3.8: VS Browser graphical user interface. 1) Selection menu for the different mathe-
matical models. 2) External event such as road profiles, bump inputs, etc. can be configured
and imported from here. Several external event can be imported in the same simulation. 3)
The Simulink block and the different solvers are configure and run from these menus. 4) The
simulation time, the time step and the outputs sampling frequency are set up from here. 5)
The model’s physical parameters and the state variables’ initial values can be directly modified
by the user. 6) The plotting tool can be configured to automatically return the time-story of
the chosen variables. Several plots can be configured at the same time.

Another good advantage of VehicleSim is that it can be configured to return

the linearised symbolic equations of motion. A Matlab file with the state space

description can be obtained containing the A, B, C and D matrices depending on

the inputs and outputs defined during the model programming. These matrices

are symbolically described and depend on the state variables values. In order to

obtain an adequate description of the model, they must be fed with equilibrium

states variable values. Then, the numerical matrices obtained, represent the linear

equations of motion for small displacements around the considered equilibrium state.

3.4.2 State space description

From the numerical representation of the state matrix A, the eigenvalues and eigen-

vectors can be computed. The stability of the system around an equilibrium state

can be studied through the root locus of this matrix. On the other hand, the sys-

tem’s normal modes are described by the matrix A eigenvectors. The basis in which
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this matrix is represented is that of the system’s generalized coordinates and veloc-

ities, in this case, they correspond to the motorcycle degrees of freedom listed in

Table 3.5.

The building up of a model process in VS Lisp follows a parental structure in

which the degrees of freedom of each body are expressed on its parent reference

frame. Each body in the system has its own reference frame whose origin is located

at the point where it is connected to its parent. Its centre of masses is defined in

this local reference frame. When a body lacks of a parent it is referred to the inertial

reference frame.

DOF Description

XT, YT, ZT Motorcycle chassis x, y and z translation.

ZR, YR, XR Motorcycle chassis yaw, pitch and roll rotations.

SWA swinging arm rotation about the main frame’s y axis.

UBR Rider upper-body rotation about the main frame x axis.

TWS Front frame rotation about the twist axis.

STR Front frame rotation about the steering axis.

SUS Front fork compression/extension.

FW Front wheel rotation about its y axis.

RW Rear wheel rotation about its y axis.

Table 3.5: Degrees of freedom of the GSX-R1000 multi-body system.

The generalized coordinates that VS Lisp uses to describe the system are the

degrees of freedom of all the bodies related to their parents’ reference frames, fol-

lowing the user definition of the bodies. However, when a body is described with

several rotational degrees of freedom, VS Lisp does not describe all of them in the

same reference frame, but it introduces intermediate coordinates systems for each

rotational degree of freedom, keeping the order specified by the user when the body’s

degrees of freedom are introduced.

In the case of the GSX-R1000 model, the main body of the motorcycle assembly

is the chassis. It is defined in the inertial reference frame and it has six degrees of

freedom: three translational and three rotational. The three translational ones are

related to the inertial reference frame (S0) and they describe the rectilinear motion
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Figure 3.9: Auxiliary frames created by VS Lisp with each rotation of the body. Note
that the frames are represented separately in order to show a clearer view of each rotation,
nevertheless, the origins of all of them are coincident.

along the x, y and z axis of the origin of the chassis reference frame (S1). Regarding

to the rotational degrees of freedom, three possible rotations are defined. The yaw

angle is the rotation about the inertial reference frame z axis. This rotation creates

a new reference frame (S1) sharing the z axis with S0 and rotated Γ◦ about it. The

pitch angle is the rotation about the y axis of S1. This rotation introduces another

reference frame (S2) which shares the y axis with the S1 frame and which is rotated

Θ◦ about it. Finally, the roll angle is the rotation about the S2 x axis. The final

reference frame is S3 and it is rotated Φ◦ about the S2 x axis, which is shared by

both S2 and S3. Figure 3.9 shows the three auxiliary reference frames created by

each rotation about the main axes.

The rest of the motorcycle’s bodies are defined with one degree of freedom each.

The swinging arm y rotation, the rider’s upper body x rotation and the twist body

rotation about the twist axis are defined in the chassis reference frame S3. The steer

body rotation about its z axis is defined in the twist body reference frame and the

front suspension body z translation is defined in the steer body’s reference frame.

The rear and front wheels y rotations are related to the swinging arm and the front

suspension reference frames respectively.
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The eigenvectors of matrix A are mathematical representations of the system’s

normal modes; each component of these eigenvectors represents the relative am-

plitude and phase angle of the corresponding degree of freedom within the normal

mode associated to this eigenvector. For the motorcycle’s normal modes, the small

oscillations of the chassis six degrees of freedom are not expressed on its own ref-

erence frame (S3). The eigenvector components for the yaw (ZR), the pitch (YR)

and the roll (XR) angles are related to S1, S2 and S3 reference frames respectively.

Whilst those components for the translational oscillations (XT, YT and ZT ) are

related to the S0 reference frame. Therefore, the modal description depends on

the motorcycle’s trajectory and the chassis orientation. In order to obtain under-

standable normal modes descriptions, all these components are translated into the

chassis reference frame S3, as it is explained in Appendix B. So that, a normal mode

can be understood as a small oscillation of each degree of freedom related to the

motorcycle’s symmetry plane.

3.5 Dynamic behaviour of the nominal model

Once the motorcycle model has been programmed and the corresponding solver has

been built, nonlinear simulations can be performed for any running conditions and

with several external inputs, obtaining in this way the response of the outputs. On

the other hand, a Matlab file with the state space description can be obtained and

used to study the stability of the motorcycle models.

In most of the following chapters of this thesis, several root loci of different

motorcycle systems are provided and used as a graphical tool to study the stability

properties of those systems. The normal modes characteristics are studied through

the eigenvectors. Both eigenvalues and eigenvectors are obtained from the system’s

matrix A, which has to be fed with the frozen-time values of the equilibrium states

in order to accurately reproduce the system’s dynamics.

The nonlinear equations of motions obtained by VS Lisp are used to integrate the

state variables time histories for either straight running conditions or steady turns,

which feed the state space matrix A. Speed and roll angle feedback controllers are

used to reach the equilibrium states during the simulation. However, in the model’s
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Figure 3.10: Root locus for the nominal motorcycle model showing the main normal modes.
The speed is increased from 10 m/s (�) to 80 m/s (∗) and different roll angles are considered:
0◦ (blue), 15◦ (green), 30◦ (red) and 45◦ (black).

state space description these feedback controls are disabled in order to study the

open-loop system stability. Figure 3.10 shows the typical root loci for the nominal

GSX-R1000 model. Four different roll angles are shown (0◦, 15◦, 30◦ and 45◦)

for forward speeds ranging from 10 m/s up to 80 m/s. The main normal modes

affecting the motorcycle’s stability are shown. Four out-of-plane modes and two

in-plane modes can be seen. The out-of-plane modes are wobble, weave, the rider’s

lean and the rider’s shake modes, which affect the degrees of freedom corresponding

to motions out of the motorcycle’s symmetry plane. On the other hand, pitch

and bounce modes are in-plane modes affecting the motions inside the symmetry

plane. However, when the motorcycle is leant, the various degrees of freedom become

coupled and all the modes contain in-plane and out-of-plane components. Although

some of these modes, such as pitch, bounce and rider’s shake, are highly damped

for the system’s nominal configuration, in the following chapters of this thesis, it

will be shown how these mode’s damping properties change under other suspension

configurations and a deep study will be carried out.

In order to obtain an idea on how the motion involved in each mode is, its cor-

responding associated eigenvector is studied. For any given equilibrium state, the

magnitude and the phase of each eigenvector’s component are obtained. With these

results, similar plots to those in Fig. 3.11 can be drawn. In Fig. 3.11 the magnitude
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(a) wobble (b) weave

(c) rider lean (d) rider shake

(e) pitch (f) bounce

Figure 3.11: Normal modes’ components for the nominal motorcycle model under straight
running conditions. The speed evolution of each component’s weight and phase is represented
by the bars profile, varying the speed from left (10 m/s) to right hand side (80 m/s). For
each mode, the upper bar diagram represents the normalized weight of its components in the
general mode motion. The lower bar diagram represents the phase angle. The steering angle
component’s phase is taken as reference for the out-of-plane modes. For the in-plane mode,
the swinging arm component’s phase is taken as reference.
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and phases of the eigenvectors’ components for zero roll angle running condition are

shown. These eigenvectors correspond to the eigenvalues in Fig. 3.10 for straight

running conditions (blue ×). The upper bar diagram represents the eigenvector’s

components magnitudes (these are the relative amplitudes of the degrees of freedom

involved in the normal mode motion) whilst the lower diagram shows the phases of

the components (the relative phase angle of the oscillation of each degree of free-

dom). The motorcycle’s system has thirteen degrees of freedom and the eigenvectors

obtained from the matrix A have twenty-six components, thirteen generalized po-

sitions and thirteen generalized speeds. In order to obtain a clear understanding

of the motion that a normal mode represents with a simplified view, the attention

will be focussed on eleven of these twenty-six variables: six degrees of freedom of

the chassis, front suspension translation and rider’s upper body, twist, steer and

swinging arm rotations.

The magnitude and phase bars that represent each eigenvector’s component show

shaped edges. The heights of these edges are the values of either the magnitude or

phase of this component at the corresponding forward speed, ranging from 10 m/s

(at the left-hand side) up to 80 m/s (at the right-hand side).

Both weave and wobble modes have been deeply studied in the literature (Sharp

1971, Cooper 1974, Koenen 1983, Limebeer & Sharp 2006, Evangelou et al. 2008,

etc.) due to their proximity to the unstable area, which in some cases becomes a

risk for the rider’s safety and system’s integrity. Figure 3.11a shows the bar diagram

for the wobble mode at zero roll angle. This mode is characterized by a violent front

frame shaking about the steering axis whilst the rear frame is only slightly affected.

The typical frequencies of wobble oscillation in sport motorcycles may vary between

40 rad/s and 60 rad/s and this mainly depends on the mechanical trail, the front

tire cornering stiffness and the steer body inertia.

The weave mode eigenvector components are shown in Fig. 3.11b. This mode is

characterized by roll, yaw and steering angle oscillations at medium and high forward

speeds. At low speed, the rider’s upper-body oscillation has main relevance, whilst

for higher speeds this component magnitude is quickly reduced and the steering

oscillation is increased. This mode is well damped at moderate speeds, but becomes

less at high speeds. Its natural frequency rises from zero at very slow speeds to
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about 30 rad/s for higher speeds. This frequency highly depends on the motorcycle’s

velocity, mass and size. Lower frequencies correspond to heavier motorcycles and

vice versa.

The rider’s lean mode (shown in Fig. 3.11c) appears when the rider’s upper-

body degree of freedom is included in the model’s description. It consists in a low

frequency (3 rad/s − 9 rad/s) and high amplitude oscillation of this body. For very

low speeds the roll and chassis lateral displacement show high amplitudes, being

the roll angle the most relevant degree of freedom. However, these components are

quickly reduced when the speed is increased. It is a well damped mode that hardly

affects the motorcycle’s stability.

The rider’s shake mode is also associated to the rider’s upper-body degree of

freedom. Its motion consists in the shaking of the rider with high frequencies at

low speeds (about 50 rad/s). Nevertheless, when the speed is increased, it quickly

becomes over-damped for the zero roll angles running conditions. Figure 3.11d shows

how the relative phase of all its components become zero as the imaginary part of its

associated eigenvalue does so too. However, when the motorcycle is leant, this trend

with the speed reverts and, although the frequency is reduced, the mode remains

oscillating.

The pitch mode is shown in Fig. 3.11e. It consists in the chassis pitching with

large oscillations of the front and rear suspensions. The phase angle existing be-

tween the motorcycle’s front suspension with respect to the swinging arm is about

180◦. The differences in terms of masses, stiffness and damping between the front

and the rear motorcycle’s ends on this model, introduce other oscillations compo-

nents such as vertical and horizontal chassis displacements. For a fully symmetrical

model, these last oscillation components would not exist. This mode is well damped,

observing smaller values of damping for higher roll angles. Its frequencies for all run-

ning conditions studied are constricted between 40 rad/s and 45 rad/s and do not

significantly depend on the speed.

Figure 3.11f shows the bounce mode’s components. This mode is a main frame’s

vertical oscillation. This motion is in phase opposition with front and rear sus-

pensions. Due to the asymmetry around the model’s centre of masses, pitch and

longitudinal oscillation are involved on the bounce mode. At zero roll angle, its fre-
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quency is not affected by the forward speed and remains around 20 rad/s. However,

once the motorcycle starts leaning, the evolution of this mode with the speed results

in a reduction of its frequency until it becomes non-oscillating at higher speeds,

whilst its damping ratio is increased.

All these modes and their interactions are studied further in Chapter 7 in which

the interconnection of the front and rear suspension systems is investigated as a

method of improving the overall suspension’s performance.

3.6 Conclusions

In this chapter the basis of the mathematical model used along this thesis has been

presented. It consists in a variation of an existing high fidelity model of a Suzuki

GSX-R1000 sport motorcycle, which has been widely used and tested in the existing

literature. Some necessary additional features have been included in the model in

order to obtain some specific results on the dynamics of the different alternative

suspension systems under study in this work.

Two in-plane linearised reduced models of the GSX-R1000 have been provided.

This is a full dimensional nonlinear model, however, for some mathematical deriva-

tions in Chapter 5, the reduced m odels are needed. First, a single body model with

two degrees of freedom is used to study the basis of the pitch and the bounce mo-

tion in the motorcycle’s planar dynamics. Then, a second model with four degrees

of freedom, including the wheels, becomes necessary for a better understanding on

these dynamics.

VehicleSim MBS software, used to build the model’s equations of motion is in-

troduced. The state space description obtained with this software is presented. It

is found that a change of basis is necessary in order to obtain an understandable

representation of the normal modes through the eigenvectors and eigenvalues de-

scription.

Finally, the typical results expected from this model are shown. Root loci of

the main oscillating modes are plotted and a pattern of motion of the different

modes is obtained via the model’s eigenvectors. The amplitudes and phases of

their corresponding degrees of freedom are presented for the nominal motorcycle
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model under straight running conditions. This is a useful tool to understand the

motorcycle’s motion behaviour for each normal mode.

The mathematical framework in which all the simulation work performed in this

thesis is based on, has been introduced in this chapter. In the subsequent chapters,

several references to it will be found.
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Chapter 4

Double Wishbone Suspension

Systems

The motorcycle’s front end links the front wheel to the motorcycle’s chassis and

has two main functions: the front wheel suspension and the vehicle steering. Up

to this date, several suspension systems have been developed in order to achieve

the best possible front end behaviour, being the telescopic fork the most extended

one. It consists of a couple of outer tubes which contain the suspension components

(coil springs and damper) internally and two inner tubes which slide into the outer

ones allowing the suspension travel. Traditionally the inner tubes are attached to

the frame through two triple trees which connect the front end to the main frame

through the steering bearings and allow the front wheel to turn about the steering

axis. This system keeps the front wheel’s displacement in a straight line parallel

to the steering axis. There exist alternative suspension designs that allow different

trajectories of the front wheel with the suspension travel. The aim of this chapter

is to study the effect of this type of systems on a sport motorcycle’s dynamics.

These systems can be divided into two main groups. One of them presents the

steering axle located between the chassis and the suspension elements (wishbones

in most of the cases). And on the other, this axle is placed between the suspension

elements and the front wheel. Two double wishbone systems are considered in this

chapter as representative of these two groups: the girder suspension and Hossack

system. In both cases, the system can be designed in order to provide a desired

front wheel trajectory, however whilst the girder suspension keeps the steering angle
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fixed in the chassis reference frame, the Hossack system modifies it with the travel

of the suspension. Other double wishbone suspension systems behave similarly to

the girder suspension, as is the case of the leading link. On the other hand, there

also exist different systems that, being of a different construction, result in a similar

behaviour to the Hossack system. This is the case of most of the hub-centre steering

suspension systems. Figure 4.1 shows 3D models of a telescopic fork, a Hossack

system and a girder suspension.

(a) telescopic fork suspension (b) girder suspension (c) Hossack suspension

Figure 4.1: 3D models for a telescopic fork (a), a girder (b) and a Hossack (c) suspension
systems.

The girder’s fork consists of a pair of long uprights where the front wheel is

attached to. These uprights are linked to the triple trees by an upper and a lower

wishbones which perform the suspension motion. Both triple trees rotate about

the steering axle which is fixed to the motorcycle chassis. A spring-damper unit is

usually attached between the lower wishbone and the upper triple tree providing

the shock absorption function. On the other hand, the Hossack suspension system

consists of a double wishbones structure directly attached to the chassis. The two

wishbones rotate about both axles perpendicular to the symmetry plane of the

motorcycle, providing the suspension motion. An upright is linked to the front tips

of the wishbones by two ball joints, which allow it to turn left and right as well as to

move up and down. Therefore, the steering axis becomes defined by the imaginary

line passing through the geometric centre of the ball joints. The control over the

steering angle is applied by the rider to the handlebar which is connected to the

upright through the steering linkage. This is a system of two levers connected by
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an axis, which can be compressed or elongated in order to reach the length between

the handlebar and the upright. The front wheel is attached to this upright and the

suspension reaction is provided by a spring-damper unit attached between the lower

wishbone and the motorcycle chassis. In terms of kinematics, it can be said that

these two types of designs cover most of the existing double wishbone suspension

system.

4.1 Kinematics

Figure 4.2: Main motorcycle’s handling geometric parameters. The wheelbase (wb) is plotted
in a solid magenta line, the trail (t) in green, the normal trail (tn) in blue and the head angle
(ε) in black. The fork offset (ofs) is also shown in solid cyan line.

The motorcycle handling is affected for some geometric parameters which are

defined by the front end design. Figure 4.2 presents the four more relevant geometric

parameters for the motorcycle handling. These are the trail (t), the normal trail (tn),

the head angle (ε) and the wheelbase (wb). The wheelbase is the distance between

the front and rear wheels contact points. The head angle is the angle between the

steering axis and the vertical. The trail is the distance between the front wheel

contact point and the point where the steering axis intersects with the ground.

Finally, the normal trail is the trail distance projection into a plane perpendicular

to the steering axis. This is the lever arm of the front tyre forces appearing on its

contact point, which result in a torque about the steering axis. The trail (t), the

normal trail (tn)and the head angle (ε) are related to each other by the following

49



expressions:

tn = rfw · sin(ε)− ofs (4.1)

t =
tn

cos(ε)
(4.2)

rfw is the tyre’s radius and ofs is the front wheel’s spindle offset from the steering

axis. The wheelbase also depends on the rear frame construction including the

swinging arm. In the case of a conventional telescopic fork, the steering axle is

rigidly inserted into the chassis whilst the offset is a constant value. Therefore, when

the fork is compressed the wheelbase and the head angle decrease and, thus, the trail

and the normal trail. Figure 4.3 shows the behaviour of these magnitudes with the

vertical suspension travel (v.s.t.). The vertical suspension travel is defined as the

vertical travel of the front wheel centre when the suspension system is compressed

(v.s.t. > 0) or extended (v.s.t. < 0) considering the chassis fixed in the inertial

frame. This definition is valid for all the different suspension systems and provides

a general magnitude that can be used to compare various behaviours.

Figure 4.3: Telescopic fork’s handling geometric parameters variation with the suspension
travel. The head angle (ε.), the trail (t), the normal trail (tn) and the wheelbase (wb) variation
with the vertical suspension travel (v.s.t.).

For the double wishbones systems this behaviour can be modified. In the case of

the girder system, the offset is variable with the travel of the suspension, this is the

turn of the wishbones. For the Hossack system, it is the steering axis which varies

with respect to the chassis when the suspension is compressed. In both cases, and
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according to Eq. 4.1, different behaviour of the handling geometric parameters can

be achieved along the suspension travel. Figure 4.4 illustrates this concept for these

three mechanical arrangements.

(a) telescopic fork suspension system

(b) girder suspension system

(c) Hossack suspension system

Figure 4.4: Motorcycle’s geometry variation with the vertical suspension travel for the
telescopic fork (a), the girder (b) and the Hossack (c) suspension systems. Solid blue line
represents the motorcycle’s nominal position. The motorcycle with compressed suspension
appears as dashed blue lines. The axes units are expressed in metres.

It can be observed how for the telescopic fork case in Fig. 4.4a, the wheelbase,

normal trail and head angle are decreased when the suspension is compressed. In the

example of the girder suspension system in Fig. 4.4b, the mechanical layout results
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in a constant normal trail. In this case, a constant normal trail implies a wheelbase

decrease. Due to the fact that the steering axle is fixed to the motorcycle chassis,

the offset on the uprights must be increased negatively. Therefore, the front wheel

contact point is moved backwards whilst the head angle is inevitably reduced. In

Fig. 4.4c, the Hossack system layout, also shows a constant normal trail. For this

system, the front wheel offset is constant and the steering axle changes with respect

to the chassis. Therefore, a constant normal trail is achieved with a constant head

angle, which results in an increase of the wheelbase with the suspension travel.

(a) girder supension system (b) Hossack suspension system

Figure 4.5: Design parameters on the four-bar linkage suspension systems. a) Girder sus-
pension system. b) Hossack suspension system.

Both girder and Hossack systems consist in a four-bar linkage. The difference

between them is the edge of the quadrilateral to be considered as steering axis. Fig-

ure 4.5 shows the design parameters of the four-bar linkage for these two systems:

the lengths of the upper (l1) and lower (l2) wishbones, the distances between the

attachment points of the wishbones (h1 on the chassis side and h2 on the uprights

side) and the angle between the upper wishbone and the horizontal at the nominal

position (α). With these five parameters full assembly kinematics are defined. The

variation of one of them will affect the overall behaviour of the handling geometric

parameters with the suspension travel. Different configurations of these five pa-

rameters can be calculated to obtain different behaviours of the front suspension

systems.

Both suspension systems can be defined by equivalent four-bar linkages geometric

points (q1, q2, q3 and q4) which are shown in Fig. 4.5b and Fig. 4.5a. The coordinates
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of these points in the motorcycle chassis reference frame for the motorcycle nominal

position depend on the design parameters (l1, l2, h1, h2 and α) and in the front and

rear frames geometric points. Figure 4.4b and Fig. 4.4c show a motorcycle sketch

with the girder and the Hossack systems respectively. The rear frame geometric

points are the rear wheel contact point (prc), the rear wheel centre point (prw)

and the steering point (prs). On the other hand, the front frame geometric points

are indicated as the front wheel centre point (pfw), the front wheel contact point

(pfc) and the point in which the steering axis intersects with the road (pfs). For

the synthesis of the suspension mechanisms, the rear frame is considered as rigid,

thus the variation in the geometry is produced exclusively by the suspension system

deformation.

In order to study the variation of the suspension systems kinematic behaviour,

an automated mechanism synthesis approach is developed under a modular method-

ology. Three main functions are built for each of the suspension systems in order to

calculate the geometry variation of the motorcycle fitted with those systems:

a) Front End Positions (FEP): This function depends on which suspension system

is considered (girder or Hossack) and calculates the 4-bar linkage points nominal

coordinates (q1, q2, q3, q4) taking as inputs the design parameters (l1, l2, h1,

h2 and α) and considering the coordinates of the default rear and front frames’

geometric points.

b) Suspension Kinematics Loop (SKL): This function calls the FEP function to

obtain the motorcycle nominal geometry depending on the design parameters.

Once the nominal geometry is set, the different coordinates of q3, q4 and the

front frame geometric points (pfw, pfc and pfs) can be calculated in a loop for

different values of α, corresponding to a full suspension travel. The function

returns the trajectory of the front wheel contact point (pfc) in the inertial frame

and the handling geometric parameters values (wheelbase, head angle, trail and

normal trail) for each loop’s iteration.

c) Target (Tgt): This function uses the SKL function outputs. It allows to choose

between different targets, which can be either a defined pfc trajectory or a desired

value of any of the handling geometric parameters. The function returns the error

between the defined target and the corresponding SKL function output. The
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(a) wheelbase - mm (b) head angle - deg. (c) normal trail - mm

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 4.6: Effects of varying the design parameters on the wheelbase, the head angle and
the normal trail for the girder suspension system.
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(a) wheelbase - mm (b) head angle - deg. (c) normal trail - mm

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 4.7: Effects of varying the design parameters on the wheelbase, the head angle and
the normal trail for the Hossack suspension system.
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error is calculated as the square mean of the difference between the target variable

value and the variable value returned by the SKL function in each iteration point.

With these functions, the impact of varying each design parameter value on

the handling geometric parameters can be mapped. Figure 4.6 shows the effects of

modifying these parameters on the variation with the vertical suspension travel of

the wheelbase, the head angle and the normal trail for the girder suspension system.

Only the normal trail will be taken into consideration as it is the actual lever arm

of the front wheel force about the steering axis, whilst the trail can be obtained as

a simple function of the former as indicated in Eq. 4.2.

As it can be expected, as the steering axle is fixed to the chassis, the head angle

behaviour does not change with the variation of any of the design parameters. How-

ever, the wheelbase and the normal trail behaviours are affected by these parameters

values. This suspension system can be designed to perform a prescribed behaviour

of the wheelbase and the normal trail whilst the head angle behaviour cannot be

modified.

Similar results are shown in Fig. 4.7 for the Hossack system. In this case, a close

relation between the head angle and the normal trail behaviours can be observed

due to the variable steering axis and the constant offset. The wheelbase variation

does not present such a relation. Different values of α affect the wheelbase behaviour

whilst the head angle and the normal trail keep their nominal response. Therefore,

either the desired wheelbase or head angle variations given certain vertical suspen-

sion travel can be found with the Hossack suspension system. The trail and the

normal trail are closely related to the head angle in this system.

In order to obtain a desired behaviour of the suspension system under study,

several optimization processes are carried out. These processes take advantage of the

Matlab optimization toolbox, which is proven to be an adequate framework for this

kind of problems. The fminsearch function is used to minimize the error returned

by the Tgt function. It quickly converges returning the necessary parameters values

that result in the desired suspension behaviour. Three different configurations are

designed for both the girder and the Hossack suspension systems:

a) Parallelogram (prl): The suspension systems are designed with l1, l2, h1 and h2 as

two pairs of parallel sides and with α = 0, being this the simplest configuration.
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No optimization process is needed.

b) Telescopic fork’s trajectory (tft): The suspension systems are designed to allow

for a front wheel trajectory similar to that followed by the front wheel in the case

of motorcycle being fitted with a telescopic fork system.

c) Constant normal trail (cnt): The suspension systems are designed to allow for a

constant normal trail along the full suspension travel.

After the synthesis processes, the values of the design parameters obtained are

given in Table 4.1 and Table 4.2.

Girder configurations l1 (mm) l2 (mm) h1 (mm) h2 (mm) α (deg.)

Parallelogram 120 120 180 180 0.0

Fork trajectory 107 135 171 172 0.0

Constant tn 106 131 192 185 0.0

Table 4.1: Design parameters values obtained for the three different girder suspension sys-
tems configurations.

Girder configurations l1 (mm) l2 (mm) h1 (mm) h2 (mm) α (deg.)

Parallelogram 170 170 120 120 5.7

Fork trajectory 155 183 127 117 5.8

Constant tn 173 190 102 123 6.0

Table 4.2: Design parameters values obtained for the three different Hossack suspension
systems configurations.

The handling geometric parameters behaviour of the girder and the Hossack sus-

pension systems for the parallelogram (prl) configuration are presented in Fig. 4.8a

and Fig. 4.9a respectively. Whilst Fig. 4.8b and Fig. 4.9b show the front wheel’s

contact point trajectory along the full suspension travel (black) for both systems

with this configuration. The trajectory corresponding to that of the telescopic fork

(magenta) is plotted as a reference in both figures. It can be observed that in both

cases the head angle (ε), the trail (t) and the normal trail (tn) are reduced in com-

pression and increased in extension whilst the wheelbase is always reduced out of

the nominal position.
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(a) handling geometric parameters - girder prl config. (b) contact point trajectory

Figure 4.8: Girder suspension system’s kinematic behaviour with prl configuration. The
head angle (ε.), the trail (t), the normal trail (tn) and the wheelbase (wb) variation with
the vertical suspension travel (v.s.t.) are presented in a). In b) it is plotted the front wheel
contact point trajectory along the full suspension travel (black). As a reference, the trajectory
corresponding to that of the telescopic fork is plotted in magenta.

(a) handling geometric parameters - Hossack prl config. (b) contact point trajectory

Figure 4.9: Hossack suspension system’s kinematic behaviour with prl configuration. The
head angle (ε.), the trail (t), the normal trail (tn) and the wheelbase (wb) variation with
the vertical suspension travel (v.s.t.) are presented in a). In b) it is plotted the front wheel
contact point trajectory along the full suspension travel (black). As a reference, the trajectory
corresponding to that of the telescopic fork is plotted in magenta.
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(a) handling geometric parameters - girder tft config. (b) contact point trajectory

Figure 4.10: Girder suspension system’s kinematic behaviour with tft configuration. The
head angle (ε.), the trail (t), the normal trail (tn) and the wheelbase (wb) variation with the
vertical suspension travel (v.s.t.) are presented in a). In b) the front wheel’s contact point
trajectory is plotted along the full suspension travel (black). As a reference, the trajectory
corresponding to that of the telescopic fork is plotted in magenta.

(a) handling geometric parameters - Hossack tft config. (b) contact point trajectory

Figure 4.11: Hossack suspension system’s kinematic behaviour with tft configuration. The
head angle (ε.), the trail (t), the normal trail (tn) and the wheelbase (wb) variation with the
vertical suspension travel (v.s.t.) are presented in a). In b) the front wheel’s contact point
trajectory is plotted along the full suspension travel (black). As a reference, the trajectory
corresponding to that of the telescopic fork is plotted in magenta.
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(a) handling geometric parameters - girder cnt config. (b) contact point trajectory

Figure 4.12: Girder suspension system’s kinematic behaviour with cnt configuration. The
head angle (ε.), the trail (t), the normal trail (tn) and the wheelbase (wb) variation with the
vertical suspension travel (v.s.t.) are presented in a). In b) the front wheel’s contact point
trajectory is plotted along the full suspension travel (black). As a reference, the trajectory
corresponding to that of the telescopic fork is plotted in magenta.

Both systems have similar head angle behaviour. However, the trail, the normal

trail and the wheelbase show a wider variation for the girder system case, where

the trail and normal trail follow concave curves in comparison to the Hossack trail

and normal trail straight lines. Regarding to the front wheel’s contact point, both

systems show curved trajectories, being the Hossack system’s trajectory slightly

more vertical.

Similar plots are obtained for the telescopic fork’s trajectory (tft)configuration

of the girder (Fig. 4.10) and the Hossack (Fig. 4.11) systems. The trajectories

reached by both systems are almost identical to that of the telescopic fork. In the

case of the girder suspension system, the handling geometric parameters behave

similarly to those with the telescopic fork suspension shown in Fig. 4.3. This is

the expected behaviour once the steering axle and the wheel trajectories are equal

in both systems. However, for the Hossack suspension system, the steering axle

varies with the suspension travel, which leads to different behaviours of the handling

geometric parameters. The variation in the head angle, the trail and the normal trail

with the vertical suspension travel are significantly larger for the Hossack system

than for the telescopic fork suspension. However, the wheelbase is modified in a
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(a) handling geometric parameters - Hossack cnt config. (b) contact point trajectory

Figure 4.13: Hossack suspension system’s kinematic behaviour with cnt configuration. The
head angle (ε.), the trail (t), the normal trail (tn) and the wheelbase (wb) variation with the
vertical suspension travel (v.s.t.) are presented in a). In b) the front wheel’s contact point
trajectory is plotted along the full suspension travel (black). As a reference, the trajectory
corresponding to that of the telescopic fork is plotted in magenta.

similar way, as the front wheel follows the same trajectory in both cases.

Being the normal trail a crucial parameter in the motorcycle handling, it would

be an interesting feature for a suspension system to maintain this value constant

at any position of the suspension travel. Kinematic behaviours of the girder and

Hossack suspension systems with a constant normal trail (cnt) configuration are

represented in Fig. 4.12 and Fig. 4.13 respectively. Almost constant trail and normal

trail are achieved for the girder suspension system, with small deviations from their

nominal values. As expected, the head angle maintains its nominal behaviour with

the vertical suspension travel whilst the wheelbase is reduced. On the other hand,

for the Hossack suspension system, the trail and normal trail are constant along the

full suspension travel. Oppositely to the girder system, the constant normal trail

configuration for the Hossack suspension system implies an almost constant head

angle, whilst the wheelbase is increased in extension and decreased in compression.

Regarding to the front wheel’s contact point, it can be observed that in the girder

system case, the trajectory is mostly a straight line at an angle with the vertical

which is greater than that on the fork suspension’s trajectory case. In the case of

the Hossack system, the front wheel follows a curved trajectory. The angle with
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the vertical becomes negative in this case, reducing its value under compression

and increasing it under extension. These trajectory angles will directly affect the

suspension systems’ anti-dive capabilities. Contrary to the telescopic fork system’s

behaviour, both systems show a wide range of possible kinematic configurations, ei-

ther Hossack or girder systems could be a good choice depending on the motorcycle’s

kinematics requirements.

4.2 Suspension modelling

In order to study the girder and Hossack suspension systems’ dynamic properties,

two mathematical models have been built using VehicleSim. Each of these models

geometry has been modified with the design parameters values obtained in the pre-

vious section for the three kinematic configurations: parallelogram (prl), telescopic

fork’s trajectory (tft) and constant normal trail (cnt). Therefore, three different

configurations of each of the girder and Hossack suspension systems are obtained

and will be dynamically tested in the following sections.

The mathematical models here presented are developed as modifications of the

Suzuki GSX-R1000 nominal model, derived in (Sharp et al. 2004), which was built

considering the actual physical properties of the original motorcycle’s parts. The

masses, the moments of inertia and the centres of masses were directly measured for

each part. Unfortunately, it does not exist a real GSR-R1000 motorcycle fitted with

either a girder suspension or a Hossack system. Therefore, the physical properties of

these parts cannot be measured and included in the mathematical model. In order

to obtain these values, a 3D computer-aided design (CAD) for each suspension

system has been developed as part of the work in this thesis. The software used for

this task was SolidWorks (Dassault Systems 2015), which also allowed to perform

the different finite element analysis (FEA) through its SolidWorks Simulation tool,

needed to determine the designs consistency and reliability.

4.2.1 CAD modelling and FEA analysis

It is important to note that this part of the research is not intended to obtain a high

performance commercial suspension systems, but to provide with a good approx-
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imation of the mechanical parts involved on each suspension system under study.

Therefore, the masses, the centre of masses, the inertia moments, etc. represent

close values to those of a possible real suspension system implementation.

(a) girder suspension heavy desing (b) girder suspension ligth desing

Figure 4.14: Girder suspension system CAD models. a) Girder design with equivalent parts
masses to those of the telescopic fork. b) Girder design with reduced parts masses.

Two different models have been developed for each of the two systems, girder

and Hossack. The first of them is developed keeping the same front end assembly’s

mass as that of the original telescopic fork of the GSX-R1000 model. Each part

tends to keep the mass equal to the equivalent part in the telescopic fork case.

However, due to the structural differences between the three suspension systems,

this is not always possible. For instance, in the case of the Hossack system, the

steering assembly consists only of a triple tree, being lighter than the telescopic

fork’s steering body. In this case, the excess of mass of the whole assembly is added

to the chassis body as a mass placed in the same coordinates than those of the

steering body’s centre of mass. The second model of each suspension system has

been designed in order to explore the mass reduction allowed by these systems and

its effects on motorcycle dynamics. Thus, all the parts involved in the assembly have

been lightened as much as possible. Figure 4.14 shows the heavier and the lighter

CAD models of the girder suspension whilst the CAD models for the Hossack system

are shown in Fig. 4.15.

Once each part is designed, a construction material is associated to it, so the

dynamic properties of that particular part can be returned by SolidWorks. The

material chosen for both girder and Hossack suspension systems was aluminium
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(a) Hossack suspension heavy desing (b) Hossack suspension light desing

Figure 4.15: Hossack suspension system CAD models. a) Hossack design with equivalent
parts masses to those of the telescopic fork. b) Hossack design with reduced parts masses.

alloy 7075-T6. It is widely used in automotive industry due to its strength and

light weight, being a good candidate for the suspension system designs in these

cases. These systems have been designed in order to support maximum loads during

extreme running condition. Various finite element analyses were carried out for

each suspension system taking into consideration the maximum loads calculated in

Appendix C.

The factor of safety is considered to be the multiplication factor of the maximum

loads allowed before a structure failure occurs following the von Misses criterion

(Boresi & Schmidt 2002). In order to ensure the integrity of the suspension systems,

a factor of safety greater than one (fos > 1) was required at any point of the

assemblies. For these conditions, the maximum resultant of the deformation vector

obtained was always smaller that Ures = 8 mm, which could be considered as an

acceptable limit taking into account that a minimal deformation of the systems’

geometry takes place.

During the FEA simulation process, the spring-damper unit is substituted by

a rigid connection and the two extreme positions of the assemblies (extended and

compressed) are tested. In this way, the factor of safety and the resultant of the

deformation vector are obtained for both suspension systems and both extreme

positions. Figure 4.16b and Fig. 4.16c show these results respectively for the girder

model with a parallelogram configuration. Figure 4.16a shows the analysis results of

the same model under maximum lateral loads. For this design, the minimum factor
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of safety is fos = 3.86. The maximum deformation magnitude was found for the

longitudinal maximum load in the extended system, with a value of Ures = 3.4 mm.

(a) lat. load (b) long. load - extended (c) long. load - compressed

Figure 4.16: FEA results of the girder model with parts’ masses approximated to those of
the telescopic fork, showing the factor of safety map.

A similar study was performed for the Hossack suspension system. The results

shown in Fig. 4.17 show a minimum factor of safety of fos = 2.23 found for the

maximum longitudinal load, being the suspension system on its compressed position

(Fig. 4.17c). In terms of the maximum deflection, this value is also achieved for

longitudinal maximum load, now in the suspension extended position (Fig. 4.17b),

whose magnitude becomes Ures = 1.6 mm.

(a) lat. load (b) long. load - extended (c) long. load - compressed

Figure 4.17: FEA results of the Hossack model with parts masses approximated to those of
the telescopic fork, showing the factor of safety map.

The finite element analysis becomes very helpful for the task of designing the

lighter models for both suspension systems, able to meet the maximum loads re-

quirements. The analyses of these lighter models are presented in Fig. 4.18 for the

girder suspension and in Fig. 4.19 for the Hossack system. For the girder lighter

model with reduced masses, the minimum factor of safety is fos = 1.02, found
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in the compressed suspension for the maximum longitudinal load. The maximum

deflection is also found under this load with a magnitude of Ures = 7.9 mm.

(a) lat. load (b) long. load - extended (c) long. load - compressed

Figure 4.18: FEA results of the girder model with reduced masses showing the factor of
safety map.

In the case of the Hossack lighter model, the minimum factor of safety takes

the value of fos = 2.2 for the compressed assembly under maximum longitudinal

load. Whilst the maximum deflection is achieved under the same condition for the

extended assembly, taking a value of Ures = 3.6 mm.

(a) lat. load (b) long. load - extended (c) long. load - compressed

Figure 4.19: FEA results of the Hossack model with reduced masses showing the factor of
safety map.

With the double wishbones suspension system, a significant front end mass re-

duction can be achieved. In order to compare the three different systems mass

distributions, they have been divided in four subsystems containing different parts

each of them. The parts belonging to each subsystem depend on which suspension

system is considered:

a) STR: It is the body that allows the steering action. It comprises the triple trees

and eventually other parts depending on the model under consideration. In the
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case of the telescopic fork it also includes the upper tubes. In the case of the

girder, the mass of the upper part of the spring damper unit is included too. In

the case of the Hossack system, it includes the upper lever of the steering linkage.

b) SUS: It represents the body holding the front wheel. In the case of the telescopic

fork it comprises the lower tubes of the fork. In the case of the girder and

Hossack suspension systems, this body corresponds to the uprights, the lower

part of the spring-damper unit and, only for the Hossack system, the lower lever

of the steering linkage.

c) UWB: This part is exclusively defined for the girder and Hossack systems. It

only consists of the upper wishbone.

d) LWB: This part is exclusively defined for the girder and Hossack systems. It only

consists of the lower wishbone.

Table 4.3 shows the masses of each part on the different suspension systems

compared to the original telescopic fork parts masses. In order to study separately

the effects of the geometry variation of these systems from the mass reduction effects

on the motorcycle dynamics, the heavier models maintain the whole mass of the

original front end assembly. In the case of the Hossack heavier model, the remaining

mass needed to equal that of the original telescopic fork (4.986 kg) is added (in the

mathematical model) to the main frame on the attachment point of the steering

body. A second study of the lighter models allows to obtain an insight of the mass

reduction effect of this motorcycle components.

Parts masses STR (kg) SUS (kg) UWB (kg) LWB (kg) Total (kg)

Fork 9.990 7.250 — — 17.240

Girder heavy 7.863 7.930 0.666 0.764 17.223

Girder light 4.333 4.231 0.666 0.764 9.994

Hossack heavy 2.681 7.673 0.976 0.924 12.254

Hossack light 2.165 3.988 0.976 0.924 8.053

Table 4.3: Masses of the different suspension systems models bodies
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4.2.2 Mathematical modelling

Once the masses and inertias of the different parts of both suspension systems are

calculated, the motorcycle’s mathematical models with the alternative suspension

systems can be built. These mathematical models are conceived as multi-body

systems where a parental structure is followed. They are coded in VS Lisp, which

returns the equations of motion and the linear state-space representation for each

of them.

Multi-body description

The GSX-R1000 model presented in Chapter 3 has been modified to include both

the girder and the Hossack suspension systems. In both cases, and similarly to the

original nominal model, a massless body is included (the twist body) that represents

the frame’s flexibility. The flexibility is defined as a rotational degree of freedom

between the motorcycle chassis (rear frame) and the front suspension (front frame)

about the twist axis. This is an axis perpendicular to the steering one and contained

into the motorcycle’s symmetry plane, which passes through the attachment point

of the twist body. This point is defined in both suspension systems as the middle

point between the upper and the lower wishbones joint coordinates. For each of

the suspension models, a different parental relation between the different bodies is

implemented. The parental structure of the girder suspension is shown in Fig. 4.20.

The steer body is attached to the twist body, allowing the rotation about its z

axis. The twist’s body reference frame shares its y axis with the main frame’s y axis.

The twist body’s reference frame is rotated about the y axis making coincident its x

axis with the twist axis in the main frame. All the bodies after the twist body have

a similar reference frame orientation. Therefore, the z axes of the twist and the steer

bodies are collinear with the steering axis in the main body reference frame. The

mass, the inertia moments and the inertia products of this body correspond to those

of the girder’s STR subsystem stated in the previous section. The rider’s steering

moment and the steering damper moment are applied to the steer body about its z

axis and react on the rider’s upper body the first of them, and on the main body

the second. The upper wishbone and lower wishbone bodies are sons of the steer

body and both of them rotate about the y axis. Their masses and their moments
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Figure 4.20: Girder suspension system’s parental structure.

and products of inertia are obtained from the CAD designs and correspond to the

girder’s UWB and LWB subsystems respectively. Finally, the suspension body is

son of the upper wishbone body and closes the four bar linkage loop with the lower

wishbone at its front extreme. It also rotates about the y axis and its mass and

moments and products of inertia correspond to those of the girder’s SUS subsystem.

This body is the front wheel body’s father which has same properties and kinematics

as the original GSX-R1000 nominal model, rotating about its y axis.

Following the different mechanical configuration of the Hossack suspension sys-

tem, in which the steering axle is on the four bar linkage opposite side, a different

parental structure must now be considered. This is shown in Fig. 4.21. In this case,

the two wishbones are connected directly to the twist body and rotate about their

y axis corresponding to that of the twist body. Their mass and inertia properties

were found in the previous section as those of the Hossack’s UWB and LWB sub-

systems. The suspension body in the Hossack model also performs the system’s

steering action; it can rotate about its y and z axes. It is a child of the upper

wishbone body and closes the four bar linkage loop with the lower linkage one. Its

mass, inertia moments and inertia products (calculated through the CAD design),

correspond to the Hossack SUS subsystem presented in previous section. The front
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wheel body is connected to the suspension body and rotates about its y axis. It has

a similar definition to that in the telescopic fork and the girder suspension models.

Considering that the inertia moment and products obtained for the Hossack STR

subsystem are negligible and that it does not play a significant role on the front

end kinematics, its mass is directly lumped into the main body’s mass, which centre

of masses is modified according to the relative position of this subsystem. In the

Hossack suspension systems, the rider’s steering and the steering damper moments

are directly applied to the suspension body about its z axis. The first reacts on the

rider’s upper body whilst the second does so on the main body.

Figure 4.21: Hossack suspension system’s parental structure.

Suspension tuning

The suspension forces in both girder and Hossack systems are modelled as two

moments applied to the lower wishbones and reacting on the steer body and the

twist body respectively. These suspension moments depend on the lower wishbones

angular displacements and speeds, producing the reactive and the dissipative sus-

pension actions. The focus of this work is to compare the two alternative suspension

systems performance with that of the telescopic fork system. Thus, a similar suspen-

sion tuning is sought to introduce the minimum systems variations. The equivalent

suspension moments to the linear suspension force of the telescopic fork can be

calculated considering a conservation of energy condition. The sum of the energy

stored and dissipated by the torsional spring and damper respectively in the double
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wishbone system is the same as for the linear spring and damper in the telescopic

fork, for the same vertical displacement of the front wheel attachment point and in

the same time. In the spring case, this condition is expressed by Eq. 4.3.

Fs ·
dxf
dt

= Ms ·
dθ

dt
(4.3)

θ is the angle rotated by the lower wishbone and xf is the compressed/extended

distance of the telescopic fork. Ms is the double wishbone suspension systems’

equivalent stiffness moment. Fs is the force in the fork’s spring for a longitudinal

displacement equivalent to a front wheel’s vertical displacement z, being the motor-

cycle chassis fixed to the inertial reference frame. This force is calculated for the

telescopic fork spring stiffness coefficient (kf = 25 kN/m) as:

Fs = −kf ·
z

cos(ε)
(4.4)

Where ε is the telescopic fork head angle. Then, the equivalent moment for the

double wishbone system can be obtained as:

Ms = −kf ·
z

cos(ε)
· ∂xf
∂θ

(4.5)

Taking advantage of the kinematic model obtained in section 4.1, xf and θ are

calculated numerically as functions of the vertical displacement z and then differ-

entiated. Finally, a polynomial fit is performed for Ms and θ, finding an equivalent

stiffness moment as a third order polynomial function of the lower wishbone angle

expressed by the Eq. 4.6.

Ms = −kw3 · θ3 − kw2 · θ2 − kw1 · θ − kw0 (4.6)

A similar approach is followed to find the equivalent damping moment (Md).

The energy conservation equation is:

Fd ·
dxf
dt

= Md ·
dθ

dt
(4.7)

If the equivalent damping moment is considered as a linear moment with the
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rotational speed of the lower wishbone, Eq. 4.7 can be rewritten as:

−cw · (
dθ

dt
)2 = −cf · (

dxf
dt

)2 (4.8)

Where cf = 2134 Ns/m is the nominal value of the telescopic fork damping

coefficient and cw is the damping coefficient of the equivalent damping moment

applied to the lower wishbone. The equivalent damping coefficient can be then

obtained as:

cw = cf · (
∂xf
∂θ

)2 (4.9)

Similarly than for the spring case,
∂xf
∂θ

is calculated numerically. Therefore, the

damping moment can be written as follows:

Md = −cw ·
dθ

dt
(4.10)

A polynomial fit is performed for cw as a function of θ obtaining a third de-

gree polynomial relation. Finally, the equivalent damping moment is expressed by

equation 4.11. For both girder and Hossack suspension systems and for the three ge-

ometrical configurations, different values of the stiffness and damping fit coefficients

are found.

Md = (−cw3 · θ3 − cw2 · θ2 − cw1 · θ − cw0) · dθ
dt

(4.11)

4.3 Dynamic analysis

Once the different models have being implemented in VehicleSim, VS Lisp returns

the nonlinear equations of motion and the model’s state-space representation based

on the linear approximation of these equations. The nonlinear equation of motion

can be integrated for different running conditions. In this chapter, they are used, on

one hand, to study the in-plane response of the motorcycle fitted with the different

suspension system. On the other hand (and following the approach in Chapter 3),

they are solved obtaining the quasi-equilibrium states necessary to feed the state

space matrices in order to perform a stability analysis for various forward speeds
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and roll angles.

4.3.1 In-plane dynamic response

VehicleSim contains the VS Browser tool. By means of a graphical user interface,

different events can be introduced on each simulation, such as various road inputs.

Each suspension system has been tested under two different running conditions:

passing through a road bump input and braking with the front wheel in straight

line with constant deceleration.

Road bump input

The road bump input simulation is performed with the motorcycle running in

straight line at a forward speed of v = 40 m/s. A step input of a height of hb = 50 mm

is introduced after a few meters. This step bump is implemented in VehicleSim us-

ing an external table. This table has been built as explained in Chapter 3 in order

to take into consideration the vertical and horizontal forces on the tyres.

(a) handlebar height - heavy models (b) handlebar height - light models

(c) front wheel height - heavy models (d) front wheel height - light models

Figure 4.22: Motorcycle front end response after a 50 mm road bump input with a forward
speed of v = 40 m/s for the telescopic fork suspension compared to the girder and Hossack
suspension systems with a parallelogram configuration (prl).
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(a) handlebar height - heavy models (b) handlebar height - light models

(c) front wheel height - heavy models (d) front wheel height - light models

Figure 4.23: Motorcycle front end response after a 50 mm road bump input with a forward
speed of v = 40 m/s for the telescopic fork suspension compared to the girder and Hossack
suspension systems a the telescopic fork’s trajectory configuration (tft).

Figure 4.22 shows the front end responses of the telescopic fork, the girder and the

Hossack suspension systems for a bump input simulation. Both the girder and the

Hossack systems have been designed with a parallelogram (prl) configuration. Fig-

ure 4.22a and Fig. 4.22c show the behaviours of the heavier models whilst Fig. 4.22b

and Fig. 4.22d those of the lighter models. It can be appreciated that in any case,

the behaviours of the three models are very similar. The Hossack suspension’s front

end follows more closely the behaviour of the telescopic fork suspension case. Whilst

in the case of the girder system there exist a slight deviation. On the other hand,

the mass reduction does not affect significantly the suspensions’ responses. Never-

theless, the Hossack system’s response is more affected than the girder suspension’s

response.

When both suspension systems are designed with a fork’s trajectory (tft) con-

figuration, the girder system shows a response almost identical to the telescopic

fork suspension case. It is the Hossack suspension system which introduces small

behaviour differences. Again, the mass reduction modifies the Hossack system re-

sponse whilst the girder’s one remains mostly unaffected. These results, shown in
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(a) handlebar height - heavy models (b) handlebar height - light models

(c) front wheel height - heavy models (d) front wheel height - light models

Figure 4.24: Motorcycle front end response after a 50 mm road bump input with a forward
speed of v = 40 m/s for the telescopic fork suspension compared to the girder and Hossack
suspension systems with a constant normal trail configuration (cnt).

Fig. 4.23, are coherent with the fact that the steering axle in the girder and the

fork suspension systems is fixed to the chassis, and in both cases, the front wheel

follows the same trajectory. Consequently, a small deviation in the masses motion

is produced in both front ends.

Figure 4.24 shows the results for the road bump input simulation for the two

designed alternative suspension systems in order to introduce a minimal normal

trail variation. A similar behaviour in both systems is observed. Whilst the girder

suspension response is closer to that of the telescopic fork, the Hossack system

response differs slightly. Additionally to this, the Hossack suspension system is the

one that shows more influence on the mass reduction.

For both suspension systems (girder and Hossack) with the three different kine-

matics configurations(prl, tft and cnt), the road bump input responses are similar to

that of the telescopic fork. Although it can be said that they show some differences

and are slightly affected for the mass variations, the increase in the front ends height

responses are not larger than 5 mm in any case.
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Front wheel braking

A front wheel braking manoeuvring simulation is set up for the motorcycle running

on a straight line, at a initial forward speed of v = 40 m/s which is forced to

decelerate with a negative acceleration of a = −0.5 G. This deceleration is obtained

by applying a braking moment into the front wheel, whose magnitude is controlled

by a PD controller implemented in the model as in Chapter 3.

(a) vertical suspension travel - heavy models (b) vertical suspension travel - light models

(c) normal trail - heavy models (d) normal trail - light models

Figure 4.25: Vertical suspension travel (v.s.t.) and normal trail (tn) for the telescopic fork
suspension compared to the girder and Hossack systems with a parallelogram configuration
(prl). A straight line front wheel braking manoeuvre at an initial forward speed of v = 40 m/s
with a constant deceleration of a = −4.9 m/s2 is performed.

In order to focus on the pure braking effects only, the aerodynamic forces have not

been taken into account by setting the drag, lift and pitch aerodynamic coefficients

to zero during this simulation. Figure 4.25 shows the vertical suspension travel and

the normal trail variation of the three different motorcycle models fitted with the

telescopic fork, the girder suspension and the Hossack system with a parallelogram

configuration (prl). The anti-dive effect is shown to increase in Fig. 4.25a and 4.25b

for both double wishbone suspension systems. This is produced by their front wheels

contact points trajectories which can be observed in Fig. 4.10a and 4.9. The mass

reduction slightly increases this effect due to a decrease on the inertia.
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However, regarding to the normal trail variation, the girder and the Hossack

system behave opposite to each other. Whilst the girder suspension reaches smaller

normal trail values than the telescopic fork, the Hossack system presents larger

normal trail values than the fork for all the suspension travel. The lighter models’

normal trail are similarly affected, presenting slightly larger values of this parameter

than in the heavier models cases.

(a) vertical suspension travel - heavy models (b) vertical suspension travel - light models

(c) normal trail - heavy models (d) normal trail - light models

Figure 4.26: Vertical suspension travel (v.s.t.) and normal trail (tn) for the telescopic fork
suspension compared to the girder and Hossack systems with a telescopic fork’s trajectory
configuration (tft). A straight line front wheel braking manoeuvre at an initial forward speed
of v = 40 m/s with a constant deceleration of a = −4.9 m/s2 is performed.

When both girder and Hossack suspension systems are designed with a fork’s

trajectory configuration (tft), their diving properties become similar to those of the

telescopic fork, as it is shown in Fig. 4.26. The vertical suspension travel reached un-

der the braking manoeuvre is similar for the three systems. In the girder suspension

and telescopic fork cases, the common steering axles and front wheel contact points

trajectories, produce similar kinematics in both systems, which results in similar

normal trail behaviour.

In the Hossack suspension system case, the normal trail is highly reduced from

tn = 88 mm up to tn = 68 mm, which excesses significantly the reduction of this pa-
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rameter reached by the telescopic fork and girder suspension systems. The Hossack

system’s geometry magnifies the normal trail reduction. In order to obtain a front

wheel contact point trajectory similar to that of the telescopic fork, the steering axis

is necessarily reduced with the suspension travel. This leads to a greater normal

trail reduction compared to other configurations. Finally, the lighter models show

subtle differences in the vertical suspension travel and the normal trail variations

with respect to the heavier models for both girder and Hossack suspension systems.

(a) vertical suspension travel - heavy models (b) vertical suspension travel - light models

(c) normal trail - heavy models (d) normal trail - light models

Figure 4.27: Vertical suspension travel (v.s.t.) and normal trail (tn) for the telescopic
fork suspension compared to the girder and Hossack systems with a constant normal trail
configuration (cnt). A straight line front wheel braking manoeuvre at an initial forward speed
of v = 40 m/s with a constant deceleration of a = −4.9 m/s2 is performed.

Figure 4.27 shows the front wheel braking dynamics of the girder and the Hossack

systems configured to present a minimal normal trail variation. The front wheel

contact point trajectory becomes highly relevant on the suspension anti-dive effect.

Looking at Fig. 4.12 it can be observed a trajectory of the contact point with a higher

angle with the vertical, which makes this suspension configuration more prone to dive

than the telescopic fork, increasing the vertical suspension travel value about 10 mm

in this case. Conversely, the Hossack suspension system with this configuration

shows a negative angle with the vertical of its front wheel contact point trajectory.
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This results in an opposite behaviour of the front end, which rises from its nominal

position, 10 mm for the heavier model and 15 mm for the lighter one. Regarding to

the normal trail, both girder and Hossack suspension systems experience a reduction

of this value (limited by the geometrical configuration). They were designed in

order to keep this value constant. However, this can only be achieved considering

the static suspension compression. Depending on the different accelerations on the

motorcycle, other elastic parts different than those of the front suspension system

will be compressed or extended: these are the tyres carcasses and the swinging

arm assembly. This change in the geometry modifies the kinematics design and

produces a normal trail reduction as shown in Fig. 4.27c and 4.27d. With this

geometrical configuration, the lighter and heavier models are more influenced by

the mass differences than in other configurations. Now, the heavier ones show more

pronounced suspension diving effects which also have an impact on the normal trail

variation.

4.3.2 Stability analysis

In order to understand how the alternative double wishbone suspension systems

can affect the motorcycle oscillatory dynamics, a stability analysis is performed

using root locus of the different suspension systems and various parameter variations

such as geometry, mass, front frame compliance and steering damper coefficients.

Following the approach stated in Chapter 3, the state space models derived from

the linearized equations of motion are filled up with the quasi-equilibrium states,

integrated from the nonlinear equations. These states have been obtained for each

model, from four motorcycle simulations with four different roll angles (0◦ , 15◦ ,

30◦ and 45◦). In the four simulations, the forward speed is increased from 10 m/s

up to 80 m/s with an acceleration of a = 0.001 m/s2.

Figure 4.28 shows these root loci of the nominal motorcycle model fitted with a

telescopic front fork. The rider lean, weave and wobble oscillating modes are shown.

Also the pitch mode appears in the interest area, but only for the case of a 45◦

roll angle. The rest of the normal modes are highly damped and are not visible in

this area. The rider lean, weave and wobble are out-of-plane modes whilst the pitch

mode is an in-plane one. It consists in the pitching of the motorcycle through the
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Figure 4.28: Root loci of the nominal motorcycle model fitted with a telescopic fork sus-
pension. The speed is increased from 10 m/s (�) up to 80 m/s (∗) at different roll angles: 0◦

(blue), 15◦ (green), 30◦ (red) and 45◦ (black).

front and rear suspension compression and extension in an out-of-phase motion. The

rider lean appears in the root locus when the rider upper-body degree of freedom

is included in the mathematical model. It is an oscillation of the rider’s upper-

body. The weave mode appears when the roll, yaw and steering angle oscillations

are combined in a fishtailing motion. The wobble mode is characterized by a shaking

of the front frame about the steering axis whilst the rear frame is slightly affected.

The in-plane and the out-of-plane degrees of freedom become coupled for roll angles

different to zero, when the motorcycle symmetry plane is out of the vertical. A

more extensive study of these and other modes is presented in Chapter 7. Weave

and wobble oscillating modes have been widely studied in the literature (e.g. (Sharp

1971), (Cooper 1974), (Roe & Thorpe 1976), (Koenen 1983), (Limebeer et al. 2001),

(Evangelou et al. 2008) just to cite a few). And they are of main relevance in this

chapter due to their proximity to the unstable area, which is eventually reached

under some running conditions.

Geometry and mass variation

The root locus obtained for the different geometrical configurations (prl, tft and cnt)

of both the girder and the Hossack suspension systems shows that the differences

of these configurations do not affect the system’s roots positions in a significant

manner. Figure 4.29a and Fig. 4.29b show the root loci for four different simulations
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at various motorcycle’s lean angles for the girder suspension heavier model with the

telescopic fork’s trajectory (tft) and the constant normal trail (cnt) configurations.

No relevant difference is observed. Figure 4.29c and Fig. 4.29d represent the root loci

for the lighter models under the same conditions. In these cases, the mass reduction

increases slightly the wobble mode frequency and damping at medium-high speeds

for all the roll angles.

(a) girder - heavy - tft config. (b) girder - heavy - cnt config.

(c) girder - light - tft config. (d) girder - light - cnt config.

Figure 4.29: Root loci of the girder suspension for the telescopic fork’s trajectory (tft) and
the constant normal trail (cnt) configurations of the lighter and heavier models. The speed
is increased from 10 m/s (�) up to 80 m/s (∗) at different roll angles: 0◦ (blue), 15◦ (green),
30◦ (red) and 45◦ (black).

Compared to the root loci of the telescopic fork suspension (Fig. 4.28), three

things can be observed: first, observe the destabilization of the weave mode at zero

roll angle for speeds higher than 70 m/s. At higher roll angles (15◦, 30◦ and 45◦),

this mode is less damped than in the telescopic fork suspension case but does not

cross the stability limit. Secondly, the wobble mode is unstable for speeds lower

than 16 m/s at 45◦. However, it becomes more damped for higher speeds and

smaller roll angles. Finally, the third effect of fitting the motorcycle with a girder

suspension system is an appreciable increase of the wobble frequency. The rest of
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the modes remain mostly unaffected by the inclusion of this suspension system on

the motorcycle model.

(a) Hossack - heavy - prl config. (b) Hossack - heavy - cnt config.

(c) Hossack - light - prl config. (d) Hossack - light - cnt config.

Figure 4.30: Root loci of the Hossack suspension system with parallelogram (prl) and con-
stant normal trail (cnt) configurations of the lighter and heavier models. The speed is increased
from 10 m/s (�) up to 80 m/s (∗) at different roll angles: 0◦ (blue), 15◦ (green), 30◦ (red)
and 45◦ (black).

Figure 4.30a and Fig. 4.30b show the root loci for four lean angles simulations of

the Hossack suspension system heavier model with the parallelogram (prl) and the

constant normal trail (cnt) configurations respectively. Equivalent root loci for the

lighter models are presented in Fig. 4.30c and Fig. 4.30d. In these cases, the mass

reduction slightly increases the wobble mode frequency, and becomes more damped

at high speeds for all the roll angles compared to the telescopic fork suspension case.

(Fig. 4.28). The weave mode shows little variations, reaching the unstable area for

0◦ roll angle at a maximum forward speed of v = 80 m/s for the lighter models.

Compared to the root loci of the telescopic fork suspension case, the Hossack

suspension system’s wobble mode becomes more damped at higher forward speeds

for all roll angles whilst it is less damped at lower speeds. In the case of 45◦ roll angle,

this mode is unstable from 10 m/s up to 20 m/s. Its frequency is increased between
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10 rad/s and 20 rad/s on the full speed range and for all roll angles. The remaining

normal modes are not substantially affected by the inclusion of this suspension

system in the motorcycle model.

Front frame compliance

The design of a front suspension system will determine its compliance and hence, the

stiffness at the front end. It is interesting to study how this compliance can affect

the stability of a motorcycle assembly. In the motorcycle’s mathematical model, the

compliance is introduced as a moment applied between the chassis and the front end

about the twist axis. As it was explained in the modelling section, this is an axis

perpendicular to the steering one and into the motorcycle symmetry plane.

(a) girder: kt = 1.4 · kt0 , ct = 1.4 · ct0 (b) girder: kt = 1.2 · kt0 , ct = 1.2 · ct0

(c) girder: kt = 0.8 · kt0 , ct = 0.8 · ct0 (d) girder: kt = 0.6 · kt0 , ct = 0.6 · ct0

Figure 4.31: Root loci for girder suspension lighter model with a constant normal trail (cnt)
configuration for different values of the twist moment coefficients. The speed is increased from
10 m/s (�) up to 80 m/s (∗) at different roll angles: 0◦ (blue), 15◦ (green), 30◦ (red) and 45◦

(black).

The twist moment is defined as a torsional spring and damper combination whose

stiffness parameter has a nominal value of kt0 = 100 kNm, whilst the damping

parameter nominal value is ct0 = 100 Nms. In order to study the variation on the
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rigidity of both front suspension systems, these stiffness and damping coefficients are

modified proportionally from 60 % of their nominal values up to the 140 %. These

maximum values may be difficult to be achieved in a real mechanical implementation,

but become useful to be considered in order to highlight the trends of the systems

behaviour.

(a) Hossack: kt = 1.4 · kt0 , ct = 1.4 · ct0 (b) Hossack: kt = 1.2 · kt0 , ct = 1.2 · ct0

(c) Hossack: kt = 0.8 · kt0 , ct = 0.8 · ct0 (d) Hossack: kt = 0.6 · kt0 , ct = 0.6 · ct0

Figure 4.32: Root loci for Hossack suspension lighter model with a constant normal trail
(cnt) configuration for different values of the twist moment coefficients. The speed is increased
from 10 m/s (�) up to 80 m/s (∗) at different roll angles: 0◦ (blue), 15◦ (green), 30◦ (red)
and 45◦ (black).

As it has been shown, since the mass differences and the variation in the geo-

metrical configuration of both girder and Hossack suspension systems do not affect

their stability properties significantly, Figs. 4.31 and 4.32 show the root-loci of the

girder and Hossack systems for the different values of the twist moments only for

the lighter constant trail geometrical configuration.

For the girder suspension system, the weave mode is unstable for speeds above

70 m/s at a zero roll angle, whilst the wobble mode instability happens for a 45◦ roll

angle and forward speed values below 16 m/s. When the twist stiffness, and thus the

front frame rigidity, is increased, the wobble mode becomes more unstable whilst
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the weave mode’s stability increases, narrowing in this way its unstable forward

speed range at zero roll angle. A reduction of the twist stiffness results in the

opposite effect. Consequently, weave and wobble modes stability cannot be satisfied

simultaneously by modifying the front suspension system’s compliance.

Considering the Hossack suspension system, the front end’s compliance variation

has a similar impact as in the girder suspension case on the motorcycle’s stability

behaviour. In this case, the wobble mode at 45◦ roll angle is stable for speed values

larger than 20 m/s whilst the weave mode is stable for practically all the speed range

at any roll angle for the nominal value of the twist moment coefficient. However, if

the stabilization of the wobble mode for a 45◦ roll angle at the lower speed range is

sought by decreasing the front frame’s rigidity, the weave mode will become unstable

for the straight line case at its higher speed range.

(a) girder: csd = 1.4 · csd0 (b) girder: csd = 1.2 · csd0

(c) girder: csd = 0.8 · csd0 (d) girder: csd = 0.6 · csd0

Figure 4.33: Root loci for girder suspension lighter model with a constant normal trail (cnt)
configuration for different values of the steering damper coefficient. The speed is increased
from 10 m/s (�) up to 80 m/s (∗) at different roll angles: 0◦ (blue), 15◦ (green), 30◦ (red)
and 45◦ (black).

As it happened in the girder case, fully stable normal modes for the entire speed

range at all roll angles are not found simultaneously by modifying the front end’s
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compliance. Nevertheless, this is a design parameter that should be taken into

account if the expected motorcycle running conditions are not as demanding as in

the case in which both normal modes are unstable: straight running forward speeds

near to 80 m/s and large roll angles of 45◦ at low speeds.

Steering damper

The steering damper links the steering body and the chassis; its mission is to at-

tenuate hard steering oscillations. Nowadays, a steering damper is fitted in most of

the commercial sport motorcycle. The nominal GSX-R1000 model has a steering

damper which is mathematically modelled as a linear reacting moment between the

steering body and the motorcycle’s main body (chassis).

(a) Hossack: csd = 1.4 · csd0 (b) Hossack: csd = 1.2 · csd0

(c) Hossack: csd = 0.8 · csd0 (d) Hossack: csd = 0.6 · csd0

Figure 4.34: Root loci for Hossack suspension lighter model with a constant normal trail
(cnt) configuration for different values of the steering damper coefficient. The speed is in-
creased from 10 m/s (�) up to 80 m/s (∗) at different roll angles: 0◦ (blue), 15◦ (green), 30◦

(red) and 45◦ (black).

For the standard motorcycle model fitted with a telescopic fork, it is well known

that by increasing the steering damper coefficient, the wobble mode becomes stable

since this mode consists in a violent oscillation of the steering body. However, the
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weave mode stability at high forward speeds is compromised by the action of the

steering damper. The opposite effect is found when the steering damper coefficient is

decreased. Figure 4.33 and Fig. 4.34 show similar effects for the girder and Hossack

suspension systems lighter models with a constant normal trail (cnt) configuration,

respectively. In these simulations the steering damper coefficient has been varied

from the 60 % of its nominal value (csd0 = 6.94 Nms) up to the 140 %.

(a) Girder - csd = 7.43 Ns (b) Hossack - csd = 7.45 Ns

Figure 4.35: Root loci for the girder (a) and Hossack (b) suspension systems for the lighter
models with the constant normal trail configurations set with steering damper coefficient
values that guarantee wobble stability and only weave instability at high speeds for the gider
suspension system. The speed is increased from 10 m/s (�) up to 80 m/s (∗) and different
roll angles are considered: 0◦ (blue), 15◦ (green), 30◦ (red) and 45◦ (black).

For the steering damper coefficient variation, an opposite behaviour to that for

the twist coefficients variation is found. In the case of the girder suspension, the

weave mode stability is always compromised at high speeds ranges even for the

smallest value of the steering damper coefficient. In this case, the wobble mode is

unstable for half of the speed range at 45◦ roll angle. Stability of both modes cannot

be achieved simultaneously with the steering damper. However, as a compromise

solution, far from being optimal, it can be used to stabilize the wobble mode at

lower speed and high roll angles by sacrificing the stability at higher forward speed

values. For the GSX-R1000 model fitted with lighter girder suspension system with

a constant normal trail configuration, the wobble mode becomes fully stable for

a value of the steering damper coefficient of csd = 7.43 Ns, which is just slightly

higher (7 %) than the nominal value. The maximum forward speed at which the

weave mode still remains stable is v = 70 m/s, which for non racing conditions is a

considerable speed (252 km/h) well above of the allowed speed limits.
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For the case of a Hossack suspension system, the weave mode is better damped.

A steering damper coefficient value which keeps both modes stable for almost all

the studied running conditions can be found for the GSX-R1000 model fitted with

this suspension system. This value is csd = 7.45 Ns, which is only a 8 % increase

of the nominal value. Figure 4.35a and Fig. 4.35b show the root loci for the lighter

girder and Hossack suspension systems respectively with a constant normal trail

(cnt) configuration when the steering damper coefficients are the values indicated

above.

4.4 Conclusions

Discussion

In this chapter the performances of the girder suspension and the Hossack system

have been studied for a Suzuki GSX-R1000 motorcycle model which initially was

fitted with a telescopic fork suspension. Both of them can be designed with differ-

ent kinematic behaviours. From a front wheel trajectory similar to that performed

by the telescopic fork to a configuration in which the normal trail (or any other

handling parameter) remains constant along the full suspension travel. Three geo-

metrical configurations have been studied for the two different suspension systems:

parallelogram, fork’s trajectory and constant normal trail configurations. Four han-

dling parameters are presented: wheelbase, head angle, trail and normal trail. The

first of them is relevant for the motorcycle dynamics but cannot be significantly

modified by the suspension system’s geometry. The three last of them are similarly

related for any kind of suspension system. One of them has been taken as repre-

sentative, this is the normal trail, whose variations impact has been studied in this

chapter.

The principal obstacle at the time to implement the suspension systems’ math-

ematical models is that a real Suzuki GSX-R1000 motorcycle fitted with either a

girder or a Hossack suspension system was not available. Therefore, different CAD

designs were built in order to obtain the accurate values for the masses, moment

and products of inertia that a real suspension system of this type would have. Mak-

ing use of finite element analysis techniques, the CAD models could be tested and
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their masses reduced. Two different models depending on the masses values have

been developed for each of these two suspension systems. The first of them keeps

similar parts masses than their equivalent parts in the telescopic fork. The second

was modelled to be lighter, always inside the compliance security limits.

Once the suspension systems dynamic properties were obtained from the CAD

designs, the corresponding mathematical models have been built using VehicleSim

multi-body software. Then, two types of simulation were performed: the in-plane

dynamic simulations and the quasi-equilibrium acceleration for various representa-

tive roll angles.

In the in-plane dynamic simulations cases, the motorcycle is firstly driven through

a road step bump input in order to test the front end’s response for both suspension

systems. A second kind of simulation is carried out to study the in-plane dynam-

ics. It consists in a controlled front wheel braking manoeuvre that produces a 0.5 G

constant deceleration on the motorcycle. With these simulations, the anti-dive prop-

erties of each suspension system can be observed as well as its actual geometrical

behaviour.

On the other hand, in the quasi-equilibrium state simulations, the state space

matrices are fed with the results obtained for the different models in order to study

the stability properties of the motorcycle under a range of different running con-

ditions. The forward speed is increased from 10 m/s up to 80 m/s and the roll

angle varies from 0◦ up to 45◦. Therefore, the stability of the system can be studied

through root loci in which the system’s states are varied.

Results

During the road bump input simulations it has been found that the behaviour of the

girder and the Hossack systems do not differ much from the nominal response when

the motorcycle was fitted with a telescopic fork suspension, obtaining similar settle

times and maximum elongations. In most of the simulation results here presented,

the girder suspension’s response is similar to the telescopic fork’s response, except in

the parallelogram configuration, for which the Hossack suspension system behaviour

remains more similar to the fork suspension response than the girder system’s re-

sponse. In terms of systems’ weight, no major differences have been found between
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the heavier models and the lighter ones.

In the front wheel braking manoeuvres, different behaviour was found for the

different suspension systems and geometrical configurations. In the parallelogram

configuration (prl) case, both suspension systems show better anti-dive properties

than the telescopic fork suspension, being the Hossack suspension the system which

shows less dive. During a braking manoeuvre the conventional telescopic fork sus-

pension dives reducing the motorcycle’s normal trail. In the case of the Hossack

suspension system with a prl geometrical configuration, the normal trail is reduced

in a smaller proportion. However, for the girder system with this prl configuration,

a larger reduction in normal trail is produced compared to the telescopic fork case.

When both suspension systems are configured such that they follow the same

trajectory as the telescopic fork suspension, the girder suspension behaves practically

identical to it, being the dive and the normal trail variation of both models very

similar to each other. However, the Hossack suspension system differs from the

nominal case behaviour of the telescopic fork suspension, reaching higher levels of

diving and drastically decreasing its normal trail.

The last geometrical configuration applied to the double wishbones suspension

systems seeks to maintain a constant normal trail along the full suspension travel.

This ideal behaviour would be reached if the motorcycle’s rear frame and tyres’

carcasses were rigid. However, due to their flexibilities, the motorcycle geometry is

deformed depending on the accelerations. Consequently, a completely constant trail

cannot be found. Nevertheless, it can be observed that the reduction of the normal

trail with the suspension travel is highly restricted for both suspension systems. The

effects of this geometrical configuration on the front end diving are opposed for each

of the systems: whilst the girder suspension dives further than the telescopic fork,

the Hossack suspension system rises the front end. These behaviours are directly

related to the different trajectories followed by the front wheel’s contact points for

the different suspension systems. That of the girder forms an angle with the vertical

axis larger than the trajectory of the telescopic fork wheel’s contact point, that

opposes less resistance to the motorcycle diving. On the other hand, the trajectory

of the wheel’s contact point for the Hossack suspension system forms a negative

angle with the vertical axis, which makes the front end prone to rise under braking
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manoeuvres. In all the performed deceleration simulations, the mass reduction of

the lighter models shows results in which the impact of the different geometrical

configurations is smoothed.

Regarding to the stability analysis, it was found that the geometrical configu-

ration of the different suspension systems does not imply a substantial difference

in terms of root locus for none of the system considered. The mass reduction does

not introduce a change in the stability but, as it can be expected, the wobble mode

frequency is slightly increased.

Compared to the telescopic fork suspension model, the girder suspension model

presents two differences on the wobble mode behaviour. Firstly, its frequency in-

creases for most of the running conditions. Secondly, the damping at higher speeds

increases whilst for slower speeds and high roll angles (30◦ and 45◦) it decreases.

For the case of 45◦ roll angle, the wobble mode is unstable for forward speed below

16 m/s. On the other hand, the weave mode damping is reduced at high speeds and

small roll angles (0◦ and 15◦). For zero roll angle, the weave mode becomes unstable

for speeds above the 70 m/s.

When the Hossack suspension model is compared to the telescopic fork suspen-

sion case, it is shown that the wobble mode behaves in a similar manner as in the

girder suspension model case. It is unstable for forward speeds below 20 m/s at 45◦,

whilst for higher speeds this mode’s damping is significantly increased compared to

the telescopic fork suspension model. However, in the Hossack suspension case, the

weave mode remains almost unaffected.

The influence the front frame compliance has on the motorcycle’s stability is

studied by modifying the twist moment coefficients. It was found that by increasing

these coefficients, the weave mode at higher forward speeds and 0◦ roll angle increases

its stability, whilst the wobble mode’s stability at lower speeds and 45◦ roll angle

decreases. This behaviour is similar in both girder and Hossack suspension systems.

The suspension system’s compliance is a parameter that ought to be considered

although it cannot be easily exploited in the motorcycle stability design process. It

is for this reason that nowadays, most of the marketed sport motorcycles include a

steering damper that allows to improve the wobble mode’s damping. However, as it

has been shown, it has a detrimental effect on the weave mode stability. The steering
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damper coefficient variation in the girder and Hossack models has the opposite effect

to the variation of the front end compliance. Higher values of this coefficient help to

damp out the wobble mode for all the speed range whilst reducing the weave mode’s

damping. Nevertheless, the steering damper affects in a more pronounced manner

the wobble mode than the weave mode, and for the Hossack suspension system a

steering damper coefficient value that stabilizes the weave and wobble modes for

almost all the running conditions is provided. For the girder suspension system it

is necessary to sacrifice top speed stability (above 70 m/s) in order to get stability

for all the leaning angles under study.

Conclusions

In the light of these results, both girder and Hossack suspension systems can be

considered as good candidates for general sport motorcycles. In terms of stability,

for the motorcycle model considered in this research, the girder suspension system

maximum safe speed is restricted to values below 70 m/s due to the limits imposed

by weave stability. Whilst, for the case the Hossack suspension system, the steering

damper can be set to allow maximum speeds, up to 80 m/s, and still maintain safe

running conditions. These systems also produce accurate responses to road bump

inputs and show interesting properties in terms of anti-dive and normal trail vari-

ation that could not be exploited with a telescopic fork suspension. Furthermore,

their simpler construction reduces notably the assembly’s weight and could reduce

the manufacturing costs.

92



Chapter 5

Interconnected Suspensions

System: Linear Description

Interconnected suspension systems have been widely used on car industry. Nowadays

most of the marketed cars are equipped with anti-roll bars that connect mechani-

cally the front and rear ends wheels separately. Although the connection between

the front and rear ends is not as usual as the anti-roll bars, some notable exam-

ples have been marketed, being the 1948 Citroën 2CV the first mass production

car fitting this system. However, in the two wheels field, these systems are not ex-

tended and have not been popularized. The main goal of this chapter is to provide

the mathematical background that allows a deeper understanding of the dynamics

behind the interconnected suspension systems when implemented on a motorcycle.

The starting point of this study is defined by examining three prototypes, of three

different manufacturers, which implement this type of suspension systems. Two of

them are bicycle demonstrators built by two independent individuals whose works

are presented in both websites: (Toptrail 2015) and (RaerDesign 2015). The first of

them introduces the concepts behind its prototype in the technical report (Griffiths

2015). However, no mathematical models are provided to analyse the dynamics of

any of the two systems.

The third interconnection system under study is that of Creuat Suspension Tech-

nology (Creuat 2015). The company provides a mathematical derivation of the pro-

posed arrangement in (Fontdecaba i Buj 2002). In this chapter, this interconnected

mechanical implementation is adapted and completed in order to find a more ade-

93



quate model for two-wheeled vehicles which provides a wider knowledge of this type

of systems. For some manufacturers, the interconnection system is claimed as an

efficient method to uncouple the bounce and pitch dynamics, and all of them declare

a significant improvement in the suspensions’ performance. This chapter is focused

on studying the dynamics and normal modes properties, whilst in Chapter 6 the

improvement on suspension performance is explored.

5.1 Interconnected suspension prototypes

5.1.1 Raer Design

The RaerDesign prototype is one of the functional demonstrators of the intercon-

nected suspension technology on bicycles. Several models have been built based

on this interconnection scheme. Fig 5.1 presents the last Rae’s bicycle prototype

and the sketch provided on his web site (RaerDesign 2015) showing the proposed

interconnection layout.

(a) (b)

Figure 5.1: a)The last Raer Design interconnected suspension system bicycle prototype. b)
Sketch used to explain the interconnection layout. - (RaerDesign 2015).

This sketch is almost the only technical explanation of the invention that can be

found as per to date. So far, no technical details regarding this mechanical proposal

have been found. Only one international patent of the invention (Rae 2010) is found

in which this mechanical arrangement is described. However, no further theoretical

discussion appears to be available neither in the patent document nor in the web

site. Nevertheless, a dynamical analysis can be performed from the sketch shown in

94



Fig. 5.1. In order to simplify its understanding, a schematic diagram containing the

most significant parameters is presented in Fig. 5.2.

Figure 5.2: Diagram showing the interconnection layout and relevant parameters. The Raer
Design system can be divided in two rigid bodies, front (blue) and rear (red). They are
connected through two independent springs-damper units. In this figure only the springs are
shown in order to provide a clearer view.

The interconnection layout consists of two rigid bodies attached to the front and

rear wheels respectively, such that each of them pivots about its corresponding axis

located at the points pf or pr. The corresponding front and rear bodies are connected

to each other by two independent shock-absorbers, consisting of two springs and two

dampers acting in parallel. In Fig. 5.2 these elements are drawn only as springs in

order to provide a clearer view. The front suspension body is plotted in blue whilst

the rear one is plotted in red. Both bodies are characterized by three lengths each.

These lengths correspond to the distance from the pivot points to the junctions with

the two shock-absorbers and the corresponding wheel. For the front suspension body,

lf1 is the distance from the pivoting point (pf ) to the junction with the first spring

(k1); lf2 is the distance from the pivoting point (pf ) to the junction with the second

spring (k2) and lf3 is the distance from the pivoting point (pf ) to the connection

with the front wheel. A similar notation is used for the rear suspension body where

the subscript ’r ’ is used instead of ’f ’. The displacements of the springs tips are

named as df1 and dr1 for the spring one and df2 and dr2 for the spring two. Under a

lineal approach, the compression of each spring is given by dfi− dri and it is related

to the wheel’s vertical displacement through the geometrical ratios:
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df1 = ρf1 · zf ; dr1 = −ρr1 · zr
df2 = −ρf2 · zf ; dr2 = ρr2 · zr

Considering that all the lengths are taken as positive values, and in order to keep

a consistent notation with the sign criteria, the ratios ρf2 and ρr1 must be preceded

by a negative sign, being these ratios also defined as positive.

ρf1 =
lf1
lf3

; ρf2 =
lf2
lf3

; ρr1 = lr1
lr3

; ρr2 = lr2
lr3

Then, the forces appearing on each springs’ tip are written as:

f1 = −k1 · (ρf1zf − ρr1zr) (5.1)

f2 = −k2 · (ρf2zf − ρr2zr) (5.2)

These forces are transmitted to the wheels through the same geometrical ratio.

And the total forces appearing in the wheels result in the addition of the forces

exerted by the two springs:

ffz = ρf1 · f1 + ρf2 · f2 (5.3)

frz = −ρr1 · f1 − ρr2 · f2 (5.4)

Finally the total spring forces can be written as functions of the front and rear

wheels displacement:

ffz = (−ρ2
f1k1 − ρ2

f2k2) · zf + (−ρf1ρr1k1 − ρf2ρr2k2) · zr (5.5)

frz = (−ρ2
r1k1 − ρ2

r2k2) · zr + (−ρf1ρr1k1 − ρf2ρr2k2) · zf (5.6)

Three equivalent stiffness coefficients appear in these equations. The front stiff-

ness coefficient (kf ) is the stiffness coefficient of an equivalent spring reacting to the

front wheel displacement. The rear stiffness coefficient (kr) is that of an equivalent

spring which reacts to the rear wheel displacement. The interconnection stiffness

coefficient (ks) is that corresponding to the force that appears in one wheel due to

the displacement of the other one. This interconnection coefficient is similar for
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both front and rear suspension forces.

kf = ρ2
f1 · k1 + ρ2

f2 · k2 (5.7)

kr = ρ2
r1 · k1 + ρ2

r2 · k2 (5.8)

ks = ρf1ρr1 · k1 + ρf2ρr2 · k2 (5.9)

These results are found for the springs forces. However, a similar analysis is valid

for the damping forces obtaining the following equivalent damping coefficients:

cf = ρ2
f1 · c1 + ρ2

f2 · c2 (5.10)

cr = ρ2
r1 · c1 + ρ2

r2 · c2 (5.11)

cs = ρf1ρr1 · c1 + ρf2ρr2 · c2 (5.12)

Then, the total suspension force can be written as follows:

ffz = kf · zf + ks · zr + cf · żf + cs · żr (5.13)

frz = ks · zf + kr · zr + cs · żf + cr · żr (5.14)

The equivalent full interconnected suspension system consists of six parameters,

three of them related to the stiffness (kf , kr and ks) and three related to the damping

of the system (cf , cr and cs). Eight independent variables are available to define the

desired values of the damping and stiffness coefficients of the resultant suspension

system: two stiffness coefficients corresponding to the physical springs (k1 and k2),

two damping coefficients corresponding to the physical dampers (c1 and c2) and

four geometrical ratios (ρf1, ρr1, ρf2, ρr2). Solving the equation system {Eq. 5.7,

Eq. 5.8, Eq. 5.9} the values of the stiffness coefficient and the one of the geometrical

ratios are found depending on the equivalent stiffness coefficient and the rest of the

geometrical ratios:

k1 =
−2kfρf2ρr2ks + ρ2

r2k
2
f + ρ2

f2k
2
s

(−2ρf2ρr2ks + krρ2
f2 + ρ2

r2kf )ρ
2
f1

(5.15)

k2 =
−k2

s + kfkr
−2ρf2ρr2ks + krρ2

f2 + ρ2
r2kf

(5.16)

ρr1 =
−ρf1(−ρr2ks + krρf2)

(ρr2kf − ksρf2)
(5.17)
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The values of the damping coefficients and other of the geometrical ratios are

found by solving the equations system {Eq. 5.10, Eq. 5.11, Eq. 5.12}

c1 =
crcf − c2

s

−2csρr1ρf1 + ρ2
f1cr + cfρ2

r1

(5.18)

c2 =
c2
sρ

2
r1 − 2csρr1ρf1cr + ρ2

f1c
2
r

ρ2
r2(−2csρr1ρf1 + ρ2

f1cr + cfρ2
r1)

(5.19)

ρf2 =
−(−ρf1cs + cfρr1)ρr2
−csρr1 + ρf1cr

(5.20)

Finally, by solving the equations system {Eq. 5.17, Eq. 5.20} the solutions for

the geometrical ratios ρr1 and ρf2 are found. One double solution appears for ρr1

which results proportional to ρf1. For ρf2 two different solutions are found where

ρf2 is proportional to ρr2 in both cases.

ρr1 = ρf1 · ks−kfkr−ks

ρf2 = ρr2 · 1
2

−kf cr+krcf±
√
k2f c

2
r−2kf crkrcf+k2rc

2
f−4kf cscrks+4kf c2skr+4cfk2scr−4cfkscskr

−kf cs+cfks

It can be noticed that only two independent geometry parameters do exist, being

this a total of six independent variables to define the six interconnected suspension

coefficients. The independent geometrical relation can be taken as:

τ1 = ρr1
ρf1

; τ2 =
ρf2
ρr2

.

This interconnected suspension system is fully configurable taking advantage of

its geometrical configuration. This implies both positive and negative consequences:

it only needs two shock-absorbers for its implementation, reducing in this way its

cost and its weight. However, once the geometrical ratios have been calculated

and implemented on the vehicle, they cannot be modified. Therefore, the equivalent

interconnected suspension system settings are more restricted than for other systems

that may include a third shock-absorber.

5.1.2 The Toptrail Project - Citroën 2CV

Other prototype of a bicycle with interconnected suspension system is that of the

Top Trail Interconnected Suspension Bicycle Project (Toptrail 2015). The author of
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this project presents this work in a technical report that can be found in (Griffiths

2015). Several test of the prototype compared to conventionally suspended bicy-

cles are presented in different videos that display the advantages that this model

introduces in terms of suspension efficiency. However, a dynamical analysis of the

interconnection system is not presented.

(a) (b)

Figure 5.3: a) Toptrail interconnected suspension system bicycle prototype. b) Sketch used
to explain the interconnection layout. - (Toptrail 2015).

In the technical report, the author discusses on the common ridding issues ap-

pearing in conventional bicycles and a different mechanical method is proposed in

order to address those issues. The main focus is on the bicycle’s dive, boobing and

sag movement. Although the bounce mode’s natural frequency is a factor to be

considered on the bicycle’s design, the interconnection mechanism is presented as a

way to reduce bobbing appearing whilst pedalling instead of a design element for

the bicycle normal mode. By combining this feature with other different solutions,

finally the author proposes a full suspension system as in Fig. 5.3b. This proposal

does not correspond to the final design of the bicycle’s prototype, which looks to

be closer to one of the sketches that the author presents in his international patent

(Griffiths 2008). The prototype, shown in Fig. 5.3a, uses two shock-absorbers and

a complex mechanical arrangement to achieve the interconnection properties stated

in the technical report. This section is focused in the three stiffness-damping units

arrangement presented on the technical report instead of in the final arrangement

of the prototype. One of the reasons is that the two absorbing elements of the inter-

connected suspension system have been already presented in the previous section.

On the other hand, the three absorbing elements interconnection system presents

a similar layout of that of the famous Citroën 2CV whose efficiency and reliability
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(a) (b)

Figure 5.4: a) Citroën 2CV chassis where the interconnected suspension system can be
appreciated as two longitudinal silver cylinders. - www.bringatrailer.com. b) Sketch of inter-
connection layout. - www.bielles.free.fr.

have been widely proven. Figure 5.4a shows a chassis of this car and the inter-

connected suspension system can be seen at its both sides as two silver cylinders.

Figure 5.4b shows a sketch of this mechanism. In order to have a clearer view

of the kynematics of the system, Fig. 5.5 shows a diagram corresponding to this

interconnection systems in which all the relevant parameters can be seen.

Figure 5.5: Diagram showing the interconnection layout and relevant parameters. The
Toptrail system can be divided in two rigid bodies, front (blue) and rear (red). They are
connected through two springs-damper units connected in series. A third spring-damper unit
is connected between the bicycle main frame and a junction point of those two units. In this
figure only the springs are shown in order to provide a clearer view.

As in section 5.1.1, the analysis here is firstly carried out for the springs forces

and then extended to the damper’s forces. The forces appearing on each of the three

springs depend on the springs’ tips displacements:
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f1 = −k1 · (df − ds) (5.21)

f2 = −k2 · (ds − dr) (5.22)

f3 = −k3 · ds (5.23)

The front (df ) and the rear (dr) springs’ tips displacements are related to the

front and rear wheels’ vertical displacement by the geometrical ratios:

df = ρf · zf ; dr = −ρr · zr

Where:

ρf =
lf1

lf2

; ρr =
lr1
lr2

The displacement ds is calculated by equating all the forces applied at this point

(f1 = f2 + f3) and this gives:

ds =
k1df + k2dr
k1 + k2 + k3

The total forces appearing on the springs’ tips can be found by substituting this

value in Eq. 5.21 and Eq. 5.22. Taking into consideration the geometrical ratios,

the equivalent suspension forces can be written as functions of the front and rear

wheels’ displacement:

ffz =
−k1(k2 + k3)ρ2

f

k1 + k2 + k3

· zf −
k1k2ρfρr

k1 + k2 + k3

· zr (5.24)

frz =
−k2(k1 + k3)ρ2

r

k1 + k2 + k3

· zr −
k1k2ρfρr

k1 + k2 + k3

· zf (5.25)

This result is consistent with that found in previous subsection 5.1.1, where three

resulting parameters fully describe the equivalent interconnected system. These are

the front spring stiffness coefficient (kf ), the rear spring stiffness coefficient (kr) and

the interconnection spring stiffness coefficient (ks) which is equal for both front and

rear suspensions. A similar analysis is valid for the damping forces. The complete

resulting system is then defined by the equivalent stiffness and damping coefficients
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and the total suspension forces in Eq. 5.24 and Eq. 5.25 can now be rewritten as:

ffz = −kf · zf − ks · zr − cf · żf − cs · żr (5.26)

frz = −ks · zf − kr · zr − cs · żf − cr · żr (5.27)

Where:

kf =
−k1(k2 + k3)ρ2

f

k1 + k2 + k3

; cf =
−c1(c2 + c3)ρ2

f

c1 + c2 + c3

kr =
−k2(k1 + k3)ρ2

r

k1 + k2 + k3

; cr =
−c2(c1 + c3)ρ2

r

c1 + c2 + c3

ks =
k1k2ρfρr

k1 + k2 + k3

; cs =
c1c2ρfρr

c1 + c2 + c3

Three springs and three dampers are available to set the three equivalent stiffness

and the three equivalent damping coefficients respectively. Thus in these cases, the

geometrical ratios are free to be set as desired. For simplicity, they can be considered

to be one. Under these conditions, the values of equivalent suspension coefficient

will define the necessary values of the actual shock-absorbers coefficients:

k1 =
kfkr − k2

s

kr − ks
; c1 =

cfcr − c2
s

cr − cs

k2 =
kfkr − k2

s

kf − ks
; c2 =

cfcr − c2
s

cf − cs

k3 =
kfkr − k2

s

ks
; c3 =

cfcr − c2
s

cs

In the light of the results, the main advantage of this interconnection system

is that the geometrical ratios are not needed in order to set the equivalent coeffi-

cient. Therefore the system is more flexible and its configuration might be eventually

changed after the motorcycle has been built by changing the shock-absorbers’ prop-

erties. However, a third spring-damper unit is needed, increasing in this way the

costs and weight of the overall assembly. Nevertheless, this implementation just

presented, represents a more intuitive and simpler layout than that of only two

absorbing elements.

5.1.3 Creuat Suspension Technology

Creuat Suspension Technology (Creuat 2015) is a technological company specialized

in developing interconnected suspension systems based on passive mechanical com-
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ponents. This work is mainly focussed in four-wheeled vehicles but has also adapted

the technology to be implemented in motorcycles. This technology is claimed to

separate the spring and damper rates for each vehicle’s movement (such as pitch

and bounce) with reduced cost and complexity. The system consists of a central

device hydraulically connected to the motorcycle’s front fork and rear swinging arm

such that it contains the spring and damper elements. Figure 5.6a and Fig. 5.6b

show the system fitted in a motorcycle and a sketch representing the interconnection

system respectively.

(a) (b)

Figure 5.6: a) CREUAT interconnected suspension system. b) Concept’s Explanatory dia-
gram. - (Creuat 2015).

The CREUAT technology theoretical background is presented in (Fontdecaba i

Buj 2002) and it focuses in four-wheeled vehicles dynamics: the four characteristics

motions associated to the vehicle (bounce, pitch, roll and axle crossing) are anal-

ysed. Considering a four degrees of freedom model, in which the wheels’ masses are

neglected, the general elasticity matrix is described as diagonal matrix containing

the stiffness coefficients for each of the four general motions. Through a change of

basis, the individual elasticity matrix is obtained. It contains the stiffness coeffi-

cients of the forces appearing on each individual wheel. This matrix is not diagonal

and its crossed terms represent the interconnection stiffness rates provided by the

central device. The author states the optimal stiffness and damping properties that

a suspension system should provide in terms of improving the vehicle’s handling,

traction and comfort. These requirements are addressed by means of the intercon-

nected suspension system where the independence of all the characteristics motions

and minimal axle crossing stiffness and damping coefficients are sought. Finally,
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(Fontdecaba i Buj 2002) presents the results obtained in independent tests on a real

vehicle fitted with the CREUAT interconnected suspension system to demonstrate

the efficiency of the system. Although this contribution is focussed in four-wheeled

vehicles, it represents a good starting point for motorcycle interconnected suspen-

sion system analysis. In the following sections a similar analysis is performed to

the motorcycle’s dynamics. First, a model with independent front and rear suspen-

sions is studied. Then the effects of the interconnected system are introduced in the

model.

5.2 Reduced model with two degrees of freedom

Following the work presented in (Fontdecaba i Buj 2002) and as a first approach,

a two degrees of freedom model (wheel masses and tyres stiffness are not included)

is studied. Taking advantage of the reduced model presented in Chapter 3, the

motorcycle is represented by a rigid body connected to the ground by two sets of

spring-damping units. The body’s total mass (mt) and its moment of inertia about

the y axis (Iy) are equivalent to those of a GSX-R1000 motorcycle including all

the unsprung masses, whilst the stiffness and damping coefficients have been calcu-

lated to produce equivalent responses to those of a nominal GSX-R1000 suspension

system.

5.2.1 Independent suspensions system

Individual coordinates

Figure 5.7 represents the two degrees of freedom model where the front and rear

suspension systems are independent from each other and not connected. In this

model the front and the rear suspension forces are represented by the following

equations:

ff = −kf · (zf − uf )− cf · (żf − u̇f ) (5.28)

fr = −kr · (zr − ur)− cr · (żr − u̇r) (5.29)

zf and zr represent front and rear ends vertical displacement respectively whilst
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Figure 5.7: Two degrees of freedom motorcycle model with independent suspensions systems.
Two sets of generalized coordinates are presented: a) Front (zf ) and rear (zr) chassis ends
vertical displacement. b)Vertical displacement (z) and rotation about the y axis (θ) of the
chassis centre of masses. In both cases, the system inputs are introduced through the front
(uf ) and the rear (ur) tyres.

uf and ur are the front and rear road inputs. The front and rear suspension spring

coefficients are kf and kr; cf and cr are the corresponding damping coefficients. For

simplicity, the system inputs can be taken as zero and then Eq. 5.28 and Eq. 5.29

can be represented as:

F i = Ri ·Qi (5.30)

Where Qi is the coordinates’ vector, Ri is the stiffness-damping matrix and F i

is the forces’ vector.

F i =


żf

żr

ff

fr

 ; Ri =


0 0 1 0

0 0 0 1

−kf 0 −cf 0

0 −kr 0 −cr

 ; Qi =


zf

zr

żf

żr


F i contains the speeds of the generalized coordinates in order to follow a state

space representation. However, writing the equations of motion as a function of the

accelerations needs the equivalent masses for the front and the rear ends, which are

not directly available. Nevertheless, this masses can be found through a series of

changes of basis on Eq. 5.30. The kinematics and dynamics of the model can be

represented either by the individual coordinates set ( [zf , zr] ) or by a second set
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of general coordinates ( [z ,θ] ), for which z is the vertical displacement of the rigid

body center of masses and θ is the rotation about its y axis. Considering a linear

small angles approximation, the new set of coordinates is:

z ≈ lr · zf + lf · zr
l

(5.31)

θ ≈ −zf + zr
l

(5.32)

Same linear relations are valid for speeds and accelerations. The motorcycle’s

geometry determines the equivalences between one and the other coordinates system,

being lf and lr the distances from the motorcycle’s centre of masses to its front end

and rear end respectively; l is the sum of these two distances. On the other hand,

the equivalent force (f) and moment (µ) appearing in the rigid body due to the

action of the front and the rear suspension systems are determined by:

f ≈ ff + fr (5.33)

µ ≈ −lf · ff + lr · fr (5.34)

Two changes of basis matrix to pass from the individual coordinates system to

the general coordinates system can be obtained. One of them converting the coor-

dinates vectors (positions, speeds and accelerations) and the other one converting

the individual front and rear suspension forces into general equivalent force and mo-

ment. The following equation converts the individual coordinates vectors into the

general ones:

Qg = Pq ·Qi (5.35)

Where Qi is the individual coordinates vector, Qg is the general coordinates

vector and Pq is the change of basis matrix from the individual to the general

coordinates systems:

Qg =


z

θ

ż

θ̇

 ; Pq =
1

l


lr lf 0 0

−1 1 0 0

0 0 lr lf

0 0 −1 1

 ; Qi =


zf

zr

żf

żr


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A similar change of basis can be applied in order to convert the individual forces

vector into the general force and moment vector:

F g = Pf · F i (5.36)

F i is the individual forces vector, F g is the general force and moment vector

and Pf is the change of basis matrix from the individual to the general coordinates

systems:

F g =


ż

θ̇

f

µ

 ; Pf =
1

l


lr lf 0 0

−1 1 0 0

0 0 l l

0 0 −lf · l lr · l

 ; F i =


żf

żr

ff

fr



The second Newtown’s law is expressed on its matrix form as follows:

F g = M g · Q̇g (5.37)

M g is the mass-inertia matrix and Q̇g is the time derivative of the general coor-

dinates vector:

M g =


1 0 0 0

0 1 0 0

0 0 mt 0

0 0 0 Iy

 ; Q̈g =


ż

θ̇

z̈

θ̈


Finally, Eq. 5.30 can be written as:

Pf−1 ·M g · Pq · Q̇i = Ri ·Qi (5.38)

The individual mass-inertia matrix is found as M i = Pf−1 · M g · Pq and the
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equations of motion can now be written as:

M i · Q̇i = Ri ·Qi (5.39)

Which is:


1 0 0 0

0 1 0 0

0 0 mtl2r+Iy
l2

mtlf lr−Iy
l2

0 0
mtlf lr−Iy

l2
mtl2f+Iy

l2

 ·


żf

żr

z̈f

z̈r

 =


0 0 1 0

0 0 0 1

−kf 0 −cf 0

0 −kr 0 −cr

 ·


zf

zr

żf

żr


Looking at Eq. 5.39, it can be noticed that the front and rear ends equations

of motion are coupled through the individual mass-inertia matrix. Similarly as in

(Cossalter 2006, pp. 177–179), it is found here that the only case in which these two

equations are uncoupled is when the following condition is satisfied:

Iy = mtlf lr (5.40)

In this case, the front and the rear equivalent masses are:

mf = mt
lr
l

; mr = mt
lf
l

Under these conditions the motorcycle can be represented as two independent

masses (mf and mr) suspended by two independent spring-damping units ([kf , cf ]

and [kr, cr]). Although this is an advantage for suspension systems design, the

condition in Eq. 5.40 represents a difficult to achieve geometrical configuration for

any motorcycle. A considerable amount of mass must be located beyond the front

and rear ends in order to compensate for the mass in between the two ends. Such

mass distribution will have an impact on the motorcycle dynamical behaviour.

General coordinates

Considering that the two normal modes of this two degrees of freedom motorcycle

model are bounce and pitch (being the bounce motion related to the vertical dis-

placement of the motorcycle centre of masses and the pitch motion related to the
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rotation about its y axis), a more intuitive representation of the motorcycle dynam-

ics can be provided if the system is expressed in its general coordinates basis. In

this basis, the general stiffness-damping matrix Rg is:

Rg = Pf ·Ri · Pq−1 (5.41)

And this is:

Rg =


0 0 1 0

0 0 0 1

−kz −kzθ −cz −czθ
−kθz −kθ −cθz −cθ


Rg contains the stiffness and damping coefficients associated to the vertical dis-

placement [kz , cz], the rotation about the y axis [kθ , cθ] and crossed terms for the

interaction between both motions [kzθ , czθ] and [kθz , cθz]. These crossed terms are

equal for bounce and pitch motions.

kz = kf + kr ; cz = cf + cr

kθ = kf l
2
f + krl

2
r ; cθ = cf l

2
f + crl

2
r

kzθ = kθz = −kf lf + krlr ; czθ = cθz = −cf lf + crlr

Given the bounce (kz, cz) and the pitch (kθ, cθ) general coefficients, the necessary

front (kf , cf ) and rear (kr, cr) coefficients can be found from the results above :

kf = khl
2
r−kp

l2f−l2r
; cf = chl

2
r−cp

l2f−l2r

kr =
khl

2
f−kp

l2r−l2f
; cr =

chl
2
f−cp

l2r−l2f

However, the crossed term (kzθ = kθz) cannot be cancelled and its value depends

on the bounce and pitch coefficients.

kzθ = kθz =
lf lr
lf−lr

· kh + 1
lr−lf

· kp ; czθ = cθz =
lf lr
lf−lr

· ch + 1
lr−lf

· cp

If the equations of motion are written in the general coordinates basis, the normal
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modes containing both motions components can be predicted:
ż

θ̇

z̈

θ̈

 =


0 0 1 0

0 0 0 1

−kz
mt

−kzθ
mt

−cz
mt

−czθ
mt

−kθz
Iy

−kθ
Iy

−cθz
Iy

−cθ
Iy

 ·


z

θ

ż

θ̇

 (5.42)

This is, each of the normal modes will be a combination of the motorcycle’s

vertical displacement (z) and the rotation about the y axis (θ). In bounce mode

case, the vertical displacement is the predominant motion component whilst for the

pitch mode case it is the rotation. By modifying the motorcycle’s geometry (lf and

lr) and its suspension configuration (kf , cf , kr and cr) the relevance of both motions

on each of the normal modes will change simultaneously as their resonance frequency

and their damping is varied. Bounce and pitch normal modes corresponding to a

pure vertical displacement of the centre of masses and rotation about the y axis

respectively can be obtained only if the following relations are satisfied:

kr = lf
lr
· kf ; cr = lf

lr
· cf

Then, the stiffness and damping coefficients for bounce and pitch modes become:

kz = l
lr
· kf ; cz = l

lr
· cf

kθ = l · lf · kf ; cθ = l · lf · cf
kzθ = kθz = 0 ; czθ = cθz = 0

Consequently, the equation of motion written in the general coordinates system

will be uncoupled:

z̈ + 2ζzω0z · ż + ω2
0z · z = 0 (5.43)

θ̈ + 2ζθω0θ · θ̇ + ω2
0θ · θ = 0 (5.44)

Clearly, the natural frequencies and the damping ratios for the bounce (ω0z and

ζz) and the pitch (ω0θ and ζθ) modes are defined as:

ω0z =
√

kz
mt

; ζz = cz
2
√
mtkz

ω0θ =
√

kθ
Iy

; ζθ = cθ

2
√
Iykθ
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With a fixed geometry (lf and lr being constant values) the behaviour of both

modes only depends on two parameters, which have been chosen to be as the front

suspension system’s stiffness (kf ) and damping (cf ) coefficients. Thus, the frequency

and the damping of one normal mode will depend on the other mode’s frequency and

damping. A particular solution of this is when the system is completely symmetric.

This is, lf = lr = l
2
, kf = kr = k and cf = cr = c. Then, the bounce and the pitch

stiffness and damping parameters are:

kz = 2k ; cz = 2c

kθ = l2

2
k ; cθ = l2

2
c

In the independent suspensions system case, the natural frequencies and damping

ratios of the normal modes can be set independently, however, in this case, the pitch

and the bounce motions cannot be uncoupled. On the other hand, the bounce and

pitch normal modes can be set as pure motions of vertical displacement and y

rotation respectively, but then, their natural frequencies and damping ratios will

be dependent on each other. Finally, from the point of view of the front and rear

motorcycle ends, their dynamics will be coupled due to the crossed terms in the

masses’ matrix. Only with a difficult to implement motorcycle mass distribution,

they could become independent.

5.2.2 Interconnected suspension system

Individual coordinates

When the front and rear suspension systems are interconnected, new coefficients

appear on the stiffness-damping matrix that modify the dynamics of the motorcycle

assembly. Figure 5.8 represents a two degrees of freedom motorcycle model with

interconnection forces. These forces are defined as terms in the dynamic equations

that depend on the motion of the opposed motorcycle end. This is, in the front

suspension force, two additional terms appear, one depending on the position of the

rear end and the other one depends on the rear end speed. In the rear suspension

force, similar terms appear, depending on the front suspension elongation and speed.
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Figure 5.8: Two degrees of freedom motorcycle model with interconnected suspension sys-
tem. Two sets of generalized coordinates are presented: a) Front (zf ) and rear (zr) chassis
ends vertical displacement. b) vertical displacement (z) and rotation about the y axis (θ) of
the chassis centre of masses. In both cases, the system inputs are introduced through the front
(uf ) and the rear (ur) tyres.

The front and rear suspension forces are as follows:

ff = −kf · (zf − uf )− cf · (żf − u̇f )− ks · (zr − ur)− cs · (żr − u̇r) (5.45)

fr = −kr · (zr − ur)− cr · (żr − u̇r)− ks · (zf − uf )− cs · (żf − u̇f ) (5.46)

Now, the stiffness-damping matrix Ri includes the stiffness and damping inter-

connection coefficients (ks and cs) and the equations of motion expressed by Eq. 5.39

result in:


1 0 0 0

0 1 0 0

0 0 mtl2r+Iy
l2

mtlf lr−Iy
l2

0 0
mtlf lr−Iy

l2
mtl2f+Iy

l2

 ·


żf

żr

z̈f

z̈r

 =


0 0 1 0

0 0 0 1

−kf −ks −cf −cs
−ks −kr −cs −cr

 ·


zf

zr

żf

żr



Multiplying by the inverse of the mass-inertia matrix (M i−1) the state space

representation is:
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
żf

żr

z̈f

z̈r

 =


0 0 1 0

0 0 0 1

A3,1 A3,2 A3,3 A3,4

A4,1 A4,2 A4,3 A4,4

 ·


zf

zr

żf

żr


With:

A3,1 = −kf+ks
mt
− kf l

2
f−kslf lr
Iy

A3,2 = −kr+ks
mt
− ksl2f−krlf lr

Iy

A4,1 = −kf+ks
mt
− ksl2r−kf lf lr

Iy
A4,2 = −kr+ks

mt
− krl2r−kslf lr

Iy

A3,3 = − cf+cs
mt
− cf l

2
f−cslf lr
Iy

A3,4 = − cr+cs
mt
− csl2f−crlf lr

Iy

A4,3 = − cf+cs
mt
− csl2r−cf lf lr

Iy
A4,4 = − cr+cs

mt
− crl2r−cslf lr

Iy

Comparing to the previous model, the interconnection forces in this new model

allow the independence of the front and rear ends dynamics even if the geometrical

requirement in Eq. 5.40 is not satisfied, as far as the cross terms in matrix A are zero

(A3,2 = A3,4 = A4,1 = A4,3 = 0). In order to tune the front and rear suspensions

with the desired natural frequencies and damping ratios, the following algebraic

equations system must be solved:

2ζfω0f − A3,3(cf , cs, lf , lr) = 0

2ζrω0r − A4,4(cr, cs, lf , lr) = 0

ω2
0f − A3,1(kf , ks, lf , lr) = 0

ω2
0r − A4,2(kr, ks, lf , lr) = 0

A3,2(kr, ks, lf , lr) = 0

A3,4(cr, cs, lf , lr) = 0

A4,1(kf , ks, lf , lr) = 0

A4,3(cf , cs, lf , lr) = 0



(5.47)

This is an eight equations system with eight independent variables, which in-

cludes the motorcycle’s parameters (kf , kf , ks, cf , cr, cs, lf , lr). The mass and the

moment of inertia could also be considered as independent variables. However,

these variables together with lf and lr are conditioned by design restrictions. This

implies that the system {5.47} must be solved during the motorcycle design process
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and considering a constant rider’s mass. Once the variables are set and the system

built, the suspension settings could not be modified if the independence between the

front and rear dynamics is to be kept. Nevertheless, a more flexible solution can be

found if the motorcycle is designed with a symmetrical weight distribution, this is

lf = lr = l
2
, which is a condition commonly sought by motorcycle manufacturers.

For instance, the GSX-R1000 mass distribution is almost symmetrical, the difference

between lf and lr is about 4 mm with lf = 663 mm and lr = 659 mm. If a sym-

metrical weight distribution is achieved, the motorcycle system can be separated in

two independent subsystems with similar mass, stiffness and damping coefficients.

Therefore, the suspension tuning problem is reduced to a single mass-spring-damper

system where kf = kr = k and cf = cr = c. Figure 5.9 represents this system con-

figuration whose equations of motion can be written as:


1 0 0 0

0 1 0 0

0 0 mi mc

0 0 mc mi

 ·


żf

żr

z̈f

z̈r

 =


0 0 1 0

0 0 0 1

−k −ks −c −cs
−ks −k −cs −c

 ·


zf

zr

żf

żr


Where the mi is the individual term of mass and mc is the crossed term of mass:

mi =
mt

4
+
Iy
l2

; mc =
mt

4
− Iy
l2

The system {5.48} that should be solved in order to set up the motorcycle

suspension system is now reduced:

2ζω0 = − c+cs
mt
− (c−cs)l2

4Iy

ω2
0 = −k+ks

mt
− (k−ks)l2

4Iy

0 = − c+cs
mt

+ (c−cs)l2
4Iy

0 = −k+ks
mt

+ (k−ks)l2
4Iy


(5.48)

The damping ratio (ζ = ζf = ζr) and the natural frequency (ω0 = ω0f =

ω0r) are similar for the front and the rear subsystems and they directly depend

on the suspension stiffness and damping coefficients (k and c) but no so on the
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Figure 5.9: Two degrees of freedom motorcycle model where the symmetrical weight dis-
tribution (lf = lr = l

2 ) and the interconnected suspension system allow the front and rear
suspensions to be set as two independent mass-spring-damper systems.

interconnection coefficients (ks and cs):

k = ω2
0 ·mi (5.49)

c = 2ζω0 ·mi (5.50)

However, the interconnection coefficients should always satisfy the same condi-

tions in order to guarantee the front-rear uncoupled dynamics:

ks = k · mc

mi

(5.51)

cs = c · mc

mi

(5.52)

Front and rear suspensions can be treated as two similar and independent mass-

spring-damper systems by building the motorcycle with a symmetrical weight dis-

tribution between the front and rear ends and by including an interconnected sus-

pension system. The natural frequencies and damping ratios of these subsystems

can be precisely defined. Furthermore, the values of the interconnection spring and

damping coefficients will be always lower than those on the suspensions.

General coordinates

In order to study the motorcycle system in its general coordinates, the individual

stiffness-damping matrix (Ri), which now includes the interconnection coefficients
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(ks and cs), is transformed by Eq. 5.41 resulting in:

Rg =


0 0 1 0

0 0 0 1

−kz −kzθ −cz −czθ
−kθz −kθ −cθz −cθ


As in the independent suspensions system case, the matrix Rg contains the stiff-

ness and damping coefficients [kz , cz] associated to the vertical displacement, those

associated to rotation about the y axis [kθ , cθ] and crossed terms for the interaction

between both motions [kzθ , czθ] and [kθz , cθz]. These crossed terms also result

equal for bounce and for pitch motion. However, all these terms now include the

interconnection coefficients:

kz = kf + kr + 2ks ; cz = cf + cr + 2cs

kθ = kf l
2
f + krl

2
r − 2kslf lr ; cθ = cf l

2
f + crl

2
r − 2cslf lr

kzθ = kθz = −kf lf + krlr − ks(lf − lr) ; czθ = cθz = −cf lf + crlr − cs(lf − lr)

The state space matrix A in the general coordinates is found multiplying the

general stiffness-damping matrix by the inverse of the general mass-inertia matrix

(Ag = M g−1 ·Rg) and the equations of motion are expressed by:


ż

θ̇

z̈

θ̈

 =


0 0 1 0

0 0 0 1

−kz
mt

−kzθ
mt

−cz
mt

−czθ
mt

−kθz
Iy

−kθ
Iy

−cθz
Iy

−cθ
Iy

 ·


z

θ

ż

θ̇

 (5.53)

The interconnection stiffness and damping coefficients allow for the equations

of motion to become uncoupled, as in Eq. 5.43 and Eq. 5.44. But in this case,

the independence of the front and rear suspension parameters is not compromised.

The bounce and pitch normal modes can now represent pure vertical displacement

and pure rotation about the motorcycle y axis respectively, with independent nat-

ural frequencies and damping ratios, as far as the interconnection stiffness (ks) and

damping (cs) parameters satisfy the following conditions:

ks =
kf lf−krlr
lr−lf

; cs =
cf lf−crlr
lr−lf
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Under these conditions, the equivalent stiffness and damping coefficients associ-

ated to the vertical displacement and to the pitch rotation depend on the stiffness

and damping coefficient of the front and rear suspensions as follows:

kz = l
lf−lr

· (kr − kf ) ; cz = l
lf−lr

· (cr − cf )

kθ = l
lf−lr

· (kf l2f − krl2r) ; cθ = l
lf−lr

· (cf l2f − crl2r)

kzθ = kθz = 0 ; czθ = cθz = 0

In the case of a symmetrical weight distribution, the ks and cs coefficients have

no effect on the crossed terms of the matrix Rg and the pitch and bounce uncoupling

only will happen if the front and rear suspensions’ coefficients are equal (kf=kr=k

and cf=cr=c). However, the bounce and pitch modes natural frequencies and damp-

ing ratios can be defined independently with the independent coefficients k, ks, c

and cs.

kz = 2(k + ks) ; cz = 2(c+ cs)

kθ = l2

2
(k − ks) ; cθ = l2

2
(c− cs)

kzθ = kθz = 0 ; czθ = cθz = 0

Finally, if the symmetrical weight distribution is kept and the conditions ex-

pressed by Eq. 5.51 and Eq. 5.52 are applied to the interconnection coefficients

(ks and cs), the front-rear independence and the bounce-pitch independence are

achieved at the same time. In this case, the state space matrix A for the individual

coordinates is the same matrix than that for the general ones and the equations of

motion in both bases are written as follows:


ż

θ̇

z̈

θ̈

 =


0 0 1 0

0 0 0 1

− k
mi

0 − c
mi

0

0 − k
mi

0 − c
mi

 ·


z

θ

ż

θ̇

 (5.54)
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and


˙zf

żr

z̈f

z̈r

 =


0 0 1 0

0 0 0 1

− k
mi

0 − c
mi

0

0 − k
mi

0 − c
mi

 ·


zf

zr

˙zf

żr

 (5.55)

The eigenvalues (λi) and the eigenvectors (ui) of matrix A are found as:

λ1,2,3,4 = −ς±
√
ς2 − ω2

0 ; u1,2 =


1

0

−ς ±
√
ς2 − ω2

0

0

 ; u3,4 =


0

1

0

−ς ±
√
ς2 − ω2

0


The damping is defined as ς = c

2mi
which is related to the damping ratio through

the natural frequency as ς = ζω0 where ω0 =
√

k
mi

. In the light of these results, it

can be concluded that under these design conditions, the system has four different

normal modes whose motions depend on how the system is excited. The bounce

mode appears when the front and rear inputs have the same magnitude and phase.

The pitch mode occurs if the front input has similar magnitude to the rear input

with an opposed phase. The front hop mode, consisting in the oscillation of the

motorcycle front end whilst the rear end remains unaffected, appears in the case

that only a front input excites the system. And, oppositely, the rear hop mode

appears in the case that the front input is zero whilst the system is excited through

the rear input. Any other system motion can be described as a linear combination

of these modes, whose natural frequencies and damping ratios are equal for all of

them.

5.3 Reduced model with four degrees of freedom

The springs and masses associated to the motorcycle’s wheels modify its dynamics

substantially. Figure 5.10 presents the four degrees of freedom motorcycle model.

118



Similarly to those in the previous section, the system equations of motion may be

expressed on either individual (Qi) or general (Qg) generalized coordinates. Now,

both set of coordinates include the front and rear wheels vertical displacement and

two new forces appear related to them.

Figure 5.10: Four degrees of freedom motorcycle model. Two set of generalized coordinates
are presented: a) the vertical displacement of the front (zfw) and rear (zrw) wheels and the
vertical displacement of the front (zf ) and rear (zr) chassis ends. b) the vertical displacement
of the front (zfw) and rear (zrw) wheels, the vertical displacement (z) and the rotation about
the y axis (θ) of the chassis centre of masses. In both cases, the system inputs are introduced
through the front (uf ) and rear (ur) tyres

Individual coordinates

In the individual system coordinates, the equations of the suspension system forces

are written as follows:

ff = −kf · (zf − zfw)− cf · (żf − żfw)− ks · (zr − zrw)− cs · (żr − żrw) (5.56)

fr = −kr · (zr − zrw)− cr · (żr − żrw)− ks · (zf − zfw)− cs · (żf − żfw) (5.57)

ffw = −ff − kfw · (zfw − uf ) (5.58)

frw = −fr − krw · (zrw − ur) (5.59)
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Applying the second Newton’s law the equations of motion are expressed by:

M i · Q̇i = Ri ·Qi (5.60)

The individual coordinates vector in this case includes the wheels vertical dis-

placements (zfw and zrw) and speeds (żfw and żrw) whilst the individual stiffness-

damping matrix contains the terms associated to them:

Ki =



0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

−kf −ks kf ks −cf −cs cf cs

−ks −kr ks kr −cs −cr cs cr

kf ks −kf − kfw −ks cf cs −cf −cs
ks kr −ks −kr − krw cs cr −cs −cr



;Qi =



zf

zr

zfw

zrw

żf

żr

żfw

żrw


As in the previous section, the individual mass matrix (M i) can be found by a

change of basis of the general mass matrix (M g):

M i = Pf−1 ·M g · Pq (5.61)

The general mass-inertia matrix now includes the wheel masses:

M g =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 mt 0 0 0

0 0 0 0 0 Iy 0 0

0 0 0 0 0 0 mfw 0

0 0 0 0 0 0 0 mrw


The change of basis matrix for the four degrees of freedom system are similar to

those for the two degree of freedom ones but including the wheels terms.
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Pq =
1

l



lr lf 0 0 0 0 0 0

−1 1 0 0 0 0 0 0

0 0 l 0 0 0 0 0

0 0 0 l 0 0 0 0

0 0 0 0 lr lf 0 0

0 0 0 0 −1 1 0 0

0 0 0 0 0 0 l 0

0 0 0 0 0 0 0 l



;Pf =
1

l



lr lf 0 0 0 0 0 0

−1 1 0 0 0 0 0 0

0 0 l 0 0 0 0 0

0 0 0 l 0 0 0 0

0 0 0 0 l l 0 0

0 0 0 0 −lf l lrl 0 0

0 0 0 0 0 0 l 0

0 0 0 0 0 0 0 l


And the individual masses matrix results in:

M i =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 mtl2r+Iy
l2

mtlf lr−Iy
l2

0 0

0 0 0 0
mtlf lr−Iy

l2
mtl2f+Iy

l2
0 0

0 0 0 0 0 0 mfw 0

0 0 0 0 0 0 0 mrw


Looking at the individual masses matrix (M i), it can be observed how similarly as

in the two degrees of freedom model, the front and rear ends dynamics are coupled

by the mass and the inertia moment due to their physical connection. However,

now the front and rear wheels are also affected by the interconnection terms in the

individual stiffness-damping matrix (Ri), and the displacements and the speeds of

one wheel affect the opposite wheel dynamics. Due to the interconnection system,

there exists an energy transfer from one wheel to the other, so that the larger value

the interconnection parameters have the more energy is transferred. And this implies

that front and rear ends independence cannot be achieved by the interconnection

system. The wheels’ interconnection terms cannot be cancelled except for ks = 0

and cs = 0. Thus, only in the case that the condition found in Eq. 5.40 is satisfied

and the interconnection stiffness and damping parameters are zero, the motorcycle
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dynamics can be treated as two independent quarter-car-models.

General coordinates

In order to study the system in the general coordinates basis, the state space Ag

matrix can be found by:

Ag = M g−1 · Pf ·Ki · Pq−1 (5.62)

And the equations of motion are given by:



ż

θ̇

żfw

żrw

z̈

θ̈

z̈fw

z̈rw



=



0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

Ag5,1 Ag5,2 Ag5,3 Ag5,4 Ag5,5 Ag5,6 Ag5,7 Ag5,8

Ag6,1 Ag6,2 Ag6,3 Ag6,4 Ag6,5 Ag6,6 Ag6,7 Ag6,8

Ag7,1 Ag7,2 Ag7,3 Ag7,4 Ag7,5 Ag7,6 Ag7,7 Ag7,8

Ag8,1 Ag8,2 Ag8,3 Ag8,4 Ag8,5 Ag8,6 Ag8,7 Ag8,8



·



z

θ

zfw

zrw

ż

θ̇

żfw

żrw



Terms corresponding to z̈:

Ag5,1 =
−kf−kr−2ks

mt
Ag5,2 =

kf lf−krlr+ks(lf−lr)
mt

Ag5,3 =
kf+ks
mt

Ag5,4 = ks+kr
mt

Ag5,5 =
−cf−cr−2cs

mt
Ag5,6 =

cf lf−crlr+cs(lf−lr)
mt

Ag5,7 =
cf+cs
mt

Ag5,8 = cs+cr
mt

Terms corresponding to θ̈:

Ag6,1 =
kf lf−krlr+ks(lf−lr)

Iy
Ag6,2 =

−kf l2f−krl
2
r+2kslf lr

Iy
Ag6,3 =

−kf lf+kslr

Iy

Ag6,4 =
−kslf+krlr

Iy
Ag6,5 =

cf lf−crlr+cs(lf−lr)
Iy

Ag6,6 =
−cf l2f−crl

2
r+2cslf lr

Iy

Ag6,7 =
−cf lf+cslr

Iy
Ag6,8 =

−cslf+crlr
Iy
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Terms corresponding to z̈fw:

Ag7,1 =
kf+ks
mfw

Ag7,2 =
−kf lf+kslr

mfw
Ag7,3 =

−kf−kfw
mfw

Ag7,4 = −ks
mfw

Ag7,5 =
cf+cs
mfw

Ag7,6 =
−cf lf+cslr

mfw
Ag7,7 =

−cf−cfw
mfw

Ag7,8 = −cs
mfw

Terms corresponding to z̈rw:

Ag8,1 = ks+kr
mrw

Ag8,2 =
−kslf+krlr

mrw
Ag8,3 = −ks

mrw
Ag8,4 = −kr−krw

mrw

Ag8,5 = cs+cr
mrw

Ag8,6 =
−cslf+crlr

mrw
Ag8,7 = −cs

mrw
Ag8,8 = −cr−crw

mrw

By observing at matrix Ag it can be noticed that obtaining independent pitch

and bounce motions is not as direct as for the two degrees of freedom system case.

The front and rear wheel displacements are now included in these motions and

cancelling some terms in the Ag matrix is not a possible solution. On the other

hand, the eigenvalues problem has to be solved symbolically to get the natural

frequencies and damping ratios of the normal modes. This problem results in a hard

task considering that the characteristics polynomial is an eight degrees polynomial

with six independent variables (kf , cf , kr, cr, ks, cs). Furthermore, it is not proven

that all the desired natural frequencies and damping ratio might be reached through

a combination of the suspension coefficients. In the four degrees of freedom model,

an increase of the interconnection coefficients values (ks and cs) results in an energy

transmission from one wheel to the other which will modify their rebound frequency

and damping, simultaneously these rebound motions will affect the pitch and the

bounce ones and modify their nature. Consequently, the results obtained for the two

degrees of freedom model are not directly applicable to the four degrees of freedom

model. However, they can be used as a first approach to find the closest compromise

solution to the setting problem.
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Application of the two degrees of freedom model results

For the two degrees of freedom model, it has been shown how the interconnected

suspension system (either on its own or combined with a symmetrical distribution of

masses), introduces a high flexibility in the design of the dynamics properties of the

motorcycle. The damping (ς) and the resonance frequencies (ω) of the bounce and

the pitch normal modes can be set through their stiffness and damping coefficients:

ςz = cz
2mi

; ςθ = cθ
2mi

ωz =
√
ς2
z − kz

mi
; ωθ =

√
ς2
θ −

kθ
mi

The stiffness and the damping coefficients of the front, the rear and the inter-

connection spring-damper units can be obtained from:

kf = kzl2r+kθ
l2

; cf = czl2r+cθ
l2

kr =
kzl2f+kθ

l2
; cr =

czl2f+cθ

l2

ks =
kzlf lr−kθ

l2
; cs =

czlf lr−kθ
l2

Now, the natural frequencies and the damping ratios for the bounce (ω0z and

ζz) and the pitch (ω0θ and ζθ) normal modes can be defined independently by ap-

propriately setting the front, the rear and the interconnection spring and damping

coefficients. As an example, the suspension coefficients are calculated for the follow-

ing normal modes characteristics:

ζz = −10 ; ζθ = −10

ω0z = 20 rad/s ; ω0θ = 30 rad/s

The resulting suspension coefficients are calculated for the two degrees of freedom

model. Then, the corresponding conversion is applied to the front and the rear

stiffness coefficients in order to find the correct values for the four degrees of freedom

model. Table 5.1 presents the results obtained.

Figure 5.11 shows, in red circles, the root locus of the two degrees of freedom

model set with the new suspension coefficient values. Overlapped to it, plotted in

blue asterisks, is the root locus of the four degrees of freedom model with the calcu-

lated suspension coefficients values. The roots of the four degrees of freedom model

are far from where they are expected to be. On the other hand, two additional

normal modes appear, they are the front and rear wheels hop modes that appear
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c(Ns/m) k(N/m)−2dof k(N/m)−4dof

f 1523 50203 81788

r 1535 50506 78695

s 559 1845 1845

Table 5.1: Stiffness and damping coefficients values for the front (f), rear (r) and intercon-
nection (s) spring-damper units obtained with the two degrees of freedom model. The bounce
and pitch normal modes characteristics for this configuration are: ζz = −10, ω0z = 20 rad/s,
ζθ = −10 and ω0θ = 30 rad/s.

when the wheels are considered in the model. As it can be observed, the two de-

grees of freedom model results cannot be directly extrapolated to a more complex

model which takes into account the wheels dynamics. In order to set the motorcy-

cle’s suspension system to obtain a desired combination of resonant frequencies and

damping ratios, a four degrees of freedom model has to be considered.

Figure 5.11: Root locus of the two degrees of freedom motorcycle model (red ◦) and the
four degrees of freedom motorcycle model (blue ∗). The models have been modified with
the suspension coefficients values calculated to obtain the desired damping and resonance
frequencies for the bounce and the pitch normal modes: ωz = 20 rad/s, ςz = 10 s−1, ωθ =
30 rad/s and ςθ = 10 s−1.

However, as it has been showed previously, solving the eigenvalue problem in the

four degrees of freedom model requires high computational resources. Nevertheless,

a numerical approach to find closer values of the normal modes natural frequencies

and damping ratios is proposed. A numerical function which returns as output the

damping and resonance frequency of the bounce and the pitch motion depending on
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the six inputs suspension coefficients is built. This function creates the state space

of the four degrees of freedom model and calculates the eigenvalues and eigenvectors

of the matrix A. The eigenvalues are classified depending on the eigenvectors com-

ponents weights into Bounce, Pitch, Front Wheel Hop and Rear Wheel Hop. Once

this classification is done, the frequency and damping of each of them is obtained

returning only those which we are interested in.

g : R6 −→ R4, (ωb, ςb, ωp, ςp) = g(kf , cf , kr, cr, ks, cs)

A target function h for a multi-target optimization problem can be created in-

cluding these four outputs function g. The target function returns only one value

which depends on the difference between the desired frequency and damping and

the actual frequency and damping of the bounce and the pitch normal modes found

by the function g. As a first approach, the output value of h is defined as the root

mean square of these four differences.

h(g) : R6 −→ R

h(kf , cf , kr, cr, ks, cs) = 1
2
· [(ωb − ωb0)2 + (ςb − ςb0)2 + (ωp − ωp0)2 + (ςp − ςp0)2]

1
2

c(Ns/m)−4dof k(N/m)−4dof

f 2876 72021

r 2198 35769

s 533 1987

Table 5.2: Stiffness and damping coefficients values for the front (f), rear (r) and intercon-
nection (s) spring damper units returned by the optimization process using the initial values
obtained with the two degrees of freedom model.

Taking advantage of the Matlab optimization toolbox, the fminsearch function

can be used to find the minimum of h. The function g returns four six-dimensional

surfaces which can be highly irregular with several local maximums and minimums.

Considering that the fminsearch function finds a local minimum of the target func-

tion, it is important to provide it with adequate initial values to start the opti-

mization algorithm. It is at this point where the results found for the two degrees

of freedom model become relevant. The initial values provided to fminsearch are

those which result in the desired bounce and pitch modes frequency and damping
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obtained for the two degrees of freedom model. For the example, calculated with

the values in Tab. 5.1 the optimization process returns the suspension coefficients

appearing in Tab. 5.2.

Figure 5.12: Root locus of the two degrees of freedom motorcycle model (red ◦) and the
four degrees of freedom motorcycle model (blue ∗). The models have been modified with the
suspension coefficients values obtained after the optimization process. The desired damping
and resonance frequencies for the bounce and the pitch normal modes were: ωz = 20 rad/s,
ςz = 10 s−1, ωθ = 30 rad/s and ςθ = 10 s−1.

The result of applying these suspension coefficients is shown in Fig. 5.12, where

the root locus of the four degrees of freedom model is plotted in blue asterisks. It

is overlapped to that of the two degrees of freedom model which is plotted in red

circles. It can be observed that with this optimization process, satisfying results

are now obtained. However, this is just an example. It is not proven that all the

different combination of the natural frequencies and damping ratios of the normal

modes can be achieved by this procedure, although this method to address the

suspension configuration problem looks efficient at this stage.

5.4 Conclusions

In this chapter the interconnected suspension systems’ dynamics has been studied

returning good results. Several bicycle demonstrators of this concept have been

already built and, although deep studies of the dynamics behind the different con-

cepts are not published by the manufacturers, they are proved to achieve interesting
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features that improve their overall performance. The dynamical analysis of the two

concept bikes developed in this chapter shows that with different mechanical ar-

rangement similar result are found. In an interconnected suspension system with at

least six free variables (considering stiffness and damping coefficients and geometri-

cal ratios) a full interconnected suspension system can be fully set up. The equation

of motion can be written as in Eq. 5.58 and Eq. 5.59 in all this kind of systems,

where the equivalent stiffness and damping coefficients depend on the different vari-

ables of them. In any case, the interconnection coefficients (ks and cs) are similar

for the front and rear ends of the motorcycle.

On the other hand, a commercialized interconnection system mainly oriented to

four-wheeled vehicles has also been adapted to the motorcycle. The mathematical

theory behind this technology presented by the company, taking a vehicle model

in which the wheels dynamics are not considered, allows the design of an inter-

connected suspension system that results in improved performance of the tested

vehicles. However, when in this chapter a similar method is followed in order to

find a relation that allows a full set up of the interconnected suspension system, the

predictions found are not all the accurate as they should be. A more complex model

including the wheels dynamics has to be considered in order to obtain a deeper

understanding of the system. A promising method for setting up the bounce and

the pitch normal modes properties is proposed as a combination of the two degrees

of freedom model analytical solutions and a numerical optimization process on the

four degrees of freedom model. However, this suspension system has also a high

potential in terms of performance and suspension precision, as it can be observed

in the existing prototypes. In the next chapter, the performance of the GSX-R1000

sport motorcycle featuring an interconnected suspension system will be studied.
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Chapter 6

Interconnected Suspensions

System: Performance

In the previous chapter an interconnected suspension system was presented as means

to introduce a more precise tuning of the general motorcycle’s motion by uncoupling

the pitch and bounce modes involved on it. In this chapter, the focus is on the

suspension performance and on how an interconnection mechanism can improve it.

By using a GSX-R1000 motorcycle nonlinear model, it can be predicted how various

suspension settings will affect the vehicle’s performance. The goal is to obtain the

optimized interconnected suspension parameters that help to achieve an improved

performance of the entire suspension system.

In a first stage, the behaviour under a road bump input is investigated. Four

different optimization processes are implemented and tested to finally propose a

suitable configurations of the interconnected system for four possible mechanical

implementations. These implementations consider different complexity scenarios

ranging from a simple passive mechanism to a more complex one based on the

addition of active elements (actuators). The simplest interconnection mechanism

proposed consists of a direct connection from the front suspension telescopic fork

to the rear swinging arm through a damper unit with a constant damping coeffi-

cient value. An increase in mechanical complexity results from the use of dampers

with speed variable coefficients in order to achieve different damping values for the

different forward speeds. Finally, the most complex configuration would imply the

use of active elements such as mechanical actuators to provide variable intercon-
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nection stiffness coefficients. In the light of the results, configurations for springs

with constant stiffness coefficient are not proposed due as far a positive value of

the interconnection stiffness coefficient returns good results in terms of suspension’s

precision for speeds under 40 m/s, this precision is worsened for speed over 40 m/s.

The opposite takes place for negative values of this coefficient, as it will be shown

latter in this chapter. Furthermore, after performing the corresponding optimization

process for such a configuration, the optimal spring stiffness constant value found

for all the speed range is ks ≈ 0 N.

Figure 6.1: Simulink model with a VehicleSim Block to call a simulation that will be run
from VS Browser.

At a second stage, the frequency responses of these four proposed interconnection

configurations are studied. A sinusoidal signal is designed as a the perturbation

input for the motorcycle model under straightforward running simulation at different

speeds ranging from 10 m/s to 80 m/s. The magnitudes of the precision and comfort

variables are mapped for the entire speed and frequency ranges and compared to

the nominal independent suspension system.

Taking advantage of the VS Browser and Matlab-Simulink compatibility, all the

tasks can be carried out within the Matlab environment. This feature simplifies the

data acquisition and the optimization process. Figure 6.1 shows an example of a

Simulink model where the VehicleSim block calls the bump input simulation run in

the VS Browser and which outputs are migrated to the various Matlab functions.
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These functions can be either those used for mapping the response of the precision

and comfort variables or the target functions set in the optimization processes.

6.1 Modelling of the interconnected suspensions

system

In order to illustrate the interconnection concept in an intuitive manner, Fig. 6.2a

shows a sketch of an interconnected suspensions system where positive and negative

values of the interconnection coefficients can be provided. Figure 6.2b and Fig. 6.2c

show simpler set-ups where only negative or positive values are allowed respectively.

In this approach, the coefficient sign will depend on the application point of the

resulting interconnection force on the swinging arm.

(a) positive and negative interconnection

(b) negative interconnection (c) positive interconnection

Figure 6.2: Sketches of interconnected suspension systems. a) system for positive and
negative values of interconnection parameters. b) system for negative values of interconnection
parameters. c) system for positive values of interconnection parameters.

The motorcycle nominal mathematical model has been updated to include the

interconnection forces. In the nominal model, whilst the front suspension system

consists of a telescopic fork and it is described in the model as a linear force applied
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to the front wheel from the main frame, the rear suspension consists of a swinging

arm and it is mathematically defined as a moment reacting between the main frame

and the swinging arm. Following the approach taken in the previous chapter, the to-

tal reaction force applied by the front telescopic fork is divided into both suspension

and interconnection forces, which are defined independently. The front suspension

force depends linearly on the front fork position and speed, whilst the front inter-

connection force does so on the rear swinging arm angle and rotational speed. For

the rear end, the force is modelled in a similar way. In this case the rear suspension

moment depends linearly on the swinging arm angle and rotational speed, whilst

the rear interconnection moment does so on the front fork position and speed. The

Eq. (6.1) and Eq. (6.2) show the total front suspension force and rear suspension

moment.

Ff = −kf · Z − cf · Ż − ks · θ − cs · θ̇ (6.1)

Mr = −ks · Z − cs · Ż − kr · θ − cr · θ̇ (6.2)

The variables Z and θ are the front fork displacement and swinging arm angle

respectively. The parameters kf (N/m) and cf (Ns/m) are the stiffness and the damp-

ing coefficients for the front suspension. The parameters kr(Nm) and cr(Ns/m) are

the coefficients for the rear suspension. Finally, the parameters ks(N) and cs(Ns)

are the stiffness and damping coefficients for the interconnection system. Note that

the interconnection parameters’ units already consider the conversion between the

angular displacement of the rear swinging arm and the linear force applied to the

front fork. Similarly, the conversion between the front fork displacement and the

moment applied to the swinging arm is also considered.

6.2 Road bump input response

Two essential functions of a sport motorcycle suspension system are to provide

enough precision for the wheels to follow the road profile as close as possible and

to keep certain comfort levels for the rider under road perturbation. The nonlinear

model considered for this study introduces a discontinuity in the tires forces. As a
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(a) front tyre’s contact force (b) rear tyre’s contact force

(c) vertical acceleration (d) pitch acceleration

Figure 6.3: Precision and comfort variables responses at 80 m/s with interconnection co-
efficients ks = 0 N and cs = -548 Ns. The dashed blue line represents the nominal system
response whilst the interconnected system response is plotted in solid green.

result, these forces become zero when the tires take off from the road.

Wheels fly times have been considered as a measurement for the suspension

system’s precision. Therefore, shorter fly times represent a greater precision. On

the other hand, the comfort is measured through the maximum vertical acceleration

and the maximum pitch angle acceleration perceived by the rider.

For this purpose, four response variables should be studied. Two of them are

related to the precision of the suspension and the other two to the rider’s comfort.

The two first are the front and the rear wheels fly times after a bump. This is,

the time whilst each tyre looses contact with the road. The control that the rider

has over the motorcycle is drastically reduced if one wheel is out of the ground,

being the front wheel the most critical. Shorter fly times increase the control during

road perturbations and represent a better suspension precision. Flying times are

calculated by the amount of time the tyre’s contact forces are equal to zero. On

the other hand, the maximum pitch angle acceleration and the maximum vertical

acceleration perceived by the rider have been chosen as good indicators of the rider’s
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comfort. Smaller values of these magnitudes for a bump input represent better

comfort results.

The effect of the interconnection in the above mentioned variables is illustrated in

Fig. 6.3. It shows the response of the motorcycle model to a step bump with a heigh

of 0.05 m at a forward speed of 80 m/s. The interconnection coefficients are ks = 0 N

and cs = -548 Ns. It can be observed how, after the bump, both front and rear

wheels fly times are reduced (Fig. 6.3a and Fig. 6.3b) whilst the maximum vertical

and angular accelerations perceived by the rider reach similar values (Fig. 6.3c and

Fig. 6.3d). The response of the independent suspension system nominal model is

indicated in dashed blue line and the interconnected system’s response is represented

with a solid green line.

(a) front wheel (b) rear wheel

(c) vertical acceleration (d) pitch acceleration

Figure 6.4: Efficiency maps of comfort and precision variables for different values of cs with
ks = 0 N for a 0.05m step input at forward speeds starting at 10 m/s up to 80 m/s.

6.2.1 Efficiency mapping

In order to investigate the effects of the interconnection force and moment in the sus-

pension response, the behaviours of these four variables are studied under straight
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forward bump simulations for a wide range of stiffness (ks) and damping (cs) inter-

connection coefficients. The focus of this study is to understand the effects that the

interconnection introduces in the suspension’s response. Therefore, the front and

rear suspension coefficients are kept constant at their nominal values.

The ’efficiency of each variable’ is defined as the normalized difference between

the value achieved by the variable after a bump input with (ks 6= 0 N or cs 6= 0 Ns)

and without (ks = 0 N and cs = 0 Ns) interconnection forces and moments. It is

defined by the Eq. (6.3) as follows:

η(x) = 100 · (x− x0)

x0

(6.3)

Where x is the variable under study (it can be the maximum acceleration, the

maximum pitch angle, the front wheel or the rear wheel fly times) and x0 is the value

achieved by the variable with independent suspensions. Efficiency is expressed as a

percentage and it will be positive if the connection set-up provides a reduction on

the variable’s value.

(a) front wheel (b) rear wheel

(c) vertical acceleration (d) pitch acceleration

Figure 6.5: Efficiency maps of comfort and precision variables for different values of ks with
cs = 0 Ns for a 0.05 m step input at forward speeds starting at 10 m/s up to 80 m/s.
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Eight simulation scenarios have been created on VS Browser corresponding to

eight forward speeds starting at 10 m/s and reaching 80 m/s. In theses simulations

the motorcycle is forced to pass through a road bump of 0.05 m at a constant

speed. These scenarios are called from a Simulink model from where the stiffness

and damping values are taken. The Simulink model is placed in a loop where

these coefficients are varied sequentially, performing all the simulations for values

of ks ranging from -12000 N to 12000 N and values of cs ranging from -1200 Ns

to 1200 Ns. With the obtained simulation results the efficiency on the comfort

and precision variables can be mapped. Figure 6.4 shows the results of varying the

interconnection damping coefficient (cs) and the speed, whilst the interconnection

stiffness coefficient is ks = 0 N. A difference between low and high speeds is observed.

For low speeds, the front wheel efficiency is improved with high positive and negative

values of damping coefficient cs, whilst for speeds higher than 40 m/s only negative

damping coefficient values would be suitable to achieve positive efficiency.

In the rear wheel and vertical acceleration cases, positive damping coefficients

result in better efficiencies at low speeds, whilst for high speeds, the efficiencies are

increased for negative values of cs. In the case of the angular acceleration only

positive values are suitable for the entire speed range. Due to this behaviour on

the front wheel efficiency, a compromise with constant damping coefficient, cs, to

improve the overall performance can be found.

The interconnected suspension stiffness variation case presents a more compli-

cated situation. The front wheel fly time efficiency is improved for positive values

of ks at speeds under 40 m/s whilst at higher speeds, negative values are clearly

needed. However, the rear wheel and the vertical acceleration achieve positive ef-

ficiencies values only for negative interconnection stiffness coefficient for the entire

the speed range, except at the slowest speed (10 m/s). The pitch acceleration ef-

ficiency presents a small variation, where negative values of the stiffness coefficient

are suitable at slow speed and positive values are needed at higher speeds. These

results are shown in Fig. 6.5 where ks and the forward speed are varied and cs is

kept constant at zero.

Finally, the combination of stiffness and damping coefficients in the intercon-

nected suspension system becomes a difficult scenario to find those coefficients that
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could improve the efficiency of all the variables under study simultaneously. Auto-

matic optimization processes should be implemented in order to find these optimal

coefficients. Figure 6.6 shows, as an example, the efficiencies mapping at a forward

speed of 50 m/s. Similar plots for all the forward speeds under study have been

obtained and then used to choose a good set of initial values for the optimization

processes for the stiffness and damping coefficients.

(a) front wheel (b) rear wheel

(c) vertical acceleration (d) pitch acceleration

Figure 6.6: Efficiency maps of comfort and precision variables for different values of cs and
ks for a 0.05 m step input at a constant speed of 50 m/s.

6.2.2 Optimization of the stiffness and damping coefficients

Considering that the model under study corresponds to a high performance racing

motorcycle with an interconnected suspension system, the optimization process is

now focused in obtaining a greater suspension precision, even if part of the comfort

has to be sacrificed. Matlab optimization toolbox is a good framework to find

satisfying results within a reasonable computational time. Different target functions

are implemented in order to evaluate the front wheel fly time for a given desired

speed. These target function correspond to the four different interconnection set-up
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proposed at the beginning of this chapter:

a) Constant damping coefficient. Achievable by a single constant damper unit.

Consists of a direct connection of the front fork to the rear swinging arm through

a damper unit with a constant damping coefficient.

b) Constant sign speed variable damping coefficient. Includes a single speed

variable damper with a similar mechanical design to the previous configuration,

an optimal damping coefficient at each forward speed can be obtained. Following

the scheme in Fig. 6.2b or 6.2c, the application point of the damper into the

swinging arm would determine the sign of the coefficient, that would remain

unchanged for the entire speed range.

c) Positive and negative speed variable damping coefficient. Achievable by

two speed variable dampers with opposed application points such as in Fig. 6.2a.

Following the sign criteria defined by Eq. 6.1 and Eq. 6.2, the damper unit located

ahead the swinging arm pivot point would contribute with negative interconnec-

tion damping coefficient. Oppositely, the damper unit placed behind the this

pivot point would do so with a positive interconnection coefficient. The addition

of each of the damper coefficients can result in positive or negative total damping

coefficient for any forward speed.

d) Positive and negative speed variable stiffness and damping coefficients.

Achievable by electromechanical actuators. Whilst variable damping coefficient

can be obtained by means of passive (dissipative) devices, a variable stiffness

coefficient requires the inclusion of active devices. A couple of actuators could

substitute the front and rear spring-damper units and apply the equivalent forces

and moments as an interconnected suspension system would apply. This system

is only proposed in here as a theoretical approach in order to explore the pos-

sibility of variable stiffness coefficients. Once actuators would be included in

the suspension design, considering its elevated cost and the complexity, it con-

stitutes a wide field of research on active suspension techniques which could be

more suitable and efficient than the interconnected suspension approach.

For each of the four interconnection configurations indicated previously and for

each of the eight considered forward speeds, the target function to be minimized can
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be defined as the front wheel fly time efficiency. However, different consideration

should be included in each function in order to meet the systems’ design criteria.

The optimization process consists in using ’fmincon’ Matlab function which is

feed with the corresponding target function. Although the rear wheel is not a priority

in this optimization process, a constriction on its efficiency is also included so that

an adequate performance is kept by this wheel. This constriction is included for

the case in which the rear wheel efficiency becomes negative, it restricts its value to

never fall below η = −10 %.

For the variable coefficients cases, the target functions call to a Simulink model

containing the VehicleSim Block, which is configured to run the VS Browser sim-

ulation associated to a constant forward speed. The results of the simulation are

processed by the target function in order to obtain the front and rear wheel fly times

(time where the tyres forces become zero after a bump in the road appears). With

these times and the nominal fly time of the independent system can obtained the

efficiency as it was defined in Eq. (6.3).

Speed (m/s) 10 20 30 40 50 60 70 80

Weight 0.4 0.4 0.6 0.8 1 1 0.8 0.8

Table 6.1: Weights applied to the front wheel efficiency at the different forward speeds in
the target function defined for the interconnection set-up a), where a constant damping value
is found for all the speed range.

For the first scenario, a constant damping coefficient for the interconnected sus-

pension (cs) must be found for the entire speed range under consideration. There-

fore the optimization process is slightly different to those cases in which different

interconnection constants must be found at each different speed. In this case, the

target function calls sequentially eight Simulink models that contain the different

VehicleSim Blocks for the eight forward speeds under study. The sum of all the

weighted efficiencies is established as the function’s target to be minimized. The

weight applied to the efficiency of each forward speed depends on what speed band

is considered more relevant. In the case proposed in this study the middle-high speed

band is more weighted than the lower speed range. Table 6.1 shows the weight values

set for each forward speed.
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(a) (b)

(c) (d)

Figure 6.7: Efficiencies of the precision and comfort variables obtained for the four intercon-
nection set-ups proposed in this section: a) Constant damping coefficient; b) Constant sign
speed variable damping coefficient; c) Positive and negative speed variable damping coefficient;
d) Positive and negative speed variable stiffness and damping coefficients.

The results for the four optimization processes (designed for the four different

set-ups) are shown in Fig. 6.7 where the efficiencies of the front wheel (FW ), rear

wheel (RW ), vertical acceleration (ACC ) and pitch angle acceleration (PTC ) are

shown for the entire speed range. The units of ks are N and cs is in Ns.

Figure 6.7a shows the case of the constant damping coefficient. The optimal

configuration found for the speed range is ks = 0 N and cs = -548 Ns. The improve-

ment percentage of the suspension response of the front wheel starts around 5 %

at low speeds and rises up to 17 % at high speeds. The rear suspension response

is improved for high speeds and slightly worsened for very low speeds, but its effi-

ciency never decays bellow the −7 %. Considering that the front wheel is relevant

in terms of rider’s control and that the rear wheel fly time is only increased for very

low speeds, this can be considered a good result for a very simple interconnection
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system.

In Fig. 6.7b, the results for a constant sign speed variable damping coefficient are

shown. Two optimization processes were implemented, one for positive and other

for negative values of the damping coefficient. For positive values, the results for

speeds above 50 m/s cannot be improved. Consequently a negative feedback was

chosen for this set-up. The efficiencies are now higher, for the front wheel it reaches

values from 10 % up to 40 %. The rear wheel efficiency is still negative at 10 m/s

(above −7 %), but quickly reaches higher values (about 20 %) to a final efficiency

of 100 % at high speeds. That means that for these cases the rear wheel does not

lose contact with the ground.

Figure 6.7c shows the results for the positive and negative speed variable damping

coefficient. In this case, positive values were found to be more suitable at slower

speeds whilst negative values improved the responses at higher speeds. For speeds

between 50 m/s and 80 m/s, the results are similar to those of the previous case.

However, in the slow speeds range, a substantial improvement is observed in the

front wheel efficiency. The rear wheel efficiency decays for medium speeds reaching

its minimum value at 40 m/s, when the front wheel efficiency is maximum.

The last scenario is shown in Fig. 6.7d, positive and negative speed variable

stiffness and damping coefficients are considered in this case. Higher efficiencies of

the front and the rear wheels are found for all the speed range.

In all four cases, significant response improvements are found in terms of sus-

pension precision. Although the optimization processes have not taken the comfort

into account, in all the cases, it is not worsened in a substantial manner and in some

cases it is improved.

Speed (m/s) 10 20 30 40 50 60 70 80

a) cs(Ns) -548 -548 -548 -548 -548 -548 -548 -548

b) cs(Ns) -801 -960 -882 -720 -528 -423 -960 -1066.5

c) cs(Ns) 1305 924 682.5 468 -528 -423 -960 -1066.5

d)
cs(Ns) 945 903 684 -720 -420 -1080 -1100.3 -1292.5

ks(N) 4.620 4.620 2.520 2520 5130 -7200 -7087.5 -6315.3

Table 6.2: Optimal coefficient values found for the four different interconnection set-ups.
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Table 6.2 shows the optimal interconnection parameters found for the four in-

terconnection set-ups previously proposed. Generally speaking, it can be said that

positive spring stiffness and damping interconnection coefficients improve the sus-

pensions precision for the lower half of the speed range whilst negative values are

suitable for the higher speed range. If a simple mechanism was required, the pre-

cision of the suspension at low speeds could be improved by a constant negative

interconnection damping coefficient. Nevertheless, it has to be considered that the

optimization process in this case was carried out as a compromise solution for a wide

range of speeds. If the motorcycle under study were to be run within a narrower

speed range, such as street motorcycles, this implementation could return better

results.

6.3 Frequency response

In order to understand the response of the system for different road undulations, a

frequency analysis must be carried out. For this purpose, several nonlinear simula-

tions were run in which the motorcycle model was forced to pass through sinusoidal

road profiles at different constant speeds. These profiles have been designed for each

forward speed in order to get an increasing frequency from 0.1 Hz to 10 Hz and an

amplitude of 2 cm. For higher values of the amplitude, the discontinuity of tyre

model gets relevance and the oscillatory analysis becomes less precise. The tyres

take off the ground after any bump after certain speed and the distance travelled

during the fly time is large enough to skip several consecutive undulations. This am-

plitude is chosen as a compromise that allows the study of the oscillatory behaviour

of the system maintaining its nonlinear properties.

The VS Browser allows to introduce external perturbations in the simulation

in different ways. One of them is in the form of a file containing a table with

the values (amplitude and longitudinal distance) of the perturbation. The program

can be set to fit the data contained in that table so a high data density is not

needed. The VehicleSim model has to be adequately implemented to account for this

perturbation. In this case, the perturbation is the road profile and it is introduced

in the model through two variables associated to the tyres compression, as explained

in Chapter 3.
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6.3.1 Road profiles generation

Two considerations have been taken into account in the design of the road profiles.

On one hand, the tyre model imposes two restrictions in terms of frequency. The

first, is an upper limit in the input frequency for any perturbation, being this fre-

quency limit about 8 Hz (Pacejka 2002). The second restriction is a lower limit

in road perturbation wavelength. This wavelength cannot be shorter than the tyre

radius. The largest radius of the two tyres corresponds to the rear wheel and it is

equal to 0.297 m for the model under study. For the slowest speed under consid-

eration, 10 m/s, the highest frequency allowed by this restriction is about 33 Hz.

Consequently, the frequency upper limit is established by the first restriction about

8 Hz. However, the frequency range for the wave signal has been set slightly over

this limit, between 0.1 Hz and 10 Hz, in order to have a wider view. Keeping this

in mind, the results for frequencies above the 8 Hz must be carefully analysed.

(a)

(b)

(c)

Figure 6.8: Wave signal used to build the different roads profiles. a) Signal vs. time. b)
Signal vs. frequency. c) Detail of the constant peaks density for the lowest and the highest
frequencies.

On the other hand, a computational efficiency criterion has been also followed:

the number of sampling points for each period and the number of oscillations for

each frequency interval must be constant. In that way it is not necessary to use too
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many computational resources at low frequencies to ensure an adequate sampling

at higher ones.

Following the approach in (Tempelaars 1996), wave modulation is achieved through

its phase instead of its frequency. The instant angular frequency is defined as the

time derivative of the phase wi = dφ
dt

, the instant phase is then given by φi =
∫
widt

and fi = 1
2π
wi is the instant frequency. In order to get a constant peaks density

(peaks per hertz) for the entire frequency interval, the instant frequency can be

defined as a time dependant function as:

fi = f0e
[ln(ff )−ln(f0)] t

T (6.4)

where the initial frequency is f0 = 0.1 Hz, the final frequency is ff = 10 Hz

and T = 460.52 s is the total time for which the signal is varying. The time T is

calculated in order to get a peaks density of pph = 100 Hz−1. The phase is obtained

as:

φ =
2πT

[ln(ff )− ln(f0)]
f0e

[ln(ff )−ln(f0)] t
T (6.5)

And the wave representing a sinusoidal road profile is then defined as the sine of

this phase.

Z = Z0 sin(φ(t)) (6.6)

It can also be written as a function of the frequency as follows:

Z = Z0 sin(
2πT

[ln(ff )− ln(f0)]
f(t)) (6.7)

Therefore the peaks density function is given by

pph =
T

[ln(ff )− ln(f0)]
(6.8)

This is a constant from which the value of the time interval T, needed for a

desired density, can be directly obtained. Figure 6.8 shows this wave, represented

with respect to the time and the frequency, and shows how the peaks density is

constant for all the frequency range.
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(a)

(b)

Figure 6.9: a) Wave signal (blue solid line) and sampling points (red +) used for road input.
b) Frequency variation of road profile function.

In order to obtain an accurate description of the wave signal, eight sampling

points were taken for each period. The time values that meet this requirement are

obtained when the sine argument, φ , is equal to an integer multiple of 1
4
π. Figure 6.9

shows the wave signal overlapped with the sampling points and the frequency as

a time dependant function. Depending on the value of the motorcycle’s forward

speed in each simulation, the sinusoidal road input function must be scaled with the

forward speed to present the data as road perturbations, this is, to represent the

amplitude of the road input with respect to the distance. The obtained data are

imported to VS Browser in the form of a table. VS Browser interpolates them and

reconstructs the sine wave to be used as a road perturbation along the simulation

time.

6.3.2 Simulations and signal processing

As it indicated in the previous section, four configurations of the interconnected

suspension were considered:

a) Constant damping coefficient.

b) Constant sign speed variable damping coefficient.

c) Positive and negative speed variable damping coefficient.

d) Positive and negative speed variable stiffness and damping coefficients.
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For each of these configurations, eight simulations have been run for different

forward speeds starting at 10 m/s up to 80 m/s. For all of them, a specific road

input is implemented forcing the motorcycle to go through a sinusoidal undulation

increasing its frequency from 0.1 Hz to 10 Hz.

Similarly to the previous section, four variables have been considered; in this

case, the nature of the behavioural analysis requires a variation of them. The front

and rear wheel vertical displacements are taken to study the suspension system’s

precision. The comfort is studied through the vertical displacement of the rider

attachment point to the main frame and the pitch angle reached by the main frame.

Simulations have been run directly from the VS Browser and the data obtained

were later imported to the Matlab environment. To obtain the amplitude of these

four variables a low resources demanding algorithm was implemented. This algo-

rithm finds the signal’s inflection points and measures the distance from one mini-

mum to the next maximum and vice versa. Considering the high peaks density, this

distance can be taken as a good measure of the amplitude for each oscillation at a de-

termined frequency value. After applying this algorithm it was found that, in some

cases, the amplitude oscillates at some frequencies. This is caused by smaller oscil-

lation inside the main ones due to the force transmission between the front and the

rear wheel through the interconnection system. Figure 6.10a shows the front wheel

frequency response for a 80 m/s forward speed simulation with cs = −1066.5 Ns

damping interconnection coefficient together with a detail of these nested oscilla-

tions. The effect produced by them on the amplitude is shown in Fig. 6.10b. In

order clarify this oscillating behaviour, a second algorithm –also based on inflection

points detection– was developed to filter these small perturbations and to keep only

the maximum amplitude achieved by the variable under study at each road oscilla-

tion. Figure 6.10c shows the result of applying this filter to the amplitude obtained

by the first algorithm.

The effects of the different interconnection approaches are studied for the preci-

sion and comfort variables for each of the eight forward speeds. Figure 6.11 shows

the magnitude of these four variables with respect to the obtained frequency for the

various interconnection configurations at a forward speed of 40 m/s. These mag-

nitudes are represented in decibels. As it has been already mentioned, the road
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(a)

(b)

(c)

Figure 6.10: a) Front wheel frequency response for a 80 m/s forward speed simulation with
cs = −1066.5 Ns damping interconnection coefficient. b) Response’s amplitude obtained by
the inflection points algorithm. c) Response’s amplitude after the filter algorithm were applied.

perturbation amplitude was 0.02 m, so the magnitude of the signals can be defined

in decibels as:

mag = 10log(
amp

0.02
) (6.9)

The low-frequency responses for the front wheel, rear wheel and vertical displace-

ment are zero, whilst the pitch angle low-frequency response takes negative values

due to the fact that the output units are radians instead of meters in this case.

Similar plots can be done for all the forward speeds condition.

The results plotted in this way, although they are clear for each forward speed

individually, make it difficult to understand in a global manner the effects of the

interconnection system on the frequency response. In order to present these results

in a clearer way, the magnitudes of the signals are mapped along all the frequen-

cies and speeds ranges for each interconnection set-up independently. These can be

shown as spectrograms where the forward speed variation belongs to the x axis and

the frequency variation to the y axis. Considering that the resonance peaks occur

in the high-frequency range, both axes are linearly scaled to obtain a detailed view
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(a) front wheel height (b) rear wheel height

(c) main frame height (d) pitch angle

Figure 6.11: Frequency responses of the precision and comfort variables at 40 m/s for the
different interconnection set-ups: a) blue ×, b) green ♦, c) red + , d) cyan ∗. The nominal
independent suspensions system’s response is plotted in black.

at these frequencies. Figure 6.12 shows the magnitudes with respect to the speed

and frequency for the nominal non-interconnected suspension model. These maps

represent the behaviour of the nominal motorcycle under sinusoidal road perturba-

tions and they are a good reference to understand how the interconnection system

would affect the model’s dynamics.

The resonance peaks are marked with a dashed black line. Regarding to the

vertical displacement and pitch angle, their peaks appear about 3 Hz and 6 Hz

respectively. These frequencies are similar to those calculated for the bounce and

pitch normal mode through the eigenvalues of the state space matrix A. Figure 6.13

shows a root locus for the nominal motorcycle model with non-interconnected sus-

pension at a roll angle of 0◦ and forward speed starting at 10 m/s up to 80 m/s.

As it is well known, three out-of-plane normal modes can be observed. These are

rider lean (3 rad/s – 8 rad/s), weave (10 rad/s – 30 rad/s) and wobble (45 rad/s –

55 rad/s). The other two normal modes, which are more damped, are the in-plane

modes bounce and pitch. The bounce mode is within the frequency range 17 rad/s –

21 rad/s (2.7 Hz – 3.4 Hz). The pitch mode appears at higher frequencies, 41 rad/s
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(a) front wheel height (b) rear wheel height

(c) main frame height (d) pitch angle

Figure 6.12: Frequency response maps of the precision and comfort variables for all the
forward speeds for the nominal non-interconnected suspension model (ks = 0 N and cs = 0 Ns).
The level curves are marked in solid black whilst the peak values of the magnitudes are marked
with dashed black lines.

– 44 rad/s (6.5 Hz – 7 Hz). For the pitch angle magnitude (Fig. 6.12) the resonance

frequency is not exactly the same than those predicted by the linear analysis. It is

important to notice that the perturbation in this case is applied to the front and

rear wheels through a sinusoidal road. Therefore, a delay exists between the rear

and front wheel inputs that depends on the road wavelength. This delay introduces

an irregular perturbation on the bounce and pitch motion. On the other hand, the

pitch normal mode not only consists in a pure pitch motion; other degrees of freedom

are involved on it with relevant relative weights that affect the resonance frequency

of this normal mode. Figure 6.15 shows the relative weights of the different degrees

of freedom involved in bounce and pitch normal modes. The evolution of each of

them can be appreciated through the profile of the bar associated to them, starting

at 10 m/s up to 80 m/s.

The delay in the front and rear wheels input produces the well known effect

”wheelbase filtering” which has been widely studied in the vehicle dynamics liter-

ature as in (Gillespie 1992), (Sharp 2002) or (Cossalter et al. 2006). This effect

consists, as its name says, in the filtering of those road frequencies corresponding to
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Figure 6.13: Root locus for the motorcycle model with independent suspensions at a roll
angle of 0◦ and starting at 10 m/s (�) up to 80 m/s (∗).

wavelengths in relation to the wheelbase. In the case of the wheelbase being equal

to an even multiple of half a wavelength (wb = 2n · λ
2
) the front and rear wheels

inputs will be in phase, therefore, the bounce mode’s perturbation will be maximum

whilst the pitch mode’s perturbation will be minimum. On the other hand, if the

wheelbase is equal to a odd multiple of half a wavelength (wb = (2n−1)· λ
2
) the effect

will just be the opposite. In this later case, the front and rear wheels inputs are in

phase opposition, resulting in maximal excitation of the pitch mode and minimal

excitation of bounce mode. Figure 6.14 illustrates both cases.

(a) wb = 4
2
λ (b) wb = 3

2
λ

Figure 6.14: Wheelbase filtering for pitch (a) and bounce (b) motions due to the road profile
wavelength.

The wheelbase of the particular motorcycle model under study is 1.41 m. Con-

sidering as a first approach the relation between the wavelength and the frequency
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(a) bounce mode’s components

(b) pitch mode’s components

Figure 6.15: Bounce and pitch normal modes’ components. The bar’s edge associated to
each component represents the evolution of this component along the speed range from left
(10 m/s) to right hand side (80 m/s).

through the speed to be λν = v, at a forward speed of 10 m/s, the filtering frequency

for the pitch motion will be about 7 Hz and that for the bounce motion will be just

a half of this, 3.5 Hz. For higher forward speed these frequencies are increased in

proportion.

All this can be observed in Fig. 6.12. For the vertical displacement magnitude,

in Fig. 6.12c, the resonance frequency is at 3 Hz for all the speed range except for

10 m/s, where the peak is at 1.5 Hz. The bounce normal mode resonance frequency

coincides with the bounce wheelbase filtering frequency at 10 m/s. The competition

between the normal mode resonance peak and the minimum produced by the wheel-

base filtering at this frequency results in a displacement of the maximum magnitude

peak towards longer wavelengths. On the other hand, the vertical displacement

magnitude rises again at 7 Hz coinciding with the pitch angle wheelbase filtering

frequency. Finally, these interactions produce a minimum that can be observed at

5 Hz.

In Fig. 6.12d the pitch angle magnitude at 10 m/s shows a pronounced decay

at 7 Hz whilst at 3 Hz this magnitude is significantly higher than those at faster

speeds. As it has been already seen, the pitch angle resonance frequency is about

6 Hz, however at 10 m/s this frequency is notably reduced due to the addition of

these effects. The maximum pitch angle magnitude at this speed is found to be
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about 4.5 Hz.

At 20 m/s, only the bounce wheelbase filtering frequency is inside the model

frequency limits. However, the bounce motion is already highly damped at this fre-

quency and this is not a remarkable effect. For the remaining speed range, wheelbase

filtering frequencies become greater than 10 Hz, this is out of the model limits.

Figure 6.12a shows the magnitude of the front wheel frequency response. Two

resonance peaks related to the bounce (3 Hz) and the pitch (6 Hz) motions appear.

The wheelbase filtering is clear in the front wheel response producing both minimums

at 3 Hz and 7 Hz for a forward speed of 10 m/s. The influence of the front suspension

(SUS ) in bounce and pitch normal modes is shown in Fig. 6.15a. The oscillation

of this degree of freedom is directly linked to the front wheel’s elevation, thus its

resonance frequencies correspond to those of these two normal modes.

The rear wheel response is showed in Fig. 6.12b. The main resonance frequency

corresponds to the pitch mode at 6 Hz. The increase of this tend for the entire

speed range starts before the 3 Hz and at this frequency the magnitude is larger

than 3.5 dB. An eventual resonance peak related to the bounce normal mode is

masked behind the increase on the resonance peak corresponding to the pitch mode,

whose magnitudes doubles that one of the first peak.

Various maps similar to those of Fig. 6.12 have been plotted. In order to obtain a

qualitative understanding of the effects produced by the different set-ups in the fre-

quency response of each precision and comfort variables, the level curves and peaks

lines corresponding to the nominal (independent suspensions) model are overlapped

with these maps. In the areas of the maps where the lines are visible the inter-

connection set-up under study would result in smaller magnitudes. Conversely, in

the areas where the lines are covered by the surface, the interconnected suspension

set-up would produce an increment of the magnitude. The color-bar legend on each

map provides quantitative values of the magnitude.

Figure 6.16 shows the frequency response maps of the precision and comfort vari-

ables for the interconnected suspension set-up a) with ks = 0 N and cs = −548 Ns.

The main frame’s vertical displacement for this configuration is shown in Fig. 6.16c.

The maximum amplitude is not increased significantly. However, the resonance fre-

quency is shifted towards smaller frequencies showing its maximum at 2.5 Hz. For
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(a) front wheel height (b) rear wheel height

(c) main frame height (d) pitch angle

Figure 6.16: Frequency response maps of the precision and comfort variables for all the
forward speeds with interconnection coefficients ks = 0 N and cs = −548 Ns. The level curves
(solid) and the magnitude peaks values (dashed) corresponding to the independent suspensions
model are overlapped with the maps as a reference.

the middle range of speeds at high frequency, the level curves are covered by the

surface due to an small increment on the magnitude. The same minimum value,

due to the interaction between the wheelbase filtering and the bounce mode natural

frequency, is shown at 5 Hz, being in this case slightly more pronounced.

The pitch angle frequency response is mapped in Fig. 6.16d. It behaves similarly

than for the nominal case although the maximum amplitude is slightly larger. A re-

markable effect of the interconnected suspension configuration is that the wheelbase

filtering is reduced in great manner. The minimum value found at 7 Hz for a speed

of 10 m/s is now about 15 dB higher than that for the model’s suspension nominal

configuration.

In the front wheel height case, an increase on the magnitude for high frequencies

after 20 m/s is shown in Fig. 6.16a. The resonance peak associated to the pitch

motion increases its maximum value by a couple of decibels. The pitch wheelbase

filtering is visible and slightly more pronounced than that for the nominal system.

In the low frequency range the bounce resonance peak has been shifted and its

maximum magnitude is decreased.
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(a) front wheel height (b) rear wheel height

(c) main frame height (d) pitch angle

Figure 6.17: Frequency response maps of the precision and comfort variables for all the
forward speeds with interconnection coefficients ks = 0 N and cs taking negative optimal
values depending on the forward speed. The level curves (solid) and the magnitude peaks
values (dashed) corresponding to the non-connection model are overlapped with the maps as
a reference.

The rear wheel height for this configuration, in Fig. 6.16b, has a general be-

haviour similar to that of the nominal configuration. However, a small change can

be observed: the resonance peak related to the pitch motion has a higher frequency.

It also reduced its maximum magnitude except for slowest speeds (10 m/s - 20 m/s).

On the other hand, at low frequencies, the rear wheel height magnitude increases

and the peak related to bounce frequencies is now perceptible.

The frequency response maps of the precision and comfort variables for the inter-

connected suspension set-up b) are shown in Fig. 6.17. In this configuration ks = 0 N

and cs takes only negative optimal values. In Fig. 6.17c similar results that those

produced by the previous suspension set-up a) are found for the main frame vertical

displacement. A noticeable variability of the resonance peak magnitude can be ob-

served, the peak value decays at medium-high speeds (40 m/s - 60 m/s). A similar

variation is found in the case of the front wheel height, 6 Hz peak in Fig. 6.17a.

In Fig. 6.18, the relation between the interconnected suspension coefficient value

cs and the resonance peak magnitudes becomes clear for all the speed range. In the
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case of the front wheel peak, the magnitude decays with the speed. The relationship

between the front wheel height and the pitch modes should be considered. In this

same figure, the pitch angle highest value decays with the speed. Similarly to the

bounce resonance peak magnitude, the front wheel high frequency peak magnitude

is directly affected by the interconnected suspension damping coefficient although,

in this last case, it is modulated by the pitch mode amplitude. Finally, the rear

wheel height peak at 6 Hz follows the pitch resonance and decays with the speed

showing its highest value at 20 m/s. This peak losses relevance whilst the peak at

2.5 Hz becomes clearly visible now.

Figure 6.18: Maximum magnitudes compared to the inverse of the interconnected suspension
damping coefficient of set-up b) (negative speed variable damping coefficient).

The interconnected suspension set-up c) consisted of a spring stiffness coefficient

ks = 0 N and a damping coefficient cs variable with the forward speed that can

adopt either positive or negative optimal values. In a similar way to previous fig-

ures, Fig. 6.19 shows the mapping of the four variables frequency responses. The

optimization process carried out to find the optimal values of the damping coefficient

in the previous section is similar to that for set-up c) except that in this case there

is no restriction in the sign of the damping coefficient value of the interconnected

suspension. In this case, for speeds under 50 m/s, positive values of cs are more

suitable for a step input. Speeds from 50 m/s up to 80 m/s require negative cs values

in order to obtain an optimal performance of the suspension precision. Therefore,

the results for high forward speeds are similar in both interconnected suspension

set-up b) and c). Notable differences are found for the low speeds range where the
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optimal interconnected suspension damping coefficient should be always positive.

Figure 6.19c shows the main frame vertical displacement. For the low speed

range, the bounce resonance peak is shifted towards higher frequencies reaching

4.5 Hz. Likewise, its magnitude is lower than for the negative cs case. The minimum

found at 10 m/s, loses relevance whilst its frequency coincides with the resonant

peak. The pitch angle (Fig. 6.19d) has reduced its maximum magnitude at slow

speed. However, the wheelbase filtering in this case, shows a bigger impact. At

10 m/s and about 3.5 Hz, the wavelength approximately doubles the wheelbase and

the pitch angle response is clearly amplified. Meanwhile, it is deeply damped for

the same speed range at a frequency about 7 Hz, where the wavelength and the

wheelbase are equal.

(a) front wheel height (b) rear wheel height

(c) main frame height (d) pitch angle

Figure 6.19: Frequency response maps of the precision and comfort variables for all the
forward speeds with interconnection coefficients ks = 0 N and cs taking positive and negative
optimal values. The level curves (solid) and the magnitude peaks values (dashed) correspond-
ing to the non-connection model are overlapped with the maps as a reference.

The case of the front wheel height (Fig. 6.19a) shows also minimum value at

10 m/s, but the frequency now is slightly increased up to 8 Hz with respect to

previous configurations. Its magnitude is reduced at the frequencies related to the

pitch at low speed (positive cs values) whilst it is drastically increased for those

frequencies related to the bounce resonance, which now are higher. For higher speed
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values, for which the interconnection damping coefficient is negative, the behaviour

is similar to that in previous configurations and the pitch resonance frequencies

dominate over the bounce ones.

Figure 6.19b shows the rear wheel magnitude. Once again, for the high speed

range its behaviour is similar to that considered in previous configurations. However,

at slower speeds, the resonance peak appears at lower frequencies, about 5 Hz. At

10 m/s, where the wheelbase filtering effect can be observed, a relevant minimum

is shown at about 6 Hz. It can be observed that, whilst the connection through

a negative damping produces an increase of the pitch resonance peak frequency, a

positive damping connection results in a decrease of it. Finally, the resonance peak

related to the bounce motion remains more or less unaffected.

(a) front wheel height (b) rear wheel height

(c) main frame height (d) pitch angle

Figure 6.20: Frequency response maps of the precision and comfort variables for all the
forward speeds with interconnection coefficients ks and cs taking positive and negative optimal
values. The level curves (solid) and the magnitude peaks values (dashed) corresponding to
the non-connection model are overlapped with the maps as a reference.

The interconnected suspension set-up d) was obtained by means of eight multi-

variable optimization processes, one for each speed under study. The two variables to

be optimized were the spring stiffness ks and damping cs interconnection coefficients.

Both of them could take positive and negative values. The addition of a non-zero

stiffness coefficient results in new optimal values for the damping coefficient at each
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forward speed. The frequency response of this configuration is shown in Fig. 6.20.

Similar behaviours of the two precision and two comfort variables are observed,

being all of them smother than that for the suspension set-up c).

6.4 Conclusions

This chapter presents the potential benefits in terms of performance that an inter-

connected suspensions system could introduce in a motorcycle, if adequately imple-

mented.

For the motorcycle model under study, it has been shown that satisfactory results

are achieved in terms of tyres fly time reduction by the connection of the front

and rear suspension, just by means of a simple damper unit. By increasing the

complexity of the mechanical system, better results can be achieved.

It has been found that positive damping connection coefficients are more ade-

quate for low speeds. On the contrary, for high speeds, negative values are needed.

The work presented in here considered a wide speed range. For narrower speed

ranges, better result could be achieved by adding a device that connects the front

and the rear suspensions with a constant coefficient damper.

By means of several optimization processes, four optimal interconnected suspen-

sion set-ups of different complexity have been proposed. The frequency response

of all of them has been studied in order to detect possible undesirable effects. Al-

though several variations of these responses could be found due to the interconnected

system, non of them results in harmful behaviours. A general qualitative view of

their effects on the GSX-R1000 model frequency response can be summarized in the

following.

The frequency responses of the comfort and precision variables follow similar

patterns along the entire speed range except at lower speed as the wheelbase filtering

effect introduces maximums and minimums at its characteristic frequencies.

Positive interconnection damping coefficients increases the main frame vertical

displacement resonance frequency, whilst negative coefficients decreases it. In this

case, it can be observed how the peak magnitude of this variable depends directly

on the coefficient’s values.
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The pitch resonance frequency remains unaffected by the damping coefficient

values, however, positive values result in an enhancement of the wheelbase filtering

effects. Meanwhile, the opposite happens for negative values.

All these could be expected considering that with negative interconnection coef-

ficients values, the interconnection forces tend to move the front and the rear wheel

in the same direction reducing the pitch motion and increasing the bounce. When

the interconnection coefficients values are positive, these forces act in opposite di-

rections, increasing the pitch oscillation and decreasing the bounce.

The front wheel vertical displacement magnitude shows two resonance peaks,

associated to the bounce and pitch motions. For negative interconnection coefficients

the bounce peak magnitude is much lower than the pitch peak. Nevertheless, positive

interconnection coefficients values increase the bounce influence on the front wheel

and attenuate the pitch influence on it. Similar effects can be observed for the

rear wheel magnitude. It can be said that if the interconnected suspension system

enhances one or another in-plane motion (bounce/pitch), then the wheels’ responses

to the resonance frequency associated to this motion are damped.

Finally, it can be concluded that interconnected suspension systems could im-

prove significantly the suspension performance of a motorcycle of this characteristics

with a minimum cost if passive elements are considered.
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Chapter 7

Interconnected Suspensions

System: Stability Analysis

This chapter is focused on the study of the interconnected suspension system sta-

bility through the understanding of the normal modes presented by the GSX-R1000

linear model.

As it has been explained in Chapter 3, VehicleSim returns a state space rep-

resentation of the programmed model. This is an automatically generated Matlab

file containing the state matrices A, B, C and D. The terms of these matrices are

expressed as functions of the state variables (positions and velocities) as well as the

different dynamical parameters of the motorcycle model (masses, inertias, etc.). The

parameters are numerically set in the Matlab file according to the values defined in

the model programmed in VS Lisp, in contrast to the state variables that are free

to be set depending on the trim state to be studied.

In order to study the evolution of the normal modes with respect to the speed

and the roll variation, several simulations are run. On each simulation, the roll angle

is fixed and the speed is increased from 10 m/s up to 80 m/s in a very slow manner

(0.001 m/s2) in order to obtain quasi-equilibrium trim states. The roll angles under

study are 0◦, 15◦, 30◦ or 45◦. They are kept constant along the simulation taking

advantage of the roll angle controller included in the motorcycle model.

Once a simulation is finished, the values of the state variables for each forward

speed and roll angle are taken from those of the corresponding simulation time step.

The state matrices are then fed with these values, resulting in a high fidelity state
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space representation for each trim state (roll angle and forward speed), from which

its normal modes can be obtained.

On one hand, the weights and the phase angles of the different degrees of freedom

within a normal mode can be obtained from the eigenvector components associated

to it. These components weights and phases describe the mode’s pattern of motion.

A normal mode can be represented by two bar diagrams as in Fig. 7.2 and Fig. 7.3.

In the first of them, the bars heights represent the normal mode’s degrees of freedom

relative normalized weights. In the second diagram, the bars heights represent the

relative phase angle of each degree of freedom.

Figure 7.1: Root loci for the motorcycle nominal suspension system showing the main normal
modes affected by the suspension dynamics. Speed is increased from 10 m/s (�) up to 80 m/s
(∗). Different roll angles are considered: 0◦ (blue), 15◦ (green), 30◦ (red) and 45◦ (black.

On the other hand, the state space matrix A eigenvalues provide information

on the normal modes’ frequency and damping for a given trim state and can be

represented as a root locus. Figure 7.1 shows typical root loci for the motorcycle

nominal configuration in which no connection exists between the front and rear

suspension systems. In this figure, the eigenvalues associated to the normal modes

for the motorcycle linear model are represented for four different simulations, in

which the motorcycle runs at four different roll angles: 0◦ (blue ×), 15◦ (green ◦),

30◦ (red +) and 45◦ (black ♦). For each of these four simulations the speed is

increased from 10 m/s (�) up to 80 m/s (∗).

This root locus shows a wide area where highly damped normal modes are vis-

ible. Clearly, these modes do not imply stability risks for the motorcycle nominal

configuration. They hardly could be excited and, thus, appreciated in the motorcy-

cle dynamics. However, once the front and rear suspension systems are connected,
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these modes change its damping properties in a substantial manner reaching, in

some cases, the unstable region.

The normal modes shown in this plot are divided into in-plane and out-of-plane

modes. The in-plane modes are those in which only the degrees of freedom that

imply a motion inside the motorcycle’s symmetry plane are involved. On the other

hand, the out-of-plane modes only involve the degrees of freedom that represent a

motion out of the motorcycle’s symmetry plane. This is valid for an equilibrium state

at zero roll angle, but once the motorcycle is leant, the forces appearing between

the ground and the tyres are not in-plane and consequently, the in-plane and out-

of-plane degrees of freedom get coupled. However, both types of modes maintain

their main motion characteristics and can be distinguished.

DOF Description

XT, YT, ZT Motorcycle’s chassis x, y and z translation.

ZR, YR, XR Motorcycle’s chassis yaw, pitch and roll rotations.

SWA Swinging arm rotation about the main frame’s y axis.

UBR Rider’s upper-body rotation about the main frame x axis.

TWS Front frame rotation about the twist axis.

STR Front frame rotation about the steering axis.

SUS Front fork compression/extension.

Table 7.1: Eigenvectors components of the GSX-R1000 multi-body system considered for
the mode motion identification.

The out-of-plane modes are wobble, weave, rider lean and rider shake. Figure

7.2 shows the weights and phases of each degree of freedom involved in these modes

for straight running conditions, this is, zero roll angle. The forward speed of the

motorcycle is increased from 10 m/s up to 80 m/s. Consequently, the weights and

phases of each degree of freedom change with the forward speed. This change is

appreciated in the bars’ profiles, where the speed is increased from left to right. On

the other hand, the in-plane modes are pitch, bounce and front hop. Their weights

and phases are plotted in Fig. 7.3 following the same representation.

These eigenvectors representations correspond to the eigenvalues in Fig. 7.1 plot-

ted in blue × (zero roll angle). The degrees of freedom in the x coordinates of the
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normal mode figures are all related to the motorcycle’s reference frame and they are

presented in Table 7.1.

(a) wobble (ks = 0 N ; cs = 0 Ns) (b) weave (ks = 0 N ; cs = 0 Ns)

(c) rider lean (ks = 0 N ; cs = 0 Ns) (d) rider shake (ks = 0 N ; cs = 0 Ns)

Figure 7.2: Out-of-plane normal modes’ components for the motorcycle nominal configura-
tion at 0◦ roll angle. The speed evolution of each component’s weight and phase is represented
by the bars profile, varying the speed from left (10 m/s) to right hand side (80 m/s).

Figure 7.2a shows the bar diagram for the wobble mode at 0◦ roll angle. It

is characterized by an oscillation of the front frame about the steering axis whilst

the rear frame is only slightly affected. The lateral displacement (YT ), the yaw

(ZR), the roll (XR), the rider’s upper body (UBR) and the frame twist (TWS )

oscillations are substantially smaller than the steering oscillation (STR), which is

the main degree of freedom involved in this normal mode. The root loci in Fig. 7.1

show that the resonance frequencies of this mode are reduced with the speed from

55 rad/s to 45 rad/s for the different roll angles under study except for high roll

angle (45◦). For this roll angle the frequency is increased up to almost 58 rad/s

at medium speed and reduced down to 55 rad/s for high speed. For high (45◦)

and medium (30◦) roll angles, the wobble mode is low damped at slow speeds and

becomes more stable as the speed is increased. On the other hand, for small roll

(15◦) and zero roll angles it becomes well damped and tends to lose its stability with
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the speed increase.

(a) pitch (ks = 0 N ; cs = 0 Ns) (b) bounce (ks = 0 N ; cs = 0 Ns)

(c) front hop (ks = 0 N ; cs = 0 Ns)

Figure 7.3: In-plane normal modes’ components for the motorcycle nominal configuration
at 0◦ roll angle. The speed evolution of each component’s weight and phase is represented by
the bars profile, varying the speed from left (10 m/s) to right hand side (80 m/s).

Figure 7.2b shows the weave mode eigenvector components at 0◦ roll angle. This

mode is characterized by roll (XR), yaw (ZR) and steering angle (STR) oscillations

at medium and high forward speeds. At low speed, the rider’s upper-body oscilla-

tions (UBR) are relevant, but no so the steering angle. The increase in the forward

speed produces a reduction in the weight of this component and a fast rise on the

STR amplitude. Its resonance frequency is between 10 rad/s and 30 rad/s.It is

stable for the entire speed range but it approaches the stability limit as the speed is

increased. This mode becomes more stable for roll angle increases at higher speeds.

The rider lean is a mode that appears when the rider’s upper-body degree of

freedom is included in the mathematical model. It consists in a high oscillation of

the rider’s upper-body (UBR). For very low speeds, the steer (STR), the yaw (ZR),

the roll (XR) and the lateral displacement (YT ) present large amplitudes, being

the roll angle the main degree of freedom involved in the mode. However, these

components are fast reduced with the speed as it can be seen in Fig. 7.2c. It has a
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low frequency, between 3 rad/s and 9 rad/s. And it is well damped for the speed

range considered in the simulations. For higher speeds it becomes more stable.

Rider shake is a mode associated to the rider’s upper-body degree of freedom.

In this case the motion consists in an oscillation of the rider with higher frequencies

starting at 50 rad/s and ending at about 23 rad/s, depending on the motorcycle

roll angle. This is shown in Fig. 7.4. Only for zero roll angle, this mode becomes

overcritical for speeds greater than 20 m/s. Figure 7.2d shows the eigenvector com-

ponents for zero roll angle with nominal configuration. After this speed, all the

phase angles become zero due to the fact that the normal mode is not oscillating at

these points.

The pitch mode’s components are presented in Fig. 7.3a. They are characterized

by the main body pitching (YR) with large oscillations of the front (SUS ) and rear

(SWA) suspension. The phase angle presented by the motorcycle main frame and

the front suspension with respect to the swinging arm are about 180◦. For a motor-

cycle model with a perfect symmetry about its centre of masses there would not be

other components involved and the phase angle would be exactly 180◦, producing a

pure pitch motion. However, this model presents differences in terms of masses, sus-

pensions, etc. of the front and rear sides of the motorcycle, these other components

such as the vertical (ZT ) or the horizontal (XT ) displacements are present in the

mode motion, and the phase angles are smaller than 180◦. It is well damped, get-

ting smaller values of damping for higher roll angles. Its frequencies for all running

conditions are constricted between 40 rad/s and 45 rad/s.

The components of the bounce mode are plotted in Fig. 7.3b. It consists in

the vertical oscillation of the main frame (ZT ) in phase opposition with the front

(SUS ) and rear (SWA) suspensions. Similarly than what happens with pitch mode,

other degrees of freedom are involved on the bounce mode which presents these

phase angles smaller than 180◦. Once again, this is due to the model asymmetry

around its centre of masses. For a symmetrical model, this mode would present

a pure bounce motion pattern. It frequencies for the straight running conditions

are about 20 rad/s. If the motorcycle is leant, the evolution of this mode with the

speed results in a frequency reduction until the mode becomes overcritical at higher

speeds, increasing its damping ratio.
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The front hop mode is the front wheel resonance whilst the rest of motorcycle

assembly remains slightly affected. Figure 7.3c shows how the main component of

its eigenvector is the front suspension (SUS ) oscillation with minor lower oscillation

of the rest of the in-plane degrees of freedom. For this motorcycle model, and with

no interconnection established between front and rear suspensions, it is a highly

damped mode with a large frequency variation with the speed. It can reach values

up to 60 rad/s for 45◦ of roll angle at very low speeds and becomes overcritical for

low-medium speed range at any roll angle.

7.1 Straight running condition

During straight running conditions, the motorcycle in-plane and out-of-plane modes

are uncoupled. Therefore, their evolutions with the different interconnection param-

eters can be understood in a more intuitive manner.

(a) ks = (−7500, 7500) N ; cs = 0 Ns (b) ks = 0 N ; cs = (−1500, 1500) Ns

Figure 7.4: Root loci for both stiffness and damping coefficients variations. Roll angle is set
at 0◦ and speed is increased from 10 m/s (�) up to 80 m/s (∗). a) Interconnection stiffness
coefficient varies from ks = −7500 N up to ks = 7500 N, with cs = 0 Ns. b) Interconnection
damping coefficient varies from cs = −1500 Ns up to cs = 1500 Ns, with ks = 0 N.

Figure 7.4 represents the evolution of the motorcycle’s root locus when the inter-

connection stiffness and damping coefficients are varied within the limits established

in Chapter 6. These limits are found as those maximum and minimum values for

which the suspension system’s response shows minimum acceptable accuracy. The

eigenvalues variation across the motorcycle forward speed is shown as a blue dotted

line, ranging from 10 m/s (�) to 80 m/s (∗). Several root loci are overlapped in the

same figure in order to show their evolution with the interconnection parameters.

167



Consequently, for the same eigenvalue 20 lines are shown (one for each interconnec-

tion parameter value) with 36 points (one for each motorcycle forward speed). The

nominal case, where no connection is implemented between the front and rear ends

(ks = 0 N and cs = 0 Ns), is shown in magenta. The case for which the interconnec-

tion parameter gets its minimum value is represented in green whilst that for which

the parameter reaches the maximum value allowed is shown in black.

7.1.1 Variation of interconnection stiffness coefficient

Figure 7.4a represents the motorcycle root locus evolution when the interconnection

stiffness coefficient ks is varied from −7500 N up to 7500N and the interconnection

damping coefficient cs is zero. As expected, it can be seen how the out-of-plane

modes are not affected. The roots of these modes for the different interconnec-

tion coefficient values are overlapped in the plot, being only visible those for the

maximum value of the interconnection stiffness.

On the other hand, the in-plane modes are slightly affected. Although the front

hop mode remains highly damped for the entire ks range, it becomes more damped

for positive values of ks and less damped for negative values. In the nominal con-

figuration case, it becomes in a non-oscillating mode when the forward speed falls

between 28 m/s and 32 m/s. High values of negative interconnection stiffness coeffi-

cient prevent the mode from oscillating for all the forward speed values under 30 m/s.

This can be seen in Fig. 7.5e, where the phase of all of its components becomes zero

for this speed range. This figure shows the evolution of the eigenvectors components

with forward speed for an interconnection stiffness value of ks = −7500 N, whilst

in Fig. 7.5f does so for a value of ks = 7500 N. Comparing these two figures with

the front hop mode’s components for a nominal configuration, in Fig. 7.3c, it can be

said that the interconnection stiffness coefficient has small effect on the behaviour

of this normal mode. The Swinging arm amplitude is increased for positive values

of this coefficient and it is reduced for negative values. Minor changes in some of

the components’ phases can also be observed.

The bounce mode becomes less damped for positive values of ks. For negative

values its damping and resonant frequency increase. In terms of eigenvectors’ com-

ponents, it keeps its main properties, experimenting little changes in the phases of

168



(a) pitch (ks = −7500 N ; cs = 0 Ns) (b) pitch (ks = 7500 N ; cs = 0 Ns)

(c) bounce (ks = −7500 N ; cs = 0 Ns) (d) bounce (ks = 7500 N ; cs = 0 Ns)

(e) front hop (ks = −7500 N ; cs = 0 Ns) (f) front hop (ks = 7500 N ; cs = 0 Ns)

Figure 7.5: In-plane normal modes’ components for the maximum and minimum values of
stiffness interconnection coefficient for a roll angle of 0◦. On the left-hand side ks = −7500 N.
On the right-hand side ks = 7500 N. The interconnection damping coefficient is set to cs =
0 Ns. The speed evolution of each component’s weight and phase is represented by the bars
profile, varying the speed from left (10 m/s) to right hand side (80 m/s).
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some of them. Figure. 7.5c and Fig. 7.5d show the modal composition for values

of ks = −7500 N and ks = 7500 N respectively, whilst Fig. 7.3b presents the eigen-

vector components for the nominal configuration. It also can be appreciated that

the main frame vertical displacement amplitude decays for negative values of ks and

increases for positive values of ks.

Finally, pitch mode remains almost unaffected, with similar eigenvectors com-

ponents’ weights and phases. The root loci in Fig.7.4a show a small variation of

the mode resonant frequency with the interconnection stiffness coefficient, reach-

ing higher frequencies for positive values of ks and smaller frequencies for negative

values.

Clearly, the choice of the interconnection stiffness coefficient does not influence

greatly the main oscillating modes dynamics, although it can improve the suspen-

sion’s efficiency results as shown in Chapter 6.

7.1.2 Variation of interconnection damping coefficient

When an interconnection damper is introduced in the nominal model, a complex

evolution of its in-plane normal modes appears in the root loci. This is shown in

Fig. 7.4b. The eigenvalues corresponding to the minimum value of the intercon-

nection damping coefficient (cs = −1500 Ns) are shown in green, the eigenvalues

corresponding to the nominal configuration (cs = 0 Ns) are plotted in magenta and

those corresponding to the maximum value (cs = 1500 Ns) are shown in black.

Intermediate values are represented in a blue dotted line. Following the same rep-

resentation, Fig. 7.6 separates the root loci into negative (Fig. 7.6a) and positive

(Fig. 7.6b) cs values variations in order to provide a clearer view of the roots evolu-

tion for the different interconnected suspension system configurations.

For a decrease in cs, the eigenvalues evolve regularly with the forward speed and

they can clearly be distinguished one from the others. However, for an increase in

the cs, for certain values of cs there is not a clear trend on the eigenvalues’ behaviour.

This is shown in Fig. 7.6b, where the pitch and front hop modes are plotted in red

for an interconnection damping coefficient cs = 510 Ns. In this point, the speed

evolution of these modes changes substantially. Now, the eigenvalues that could be

expected to belong to the pitch mode for slow speeds actually correspond to the
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(a) ks = 0 N ; cs = (−1500, 0) Ns (b) ks = 0 N ; cs = (0, 1500) Ns

Figure 7.6: Root loci for the interconnection damping coefficient variation divided into
positive and negative values. The roll angle is set at 0◦ and the speed is increased from 10 m/s
(�) up to 80 m/s (∗). a) Interconnection damping coefficient ranging from cs = −1500 Ns
(green) up to cs = 0 Ns (magenta). b) Interconnection damping coefficient ranging from
cs = 0 Ns (magenta) up to cs = 1500 Ns (black). The interconnection stiffness coefficient is
ks = 0 N in both cases.

front hop mode, and vice versa.

Figure 7.7 shows the front hop mode’s components evolution with speed for

positive values of cs. It can be seen how the YR component amplitude (pitch angle)

reaches high relevance in the mode motion at slow speeds for a value of cs = 480 Ns.

This typical characteristic of the pitch motion is reduced for higher speeds. For

interconnection damping coefficient values larger than cs = 510 Ns, this behaviour

tends to be reduced gradually until the maximum value is reached at cs = 1500 Ns,

for which the pitch angle oscillation is almost zero (see Fig. 7.10f).

The main degree of freedom involved in the front hop mode for the nominal

configuration (Fig. 7.3c) is the front fork translation (SUS ). It presents a phase

angle relative to the swinging arm oscillation (SWA) of about zero degrees. However,

it can be observed in Fig. 7.7 that when an interconnection damping coefficient is

introduced in the system, this phase angle swaps to 180◦, whilst the swinging arm

oscillation increases proportionally to the cs value.

Being the interconnection damping coefficient positive, any input force applied

to the front suspension results in a reacting force applied to the rear suspension with

opposite direction. This is, if the front fork is compressed, the interconnection mo-

ment in the swinging arm will extend it. Consequently, for this kind of configuration,

an energy transfer between the front and rear ends takes place, the rear suspension

increases its relevance in the mode motion and 180◦ phase angles between the two
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ends induce resonance.

(a) front hop (ks = 0 N ; cs = 420 Ns) (b) front hop (ks = 0 N ; cs = 480 Ns)

(c) front hop (ks = 0 N ; cs = 510 Ns) (d) front hop (ks = 0 N ; cs = 750 Ns)

Figure 7.7: Front hop mode’s components for intermediate values of the interconnection
damping coefficient and stiffness coefficient ks = 0 N. The roll angle is set at 0◦. The speed
evolution of each component’s weight and phase is represented by the bars profile, varying the
speed from left (10 m/s) to right hand side (80 m/s).

In terms of stability, the front hop eigenvalue real part approaches zero for an

increment of cs. Although that for the maximum value achieved in the simulations

it does not cross the stability limit, there is a clear tendency of the front hop mode

to become unstable for high values of the cs coefficient. On the other hand, the

resonance frequency is rapidly increased and it reaches values near 90 rad/s.

The interaction between modes for certain positive values of cs happens for the

three in-plane modes. For the bounce mode, this is not as visible as for the front hop

and the pitch modes due to the high density of eigenvalues in the root loci interest

area. Nevertheless, it can be observed in the eigenvector components plots.

In Fig. 7.8, the bounce mode eigenvectors evolution with the speed is shown

for different positive values of cs. For values of cs comprised between 400 Ns and

700 Ns, this mode shows a clear influence of a pitch motion for higher values of the

speed. The amplitude of the motorcycle vertical displacement (ZT ) and swinging

arm oscillation (SWA) are reduced with the speed increment whilst the pitch angle
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amplitude (YR) is increased. The phase angle between the front (SUS ) and the

rear (SWA) suspension changes at higher speeds getting near to −180◦, which is

a main characteristic of pitch motion. For higher values of cs (Fig. 7.10d), the

motion of this mode is similar to that of the nominal configuration (see Fig. 7.3).

The main eigenvector component is the motorcycle vertical displacement amplitude

(ZT ) and the pitch angle amplitude (YR) is reduced. The front suspension (SUS )

and the swinging arm (SWA) amplitudes get relevance for all the speed range and

their relative phase angle falls below 45◦ for high speeds, being almost zero for low

speeds.

(a) bounce (ks = 0 N ; cs = 420 Ns) (b) bounce (ks = 0 N ; cs = 480 Ns)

(c) bounce (ks = 0 N ; cs = 510 Ns) (d) bounce (ks = 0 N ; cs = 750 Ns)

Figure 7.8: Bounce mode’s components for intermediate values of the interconnection damp-
ing coefficient and stiffness coefficient ks = 0 N. The roll angle is set to 0◦. The speed evolution
of each component’s weight and phase is represented by the bars profile, varying the speed
from left (10 m/s) to right hand side (80 m/s).

The root loci in Fig. 7.6b show that the bounce mode remains stable for values of

cs up to 1500 Ns, however it tends to become less damped for higher positive values

while increasing its resonance frequency from 20 rad/s in the nominal configuration

up to 35 rad/s for cs = 1500 Ns.

The pitch mode, oppositely to the bounce mode, reduces its frequency from

45 rad/s to 20 rad/s when the interconnection damping coefficient value increases
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from cs = 0 Ns to cs = 1500 Ns. However, its damping is also reduced reaching

the imaginary axis in the root loci for the higher values of this coefficient. On the

other hand, in Fig. 7.9, the interaction with bounce and front hop modes can be

seen for low and middle cs values. At low speed, the YR and the SWA amplitudes

are reduced. For high speeds, the phase angle difference between the SUS and the

SWA components is also reduced. For the higher interconnection damping coefficient

values, these components become more regular for all the speed range and show a

clearer pitch motion pattern. For cs = 1500 Ns, in Fig. 7.3, a pure pitch motion

pattern can be distinguished with predominant YR, SWA and SUS components and

phase angles of 180◦, 0◦ and 180◦ respectively.

(a) pitch (ks = 0 N ; cs = 420 Ns) (b) pitch (ks = 0 N ; cs = 480 Ns)

(c) pitch (ks = 0 N ; cs = 510 Ns) (d) pitch (ks = 0 N ; cs = 750 Ns)

Figure 7.9: Pitch mode’s components for intermediate values of the interconnection damping
coefficient and stiffness coefficient ks = 0 N. The roll angle is set to 0◦. The speed evolution of
each component’s weight and phase is represented by the bars profile, varying the speed from
left (10 m/s) to right hand side (80 m/s).

When the interconnection damping coefficient takes negative values, the evolu-

tion of the motorcycle normal modes with the speed is regular and they can be easily

tracked for all the different cs values. Figure 7.6a shows this eigenvalues evolution

for interconnection damping coefficient ranging from cs = −1500 Ns up to cs = 0 Ns.

For these values, the pitch mode increases its resonance frequency and reduces
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its damping, reaching an area in the root locus near the wobble mode. It stays

stable for all the cs values and forward speeds and does not change its behaviour.

In Fig. 7.10a the pitch eigenvectors components are shown for a damping inter-

connection coefficient value of cs = −1500 Ns. They do not differ much from the

components at intermediate negative values of cs, nor from that for nominal config-

uration in Fig. 7.3. The pitch angle amplitude (YR) is still the most relevant as well

as the front (SUS ) and rear (SWA) components suspensions oscillation, although

these two components loose relevance in the overall mode motion.

The bounce mode resonance frequency and damping are reduced, reaching the

instability region for high negative values over cs = −1500 Ns (see Fig. 7.6a). Pure

bounce motion is enhanced by negative interconnection damping coefficients as

showed in Fig. 7.10c. Here, the main frame vertical translation amplitude (ZT )

increases its relevance with respect to the rest of degrees of freedom. The phase

angle difference between the front (SUS ) and the rear (SWA) suspensions becomes

almost zero whilst the phase angle difference between the (ZT ) component and the

SUS and SWA components remains around 180◦ for all the speed range.

The front hop mode evolves in similar manner for higher negative and positive

values of cs, as it can be observed in Fig. 7.6. In both cases, the resonance frequency

is increased and the damping is reduced quickly, reaching 90 rad/s and approaching

the stability limit for the extreme values of cs. However, observing the eigenvector’s

components in Fig. 7.10e and Fig. 7.10f, a substantial difference is found in their

phase angles. Their weights remains similar for positive and negative cs values but

their phases differ about 180◦ between the configuration with cs = 1500 Ns and that

with cs = −1500 Ns. For the first configuration, the SUS phase difference with

SWA phase was 180◦ for all the speed range. This implies that the front and rear

ends oscillate in phase opposition while the main frame remains unaffected. Now,

with cs = −1500, this phase difference is almost zero, inducing a motion in which

the main frame is unaffected whilst the front and rear suspension highly oscillate in

phase. Oppositely to the case of positive interconnection coefficients, for negative

values of cs, a compression force input in the front fork results in a compression

moment in the rear swinging arm. Then, in phase oscillations of both ends are

prone to resonate, and the front hop mode will show this characteristic.
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(a) pitch (ks = 0 N ; cs = −1500 Ns) (b) pitch (ks = 0 N ; cs = 1500 Ns)

(c) bounce (ks = 0 N ; cs = −1500 Ns) (d) bounce (ks = 0 N ; cs = 1500 Ns)

(e) front hop (ks = 0 N ; cs = −1500 Ns) (f) front hop (ks = 0 N ; cs = 1500 Ns)

Figure 7.10: In-plane normal modes’ components for the maximum and minimum values of
damping interconnection coefficient for a roll angle of 0◦. On the left-hand side cs = −1500 Ns.
On the right-hand side cs = 1500 Ns. The interconnection stiffness coefficient is set at ks = 0 N.
The speed evolution of each component weight and phase is represented by the bars profile,
varying the speed from left (10 m/s) to right hand side (80 m/s).
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Figure 7.10 shows the difference of the in-plane modes eigenvectors components

for the two interconnection damping coefficient extreme values, cs = −1500 Ns

and cs = 1500 Ns. It can be observed that a configuration with positive cs values

increases the pitch characteristics in any in-plane mode whilst a negative cs value

reinforces the bounce motion in these modes.

For cs = 1500 Ns, the bounce mode increases the weight of its YR component

whilst the pitch mode becomes in a pure pitch motion. This is, the three main

degrees of freedom are the main frame rotation about the Y axis (YR), the swinging

arm angle (SWA) and the front fork displacement (SUS ), being their relative phase

angles 180◦, 0◦ and 180◦ respectively. This represents a motion in which the main

frame pitches to the front simultaneously to the front fork being compressed and

the swinging arm extended and vice versa.

On the negative extreme, for a value of cs = −1500 Ns, the weights of the SUS

and SWA components of the pitch normal mode are reduced. This means that their

oscillations amplitudes decrease due to the interconnection forces opposing this mo-

tion. On the other hand, the bounce components represent a pattern of almost pure

bounce motion. Although a small YR oscillation persists the main components are

the main frame vertical translation(ZT ), the front suspension compression (SUS )

and the swinging arm rotation (SWA), with relative phase angles of 180◦, 0◦ and

almost 0◦ respectively. In this motion, the main frame moves down vertically simul-

taneously to the front and the rear suspensions being compressed, whilst it moves

up when both suspensions are extended.

Regarding the front hop mode, it can be said that any interconnection damping

parameter value induces the SWA amplitude to reach a high weight in the overall

motion of the mode, due to the energy transfer between the front and rear ends.

Positive values of cs coefficient introduce a phase angle of 180◦. Negative values of

this coefficient reduce the phase angle to almost 0◦. In the nominal configuration,

the front hop mode consists in a shaking of the front wheel with little bounce, pitch

and swinging arm oscillations. However, it is so highly damped that during normal

running it is hardly noticed on the motorcycle’s dynamics. For large positive and

negative values of the interconnection damping coefficient, this mode becomes less

damped and it approaches the instability region in the root locus. The vehicle’s
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motion in these cases consists in a violent shaking of the front and rear ends while

the main frame remains almost unaffected. Depending on the cs sign, the front and

rear ends would oscillate in phase (cs < 0) or in phase opposition (cs > 0).

Positive and negative values of the interconnection damping coefficient displace

the front hop eigenvalues towards the right hand side on the imaginary plane in the

root locus. In the case of the pitch and bounce modes, the negative values of this

coefficient produce a similar effect as could be expected. For positive values of cs

there exist a range for which these two modes damping can be increased. However,

from certain values on (about cs = 500 Ns) the influence of the front hop mode in

the degrees of freedom involved in the pitch and bounce modes becomes relevant.

This produces that the eigenvalues real part of these modes turn towards smaller

values, becoming less damped for high values of cs. The pitch mode is the most

affected crossing the X0 axis for values above cs = 1500 Ns.

7.2 Small roll angle

When the motorcycle is cornering, the in-plane and out-of-plane normal modes get

coupled due to the appearing forces in the wheels contact point, which are misaligned

with the motorcycle symmetry plane. The degrees of freedom typically involved in

the motion of the in-plane modes are also involved in the out-of-plane modes and

vice versa. In cornering conditions (the motorcycle is leant) these forces not only

affect the degrees of freedom in the symmetry plane but also those out of this plane.

This means that the interconnection structure will affect the out-of-plane normal

modes. The evolution of the root loci for different values of these interconnection

parameters cs and ks, must be studied carefully. When the eigenvalues evolution

is observed for the different interconnection parameter values, a similar behaviour

to that found on the straight running condition is found. The different roots are

overlapped and their modes are combined forming new modes as the interconnection

parameters are varied. For roll angles different to zero, this affects the bounce and

the rider shake modes for ks variations. When the cs parameter is varied, the modes

affected are the pitch and the bounce.
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(a) ks = (−7500, 7500) N ; cs = 0 Ns (b) ks = 0 N ; cs = (−1500, 1500) Ns

Figure 7.11: Root loci for both stiffness and damping coefficients variations. The roll angle
is set to 15◦ and the speed is increased from 10 m/s (�) to 80 m/s (∗). Only modes for
minimum (green), nominal (magenta) and maximum (black) values are fully plotted, whilst
their evolution is represented by a blue solid line. a) Interconnection stiffness coefficient varies
from ks = −7500 N up to ks = 7500 N. b) Interconnection damping coefficient varies from
ks = −1500 Ns up to ks = 1500 Ns.

7.2.1 Variation of interconnection stiffness coefficient

Figure 7.11 represents the two different root locus for the motorcycle at a roll angle

of 15◦. The speed increase is shown by doted lines ranging from 10 m/s (�) up

to 80 m/s (∗). Figure 7.11a shows the modes evolution for the minimum (ks =

−7500 N in green), nominal (ks = 0 N in magenta) and maximum (ks = 7500 N

in black) values of the interconnection stiffness coefficient. Intermediate eigenvalues

have been removed from the plot for clarity. A blue solid line represents the mean

trajectory followed by each normal mode when ks is increased from ks = −7500 N

to ks = 7500 N. For this roll angle, the out-of-plane eigenvalues are not affected in a

significant manner when the interconnection stiffness coefficient is varied. Except for

the rider shake mode, which presents substantial differences for positive and negative

ks values. With a value of ks = −7500 N this mode does not show any remarkable

difference compared to the nominal configuration case, except for the minor changes

for the medium and high speeds range. For these speeds, the frequency is increased

from 20 rad/s up to 28 rad/s, being the damping also increased. On the other

hand, a bigger difference is observed for positive interconnection stiffness coefficient

values. For ks = 7500 N, the rider shake mode reduces its frequency and increases

its damping quickly with the speed rise, becoming in some points overcritical. This

mode shows a strong influence on the bounce mode. This can be observed in their

eigenvector components for the nominal configuration presented in Fig. 7.12c. At
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(a) pitch (ks = 0 N ; cs = 0 Ns) (b) bounce (ks = 0 N ; cs = 0 Ns)

(c) front hop (ks = 0 N ; cs = 0 Ns) (d) rider shake (ks = 0 N ; cs = 0 Ns)

Figure 7.12: Components of normal modes affected by the interconnection coefficients at a
roll angle of 15◦ for the nominal configuration.

low speeds, the ZT, SWA and SUS components of the rider shake mode have small

weight while the UBR, XR and STR amplitudes are the main degrees of freedom

involved in the motion. This changes for medium and high speeds for which the

ZT, SWA and SUS components rapidly reach high relevance whilts the UBR, XR

and STR components reduce their weights. The rider shake mode presents a motion

pattern in the medium-high speeds range similar to that of the bounce mode for low

and medium speeds. In Fig. 7.12b, the bounce mode’s component does not have a

regular behaviour at high speed, this is due to the fact that for those speeds this

normal mode becomes overcritical and nonoscillatory.

The bounce mode for the nominal configuration starts at a frequency of 25 rad/s

and rapidly decays, reducing its damping, until it becomes overcritical. Positive

values of the interconnection damping coefficient result in a similar behaviour with

an increase of its damping. However, negative values of ks increase its frequency

and reduce drastically its damping, concentrating all its eigenvalues in a smaller

area within the root locus.

Looking at Fig. 7.13, it can be noticed that ks affects the rider shake and bounce
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(a) bounce (ks = −7500 N ; cs = 0 Ns) (b) bounce (ks = 7500 N ; cs = 0 Ns)

(c) rider shake (ks = −7500 N ; cs = 0 Ns) (d) rider shake (ks = 7500 N ; cs = 0 Ns)

Figure 7.13: Bounce and rider shake modes’ components for the maximum and minimum
values of the stiffness interconnection coefficient for a roll angle of 15◦. On the left-hand side
ks = −7500 N. On the right-hand side ks = 7500 N. The interconnection damping coefficient
is set to cs = 0 Ns. The speed evolution of each component’s weight and phase is represented
by the bars profile, varying the speed from left (10 m/s) to right hand side (80 m/s).

modes in a similar manner. Positive values of ks emphasizes the pure motion as-

sociated to each of these two modes. This is, the UBR, XR and STR components

weights are increased for the rider shake mode whilst the ZT, SWA and SUS com-

ponent reach major relevance in bounce mode. On the other hand, the negative

values of this coefficient increase the relevance of the bounce motion in the rider

shake mode, whilst the weights of the degrees of freedom associated to the rider

shake are enhanced in the bounce mode.

Regarding to the pitch mode, it does not show a major change with respect to

the variation of the interconnection stiffness coefficient value. Only its frequency is

slightly affected. Positive values of ks increase the resonance frequency and negative

values decrease it. A variation of the parameter from ks = −7500 N to ks = 7500 N

produces a variation in the frequency of about 4 rad/s.

Finally, the front hop mode is highly damped and does not appear in the interest

area of the root locus, being its effects negligible for the motorcycle’s motion.
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7.2.2 Variation of interconnection damping coefficient

Figure 7.11b shows the motorcycle’s root loci evolution for various interconnection

damping coefficient values ranging from cs = −1500 Ns up to cs = 1500 Ns. Again,

the out-of-plane modes remain almost unaffected except for the rider shake. How-

ever, in this case, it highly increases its damping when any positive or negative values

of ks are introduced in the model and does not affect in a significant manner the mo-

torcycle’s dynamics. Weave and wobble mode are also slightly affected, finding that

they become slightly less stable for positive cs values and more stable for negative

values, in both cases for medium-high speed range. At high speeds cases, the weave

eigenvalues approach the imaginary axis, nevertheless it stays stable for all the speed

range. For low forward speed, weave mode becomes more stable for any value of the

interconnection stiffness coefficient and wobble’s damping is insignificantly reduced.

The bounce mode evolves with the variation of the interconnection damping

coefficient as it did for the straight running conditions. For high negative values

of cs, it can reach the stability limits. The frequency in this case remains almost

unaffected. For the positive values of this coefficient the bounce mode frequency is

increased up to 38 rad/s and its damping is highly reduced. Nevertheless it remains

more stable than the out-of-plane main modes. In terms of eigenvector components,

the effects introduced by the interconnection damping coefficient are similar to those

found in the straight running conditions. Negative values of cs intensify the pure

bounce motion. Figure 7.14c presents a clear pattern of pure bounce motion where

ZT, SWA and SUS weights have major relevance being their phase angles 180◦, 0◦

and 0◦ respectively, whilst the out-of-plane components weights are much smaller.

As it has been stated in the previous section, positive values of cs oppose to the

bounce motion, this implies a reduction of the bounce main components and an

increase of the weights of out-of-plane degrees of freedom. In this case, the steering

angle oscillation (STR) becomes the main component in the motion of the bounce

mode.

The pitch mode also evolves in a similar manner than that for the straight run-

ning conditions case. Although small positive values of cs can improve the stability

of this mode, higher values of this coefficient result in a drastic destabilization of it

and in a reduction of its resonance frequency. Negative cs values slightly increase
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(a) pitch (ks = 0 N ; cs = −1500 Ns) (b) pitch (ks = 0 N ; cs = −1500 Ns)(1500Ns)

(c) bounce (ks = 0 N ; cs = −1500 Ns) (d) bounce (ks = 0 N ; cs = 1500 Ns)

(e) front hop (ks = 0 N ; cs = −1500 Ns) (f) front hop (ks = 0 N ; cs = 1500 Ns)

Figure 7.14: In-plane normal modes’ components for the maximum and minimum values
of the damping interconnection coefficient for a roll angle of 15◦. On the left-hand side
cs = −1500 Ns. On the right-hand side cs = 1500 Ns. The interconnection stiffness coefficient
is set to ks = 0 N. The speed evolution of each component weight and phase is represented by
the bars profile, varying the speed from left (10 m/s) to right hand side (80 m/s).
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the frequency of the pitch mode and reduce its damping, however it remains stable,

near to the wobble region. The interconnection damping coefficient influences the

eigenvector components in an opposite manner as it does with the bounce motion.

Positive values of this coefficient intensify the pure pitch motion (see Fig. 7.14b),

being YR, SWA and SUS the main component with relative phase angles of 180◦

for YR and SUS and 0◦ for SWA. Negative values of cs (see Fig. 7.14a) oppose the

pitch motion and its main components get overtaken by the out-of-plane ones, being

the steering the most relevant.

Under straight running conditions, the front hop mode evolves in a similar way

for positive and negative values of cs. It quickly reaches areas in the root locus near

to the imaginary axis (although the damping reduction is smaller than for the zero

roll angle case), and increases drastically its averaged resonance frequency up to

85 rad/s. The evolution with the speed is very similar for high cs values regardless

of its sign. The main difference is found in the eigenvector components in Fig. 7.14e

and Fig. 7.14f. In both cases the main components are the front suspension (SUS )

and the rear swinging arm (SWA) being the rest of the components weights smaller.

Positive values of cs induce a phase opposition oscillation of these degrees of freedom

whilst the negative values impose an in-phase resonance of them.

7.3 Medium roll angle

For a 30◦ roll angle, the variation of the normal modes with speed for the different

interconnection parameters has a similar behaviour to that found for smaller roll

angles. Although still some differences can be found.

7.3.1 Variation of interconnection stiffness coefficient

The effect of the interconnection stiffness coefficient becomes relevant for the rider’s

shake and the bounce mode. They interact similarly as they did for the small roll

angle case, and the changes in their motions depend in a similar manner on the

ks coefficient. In Fig. 7.15a it can be seen the evolution of the bounce and the

rider shake modes in the root locus for the minimum (ks = −7500 N in green),

nominal (ks = 0 N in magenta) and maximum (ks = 7500 N in black) values of
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(a) ks = (−7500, 7500) N ; cs = 0 Ns (b) ks = 0 N ; cs = (−1500, 1500) Ns

Figure 7.15: Root loci for both stiffness and damping coefficients variations. The roll angle
is set at 30◦ and the speed is increased from 10 m/s (�) to 80 m/s (∗). Only modes for the
minimum (green), nominal (magenta) and maximum (black) values are fully plotted, whilst
their evolution is represented by a blue solid line. a) Interconnection stiffness coefficient varies
from ks = −7500 N up to ks = 7500 N, with cs = 0 Ns. b) Interconnection damping coefficient
varies from cs = −1500 Ns up to cs = 1500 Ns, with ks = 0 N.

the interconnection stiffness coefficient. The effect of the interconnection stiffness

coefficient in these modes’ motion patterns can be appreciated in Fig. 7.17. The

positive values of ks enhance the typical motion of each of these modes. For the

bounce mode, ZT, SWA and SUS components reach main relevance with phase

angles corresponding to pure bounce oscillation, this is about 180◦ for the main

frame vertical displacement, and 0◦ for the front and rear suspension. The rider

shake mode increases its roll amplitude (XR) and its rider oscillation (UBR) for the

positive coefficient values. For the negative stiffness interconnection coefficients the

rider shake mode presents bounce motion with certain pitch oscillation, whilst the

bounce mode becomes closer to a pitch motion.

The pitch mode is also affected by the ks coefficient variation. Its averaged res-

onance frequency is modified proportionally to the ks values from 41 rad/s (ks =

−7500 N) to 45 rad/s (ks = 7500 N). The rest of the normal modes are not sub-

stantially modified by the interconnection stiffness coefficient.

7.3.2 Variation of interconnection damping coefficient

Similarly to the case of 15◦ roll angle, the interconnection damping coefficient mostly

affects the pitch, bounce and front hop modes. Although it also modifies the rider

shake mode, it is rapidly damped becoming overcritical for most of the speed range

and for all values of cs. Now, it is not visible in the root loci in Fig. 7.15b. Some

185



(a) pitch (ks = 0 N ; cs = 0 Ns) (b) bounce (ks = 0 N ; cs = 0 Ns)

(c) front hop (ks = 0 N ; cs = 0 Ns) (d) rider shake (ks = 0 N ; cs = 0 Ns)

Figure 7.16: Components of the normal modes affected by the interconnection coefficients
at a roll angle of 30◦ for the nominal configuration.

differences can be found for the pitch and the bounce modes whilst the front hop

mode evolves similarly as in previous cases. This is, it increases its frequency and

reaches damping values closer to the imaginary axis for both positive and negative

values of cs. However, for the minimum and maximum values of cs, this mode

is more damped than in the previous roll angle cases. Examining Fig. 7.18e and

Fig. 7.18f, a similar behaviour of this mode with respect to the cs coefficient values

is observed. Positive values result in a phase opposition resonance of the front and

rear suspensions whilst negative values of cs make the front and rear ends resonate

in phase. The rest of the eigenvector components are secondary except for the steer

angle amplitude (STR) which is increased with respect to the previous roll angle

cases.

The pitch mode for the nominal configuration, for a roll angle of 30◦, is influenced

by the out-of-plane dynamics as it can be observed in Fig. 7.16a, where the STR

component has a main relevance. In Fig. 7.18a the eigenvector components are

plotted for cs = −1500 Ns. It can be seen that the pitch motion is penalized for

this configuration and the components associated to it (YR, SWA and SUS ) lose
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(a) bounce (ks = −7500 N ; cs = 0 Ns) (b) bounce (ks = 7500 N ; cs = 0 Ns)

(c) rider shake (ks = −7500 N ; cs = 0 Ns) (d) rider shake (ks = 7500 N ; cs = 0 Ns)

Figure 7.17: Bounce and rider shake modes’ components for the maximum and minimum
values of the stiffness interconnection coefficient for a roll angle of 30◦. On the left-hand side
ks = −7500 N. On the right-hand side ks = 7500 N. The interconnection damping coefficient
is set to cs = 0 Ns. The speed evolution of each component’s weight and phase is represented
by the bars profile, varying the speed from left (10 m/s) to right hand side (80 m/s).

its predominant role whilst the out-of-plane dynamics become relevant, being the

steering angle (STR) oscillation predominant on it. On the other hand, Fig. 7.18b

shows the pitch mode pattern of motion closer to a pure pitch oscillation for cs =

1500 Ns. However, for this roll angle, it can be seen how the out-of plane components

are more predominant than in the previous situation, mostly in the high speed range.

In terms of frequency and damping, Fig. 7.15b shows how for this roll angle, their

variation is restricted to a reduced area. In this case, the pitch mode is not coupled

with the bounce nor the front hop mode at any value of the cs coefficient. The

different mode branches for the speed evolution stay nearer to that corresponding

to the nominal configuration (cs = 0) and they keep a substantial damping.

The bounce mode evolution with interconnection damping coefficient for a 30◦

roll angle is similar to that for smaller roll angles cases. However, there is a differ-

ence now. Both positive and negative cs values increase the bounce mode averaged

resonance frequency and reduce its damping. For absolute values of cs equal and
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(a) pitch (ks = 0 N ; cs = −1500 Ns) (b) pitch (ks = 0 N ; cs = 1500 Ns)

(c) bounce (ks = 0 N ; cs = −1500 Ns) (d) bounce (ks = 0 N ; cs = 1500 Ns)

(e) front hop (ks = 0 N ; cs = −1500 Ns) (f) front hop (ks = 0 N ; cs = 1500 Ns)

Figure 7.18: In-plane normal modes’ components for the maximum and minimum values
of the damping interconnection coefficient for a roll angle of 30◦. On the left-hand side
cs = −1500 Ns. On the right-hand side cs = 1500 Ns. The interconnection stiffness coefficient
is set to ks = 0 N. The speed evolution of each component weight and phase is represented by
the bars profile, varying the speed from left (10 m/s) to right hand side (80 m/s).
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larger than 1500 Ns, the bounce mode eigenvalue’s real parts become positive for

a wide range of speeds. Thus, the motorcycle clearly becomes unstable for this

configuration.

Regarding to the eigenvector components, negative values of the cs coefficient

produce a recognizable bounce pattern with minor influence of the out-of-plane

dynamics. On the other hand, positive cs values oppose to the bounce motion and

consequently the out-of-plane components weights become more relevant, being the

steering angle oscillation (STR component) the larger of them. Nevertheless, ZT,

SWA and SUS components oscillation keep their presence and the bounce motion

can be still recognized.

For this roll angle, weave and wobble modes are affected in a more significant

manner. Positive values of cs increase both modes stability at low speeds and de-

crease their stability at high speeds. For negative values of cs, the wobble mode is

less stable than for the nominal case for all the speed range whilst the weave mode’s

stability is improved for low-medium forward speeds. Both modes maintain their

averaged resonance frequencies and remain stable for the entire speeds range.

7.4 High roll angle

For a roll angle of 45◦, the behaviour of the normal modes with respect to the speed

and the interconnection coefficients variation is similar to that for a 30◦ roll angle.

7.4.1 Variation of interconnection stiffness coefficient

Figure 7.19a, shows the eigenvalues evolution with forward speed for the minimum

(ks = −7500 N in green), nominal (ks = 0 N in magenta) and maximum (ks =

7500 N in black) values of ks for a 45◦ roll angle, it is similar to that in Fig. 7.15a,

which represents the root behaviour for a roll angle of 30◦. Slightly differences can

be observed between them, however, the overall influence of the interconnection

stiffness coefficient is similar.

The interaction between bounce and rider shake modes is as well similar. In

both modes, their characteristic eigenvector components’ amplitudes increase with

a positive ks values and reduce with negative values. The out-of-plane components
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(a) ks = (−7500, 7500) N ; cs = 0 Ns (b) ks = 0 N ; cs = (−1500, 1500) Ns

Figure 7.19: Root loci for both stiffness and damping coefficients variations. The roll angle
is set to 45◦ and the speed is increased from 10 m/s (�) up to 80 m/s (∗). Only modes for the
minimum (green), nominal (magenta) and maximum (black) values are fully plotted, whilst
their evolution is represented by a blue solid line. a) Interconnection stiffness coefficient varies
from ks = −7500 N up to ks = 7500 N, with cs = 0 Ns. b) Interconnection damping coefficient
varies from cs = −1500 Ns up to cs = 1500 Ns, with ks = 0 N.

(a) pitch (ks = 0 N ; cs = 0 Ns) (b) bounce (ks = 0 N ; cs = 0 Ns)

(c) front hop (ks = 0 N ; cs = 0 Ns) (d) rider shake (ks = 0 N ; cs = 0 Ns)

Figure 7.20: Components of the normal modes affected by the interconnection coefficients
at a roll angle of 45◦ for the nominal configuration.

are now more relevant in both cases. On the other hand, the pitch mode modifies its

average resonance frequency in a direct relation with the coefficient values. Finally,

weave and wobble modes remain practically unaffected.
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(a) pitch (ks = 0 N ; cs = −1500 Ns) (b) pitch (ks = 0 N ; cs = 1500 Ns)

(c) bounce (ks = 0 N ; cs = −1500 Ns) (d) bounce (ks = 0 N ; cs = 1500 Ns)

(e) front hop (ks = 0 N ; cs = −1500 Ns) (f) front hop (ks = 0 N ; cs = 1500 Ns)

Figure 7.21: In-plane normal modes’ components for the maximum and minimum values
of the damping interconnection coefficient for a roll angle of 45◦. On the left-hand side
cs = −1500 Ns. On the right-hand side cs = 1500 Ns. The interconnection stiffness coefficient
is set to ks = 0 N. The speed evolution of each component weight and phase is represented by
the bars profile, varying the speed from left (10 m/s) to right hand side (80 m/s).
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7.4.2 Variation of interconnection damping coefficient

When the cs coefficient is varied (see Fig. 7.19b), similar modes behaviour as in

previous section can be expected, except for the wobble mode. This mode becomes

more stable for positive values of cs whilst the negative values of this coefficient

induce mode instability at low speed. The pitch mode shows similar tendency as

before but now its damping is reduced for all the interconnection damping coefficient

configuration and speeds. The bounce mode evolves similarly, although for the case

of 45◦, this mode is more unstable for the higher positive and negative values of cs at

almost all the speed range. Finally, it is worthy to mention that the front hop mode

increases its frequency and reduces its damping for both positive and negative values

of the interconnection damping coefficient, although its eigenvalues for the minimum

and maximum values of cs are slightly more stable than for the smaller roll angles

cases. In terms of eigenvectors, the effect of the interconnection damping coefficient

is similar to the smaller roll angles. cs negative values enhance the bounce motion

and, in the front hop mode, the front and rear ends resonate in phase. For positive

values of this coefficient, the resonance of the front and rear suspensions in the

front hop mode occurs in phase opposition and pitch mode oscillation is increased.

Figure 7.20 shows the eigenvector components for the nominal configuration at a

roll angle of 45◦ whilst Fig. 7.21 presents their evolutions for the maximum values

of the interconnection damping coefficient.

7.5 Optimal interconnection coefficients

Four optimization processes were performed in Chapter 6 in order to find the best

configuration of the interconnection coefficients in terms of suspension precision for

four possible mechanical arrangements. Table 6.2 presents the values found for the

ks and cs coefficients. The mechanical arrangements considered imply the following

configurations:

a) Negative constant damping coefficient.

b) Negative speed variable damping coefficient.

c) Positive and negative speed variable damping coefficient.

d) Positive and negative speed variable stiffness and damping coefficients.
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As it has been shown in this chapter, the values of the interconnection parameters

can modify the motorcycle dynamics and, for some cases, make it unstable. A

stability analysis is required at this point in order to guarantee the stability of the

system for the four optimal configurations. Figure 7.22 shows the four root loci

found for each of these four optimal configurations. The optimization process was

carried out for eight different forward speeds, the interconnection coefficients values

for the intermediate speeds were found through linear interpolation. Each root

locus represents the eigenvalues evolution with the speed, ranging from 10 m/s (�)

to 80 m/s (∗). Four different roll angles are studied, 0◦ (blue ×), 15◦ (green ◦), 30◦

(red +) and 45◦ (black ♦). The focus of this section is to study if any stability risk

exists in the proposed optimal interconnection arrangements. Therefore, the root

locus area under study is the stability limits neighbourhood. Then, a clearer view

of those modes that affect the general motorcycle’s dynamics is obtained.

(a) ks = 0 N ; cs = −548 Ns (b) ks = 0 N ; negative variable cs

(c) ks = 0 N ; variable cs (d) variable ks and cs

Figure 7.22: Root loci for the four optimal interconnected suspension system configurations
proposed in Chapter 6. The speed is increased from 10 m/s (�) to 80 m/s (∗) and different
roll angles are considered: 0◦ (blue), 15◦ (green), 30◦ (red) and 45◦ (black). a) Negative
constant damping coefficient. b) Negative speed variable damping coefficient. c) Positive and
negative speed variable damping coefficient. d) Positive and negative speed variable stiffness
and damping coefficients.
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In Fig. 7.22a the root loci for the interconnection arrangement a) is presented.

The three out-of-plane normal modes (rider lean, weave and wobble) can be recog-

nized near the stability limit, remaining almost unaffected by the interconnection.

The two in-plane modes (pitch and bounce), that for the nominal case are highly

damped, now appear in the interest area. The interconnection system shifts them

to the right. The pitch mode approaches the wobble mode, at lower frequencies and

slightly more damped. On the other hand, the bounce mode almost reaches the

weave area. In some cases, their eigenvalues do overlap and, for low speeds, both

modes may interact as they do share resonance frequencies. For this configuration,

the in-plane modes damping remains greater than the out-of-plane ones. Figure

7.22b shows the root loci for the optimal interconnection configuration b). For this

configuration, the damping of both pitch and bounce modes is reduced. In this case,

the overlapping of weave and bounce mode’s roots is increased at lower speeds whilst

for medium and high speeds range it does not exist. The wobble mode at very low

speed and for a roll angle of 45◦, is near the imaginary axis, although it remains sta-

ble. Similar situation appears for weave mode at higher speeds with 0◦ roll angle. It

can be said that this configuration does not compromise the stability of the motor-

cycle. The root loci for the interconnection arrangement c) are shown in Fig. 7.22c.

In this configuration, the wobble mode for 45◦ roll angle is more stable at low speed.

The weave mode does not show much variation and reaches real values near to the

stability limit for 0◦ roll angle and high speed. The in-plane modes are now more

stable for a wide range of speeds and roll angles, being located in a wider area of

the root locus. Nevertheless, for certain values at higher speeds they become less

damped than in the previous configuration. The root loci for the configuration d) in

Fig. 7.22d do not show relevant differences to that for the configuration c). Finally,

the front hop mode stays well damped for all the interconnection arrangements and

does not appear in the area of interest in the root locus. It can be concluded that

none of the proposed optimal interconnection configurations introduces a stability

risk in the motorcycle model.
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7.6 Conclusions

In this chapter, a stability analysis of the GSX-R1000 motorcycle mathematical

model, modified for including a possible interconnected suspensions system, is per-

formed. The interconnected suspensions system under study is defined with two

interconnection parameters, the interconnection stiffness (ks) and the interconnec-

tion damping (cs) following the mathematical description in Chapter 5. The stability

of the system is tested through the state space description of the model for the full

coefficients ranges stated in Chapter 6. A modal analysis is also presented in order

to understand the changes in the motion patterns of the motorcycle system natural

modes.

The interconnected suspension system acts on the in-plane suspension forces,

thus it directly affects the in-plane modes whilst the out-of-plane modes remain

unaffected. In a first stage, the motorcycle model is studied under straight running

conditions, where these modes are not coupled with the out-of-plane modes, in order

to obtain a deeper understanding of the interconnected suspension system effects in

the motorcycle oscillating dynamics.

It is found that the interconnection stiffness coefficient does not affect in a sig-

nificant manner to the out-of-plane modes. Pitch frequency increases for positive

values of ks coefficient and it is reduced for negative values. The bounce mode

presents higher frequencies and higher damping for negative ks values but only its

damping is reduced for positive values of this coefficient. The front hop mode is not

influenced in a great manner by the interconnection stiffness coefficient, however, it

can be observed how for high and low speeds its frequency and damping is increased

for positive values of ks and reduced for negative values. For the middle speed range

this behaviour is inverted. Generally speaking, the interconnection stiffness coef-

ficient,within the limits established in Chapter 6, does not affect in a substantial

manner the motorcycle oscillating dynamics.

Regarding the interconnection damping coefficient it has a greater influence in

the motorcycle normal modes. It affects the front hop mode by increasing its fre-

quency drastically for both positive and negative cs settings, whilst its damping is

reduced, becoming the real parts of its eigenvalues closer to zero. The evolution of

its eigenvalues is very similar for positive and negative values of the interconnec-
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tion damping coefficient, mainly for the higher ones, although a main difference is

found in its eigenvectors. The pattern of motion for negative cs values shows large

amplitude in phase oscillation of the front fork and the rear swinging arm of the

motorcycle, while minor oscillations affect the main body. For the positive values of

cs the motion is similar except for the phase angle existing between the front and

rear ends, which now oscillate in phase opposition.

For the case of the pitch mode, it becomes in a more pure pitching motion for

positive values of the interconnection damping coefficient. For the bounce mode are

the negative values of this coefficient which enhance the pure vertical oscillation.

For both modes, the damping is reduced for negative values of the cs coefficient.

For small positive values of this coefficient, they become more damped, however,

after certain values they get less damped as the coefficient values is increased. Also

its frequency is modified. In the case of the pitch mode it is reduced whilst for the

bounce mode is increased.

These three modes are closely related through the in-plane dynamics of the

motorcycle. When the front and rear ends are interconnected the relation between

the three modes become more noticeable and for certain values of the interconnection

damping coefficient they become difficult to identify one from the others. The front

hop mode highly affects the bounce and pitch modes and avoid that they become

more damped for high positive values of cs coefficient.

The effects mentioned above are reproduced for all the different roll angles under

study. However, by increasing the roll angle, the influence of the front hop mode in

the bounce and pitch modes is reduced and the out-of-plane modes become more

relevant in their motion patterns and stabilities, being the rider shake mode coupled

to the bounce mode.

In a final stage, the stability of the system for the four optimal interconnection

configurations proposed in Chapter 6 is tested. The effects found in the previous

study can be appreciated in all the configurations, nevertheless it can be concluded

that all of them result stable settings for all the speed range and at any roll angle.
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Chapter 8

Conclusions and Further Work

Two motorcycle alternative suspension concepts have been studied. On one hand,

the girder and Hossack double-wishbone suspension systems have shown to represent

a promising alternative to the conventional telescopic fork for the sport motorcycle

front end. The simplicity, the structural rigidity and the wide design’s options

in terms of kinematics make these suspension systems to be suitable choices for

commercial sport machines. On the other hand, the interconnection of the front and

rear motorcycle suspension system has been demonstrated to allow better motorcycle

suspension performance and to introduce interesting suspension capabilities as a

whole system.

Main findings

By using a high fidelity mathematical model and computer simulations, the be-

haviour of a sport motorcycle including the new features could be predicted with

high accuracy. In Chapter 3, the model based on a Suzuki GSX-R1000 motorcy-

cle, previously developed by (Sharp et al. 2004), and VehicleSim (used to modify

the model, obtain the equations of motion and run the different simulations) are

introduced. New features were developed and included in the model in order to

build a more complete model that allowed running the necessary simulations for the

study of the suspension’s performance under nonlinear and time variable running

conditions.

The state space representation returned by VS Lisp was updated. The default

state space basis was changed in order to obtain a more intuitive one in which the
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normal modes could be clearly understood as motions of the system’s degrees of

freedom related to the motorcycle’s symmetry plane.

Finally, the original three-dimensional model with thirteen degrees of freedom

was reduced to a couple of two-dimensional models. The first of them, with two

degrees of freedom, was created in order to study simple bounce and pitch motions.

The second reduced model, with four degrees of freedom, included the front and rear

wheels displacement. It was built to study the effect of these two additional degrees

of freedom on the bounce and pitch normal modes. The work carried out represents

a contribution that increase the capabilities of the (Sharp et al. 2004) model, which

already was an excellent analysis tool for motorcycle dynamics.

By means of the model presented in Chapter 3, the performances of the girder and

Hossack suspension systems were studied. These systems were proven to be highly

configurable in terms of kinematic behaviour. The motorcycle’s in-plane dynamics

were tested for different geometrical configurations of these systems through road

bump inputs and hard front wheel braking simulations. Both the girder and Hossack

suspension systems showed satisfactory responses and were found to be suitable for

different design requirements that could not be achieved by a conventional telescopic

fork suspension system.

In the second part of the Chapter 4, the effects of the two alternative suspen-

sion systems on the motorcycle’s stability were studied for different road conditions.

It was demonstrated that different geometrical configurations of both girder and

Hossack suspension systems do not affect in a significant manner the motorcycle’s

normal modes. However, by reducing the mass in both girder and Hossack systems’

components, the wobble mode behaviour is modified. Its natural frequency is in-

creased whilst it becomes more damped for higher speeds for the entire roll angle

range (0◦ - 45◦).

Under cornering conditions, for high roll angles (45◦) the wobble mode becomes

unstable at low speeds for both suspension systems, whilst for straight running

conditions, the weave mode crosses the stability limit at high speed. In the case of

the girder suspension system, the weave mode crosses this limit before than in the

case of the Hossack system.

The motorcycle’s torsional rigidity and damping constant of the steering damper
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affect the weave and wobble stability in a similar manner as for the motorcycle

fitted with a conventional telescopic fork suspension. For the case of the Hossack

suspension system, an optimal value of the steering damper coefficient that keeps

the motorcycle stable under any running condition was found. However, this was

not possible in the case of the girder suspension system, for which the weave mode

at 0◦ roll angle remains unstable for speeds over 70 m/s.

Interconnected suspension systems were investigated from Chapters 5 to Chap-

ter 7. In Chapter 5, the reduced models developed in Chapter 3 were used to study

the motorcycle’s bounce and pitch motions and how the interconnected suspensions

system can be used to define the normal modes’ stiffness and damping properties

as desired. For a two degrees of freedom model, it was proven that these properties

could be set by defining the different values of the front, rear and interconnection

spring and damper constants. However, when the wheels degrees of freedom are

taken into consideration, the normal modes associated to the bounce and pitch mo-

tions become more complex and setting their stiffness and damping properties is

not a simple task. It could not be proven that all the desired bounce and pitch

stiffness and damping combinations could be achieved. Nevertheless, a preliminary

numerical method was presented in order to obtain bounce and pitch modes stiffness

and damping constants values as close as possible to the desired ones.

Other advantage introduced by the interconnected suspension system is the in-

crease on the motorcycle’s suspension accuracy. This was demonstrated in Chap-

ter 6 where optimal values of the interconnected suspension system parameters were

found improving the suspension precision along the full speed range. It was found

that just with a damper unit with constant value of the damping coefficient, the

suspension precision can be significantly improved. If more complex mechanisms

are introduced, such as damper units with variable speed coefficients, higher values

of suspension precision can be found. It was observed that for speeds under 45 m/s

positive values of the interconnection damper coefficients are preferred to improve

the suspension’s response, whilst for speeds over 45 m/s negative interconnection

coefficients values are needed.

The frequency response was also investigated through straight running simula-

tions for sinusoidal road inputs considering the coupling between the front and rear
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wheel motions. It was proven that none of the optimal interconnection configuration

proposed worsens the frequency response or increments significantly the amplitude

transmitted from the road to the different parts of the motorcycle. It was concluded

that the interconnected suspension system may represent a competitive difference

with the conventional suspension system in the GSX-R1000 model by improving the

motorcycle’s suspension response.

When interconnection mechanisms are introduced between the front and rear

suspension systems the motorcycle’s stability properties can change. In Chapter 7,

the full GSX-R1000 model was used to carry out a complete modal analysis of the

motorcycle for a wide range of interconnection parameters values. It was shown

how not only the resonance frequency and damping ratio of each normal mode are

affected, but also their pattern of motion are modified depending on how important

the relation between the normal mode and the interconnection system is. The normal

modes which are more influenced by the interconnection system are the in-plane

modes: bounce, pitch and front wheel hop. For certain values of the interconnection

coefficients, these modes interact between them and in some cases they cannot be

distinguished from each other. It was observed that although the stability of these

normal modes can be improved for some values of the interconnection damping

coefficient, for absolute values of this coefficient above certain value, the normal

modes move in the complex plane towards areas with less damping due to the

interaction between modes and the energy transfer from the front wheel to the rear

wheel. However, it was demonstrated that the optimal configurations that increase

the suspension precision are completely stable for the different running conditions

under study.

Contributions to knowledge

The contribution made in this research can be divided in two parts depending on the

suspension system under study. Those regarding to the double wishbone suspension

systems are summarized in the following lines:

1. The kinematic design of the front suspension system does not affect the mo-

torcycle response to step bump inputs as far as the suspension tuning stays

equivalent to the reference model.
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2. The motorcycle’s dynamics under front wheel braking manoeuvres is signifi-

cantly affected by the front end’s kinematics.

3. Anti-dive effect can be achieved with both girder and Hossack suspension

systems. The use of each system will result in different behaviour of the

handling geometric parameters.

4. A reduction on the mass of the front suspension system result in slight im-

provements of the motorcycle response in both step bump input and front

wheel braking simulations.

5. The motorcycle’s normal modes are not affected in a remarkable manner by

the front suspension system’s kinematics.

6. The reduction of the front suspension system’s mass can be appreciated in the

wobble mode’s behaviour. Its frequency is increased at the same time that it

becomes more stable, mostly at high speeds range.

7. The increase of the front end’s rigidity stabilizes the weave mode, whilst the

wobble mode’s stability is decreased. The opposite occurs when the rigidity

of the front end is reduced.

8. The effect of the steering damper on the motorcycle stability is the opposite to

that of the front end’s rigidity. This is, the weave stability is decreased with

higher values of the steering damping coefficients, whilst the wobble mode

becomes less stable. And, again, the opposite occurs with lower values of the

steering damper coefficient.

9. For the model under study, conventional designs of girder suspension systems

allow the motorcycle to be fully stable until high speeds of about 70 m/s. How-

ever, the maximum speeds that can be achieved with a conventional Hossach

system, maintaining the motorcycle stable, is about 80 m/s.

On the other hand, the contributions made with the interconnected suspensions

system research can be summarized as follows:

10. Interconnected suspensions systems introduce new setting parameters that

allow modifying the motorcycle’s bounce and pitch motions.
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11. When the wheels’ degrees of freedom are considered in the model, the suspen-

sion coefficients which produce the desired bounce and pitch motion cannot

be obtained by an analytical solution. Nevertheless, a numerical method is

proposed in here to obtain approximate values for the desired settings.

12. Interconnected systems improve the suspensions system’s accuracy if the ap-

propriate values of stiffness and damping interconnection coefficients are set

for each speed range.

13. Positive values of interconnection coefficients are suitable for low speeds whilst

for high speeds negative values are needed. In the medium speed range (about

40 - 50 m/s) the effect of interconnection is less remarkable.

14. The interconnection between the front and rear suspension systems modify

the normal mode patterns of motion. Positive interconnection enhances the

pitch motion whilst penalize the bounce motion. The opposite happens with

negative interconnection.

15. Large absolute values of interconnection coefficients may produce a notable

destabilization of some normal modes that are highly damped with an inde-

pendent suspensions system.

16. Optimal values of interconnection coefficients can be found for which the sus-

pension efficiency is improved in all the speed range whilst the motorcycle’s

normal modes remain stable.

Limitation of the work

It is important to consider the limitations of this work. Although the mathematical

model (Sharp et al. 2004), the modelling tools (VehicleSim) and the methodology

adopted to study the different suspension systems have been widely used, tested

and accepted by both academia and industry, the results obtained for the new

suspension systems included in the model in this research have not yet been tested

with experimental results.

Building a motorcycle model including a different suspension system to the orig-

inal one and carrying out the physical experiments with this machine require a large
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amount of economical and human resources. The mathematical modelling allows

to explore new mechanical solutions even before the prototyping stage, saving a

lot of these resources. This research is framed in this context. As it has already

been stated, the goal of this work is to point out the real possibilities that these

alternative suspension systems can bring to the motorcycle dynamics field and to

be an eventual starting point for future research on these systems. Therefore, fur-

ther work is needed before these systems can be implemented in a commercial sport

motorcycle.

Further work

Before physical tests with real prototypes can be carried out, several ideas for further

research are suggested in a framework of mathematical modelling and numerical

simulation.

Regarding the double wishbone suspension systems, more extensive research

should be done following the approach of (Watanabe & Sayers 2011) in order to

investigate the rider’s requirements under cornering running conditions and how the

variable geometry of the girder and Hossack front suspension systems can affect the

riders’ handling efforts depending on the different motorcycle front end geometrical

relations, such as the normal trail or the steering angle.

On the other hand, further research should be done to explore new girder and

Hossack suspensions designs which eventually could improve motorcycle’s stability

at higher speeds by investigating the effects of different location of the front frame’s

centre of mass, as suggested by (Sharp 1971). This characteristic differs from the

conventional telescopic fork in both girder and Hossack suspension systems. How-

ever, the girder suspension presents a greater difference at the same time that the

weave mode’s stability is significantly reduced with this system.

In relation to the interconnected suspensions system, the new parameters intro-

duced by his system have been demonstrated to be useful to act on the motorcycle

modal behaviour. Nevertheless, setting the interconnected suspension system with

the desired values is not a simple task. Although a numerical method have been

proposed for it, it has not been demonstrated to be suitable for the full space of

possible stiffness and damping combinations of the normal modes. Further research
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is suggested in order to obtain a deeper knowledge in this mater and a more accurate

methodology which would allow to set the interconnected suspension system for any

desired values.

Finally, in the comparison between the responses of the interconnected and in-

dependent suspensions systems, the front and rear suspension settings were not

modified from their nominal values. Studying the effects on the overall suspension

efficiency when also the front and rear suspension parameters are modified in com-

bination with the interconnection ones may represent an interesting opportunity for

further increasing the motorcycle’s performance.

Final conclusion

Although the front telescopic fork is the most extended and almost the only system

considered by manufacturers for the front end of their sport motorcycles, this re-

search shows the possible advantages that some alternative suspension systems may

introduce in motorcycles and it is intended to open the door for future research and

developments of these kinds of suspension systems.
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Appendix A

Motorcycle Reduced Model

In this appendix, the dynamic properties of a motorcycle reduced model with four

degrees of freedom, as that described in Chapter 3, are derived from the properties

of the full model developed by (Sharp et al. 2004). A diagram of the reduced model

is presented in Fig. A.1, where its degrees of freedom are the front (zfw) and rear

(zrw) wheels vertical displacements, the main frame vertical displacement (z) and

the main frame pitch rotation (θ).

Figure A.1: Motorcycle’s reduced model with four degrees of freedom.

The main body mass is calculated as the sum of the masses of the chassis, the

rider’s upper body and the steer body. The new moment of inertia of the main

body is obtained by applying the Steiner theorem to the three bodies implied on

its motion. The new model front wheel mass is the sum of the front wheel and the
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suspension body in the original model. Whilst the new rear wheel mass is obtained

as the sum of the former rear wheel mass and the apparent mass introduced by the

swinging arm. This motorcycle part rotates about its link axle with the chassis. The

torque needed to reach certain angular acceleration can be obtained by applying a

linear force to the swinging arm centre of mass, being the distance from this point

to the pivot point (lsa) the lever arm of this torque. Applying Newton’s second law,

the swinging arm apparent mass (msa) becomes related to the swinging arm inertia

moment (Isa) by:

Isa · α̈sa = msa · z̈sa · lsa cos(α0sa) (A.1)

α̈sa is the rotational acceleration of the swinging arm, α0sa is the swinging arm

angle at the nominal position and z̈sa is the swinging arm centre of mass vertical

acceleration. On the other hand, the vertical displacement of this point can be

approximate by Eq. A.2 at the nominal position, whilst its acceleration is given by

Eq. A.3.

zsa = (αsa − α0sa) · lsa cos(α0sa) (A.2)

z̈sa = α̈sa · lsa cos(α0sa) (A.3)

Finally, the apparent mass of the swinging arm, when its motion is approximated

as a vertical displacement, is obtained by Eq. A.4. The new rear wheel mass is com-

puted as the sum of this apparent mass and the old rear wheel mass. The assembly’s

centre of mass can be directly obtained for these masses and their positions.

msa =
Isa

l2sa cos2(α0sa)
(A.4)

While the tyres stiffness coefficient in the reduced model are the same as those in

the full GSX-R1000 model, the equivalent front and rear suspensions coefficients are

computed following the approach in (Cossalter 2006). For the front suspension sys-

tem, both stiffness and damping coefficients can be analytically achieved by simple

projection of the forces considering the motorcycle steering angle. The equivalent

front stiffness (kf ) and damping (cf ) coefficients are obtained by Eq. A.5, depend-
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ing on the GSX-R1000 model telescopic fork coefficients (kfo and cfo) and the steer

angle (φh).

kf =
kfo

cos2(φh)
; cf =

cfo
cos2(φh)

(A.5)

Due to the mechanical complexity of the rear suspension system, its equivalent

coefficients in the reduced model have to be obtained by an energy conservation

criterion. For the case of the stiffness coefficient, Eq. A.6 shows this criterion. The

time variation of the energy stored by the spring unit in the original suspension

system must be equal to that of the equivalent spring on the reduced model.

Fs ·
dzr
dt

= Fso ·
dqr
dt

(A.6)

Fs is the force needed in the reduced model rear wheel to induce a vertical

displacement equal to zr and Fso is the force that compresses the actual spring a

distance qr following the Hook’s law:

Fso = −kro · qr (A.7)

(a) (b)

Figure A.2: a) Equivalent spring force of the reduced model rear suspension in solid blue.
The linear approximation is in dashed green. b) Accuracy of using the linear approximation
depending on the maximum suspension amplitude.

Taking advantage of the geometrical parametrization of the monoshock mechani-

cal linkage presented in Fig. 3.4a, the equivalent rear suspension force of the reduced

model (Fs) can be numerically computed for the full range of the possible positions
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of the rear suspension by means of Eq. A.8

Fs = −kro · qr
dqr
dzr

(A.8)

A precise description of the rear suspension spring force can be found by a poly-

nomial regression of the equivalent force with the vertical travel of the rear wheel. In

order to obtain linear suspension forces in the reduced model, the equivalent spring

constant (kr) is taken as the first order coefficient absolute value of the polynomial

obtained. So that the rear suspension spring force (Fs) is described as a linear

function of the rear wheel vertical displacement (zr):

Fs = −kr · zr (A.9)

Figure A.2a shows the equivalent spring force in the reduced model for a wheel

vertical travel of [−10 cm,+10 cm]. The numerically computed value is plotted

in solid blue whilst the linear approximation obtained at the nominal position is

plotted with a dashed green line. Figure A.2b shows the accuracy obtained with

this approximation of Fs with respect to the rear suspension maximum amplitude.

A similar energy conservation criterion is followed to compute the equivalent rear

suspension damping coefficient for the reduced model.

Fd ·
dzr
dt

= Fdo ·
dqr
dt

(A.10)

Fd is the damping force in the reduced model rear suspension for the correspond-

ing wheel vertical position zr and Fdo is the original force of the actual damper for

the equivalent strut distance qr. Fdo depends linearly on the strut compression speed

through the original damping coefficient cro. A linear relation is sought for Fd, thus

Eq. A.10 can be rewritten as in Eq. A.11.

cr ·
dzr
dt
· dzr
dt

= cro ·
dqr
dt
· dqr
dt

(A.11)

From which the equivalent damping coefficient for the reduced model can be
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obtained by Eq. A.12.

cr = cro ·
(
dqr
dzr

)2

(A.12)

(a) (b)

Figure A.3: a) Equivalent damping coefficient of the reduced model rear suspension plotted
in solid blue. The constant value for the linear approximation is plotted in dashed green. b)
Accuracy of using the linear approximation depending on the maximum suspension amplitude.

Similarly than for the spring constant, taking advantage of the monoshock link

geometrical description, the values of the qr and zr can be numerically obtained and

differentiated. An equivalent damping coefficient (cr) which varies with the rear

wheel’s vertical position is obtained.

In the reduced front suspension case, the damping force is a linear function of

the front wheel vertical speed which damping coefficient (cf ) is already constant

for the full suspension travel. However, in the rear suspension case, the value for

the equivalent rear damping coefficient must be approximated to that corresponding

to the nominal wheel position. Figure A.3a shows the cr value variation with the

wheel’s vertical displacement, whilst Fig. A.3b shows the accuracy of using the con-

stant value approximation with respect to the rear suspension maximum amplitude.

Finally, the suspensions coefficients and the masses and inertia moment of the four

degrees of freedom reduced model are shown in Table 3.3.

If a more accurate description of the rear suspension is sought, the equivalent

spring force and the equivalent damping coefficient can be given as two polyno-

mial functions depending on the rear wheel’s vertical displacement. This kind of

suspension description was carried out during a collaboration with the Department

of Structural and Mechanical Engineering at Universidad de Cantabria, Spain (see
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Garćıa-Fernández et al. 2014). In that work, a motorcycle mathematical model was

built in MSC Adams software. The goal of the study was to replicate the in-plane

dynamics results obtained in the GSX-R1000 model developed in VehicleSim. For

this purpose, a full parametrization of the model was needed, including a precise rear

suspension description. The comparison of both models under a complete set of ma-

noeuvres showed that the MSC Adams model was able to replicate the GSX-R1000

VehicleSim model in-plane dynamics with high accuracy.
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Appendix B

New Basis for the State Space

In this appendix it is explained how the nominal base of the motorcycle model’s

state space provided by VehicleSim is translated into a more understandable base in

which the degrees of freedom included in the motorcycle model are directly related

to its symmetry plane.

Figure B.1: Auxiliary frames created by VS Lisp with each rotation of the body. Note
that the frames are represented separately in order to show a clearer view of each rotation,
nevertheless, the origins of all of them are coincident.

As it has been explained in Chapter 3, VehicleSim creates an intermediate ref-

erence frame for each rotational degree of freedom of a body. However, the transla-

tional degrees of freedom are defined in the inertial reference frame. In the motor-

cycle model, the chassis is the main body and it is defined in the inertial reference
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frame (S0). It has three translational and three rotational degrees of freedom. The

translational ones describe rectilinear motion along the x, y and z axes of the S0

frame. On the other hand, the three rotational degrees of freedom are related to

three different auxiliary reference frames. For the yaw angle (rotation about the

z axis of the inertial reference frame S0) a new reference frame (S1) is created. It

shares the z axis with S0 and it is rotated Γ◦ about it. The pitch angle (rotation

about the y axis of S1) introduces another reference frame (S2) which shares the

y axis with the S1 frame and which is rotated Θ◦ about it. Finally, the roll angle

(rotation about the x axis of S2) creates the reference frame S3, which is rotated

Φ◦ about the x axis of S2. This axis is shared by both S2 and S3 reference frames.

Figure B.1 shows the three auxiliary reference frames created by VehicleSim for each

rotation about the main axes.

Translational degrees of freedom

Regarding to the translational degrees of freedom, a change of basis matrix between

the S0 and the S3 reference frames can be found as a change of basis matrices

sequence between the consecutive intermediate reference frames.

S1 is defined by a rotation of the inertial reference frame about its z axis by the

rotation matrix Rz, therefore, the change of basis matrix from S0 to S1 is the inverse

of this matrix, P10 = (Rz)−1:

Rz(Γ) =


cos Γ − sin Γ 0

sin Γ cos Γ 0

0 0 1

 ; P10 =


cos Γ sin Γ 0

− sin Γ cos Γ 0

0 0 1


Similarly, the S2 basis is defined by Ry as a rotation of the S1 reference frame

about its y axis, for which the change of basis matrix from S1 to S2 is obtained as

P21 = (Ry)−1:

Ry(Θ) =


cos Θ 0 sin Θ

0 1 0

− sin Θ 0 cos Θ

 ; P21 =


cos Θ 0 − sin Θ

0 1 0

sin Θ 0 cos Θ


Finally, the rotation of the S2 reference frame about its x axis defines the S3

basis, being the rotation matrix Rx. The change of basis matrix from S2 to S3 is

P32 = (Rx)−1:
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Rx(Φ) =


1 0 0

0 cos Φ − sin Φ

0 sin Φ cos Φ

 ; P32 =


1 0 0

0 cos Φ sin Φ

0 − sin Φ cos Φ


The resultant change of basis matrix from S0 to S3 is obtained as:

P30 = P32P21P10 (B.1)

Which results in:

P30 =

 cos Θ cos Γ cos Θ sin Γ − sin Θ

sin Φ sin Θ cos Γ− cos Φ sin Γ sin Φ sin Θ sin Γ + cos Φ cos Γ sin Φ cos Θ

cos Φ sin Θ cos Γ + sin Φ sin Γ cos Φ sin Θ sin Γ− sin Φ cos Γ cos Φ cos Θ


Finally, any translational degree of freedom described in S0 is expressed in S3

as:

Qt
3 = P30Q

t
0 (B.2)

Where Qt
0 is the translational components vector of the motorcycle’s chassis

provided by VehicleSim and Qt
3 is the same components vector expressed in the

chassis reference frame (S3).

Qt3 =


XT3

Y T3

ZT3

 ; Qt0 =


XT0

Y T0

ZT0


Rotational degrees of freedom

The chassis rotational degrees of freedom need a different approach. As it has been

said, the yaw (Γ), the pitch (Θ) and the roll (Φ) angles are defined in S0, S1 and S2

respectively and they fix the orientation of the motorcycle’s chassis reference frame

(S3) in the space. Thus, for the eigenvectors directly obtained from the state space

returned by VS Lisp, the ZR component represents the rotational oscillations of the

chassis about the z axis in the S0 reference frame. This is the same axis as in the

S1 frame. The YR component represents the rotational oscillations about the y axis

of S1 and S2 reference frames. And the XR component represents the rotational

oscillation about the x axis of S2 and S3 reference frames.

Following the nomenclature used for yaw, pitch and roll angles, the symbols used

for the small rotational oscillations about the z, the y and the x axes will be γ, θ and
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φ respectively, followed by a subscript index indicating which is the reference frame

which the considered axis belongs to. Therefore, the chassis eigenvector’s rotational

component ZR corresponds to γ1, YR corresponds to θ2 and XR to φ3. In order to

find which motion these components represent in the chassis reference frame, the

components values provided by the eigenvector must be transformed to γ3, θ3 and

φ3. Note that φ3 is already indicated in the appropriate basis.

The rotation about the y axis in the basis of S2 is given by Ry
2(θ2) which in this

case is written as:

Ry
2(θ2) =


cos θ2 0 sin θ2

0 1 0

− sin θ2 0 cos θ2


In the S3 basis, this is a linear application that can be found by means of the

change of basis matrices as:

Ry
3(θ2) = P32R

y
2(θ2)P−1

32 (B.3)

The subscripts are the index of the reference frame in which the matrix is ex-

pressed. The superscripts represent the axis in which the rotation is produced about

in the original reference frame used by VehicleSim, in this case it is S2.

This matrix results in:

Ry
3(θ2) =

 cos θ2 sin Φ sin θ2 cos Φ sin θ2

− sin Φ sin θ2 cos2 Φ + sin2 Φ cos θ2 − cos Φ sin Φ + sin Φ cos θ2 cos Φ

− cos Φ sin θ2 − cos Φ sin Φ + sin Φ cos θ2 cos Φ sin2 Φ + cos2 Φ cos θ2


Being the state space description a linear approximation of the motorcycle dy-

namics, the rotational oscillation of the chassis should be considered as small angle.

Thus, the matrix above can be simplified as:

Ry
3(θ2) '


1 θ2 sin Φ θ2 cos Φ

−θ2 sin Φ 1 0

−θ2 cos Φ 0 1



This linear application can be decomposed in three rotations about the main

axes of the system S3. For any rotation composition, the resultant matrix will
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depend on the rotations sequence applied. However, in this case, after the small

angle approximation is performed, the resultant matrix becomes independent from

the rotations sequence. A general rotation matrix about the three main axes of an

arbitrary reference frame Si can be obtained as:

R(γ, θ, φ) = Rz
i (γ)Ry

i (θ)R
x
i (φ) (B.4)

Which results in:

R(γ, θ, φ) =

 cos γ cos θ − sin γ cosφ+ cos γ sin θ sinφ sin γ sinφ+ cos γ sin θ cosφ

sin γ cos θ cos γ cosφ+ sin γ sin θ sinφ − cos γ sinφ+ sin γ sin θ cosφ

− sin θ cos θ sinφ cos θ cosφ


After applying the small angle approximation, the general rotation matrix for

the S3 reference frame is:

R(γ3, θ3, φ3) '


1 −γ3 θ3

γ3 1 −φ3

−θ3 φ3 1


By comparing the terms in R(γ3, θ3, φ3) to the terms in Ry

3(θ2), the contribution

on the γ3, θ3 and φ3 rotations in S3 reference frame of the θ2 rotation in S2 frame is

found as:

γy3 ' −θ2 sin Φ

θy3 ' θ2 cos Φ

φy3 ' 0

 (B.5)

A similar approach is followed for the ZR eigenvectors component provided by

VS Lisp. This is, the rotational oscillation about the z axis (γ1) on the S1 reference

frame. To obtain the contribution on the three different rotations about the main

axis of the chassis reference frame (S3), it is first transformed into the equivalent

rotations in S2. Then, the equivalent rotation about the z axis (γz2) in this frame is

transformed to those equivalent rotations on S3 frame (γz3 , θz3 and φz3). The change

of basis for the ZR rotations in S1 to S2 is:

Rz
2(γ1) = P21Rz(γ1)P−1

21 (B.6)
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After applying the small angle approximation about the S2 main axes, the equiv-

alent matrix in S2 results in:

Rz
2(γ1) '

 1 −γ1 cos Θ 0

γ1 cos Θ 1 γ1 sin Θ

0 −γ1 sin Θ 1


And comparing with R(γ2, θ2, φ2), the equivalent rotations to γ1 in S2 are found

by:

γz2 ' γ1 cos Θ

θz2 ' 0

φz2 ' −γ1 sin Θ

 (B.7)

From these equivalent rotations, only the one about the z axis is considered;

VS Lisp description already provides the rotation about the y axis in S2 and the

one about the x axis on S3.

A new transformation of the rotation γz2 is performed to obtain its contribution

on the γ3, θ3 and φ3 rotations by means of Eq. B.8:

Rz
3(γ2) = P32Rz(γ2)P23 (B.8)

And the resultant matrix considering the small angle approximation is expressed

by:

Rz
3(γ2) '

 1 −γ2 cos Φ γ2 sin Φ

γ2 cos Φ 1 0

−γ2 sin Φ 0 1



Comparing with R(γ3, θ3, φ3), the equivalent rotations in S3 due to the original

rotation in S1 are obtained by:

γz3 ' γ2 cos Φ = γ1 cos Θ cos Φ

θz3 ' γ2 sin Φ = γ1 cos Θ sin Φ

φz3 ' 0

 (B.9)
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The final rotational oscillations on the S3 reference frame are, on one hand, the

rotation about the x axis in this reference frame (provided by the XR eigenvector

component), and, on the other hand, the contributions of the rotation about the

y axis in the reference frame S2 and the rotation about the z axis in the reference

frame S1, given by:

γ3 ' γz3 + γy3 = γ1 cos Θ cos Φ− θ2 sin Φ

θ3 ' θz3 + θy3 = γ1 cos Θ sin Φ + θ2 cos Φ

φ3 = φ3

 (B.10)

The eigenvector’s rotational components related to the chassis’s degrees of free-

dom expressed in the S3 reference frame can be obtained from those directly provided

by VS Lisp through Eq. B.11.

Qr
3 = R30Q

r
0 (B.11)

R30 is the change of basis matrix:

R30 =

 cos Θ cos Φ − sin Φ 0

cos Θ sin Φ cos Φ 0

0 0 1


Qr

3 and Qr
0 correspond to the eigenvector’s rotational components of the chassis:

Qr3 =


ZR3

YR3

XR3

 ; Qr0 =


ZR1

YR2

XR3


Finally, the six degrees of freedom of the motorcycle’s chassis directly provided by

VS Lisp can be transformed into the equivalent eigenvector oscillatory components

expressed in the motorcycle’s symmetry plane:

 Qt3

Qr3

 =

 P30 0

0 R30

 Qt0

Qr0

 (B.12)
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Appendix C

Maximum Loads on the Front End

In this appendix the maximum load applied to the front suspension systems under

extreme running conditions are estimated. Both longitudinal and lateral maximum

loads appear in extreme deceleration manoeuvres. The longitudinal maximum load

is reached under a straight line front wheel brake, when the total of the braking

force reaction is transmitted from the front wheel to the chassis through the front

fork spindle. Figure C.1 shows a diagram of the forces appearing under this braking

condition. The brake force between the front wheel and the road (Fb) generates

an inertial force on the motorcycle’s centre of masses (Fi). The resultant moment

produced by this force and the gravity force (Fg) about the front wheel axis becomes

zero at the maximum braking force, reached just before the overturning of the

motorcycle. The resultant force (R) appearing on the motorcycle’s centre of masses

is the addition of the inertial and gravity forces projections on the line connecting

to the fork spindle. Consequently, the maximum load that the fork must resist (Fd)

can be modelled as

a force applied to the fork spindle with equal magnitude and opposite direction to

the resultant force (R), being the front end attachment with the chassis fixed to the

inertial frame. It can be obtained by Eq. C.1 where mt is the rider and motorcycle

total mass, g is the gravity acceleration, and β is the angle of the resultant force

with respect to the vertical.

Fd =
mt · g
cos(β)

(C.1)

The resultant force magnitude has been calculated for the motorcycle’s nominal
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Figure C.1: Forces appearing under straight line front wheel braking. Fb is the braking force
between the ground and the tyre. Fi is the fictitious force appearing in the motorcycle centre
of masses, which has a similar magnitude and an opposite direction to the braking force. Fg
is the gravity force. R is the resultant force in the motorcycle’s centre of masses.

position and for the system’s maximum deflection. This is, the front suspension is

compressed whilst the rear suspension is extended. The maximum load calculated for

this last case has a magnitude of R = 5.3 kN. This is obtained with a corresponding

braking of Fb = 4.8 kN. Considering a rider’s and a motorcycle’s total mass of 228 kg

this represents a deceleration of 21.1 m/s2 which is approximately 2.2 G (being

G = 9.81 m/s2 the gravity acceleration units). The typical maximum decelerations

experienced in MotoGP races are below 1.7 G on extreme braking actions (Brembo

2015). It also should be considered that both front and rear braking systems are

used in these cases and that for the middle-high forward speed range (above 30 m/s),

the aerodynamic drag becomes relevant for speed reduction. Nevertheless, an extra

safety factor of 50 % is added to this maximum load obtaining a rounded longitudinal

load requirement of Fd = 8 kN.

The maximum lateral load is calculated considering severe braking action on

cornering manoeuvres with maximum lean and steering angles. The maximum lean

angles achieved in MotoGP races are below φ = 65◦ (MotoGP 2015). Considering

the wide margin of error included in the resultant force for the longitudinal load, a

rough approximation of the lateral load, which covers more than enough the maxi-

mum requirements of any front suspension fork, can be obtained by projecting this

resultant force into the front wheel axis. Although such a severe braking manoeuvre

would not be supported neither by the rider nor the tyres.
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Figure C.2: The maximum lateral load (Fl) is calculated as the projection of the maximum
longitudinal load on the front wheel axis for maximum lean and steering angles. The maximum
longitudinal load is a force applied to the fork spindle with equal magnitude and opposite
direction than the resultant force (R).

The maximum steering angle value achieved under this conditions is calculated

following the approach in (Cossalter 2006). The equilibrium of moments for a steady

turn can be expressed as a good approximation by Eq. C.2.

tan(φ) =
v2

g · rt
(C.2)

v is the forward speed, g is the gravity acceleration and rt is the turning radius.

The effective kinematic steering angle can be approximated by:

∆ = δ · cos(ε)

cos(φ)
(C.3)

Being δ the steering angle and ε the head angle. The turning radius can be

approximated using Eq. C.4 where wb is the motorcycle’s wheelbase.

rt =
wb

tan(∆)
(C.4)

The steering angle is obtained combining Eq. C.2, Eq. C.3, Eq. C.4 as a function

of the forward speed and the roll angle:

δ = tan(
wb · g
v2
· tan(φ)) · cos(φ)

cos(ε)
(C.5)

The maximum steering angle is obtained numerically for maximum lean angle

(φ = 65◦) and minimum forward speed (v = 10 m/s) as δ = 8.1◦. Finally, the
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maximum lateral load is calculated as the projection of the maximum longitudinal

load in to the front wheel axis and applied to the fork spindle as:

Fl = −R · sin(β − ε) · sin(δ) (C.6)

β is the angle between the resultant force and the vertical, ε is the head angle and

δ is the steering angle. Figure C.2 shows the motorcycle under cornering conditions

where the resultant force (R) and the lateral load (Fl) are presented. For the most

demanding case, the maximum lateral load magnitude is Fl = 492 N. Adding a

safety factor of 50 %, the lateral load taken as the maximum load requirement for

the front suspension systems is equal to Fl = 750 N.

Smaller and more precise values of the load requirements can be calculated.

However, as it has already been mentioned, the scope of this part of the research

is not to designing the most efficient front suspension systems but to obtain the

dynamical properties of their parts with the certainty that they could be possible

candidates to real implementation. With the values calculated here, the reliability

of the system is guaranteed whilst the systems’ masses can be reduced in comparison

to the original telescopic fork suspension system.

222



Bibliography

Bakker, E., Pacejka, H. B. & Lidner, L. (1989), A new tire model with an application

in vehicle dynamics studies, SAE Technical Paper 890087, SAE International.

Boresi, A. P. & Schmidt, R. J. (2002), Advanced Mechanics of Materials, 6th edn,

John Wiley & Sons.

Brembo (2015), ‘MotoGP Brake Circuit Identity Cards’, url: www.motogp.brembo.

com. Accessed: 2015-05-25.

Bultaco Motors (2015), ‘Bultaco’, url: www.bultaco.es. Accessed: 2015-05-25.

Cooper, K. (1974), The effects of aerodynamics on the performance and stability of

high speed motorcycles, in ‘2nd AIAA Symp. Aerodynamics Sport Competition

Automobiles’.

Cossalter, V. (2006), Motorcycle Dynamics, 2nd edn, Lulu.com.

Cossalter, V., Doria, A., Garbin, S. & Lot, R. (2006), ‘Frequency-domain method for

evaluating the ride comfort of a motorcycle’, Vehicle System Dynamics 44(4), pp.

339–355.

Cossalter, V., Doria, A. & Lot, R. (1999), ‘Steady turning of two-wheeled vehicles’,

Vehicle System Dynamics 31(3), pp. 157–181.

Cossalter, V. & Lot, R. (2002), ‘A motorcycle multi-body model for real time sim-

ulations based on the natural coordinates approach’, Vehicle System Dynamics

37(6), pp. 423–447.

Cossalter, V., Lot, R. & Maggio, F. (2002), The influence of tire properties on the

stability of a motorcycle in straight running and curves, SAE Technical Paper

2002-01-1572, SAE International.

223

www.motogp.brembo.com
www.motogp.brembo.com
www.bultaco.es


Cossalter, V., Lot, R. & Massaro, M. (2008), ‘The chatter of racing motorcycles’,

Vehicle System Dynamics 46(4), pp. 339–353.

Creuat (2015), ‘Hydropneumatic suspension systems LTT - Creuat’, url: www.

lleidatracciotechnology.com/suspensions.php. Accessed: 2015-05-25.

Dassault Systems (2015), ‘SolidWorks’, url: www.solidworks.com. Accessed: 2015-

05-25.

de Vries, E. & Pacejka, H. (1998), ‘Motorcycle tyre measurements and models’,

Vehicle System Dynamics 29, pp. 280–298.

Evangelou, S. (2003), The control and stability analysis of two-wheeled road vehicles,

PhD thesis, University of London.

Evangelou, S. (2010), Control of motorcycles by variable geometry rear suspension,

in ‘2010 IEEE International Conference on Control Applications (CCA)’, pp. 148–

154.

Evangelou, S. A., Limebeer, D. J. N. & Tomas-Rodriguez, M. (2012), ‘Suppression of

burst oscillations in racing motorcycles’, Journal of Applied Mechanics 80(1), pp.

011003–011016.

Evangelou, S., Limebeer, D. J. N., Sharp, R. S. & Smith, M. C. (2006), ‘Mechani-

cal steering compensators for high-performance motorcycles’, Journal of Applied

Mechanics 74(2), pp. 332–346.

Evangelou, S., Limebeer, D. J. & Tomas Rodriguez, M. (2008), ‘Influence of road

camber on motorcycle stability’, Journal of Applied Mechanics 75(6), pp. 061020–

061020.

Evangelou, S., Limebeer, D. & Tomas-Rodriguez, M. (2010), Suppression of burst

oscillations in racing motorcycles, in ‘2010 49th IEEE Conference on Decision and

Control (CDC)’, pp. 5578–5585.

Fontdecaba i Buj, J. (2002), Integral suspension system for motor vehicles based on

passive components, SAE Technical Paper 2002-01-3105, SAE International.

224

www.lleidatracciotechnology.com/suspensions.php
www.lleidatracciotechnology.com/suspensions.php
www.solidworks.com


Fujioka, T. & Goda, K. (1995), ‘Tire cornering properties at large camber angles:

mechanism of the moment around the vertical axis’, JSAE Review 16(3), pp.

257–261.
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