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Abstract

Utilising Intrusion Detection System (IDS) logs in security event analysis is crucial in the

process of assessing, measuring and understanding the security state of a computer net-

work, often defined by its current exposure and resilience to network attacks. Thus, the

study of understanding network attacks through event analysis is a fast growing emerg-

ing area. In comparison to its first appearance a decade ago, the complexities involved

in achieving effective security event analysis have significantly increased. With such in-

creased complexities, advances in security event analytical techniques are required in

order to maintain timely mitigation and prediction of network attacks.

This thesis focusses on improving the quality of analysing network event logs, par-

ticularly intrusion detection logs by exploring alternative analytical methods which over-

come some of the complexities involved in security event analysis.

This thesis provides four key contributions. Firstly, we explore how the quality of

intrusion alert logs can be improved by eliminating the large volume of false positive

alerts contained in intrusion detection logs. We investigate probabilistic alert correla-

tion, an alternative to traditional rule based correlation approaches. We hypothesise that

probabilistic alert correlation aids in discovering and learning the evolving dependencies

between alerts, further revealing attack structures and information which can be vital in

eliminating false positives. Our findings showed that the results support our defined hy-

pothesis, aligning consistently with existing literature. In addition, evaluating the model

using recent attack datasets (in comparison to outdated datasets used in many research

studies) allowed the discovery of a new set of issues relevant to modern security event log

analysis which have only been introduced and addressed in few research studies.
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Secondly, we propose a set of novel prioritisation metrics for the filtering of false

positive intrusion alerts using knowledge gained during alert correlation. A combination

of heuristic, temporal and anomaly detection measures are used to define metrics which

capture characteristics identifiable in common attacks including denial-of-service attacks

and worm propagations. The most relevant of the novel metrics, Outmet is based on

the well known Local Outlier Factor algorithm. Our findings showed that with a slight

trade-off of sensitivity (i.e. true positives performance), outmet reduces false positives

significantly. In comparison to prior state-of-the-art, our findings show that it performs

more efficiently given a variation of attack scenarios.

Thirdly, we extend a well known real-time clustering algorithm, CluStream in order

to support the categorisation of attack patterns represented as graph like structures. Our

motive behind attack pattern categorisation is to provide automated methods for capturing

consistent behavioural patterns across a given class of attacks. To our knowledge, this is a

novel approach to intrusion alert analysis. The extension of CluStream resulted is a novel

light weight real-time clustering algorithm for graph structures. Our findings are new

and complement existing literature. We discovered that in certain case studies, repetitive

attack behaviour could be mined. Such a discovery could facilitate the prediction of future

attacks.

Finally, we acknowledge that due to the intelligence and stealth involved in mod-

ern network attacks, automated analytical approaches alone may not suffice in making

sense of intrusion detection logs. Thus, we explore visualisation and interactive methods

for effective visual analysis which if combined with the automated approaches proposed,

would improve the overall results of the analysis. The result of this is a visual analytic

framework, integrated and tested in a commercial Cyber Security Event Analysis Soft-

ware System distributed by British Telecom.
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Chapter 1

Introduction

Network attacks have rapidly increased over the years. As of 2013, 200 new threats to

computer networks were detected every minute [104].

To minimise the number of successful attacks targeted at computer networks, defence

security systems such as firewalls, intrusion detections systems, intrusion prevention sys-

tems, anti-virus systems and many more are placed at various layers of the computer

network. Many of these devices prevent malicious network traffic from flowing in and

out of the network by blocking malicious traffic or triggering alerts which can be acted

upon.

These devices, particularly those placed at the perimeter of the network, play an

important role in the detection and prevention of attacks. The alerts triggered by these

devices are rich in attack information and if utilized effectively, can be used to gain insight

into the context and details of a past or ongoing attack against the network. In well known

attacks and case studies such as [95, 65, 57, 73], investigating network and security event

logs played a major role in tracing the sources of the attacks as well as creating new

counter measures for preventing future re-occurrences of the attacks.

Unfortunately, security devices have limitations which subsequently make it difficult

to manually validate and utilize the event logs they generate [21]. This thesis describes

a research study focused on improving attack detection by proposing analytical methods

for investigating the logged events generated by such security devices. Through out this

research, an emphasis is placed on the Intrusion Detection System (IDS). In this research,
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a set of statistical and data mining techniques are proposed for the effective analysis of

IDS events. These techniques are applied to provide an interpretation to security data and

to furthermore discover behavioural patterns unique to remote attacks carried out over a

period of time.

The rest of this chapter is outlined as follows: the motivation behind this research

study is discussed in Section 1.1, the goals of this thesis are outlined in Section 1.2, the

research contributions are discussed in Section 1.3, the publications produced during this

research study are detailed in Section 1.4, and the outline of the rest of this research study

is described in Section 1.5.

1.1 Motivation
Intrusion Detection Systems are network security devices which monitor network traffic

for malicious activity. When malicious network traffic is detected, one or more alerts are

triggered. Intrusion Detection Systems have limitations [77, 22, 23]. The consequence

of their limitations is that the security level of the computer network which they protect

becomes compromised and the network’s resilience to attacks weakens. In most computer

networks, this issue is addressed by deploying multiple layers of varying security devices

at different perimeters of the network [21]. Thus, no single device is responsible for

preventing all levels of an attack.

This integrated solution may improve the network’s attack resilience and allow de-

vices to focus on specialized areas of an attack. However, this does not address each

devices performance issues. In prior research studies, [11], two major performance issues

of an IDS have been identified:

1. False negative rate: The false negative rate of an IDS is the number of attacks that

go undetected on the network. Typically, this can be a low value. However, the cost

of false negatives, even if low, could be highly expensive to the network as it could

result in asset, financial, or service loss. Today’s attacks are stealth, sophisticated

and difficult to detect. Many major attacks involve “zero day exploits” which are

exploits or vulnerabilities that are only known to the defence community after the
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attack has occurred.

2. False positive rate: The major performance issue that makes using an IDS difficult

for attack detection is its high false positive rate [22, 23, 77]. Irrespective of the

algorithmic approach used by an IDS to detect attacks, IDSs are likely to have a

high false positive rate [47]. This means that a large volume of alerts are triggered

whereby a large percentage of these alerts are not relevant to a real threat or attack.

False positives make it extremely difficult for security analysts to utilize and priori-

tise the alerts generated by an IDSs. In many scenarios, false positives are a result

of many factors such as IDS mis-configurations, traffic overload, and inconsistent

detection methods [12].

Cuppens et al. [47] identified that a promising approach to reducing false positives

and increasing the detection rate of attacks was to develop a “cooperation module between

several IDS to analyse alerts and generate more global and synthetic alerts”. This idea

is based on the notion that intrusion alerts should not be evaluated as singular events in

isolation, but rather as related events which may correspond to different phases of the

same attack. Thus, understanding the relationship between multiple alerts will add clarity

and context to the higher level attack they represent. This notion is also supported by key

pioneering research studies [116, 47, 49, 72]. In this research, we focus on the generation

of these high-level global and synthetic alerts.

Motivated by this, this research study explores an alternative approach to intrusion

alert analysis. It explores how to eliminate false positive alerts and increase attack in-

sight by using knowledge gained from alert correlation - the method for identifying and

aggregating alerts related to the same attack.

Therefore, our research question is as follows:

How can the information learnt from alert correlation be used to reduce false

positive alerts? Furthermore, how can this knowledge be transformed into

attack insights in order to increase the attack detection rate of a network?
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1.2 Goals

The key goal of this research study was to improve attack detection by focussing on

reducing the false positive rate of Intrusion Detection Systems. Successfully achieving

this would, additionally, lead to achieving the following:

1. Increased Attack Insight: IDSs trigger a large amount of alerts which if effectively

utilized can provide a detailed overview of network attacks and their impact on

the security state of the network. Although IDSs have a high false positive rate,

they also have a high true positive rate. According to Verizon [168], up to 84%

of remote attacks can be discovered by analysing network events. The presence of

false positives, however, make it difficult to distinguish the false positives from the

true positives thus reducing the ability of any analytical process to detect attacks.

Reducing the false positives allows the true positives to be effectively utilized to

understanding attacks.

2. Optimised Attack Analysis: Due to the sheer volume of alert traffic generated by

the IDSs in the network, comprehending the scope of a network attack by an an-

alyst would require hours of manual labour even if all false positive alerts were

eliminated. It is also infeasible to fully automate the process of attack analysis

using computational intelligence. Achieving a balance between human and compu-

tational intelligence in the process of attack analysis is an active open ended issue

in information security. Many previously proposed methods such as [79, 75, 13, 29]

include using data mining and machine learning approaches which are supervised

by user input and driven by statistical and empirical based learning models.

3. Research Gap: An observation made during the preliminary stage of this research

study was that there are two key approaches to achieving improved intrusion de-

tection. While pioneering researchers such as [118, 166] focused on post-intrusion

analysis which is the analysis of alert data in order to reduce false positives, more

recent effort has focussed on pre-intrusion analysis. Pre-intrusion analysis is the
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analysis of network data to reduce false positives. Despite the increase in the re-

search of post intrusion analysis as shown in Figure 1.1, the trends show that more

research effort has consistently focussed on the research of pre-intrusion analysis1.

In this research study, a key objective was to explore the domain of post-intrusion

analysis.

1.3 Contributions
Improved Semi-automated Alert Correlation Models: Given a log or stream of intru-

sion alerts, the motive behind alert correlation is to discover temporal sequences of alerts

which are part of the same attack [29]. This subsequently improves attack insight. While

pioneering research approaches successfully used rule based techniques for alert corre-

lation, such methods are unsuitable for the scope and complexity of modern attacks and

networks. In this research, a set of non-rule based methods are explored and two mod-

els for correlation were proposed. Both models are based on statistical correlation using

Bayesian interference which provides high quality correlations with little user configura-

tions.
1Trend is based on results collected from IEEEXplore (ieee.org/ieeexplore), ACM (dl.acm.org),

LNCS(link.springer.com) and ScienceDirect (sciencedirect.com) using search term “alert correlation” for
post intrusion analysis and “intrusion detection” for pre-intrusion analysis
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A Set of Novel Prioritisation Metrics: A key observation following the application of

alert correlation was that in real computer networks, many attacks are likely to occur

simultaneously, thus applying alert correlation on a large database, log or flow of secu-

rity alerts will likely result in the discovery of multiple attacks occurring simultaneously.

Given this observation, a set of metrics based on both domain knowledge and pattern anal-

ysis are proposed. These metrics facilitate the prioritising of non-trivial alert sequences

and the elimination of sequences with little or no importance.

Automated Discovery of Attack Patterns using Graph Clustering An attack graph is a

succinct representation of all paths through a system that end in a state where an intruder

has successfully achieved his goal [74]. A novel approach for defining components of

an attack graph is proposed. In this research, a set of attributes consistently observed in

a type of attack such as a denial-of-service or a worm outbreak is referred to as an at-

tack pattern where one or more attack patterns may be components of an attack graph.

This contribution focusses on an automated approach to extracting attack patterns from a

set of alert sequences. Furthermore, given a set of defined attack patterns, we present a

real-time clustering system which categorises new alert sequences in attack clusters. This

contribution facilitates the possibility of early threat detection allowing security analysts

to mitigate threats earlier. To the knowledge of the author, this is a novel area of research

given that it implores a bottom up approach to constructing attack graph components.

1.4 Publications
• Shittu, R., Healing, A., Bloomfield, R., and Muttukrishnan, R. (2012). Visual an-

alytic agent-based framework for intrusion alert analysis. Proceedings of the 2012

International Conference on Cyber-Enabled Distributed Computing and Knowl-

edge Discovery, CyberC 2012, pages 201–207

• Rowlingson, R., Healing, A., Shittu, R., Matthews, S. G., and Ghanea-Hercock, R.

(2013). Visual Analytics in the Cyber Security Operations Centre. Proceedings of

The Information Systems Technology Panel Symposium on Visual Analytics
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• Shittu, R., Healing, A., Ghanea-hercock, R., and Bloomfield, R. (2014). OutMet : A

New Metric for Prioritising Intrusion Alerts using Correlation and Outlier Analysis.

19th IEEE Conference on Local Computer Networks

• Shittu, R., Healing, A., Ghanea-Hercock, R., Bloomfield, R., and Rajarajan, M.

(2015b). Intrusion alert prioritisation and attack detection using post-correlation

analysis. Computers & Security, 50:1–15

• Shittu, R., Healing, A., Ghanea-hercock, R., Bloomfield, R., and Muttukrishnan,

R. (2015a). Real-time Graph Clustering for automatically discovering novel attack

patterns. Network and Computer Applications (Under Review), pages 1–25

1.5 Outline

The reminder of this thesis is organised as follows:

Chapter 2 provides a background study on intrusion detection taxonomies, the charac-

teristics of the types of attacks detectable by IDSs, and a detailed survey on pioneering

and state of the art techniques which are applied in the domain of intrusion alert analysis

focussing particularly in the area of alert correlation and prioritisation.

Chapter 3 presents the two statistical correlation approaches proposed in this research.

Both methods explore how alerts can be correlated in real-time by learning correlation

likelihoods from historic alerts through the application of Bayesian inference. In both

models, the application of Bayesian inference learns and updates the likelihoods of alert

types co-occurring. To improve the dependencies discovered by Bayesian inference, we

explore how weighted scoring and rule matching can be used to set thresholds to ensure

only valid information is considered in the learning of likely correlations.

Chapter 4 presents four novel prioritisation metrics based on temporal and attribute char-

acteristics that define the importance of an attack. In this chapter, each metric is evaluated
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by measuring its effectiveness in correctly prioritising high priority alerts in denial-of-

service attack scenarios and worm propagation attack scenarios. Finally a method for

combining the results from each metric into a single metric was explored.

Chapter 5 presents two research studies. Firstly, it explores the clustering of similar at-

tack behaviour discovered during alert correlation into clusters. In this study, a real-time

clustering algorithm for categorising multi-attributed Directed Acyclic Graphs (DAG)

whereby a typical alert correlation model outputs multi-attributed DAGs is proposed.

Secondly, it explores improved visual representations of attack behaviour. In this sec-

ond study, a new approach for refining and abstracting alert correlation DAGs into human

readable attack pattern graphs is explored.

Chapter 6 presents a set of visualisations and interactive methods for effective visual

analysis which can be combined with the correlation, prioritisation and attack pattern dis-

covery techniques to allow input of a security analyst to explore the results, give valuable

input during stages of the analysis and draw actionable conclusions regarding the network

state. The result of this Chapter is the development of a visual analysis framework inte-

grated into and tested in a commercial Cyber Security Event Analysis Software System

distributed by British Telecom.

Chapter 7 concludes this thesis with a summary of its key achievements, challenges and

open ended research questions which may be relevant to future research studies.
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Chapter 2

A Survey on Intrusion Detection

Systems

2.1 Overview

According to Heady et al. [69], an Intrusion is “any set of actions that attempt to com-

promise the confidentiality, integrity or availability of a computer network”. While an

intrusion could be either physical or remote, this research focusses on remote intrusions.

A remote intrusion is an attack or violation on a computer network from one or more ma-

chines connected to the computer network. Through carefully inspecting network traffic,

such intrusions can be detected.

The main challenge in the detection of intrusions is that in recent years, remote at-

tacks have advanced in stealth and sophistication by becoming more coordinated, dis-

tributed and persistent thus making them more difficult and complex to detect and distin-

guish from normal network traffic. As described in Section 1.1, IDSs, which are respon-

sible for detecting intrusions, have significantly high false positive rates.

The objective of this chapter is to survey the state-of-the-art of intrusion detection

in order to identify specific factors affecting the performance of the IDS, identify the

pioneering and state of the art analytical techniques used to reduce the false positive rate

of an IDS through analysing security alerts and further investigate how these approaches

can be improved on. The rest of this chapter is organised as follows: In Section 2.2,
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the different categories of intrusions are identified with the intention of categorising their

characteristics into attack classes. Section 2.3 and 2.4 introduce the classifications and

components of IDS and identifies their strengths and limitations as well as most recent

potential solutions to these limitations. Finally, Section 2.5 to 2.7 focus specifically on

Signature-based Network IDSs, and details the analytical techniques used in post intrusion

alert analysis of Signature-based Network IDS alerts.

2.2 Intrusion Classifications

As defined in Section 2.1, an intrusion is any set of actions which compromise a computer

network. This definition covers a wide scale of actions. Therefore, prior to reviewing the

state of the art in intrusion detection, it is important to clearly comprehend the scope and

scale of intrusions. During this research study, ten key classification models for categoris-

ing intrusions were investigated. These are detailed in Table 2.1.

The classification model described by Baumerucker et al. [27] provided three mu-

tually exclusive attack classes. Due to its simplicity, this classification model is used to

describe the intrusions covered by this study.

Table 2.1: Pre-existing Classification Systems for Intrusions

Reference Year Classes of Intrusions

Zhou et al. [182] 2010 Stealth scans, Worm outbreaks, Denial of Service.
Baumerucker et al.
[27]

2003 Reconnaissance, Access, Denial of Service.

Cheswick et al. [44] 2003 Information leakage, Stealing passwords, Social engineering, Bugs and
Backdoors, Authentication failures, Protocol failures, Denial of Service.

Hansman and Hunt
[68]

2005 Information Gathering, Physical Attacks, Network Attacks, Trojans,
Buffer Overflows, Worms, Viruses, Password Attacks, Denial of Ser-
vice

Weber [172] 1998 Probing, Interception, Modification, Illegal System Access, Denial of
Service.

Kruegel et al. [85] 2005 Surveillance(reconnaissance), Exploitation, Masquerading.
Stallings [160] 2007 Interception, Interruption, Modification, Fabrication.
Neumann and Parker
[113]

1989 External misuse, Hardware misuse, Masquerading, Setting up subse-
quent misuse, Bypassing intended controls, Active misuse of resources,
Passive misuse of resources, Misuse resulting from inaction, Use as an
indirect aid in committing other misuse.

Denning [52] 1987 Attempted break-in, Masquerading or successful break-in, Penetration
by legitimate user, Leakage by legitimate user, Inference by legitimate
user, Trojan Horse, Virus, Denial of Service.
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2.2.1 Reconnaissance Intrusions

Hutchins [72] and Baumerucker et al. [27] refer to a reconnaissance intrusion as an act that

is carried out to learn about the computer network illegitimately. In work by Cheswick

et al. [44] and Hansman and Hunt [68], such intrusions are classified as information gath-

ering and leakage intrusions. These intrusions mainly involve ping sweeps, scans and

probs which guess and scan entire ranges of potential IP addresses, ports and services in

order to establish which ones are running on the network. For example, an attacker may

have knowledge that the IP network domain 172.16.48.0/20 belongs to an organisation.

In order to discover which hosts are running, the attacker may scan the entire range of

IP addresses 172.16.48.0/20 - 172.16.63.255/20. When one or more hosts are identified,

the attacker may ping the hosts on common ports such as 21, 23, 25, 53, 80. A response

from the host on one of these ports indicate that the host uses FTP, Telnet, SMTP, DNS,

HTTP protocols (respectively). With knowledge of these protocols, one can determine

which applications may potentially be running on the host and which may be vulnerable

to attacks.

Ping Sweeps can easily be automated using tools such as Nmap 1, Metasploit2, and

various sub-tools in pen-testing environments such as Backtrack 3. While this makes it

easy to detect Scans, internal network assets such as servers and workstations may legiti-

mately scan the network for running services, therefore careful observations are required

in order to distinguish a legitimate scan from an illegitimate. We note that physical recon-

naissance activity also exist. However, since these types of activities cannot be detected

by an IDS, they are outside the scope of this research.

In many scenarios, reconnaissance intrusions are early steps of a coordinated pro-

gressive attack to identify the computer network’s weaknesses before later attempting to

exploit these weaknesses.

1Nmap - Free Security Scanner For Network Exploration - nmap.org
2Metasploit - Penetration Testing Software - www.metasploit.com
3BackTrack Linux - Penetration Testing Distribution - www.backtrack-linux.org
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2.2.2 Access Intrusions

These intrusions and attacks involve the compromise of the networks assets such that

access is gained to the asset by an attacker remotely. A close review of the classification

models described in Table 2.1 shows that most intrusions fall under access intrusions.

For example, in the classification system presented by Cheswick et al. [44], password

attacks, buffer overflows, worms, trojans, viruses, and authentication/protocol failures all

fall under access intrusions. Access intrusions exploit vulnerable services or applications

running on hosts or servers. In some cases, such as with worms, trojans and viruses,

an attacker uses the identified vulnerability in the service to manipulate the service into

executing malicious code. Once such code is executed, this could provide an attacker

control over the host. Unlike reconnaissance intrusions, due to the stealth involved in

delivering access intrusions and the large number of variations of many known access

intrusions, these intrusions can be difficult to detect. Section 2.3.2 describes how different

intrusion detection systems discover access intrusions.

According to CERT-UK mid-year 2014 report, more than 76% of 2014’s attacks were

made up of worms (malware), web vulnerabilities, and infrastructure compromise [41].

The most common types of web vulnerabilities are found in browsers such as Apple

Safari, Google Chrome, Mozilla Firefox, and Microsoft Internet Explorer [19]. Some

known services and applications which also contain well-known vulnerabilities com-

monly exploited include: Microsoft Word [57], SQL, Adobe Flash Player, Oracle Sun

Java, Adobe Acrobat Reader, and Apple QuickTime [19].

2.2.3 Distributed Denial Of Service Intrusions

Denial of service intrusions and attacks cause a disruption in the operations of the targeted

network. This normally involves overloading one or more hosts on the targeted network

such that their resources are consumed and the target host can no longer operate effi-

ciently. Modern DoS attacks are distributed denial of service (DDoS) attacks whereby a

number of hosts are controlled remotely by a single attacker to take a victim host off-line.

While DDoS attacks are critical, the CERT-UK report for mid-year 2014 showed that

the number of DDoS attacks are declining [41]. This is most likely because the objective
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of attackers is more concentrated on stealing valuable assets from the network rather than

sabotaging the network’s operations.

A common DDoS is the SYN attack where the TCP handshake is exploited. In this

type of attack, the attacker uses multiple clients to request a service from the targeted

host, this establishes the TCP handshake. None of the clients would complete the TCP

handshake with the target, therefore leaving many open connections on the target which

could exhaust the target’s resources and lead to a DDoS on the target. Other types of

DDoS attacks include High Ping Volumes and Smurf Attacks4.

2.3 IDS Taxonomies
Intrusion Detection Systems (IDS) detect intrusions by monitoring incoming and outgoing

traffic for internal and external attacks. Figure 2.1 shows a sample network and examples

of where an IDS may be physically situated on the network.

Figure 2.1: A Sample Computer Network

When an IDS detects a network packet which is potentially an intrusion activity, the

IDS logs one or more alerts. While an IDS may log an alert which holds a reference

to the network packet that triggered the intrusion, the information contained at the alert

level differs to the information contained at the network packet level. Table 2.2 shows a

comparison between the data logged by an IDS in comparison to packet flows.

To add additional context to the definition of an intrusion, in this study, we identify

two levels of an intrusions. The primary intrusion alerts triggered by an IDS are referred

to as low level intrusions. Low-level intrusions are detected by analysing small numbers
4Datasource: IBM ISS Site : http://www.iss.net/security_center/reference/vuln/Smurf.htm
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Table 2.2: Comparison of Relevant Data Fields in an IDS Alert versus Network Packet
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Intrusion Alert * * * * * * * * * * * *
Network Packet * * * * * * * * * * * * *

of network packets. The second level of alerts are the “global and synthethis alerts”

which are high level alerts as described by Cuppens and Miège [46]. In this research,

we focus on the generation of these high-level global and synthetic alerts but first, we

investigate low level intrusions. In most IDS models such as Snort 5, an IDS consists of

a single key component which is a detection unit consisting of one or more sensors that

monitors the network traffic and triggers low-level intrusion alerts. IDSs can be classified

using characteristics of their detection units. Two classification taxonomies are described.

2.3.1 A Location based Taxonomy

Network Intrusion Detection Systems (NIDSs)

This taxonomy classifies the type of IDS based on the physical location of the IDS on a

computer network. Figure 2.1 shows two types of IDSs - Host IDS (HIDS) and Network

IDS(NIDS). Network A deploys a Host IDS while Network B deploys a Network IDS.

Network Intrusion Detection Systems (NIDSs) are situated at the perimeter of a computer

network, typically, behind a firewall (shown in Figure 2.1). NIDSs sniff packet captures

at the network layer and use either the anomaly detection or signature based approach.

When one or more related packet captures or traffic flows are identified as attacks or

network violations, an alert is raised and logged in an alert log.

Since an NIDS is situated at the perimeter of the network, it provides a detailed log

of the detected malicious activity on the network area it covers. NIDS are very critical to

the security of a computer network and most computer networks have one or more IDSs

5Snort - https://www.snort.org/
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deployed. A range of commercial IDSs include Snort5, Suricata IDS 6, Juniper IDP 7, and

Cisco IDS Sensors8.

A limitation of an NIDS is that due to its location on the network, it monitors a large

amount of network traffic. According to [12, 78, 182] studies on NIDS performances,

the performance of an IDS deteriorates under intense traffic, particularly those that are

centralized. A distributed architecture is less affected by this since the workload is shared

by two or more NIDSs. This performance deterioration leads to increase in false positives

(up to 90%) and an increase in true negatives [22]. An additional key limitation is that

NIDSs do not provide application information such as the applications running on the

target host [27].

Host Intrusion Detection Systems

HIDS reside on network servers or hosts as software applications. HIDSs also inspect

packet captures at the network layer but only packets on its network interfaces therefore

only packets related to the HIDS’s host. This also implies the HIDS host is the target of

the intrusion. HIDSs are suitable for detecting access intrusions targeted on the operating

system and application vulnerabilities of the servers. HIDSs also inspect OS binaries,

system logs and capture failed login attempts [27].

2.3.2 A Technique-based Taxonomy

Signature-based IDS

This taxonomy classifies IDSs based on the detection technique used to discover intru-

sions. Signature-based IDSs (also known as Misuse-based IDSs), use a database of rules

which describe various attacks. Using the database, a signature-based IDS labels one or

more network packets as an intrusion if the network packet(s) match one of the rules in its

database. Signatures are also assigned homogeneous priorities based on the classification

of the attack or violation. In most cases, signatures that identify reconnaissance intru-

sions are assigned lower priorities than those which identify access and DDoS intrusions.

6Suricata - suricata-ids.org/
7Juniper IDP - https://www.juniper.net
8https://www.cisco.com
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A Signature-based IDS can be an NIDS or HIDS.

Reconnaissance intrusions can easily be detected by a Signature-based NIDS without

inspecting the actual payload of a network packet. For example, when using NMAP to

scan a network, NMAP will typically send an Echo message to a host to test if it is

alive. The packet payload is typically empty and the ICMP type value will be 8 (code for

Echo messages) 9. A signature that tests the packet size and ICMP type value as well as

some additional attributes will detect reconnaissance. The primary challenge is that some

legitimate scans may also be categorised as malicious.

Access intrusions and DDoS intrusions can also be detected by Signature-based

NIDSs. Access intrusions can be detected by inspecting the headers for invalid content or

the payload of the packet in search for malicious content such as urls, executable code etc.

DDoS Intrusions can also be detected by evaluating the packet’s flag attributes, content,

ICMP type, ICMP sequence and more.

Anomaly-based IDS

An Anomaly-based IDS can also be NIDS or HIDS. Anomaly-based IDSs learn the nor-

mal state of the network by using statistical analysis to model normal network traffic

behaviour and protocols. When network traffic deviates from what it models as ‘normal’,

alerts are triggered. Attacks come in large variations and “normal behaviour” can be dif-

ficult to model by a statistical or computational model. As a result Anomaly-based IDSs

trigger a large volume of false positives. Due to the high magnitude of false positives,

signature-based IDSs are more widely accepted and deployed in real networks. This was

an issue identified over a decade ago by Axelsson [22] and to date, remains a challenge.

2.4 IDS Correlation Unit

In Section 2.3 it was mentioned that most IDSs consist of a single key component which

is the detection unit. Many IDSs contain additional components for alert management,

9Attack description is based on Snort rule Sid-1-469 : https://www.snort.org/rule_docs/1-469
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Figure 2.2: A Centralised IDS framework with multiple detection units and a single
correlation unit Zhou et al. [182]

reporting and situational awareness. These components allow the detection of the sec-

ond level of intrusions (also referred to as high level intrusions) which are the result

of modern network attacks that evolved from persistent, progressive and collaborated

low-level intrusions. More recently, in order to address this issue, various work such

as [66, 49, 166, 182, 56, 146] proposed an additional component referred to as a correla-

tion unit which is either integrated into the IDS or tightly coupled with the IDS. Figure 2.2

illustrates a framework for an IDS with an integrated correlation unit proposed by Zhou

et al. [182].

The correlation unit transforms the low-level intrusion alerts into high level intrusion

information which allows network security experts to determine the security state of the

network. Alert correlation is based on the notion that “most (high-level) intrusions are not

isolated, but related as different stages of attacks, with the early stages preparing for the

later ones". This theory is supported in work by [119, 72]. In this section, the processes

involved in the correlation unit are detailed.

A taxonomy proposed by Salah et al. [146] (shown in Figure 2.3 and 2.4) classifies

the sub-components of the correlation unit into four key sub-components.
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2.4. IDS CORRELATION UNIT

Figure 2.3: A Comparison of the Correlation Modules proposed by Salah et al. [146]
and Valeur et al. [167]

Figure 2.4: The components of a Correlation Unit as proposed by [146]

2.4.1 Intrusion Alert Pre-processing

This is the first component of a correlation unit. It receives alerts triggered by the Detec-

tion unit of the IDS and is responsible for converting the alerts into a single uniformed

data structure in preparation for analysis. Pre-processing is vital in computer networks

were multiple IDSs of different platforms are deployed across the network. Often, these

alerts are all collected and analysed in a single environment. The CBE (Common Base
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Event) is the standard introduced by IBM10 to use as a format for logging multiple events

from heterogeneous devices in the same log format [127]. Also, MITRE11 proposed CEE

for the same purpose [107]. IDMEF is a common format for unifying alerts from different

IDS models which though yet to be formalised is till vastly used 12.

2.4.2 Intrusion Alert Reduction

This receives alerts formatted by the pre-processing component and filters duplicate and

irrelevant alerts. Debar and Wespi [50] describe duplicate alerts as alerts triggered when

more than one IDS raises an identical alert over the same network packet(s). Irrelevant

alerts are typically redundant and otherwise referred to as false positives because they

refer to either an alert raised on normal network events/packets, an alert caused by the

underlying configurations of the network or simply an uninteresting event. As previously

emphasised in Section 1, IDSs are well known for raising a high volume of irrelevant

alerts [22]. Uninteresting alerts are defined according to the security interest of the net-

work e.g. thus it may not be redundant, but simply uninteresting to the analyst. In many

real systems, the rate of redundant and uninteresting alerts can be as high as 99% hence

alert reduction is a key area of research [22].

2.4.3 Intrusion Alert Correlation

This receives alerts from the reduction component and groups alerts related to the same

network attack into a single higher level event. A wide range of network data sources

provide information for correlating alerts. In addition, a wide range of analytical methods

can be applied for correlating alerts. These are discussed in depth in Section 2.5. By

correlating alerts, insight is gained into the types of attacks being carried out across the

network - whether they are benign or highly severe.

2.4.4 Intrusion Alert Prioritisation

This receives alerts from the correlation component and uses the knowledge gained by

the correlation component to prioritise the alerts such that alerts with higher priorities

10IBM - www.ibm.com
11MITRE - www.mitre.org
12The Intrusion Detection Message Exchange Format (IDMEF): http://www.ietf.org/rfc/rfc4765.txt
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are attended to first by a security analyst. Both the correlation and prioritisation sub-

components of the correlation unit include a broad range of analytical techniques and are

much more complex to perform. Both these sub-components are discussed in more depth

next.

2.5 A Taxonomy for Alert Correlation Types

2.5.1 Introduction

In this section, a new taxonomy for classifying alert correlation units based on the type of

data used is discussed. Based on observation from prior art such as [167], four types of

data sources are commonly applied during the correlation of security alerts.

2.5.2 Alert to Vulnerability Knowledge Correlation

One of the earliest descriptions of this correlation type was provided by Gula [67]. When

an IDS triggers an alert, in particular, an access intrusion alert involving an exploit, it

is impossible to know at the NIDS level if the access intrusion was successful or not.

Correlating alerts to the vulnerability information of the targeted host can provide this

information. Figure 2.5 shows a sample intrusion alert. Lines 7 - 9 of this figure represent

the CVE 13 identifiers, associated with this intrusion that was raised on the targeted host

154.241.88.201. The CVE identifier is a global standardised identifier which represents

the type of exploit. Vulnerabilty scanners provide capabilities for logging all the vulnera-

bilities of a host including their CVE code. If the vulnerability scanner logs contains any

vulnerabilities with the same CVE code then it is highly likely that the exploit on host

154.241.88.201 was successful.

1 [**] [1:2003099:4] ET WEB -MISC Poison Null Byte [**] [Priority: 2]

2 [Classification: access to a potentially vulnerable web application]

3 11/10 -09:57:34.328310 10.2.197.245:33914 -> 154.241.88.201:80

4 TCP TTL :61 TOS:0x0 ID :26947 IpLen :20 DgmLen :346 DF

5 ***AP*** Seq: 0xCE16B56C Ack: 0xB3CC103C Win: 0xB7 TcpLen: 32

6 TCP Options (3) => NOP NOP TS: 1498161 138777430

7 [Xref => http ://cve.mitre.org/cgi -bin/cvename.cgi?name =2006 -3602]

8 [Xref => http ://cve.mitre.org/cgi -bin/cvename.cgi?name =2006 -4458]

9 [Xref => http ://cve.mitre.org/cgi -bin/cvename.cgi?name =2006 -4542]

Figure 2.5: Sample Intrusion Alert from CDX 2009 [148]

13Common Vulnerabilities and Exposures (CVE) [131]
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Roschke et al. [140] proposed a method to improve alert correlation by correlating

intrusion alerts with vulnerability based knowledge. In their work, a comprehensive list of

known vulnerabilities are collected from publicly available vulnerability databases such

as the OSV Database 14. In addition, they extract system properties from hosts on the

network. These system properties include the type and version of OS installed on the

host as well as the type and versions of all applications running on the host. System

properties, intrusion alerts and vulnerabilities in the database are correlated. For example,

they explain that an intrusion alert is less critical if the intrusion the alert represents was

a Linux OS Exploit targeted at a Windows OS host machine. Contrarily, if the intrusion

was a Windows OS exploit it would be more critical.

2.5.3 Alert to Network Knowledge Correlation

This correlation type is used by [132] who proposed a correlation model called M-

Correlator. Typically, this type of correlation adds meta-data to the alerts. For example,

to provide more information about a host under attack, the IP address of the host can be

mapped to more meaningful information about the host such as the type of services run-

ning on host, the value of the host, the geo-graphical location of the host, and the network

user’s who have access to the host.

2.5.4 Alert to Alert Correlation

This section is the broadest, most common and highly useful type of correlation. One of

the most comprehensive standard definitions of alert-to-alert correlation is provided by

NIST (National Institute of Standards and Technology)[81]. In this article, alert correla-

tion is defined as:

“...finding relationships between two or more log entries. The most com-

mon form of event correlation is rule-based correlation, which matches mul-

tiple log entries from a single source or multiple sources based on logged

values, such as timestamps, IP addresses, and event types. Event correlation

can also be performed in other ways, such as using statistical methods or

14Open Source Vulnerability Database - http://osvdb.org/
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visualization tools. If correlation is performed through automated methods,

generally the result of successful correlation is a new log entry that brings to-

gether the pieces of information into a single place. Depending on the nature

of that information, the infrastructure might also generate an alert to indicate

that the identified event needs further investigation" [81].

In the domain of alert correlation an alert generated by an alert correlation system is

a high-level alert. In various research studies, such an alert has also been referred to as a

meta-alert [167], hyper-alert [117], or an alert correlation graph [162, 133].

2.5.5 Alert to Attack Knowledge Correlation

Salah et al. [146] classified this correlation type into three categories namely - Ontology

based correlation, case-based correlation and knowledge based representation. This cor-

relation type is highly related to alert-to-alert correlation and is therefore described further

in Section 2.6.3.

2.6 A Taxonomy for Alert Correlation Techniques

2.6.1 Introduction

A correlation technique provides a definition or function such as f (a1,e) which defines

the correlation between an intrusion alert, a1 and a network event, e such as a vulnerabil-

ity alert, network information, or another subsequent intrusion alert. The output of this

function or definition indicates whether the two entity arguments are correlated or not.

Taxonomies for classifying the methods in alert correlation have been proposed by

Reza and Ghorbani [137], Al-Mamory and Zhang [10], Salah et al. [146], Mirheidari

et al. [106] and many others. Figure 2.6 attempts to incorporate the aspects of each of

their taxonomies. In addition, during this research study, it was discovered that while

visual based correlation is highly active in the alert correlation and security event analysis

domain, it is yet to be included in any of the mentioned taxonomies. Therefore, this

research study enhances the prior taxonomies by including this method. We consider the

pioneering and state of the art alert correlation techniques using the following method - an
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alert correlation technique can be classified as either: similarity based, knowledge based,

sequential based or visual based.

Figure 2.6: Classification of Alert Correlation Techniques based on taxonomies pro-
posed by Salah et al. [146], Reza and Ghorbani [137] and Al-Mamory and Zhang [10]

2.6.2 Similarity Correlation

A similarity based function is used to correlate two entities based on how much their

features are similar. Features may be spatial, categorical, temporal or numerical. Similar-

ity correlations are calculated using rule-sets, weighted scorings, clustering algorithms,

the complement of distance functions such as euclidean cosine, jaccard, mahalonibis dis-

tances and other similarity related metrics. Let us consider two alerts a1 and a2, typically,

these two alerts are correlated if f (a1,a2) = y where 0 ≤ y ≤ 1 and Y > θ : 0 < θ ≤ 1.

θ is a threshold parameter configured according to the requirements of the correlation. If

strict correlation is required, a higher threshold is applied. Figure 2.7 shows an example

log of four alerts with six attributes - intrusion type, source ip, destination ip, source port,

destination port and timestamp. We review the most applied similarity techniques for

correlating such alerts.

1 a1: (03/07 -16:28 , 1.1.1.40 ,26582 , 5.5.5.3 , 25, Policy attempted download of a pdf)

2 a2: (03/07 -16:28 , 5.5.5.3 , 3727, 10.0.0.3 , 25, Policy attempted download of a pdf)

3 a3: (03/07 -17:30 , 1.1.1.43 ,48097 , 5.5.5.3 , 25, Policy attempted download of a pdf)

4 a4: (03/07 -17:30 , 5.5.5.3 , 3730, 10.0.0.3 , 25, Policy attempted download of a pdf)

Figure 2.7: Sample Alert Log Example
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I. Rule based Similarity

Valeur et al. [167], and Debar and Wespi [50] used feature matching rules to deter-

mine two alerts being correlated. For example, two alerts are correlated if they share

the same source IP etc. Other examples of such rules includes: one-to-many where alerts

are grouped if they are from the same attacker targeted at multiple victims, many-to-one

where alerts are grouped if they are from multiple attackers targeted at a single victim,

and one-to-one where alerts are grouped if they are from a single attacker targeted at a

single victim [182].

Others which have used rules to define the similarity between alerts includes work

by Wang et al. [171], Sadoddin and Ghorbani [145] and Li et al. [90].

II. Weighted Scoring Coefficients

Valdes and Skinner [166] as well as Dain and Cunningham [49] first introduced the sim-

ilarity weighted coefficient approach for alert to alert correlation. A set of alert attributes,

A = {α0,α1,α2, ...,αn} are considered : intrusion type, source ip, destination ip, source

port, destination port and timestamp. For any two alerts, the similarity between their ith

attribute - αi, was defined heuristically. For example, in the approach by Dain and Cun-

ningham [49], the IP addresses was based on the common prefix bits which is depicted

in Table 2.3. The common prefix similarity method gives an estimation of the logical

proximity of two hosts.

Table 2.3: IP Common Prefix Length

172.16.113.20 10101100 . 00010000 . 01110001 . 11001111
172.16.115.20 10101100 . 00010000 . 01110011 . 00010100
Common Mask 11111111 . 11111111 . 11111100 . 00000000

22/32 = 0.68

43



2.6. A TAXONOMY FOR ALERT CORRELATION TECHNIQUES

f (a1,a2) = SIM(a1,a2)

=

k

∑
i=1

Wi×SIM(a1i,a2i)

k
∑

i=1
Wi

.

(2.1)

For the time-stamp attribute, Dain and Cunningham [49] used a sigmoid function

where the similarity exponentially decreases as the time difference between the alerts

increases. The general hypothesis is that the wider the time interval between two alerts,

the less likely they are correlated. The time difference between the timestamps of any two

alerts, a1,a2 is denoted as σa1,a2(∆t) and the sigmoid function as 1
1+eα+β∆t where ∆t is the

time difference and α and β define the shape of function. The shape defines how fast or

slow the curve falls and rises. In their work, they hypothesise that different intrusion types

share different time relationships. For example, intrusion alerts of type DDoS will highly

likely occur within a short period of time thus the curve should rise and fall quicker. On

the other hand, intrusion alerts of type, reconnaissance followed by access alerts may

occur within a wider time window, thus the curve should fall slower. A sample sigmoid

curve is illustrated in Figure 2.8.

Valdes and Skinner [166] use a much simpler approach called a step function, in this

case, the curve abruptly drops when the time difference between two alerts, ∆t reaches a

threshold value. A sample curve is illustrated in Figure 2.9.

Browne et al. [35] also hypothesised that the time relationship between alerts related

to certain exploits can be modelled using a regression function : 1+S×
√

M where I and

S are regression coefficients that define the shape of the curve and M is the time difference

between two alerts. In the last decade, such functions have become popular in measuring

the time similarity and correlation between alerts. They have been used in recent work by

Marchetti et al. [102] Lee et al. [89] Shiravi et al. [152] Shiaeles et al. [151].

In weighted scoring coefficients, the overall correlation similarity is typically mea-

sured using a function similar to Equation 2.1. Wi is the weight of the ith attribute and
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Figure 2.8: Time based similarity using Sigmoid function (∆T = 15).

0 5 10 15 20 25 30
−0.5

0

0.5

1

1.5

∆τ

T
im

e 
S

im
ila

rit
y

Figure 2.9: Time based similarity using Step Function (∆T = 15).

SIM(a1i,a2i) is similarity between the two alerts ith attributes.

Others which have used the weighted similarity coefficient includes Zhuang et al.

[184].
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III. Distance Metrics and Clustering approaches

Distance metrics are parameters used in conjunction with clustering algorithms for group-

ing similar objects into clusters. Lee et al. [88] correlates network traffic. In their ap-

proach, hierarchical clustering is used to group network traffic records into the same clus-

ter based on their similarities. They use the euclidean distance metric to calculate the

distance between any two network traffic records. This is defined as:

d(a1,a2) =

√
n

∑
i=1

(a1(i)−a2(i))2 (2.2)

where a1(i) is the ith attribute of a1. More Recently, Hofmann and Sick [71] and Chen

et al. [42] proposed improved similarity techniques using better feature selection and real-

time clustering techniques. In the approach by Hofmann and Sick [71], two alert correla-

tion component’s are considered. An offline component is used to cluster a set of alerts

into M clusters using the Expectation Maximisation Clustering algorithm [51]. The al-

gorithm requires a distribution be defined over the dataset for measuring the variance in

the alert attributes, thus defining a joint distribution which is the product of a multino-

mial distribution for categorical attributes and a Gaussian distribution for the continuous

attributes. In the on-line process, a continuous stream of real-time alerts are received and

each alert in the stream is added to one of the M clusters to which it is mostly related to

in distribution.

A major challenge in applying distance metrics to network traffic and alert analysis

is that most of the data attributes such as IP addresses and ports are categorical. Stan-

dard distance metrics, however, are most suitable for numerical values. In most cases,

heuristics, such as those used in the weighted coefficients sections are applied to deriving

distances between categorical attributes.

IV. Frequent Pattern Mining

Frequent pattern mining has been popularly used to discover alert correlation rules and

attack patterns. Bai et al. [24] applied FP-Growth, a pattern mining algorithm on an alert

database in order to discover frequent attack patterns. Jinghu et al. [75] proposed a more
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effective approach to mining attack patterns from correlated alerts. In their work, an

algorithm DGSpan based on the standard GSpan [176] was proposed for the mining of

frequent subgraph patterns from alerts. Frequent sub-graphs are then referred to as attack

patterns which are used as the basis of generating attack graphs. Others who perform

sequential mining on alert data using various adaptations of association rule mining and

the a-priori algorithm [7] in order to extract attack patterns (i.e. attack scenarios) include

[92, 43, 91, 97, 171] and [82].

The challenge with frequent pattern mining is that frequent pattern mining is com-

putationally expensive both in memory and time [174, 1]. As the size of the dataset to be

mined for patterns increases, the computational time and memory required exponentially

increases [174].

V. Other Mining Techniques

Yang et al. [177] proposed a function for correlating alert features by using a Q-gram

algorithm based on String matching. While it is not quite clear, it is assumed that alert

log entries are treated as strings and the similarity between two alert strings is derived

by extracting all sub-strings of length-3 in each alert string. A value between 0 and 1 is

derived from measuring how similar the substring between the two alerts are.

Challenges in Similarity based Correlation

While similarity methods are simpler to implement, such methods do not capture com-

plex nor hidden correlations. This is typically due to the fact that complex attacks are

stealth and distributed and the intention of the attacker is to go unnoticed. Thus, various

phases of the attack would be carried out across a number of heterogeneous hosts and

the attacker would apply techniques such as IP Spoofing, to mask the relation between

the hosts. In this case, the alerts triggered as a result of the attack may not have similar

features in common.
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2.6.3 Case based Correlation

Some of the earliest pioneering research in alert correlation used case based methods. In

this method, expert knowledge is used in the process of determining whether alerts are

relational or causally correlated by explicitly or implicitly defining scenarios, classes or

instances of attack groups.

Scenarios involve a rule language that defines complex events that may occur in the event

of a type of attack. Each alert type is associated with one or more attack types or intrusion

objectives and alerts are correlated based on how well they fit together into the same

scenario.

Steven Eckmann [161] proposed STATL, a state-transition base attack detection lan-

guage which allows a user to define an attack scenario. A STATL definition represents

an attack scenario consisting of a set of states where a state represents a phase or action

of the attack, and a transition represents a progression in the attack. Each state definition

has an initialisation state and at least one ending state. A set of real-time alerts will be

correlated to a STATL attack definition if they each satisfy a set of conditions.

Cédric Michel [40] proposed ADELE, an XML based attack descriptive language for

describing the phases of various attacks and correlating alerts to these definitions. Their

approach used a set of pre-conditions that must be met for an alert to be correlated with an

ADELE attack description, it also includes a set of post-conditions describing what has

been achieved by the attacker. Other similar correlation methods include LAMBDA and

CAML, both proposed in [48] and [45] respectively. Figure 2.10 shows a snippet from an

ADELE definition of an "NFS MOUNT" attack and Figure 2.11 shows a definition of a

LAMBDA "NFS ABUSE" attack.

The Snippet in Figure 2.10, shows that the ADELE language describes that for the

high level intrusion called "NFS MOUNT" to occur, a precondition is to be satisfied. This

precondition states that the intruder must have remote access on the target. The attack,

defined using the <attack> tag is then described from line 6. In particular, the attack

description states that for this type of attack, the attacker is expected to execute shell

commands using the listed variables.
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Figure 2.10: Snippet from an ADELE definition of an Attack Scenario [40]

Figure 2.11: Snippet from an LAMBDA definition of an Attack Scenario [48]

Similarly to the previous attack description, the attack described in the LAMBDA

snippet (Figure 2.11), states that for the NFS Abuse attack to occur, a precondition of

gaining remote access by the attacker is expected to be satisfied. Thus, the attacker must

first gain remote access before he/she can successfully carry out an NFS Abuse. The

attack itself is then described using a set of events E1−E6. In summary, these events

describe that the attack must first initiate a Remote Procedure Call (RPC) to the target,

add a new user to the target machine, and finally mount the nfs attack. This attack allows

the attacker to read and modify files on the target host.
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In both examples it is observed that case based approaches also use rules to infer the

relationship between events/alerts. For example, the pre-conditions will be represented by

alerts which must correlate with the attack description. These are events that must have

happened in the past before the attack is considered ”successful". Consequences (post

conditions) are events that could occur if the current intrusion being evaluated was “suc-

cessful". Both event types are pre-defined with expert knowledge. Each alert is mapped

to a set of pre-requisites and consequences hence with this information, new incoming

alerts instance can be correlated with past alerts if at least one of the pre-requisites of a

new alert matches one of the consequences of a past alert.

In a correlation model by Ning et al. [116], expert knowledge is used to associate

each alert with a set of pre-requisite and consequence events. Alerts are then correlated

if consequences of an earlier alert implies the pre-requisite of a later alert. The model by

Debar and Wespi [50] also consisted of a component which used consequences for find-

ing causal alerts. A more subtle method was illustrated in the multi-correlation framework

proposed by Qin [133] which used highly abstract pre-requisites and consequences. Sun-

daramurthy et al. [162] proposed a correlation technique similar to pre/post conditions.

In their approach, domain knowledge is used to map alerts and other security events of

interest (referred to as observations) to entities called internal conditions. This is done

in an off-line or training phase and “internal conditions” indicate what the alert could

mean at a high level. Furthermore, each internal conditions was associated a qualitative

measure of confidence i.e. how likely it is that the observation is true. In analysing a

stream of intrusion alerts, alerts are mapped to their respective internal conditions. A set

of alerts are correlated if they share or connect to the same “internal conditions”. This is

also similar to the model by [116]. Tedesco and Aickelin [164] proposed an extension of

the model proposed by [116]. Lin et al. [94] also proposed an extension of the model by

[116]. Other case based methods that involve constructing attack scenarios from known

knowledge include Yu et al. [179], Roschke et al. [141], Fredj [61], Sheyner [150], Wang

[170].
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Challenges in Case based Correlation

Case based approaches were initially highly successful due to the expressiveness of the

attack definitions [161] however today, the volume and variations of attacks would require

a vast number of attack definitions which would be tedious to develop and infeasible to

maintain. Furthermore, developing these definitions for the wide range of IDS platforms

available would be trivial. Since the rapid rate at which new attack scenarios are intro-

duced and older ones deprecated is very high, constant manual effort is required to keep

the knowledge database up to date. For example, if an attempt was made to map the alert

system of a single IDS type e.g. Snort to pre-requisites and consequences, a quick survey

reveals that the Snort community version contains over 2,000 alert types and 35 classi-

fications by default. Thus, expertise would be required to define at the very least 2,000

pre-requisite and consequence definitions. Many large scale networks however would use

multiple IDS types, custom signatures and more premium editions which include many

more signatures. Hence, the number of alert types increases. With defining “pre-defined

scenarios", the same problem applies. In the model by [161], an average of 15 definitions

were developed for three IDS platforms which by now, would most certainly be outdated.

2.6.4 Sequential based Correlation

Sequential correlation methods discover correlated alerts by using temporal based sta-

tistical methods to discover whether an earlier alert, ai triggered a later alert a j. This

inference is modelled by learning from Bayesian inference, Markov models, and various

other statistical approaches.

Bayesian Inference

Bayesian Inference is used to calculate the posterior probability of a Hypothesis in light

of some evidence using Bayes Rule. Given a hypothesis H, and some evidence E ,the

posterior probability i.e. probability of H, given the Evidence, P(H|E) is derived using

Bayes Rule as:
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P(H|E) = P(E|H)×P(H)

P(E)
(2.3)

This inference assumes that the likelihood function P(E|H) is derivable from a set of

observations. A key benefit of applying Bayesian Inference is that it provides a probabilis-

tic approach to combining new evidence with prior beliefs. Bayesian Inference is suitable

in alert correlation and can be applied in numerous ways. Two common approaches have

been observed in prior literature.

One approach is to model the probability that one intrusion alert type will occur

given a previous type already occurred. Consider two alert types e.g. Port Sweep, Buffer

Overflow. Expert knowledge Ning et al. [115] indicates that alerts of type Port Sweep

may follow Buffer Overflow, therefore, two alerts ai,a j occurring in succession where ai

has type Port Sweep and a j has type Buffer Overflow may likely be correlated without

even considering whether they have similar features or not. This knowledge can be learnt

from a set of historical alerts and can be updated using Bayesian inference. In this case

the hypothesis is T (a j) and the evidence is T (ai). Therefore, given M intrusion types

and a set of observations N, Bayesian inference can be used to model at most M×M

dependencies between all M intrusion alert types. This can be represented as a Bayesian

network which consists of a graphical model and conditional probabilities.

This approach is used by Marchetti et al. [102]. In their work, a Pseudo-Bayesian

correlation model which consisted of two components was proposed. The first component

performed historical analysis on a set of historical alerts in order to derive the conditional

probabilities of all the intrusion types. For a historical dataset with M intrusion types, the

correlation model builds a Bayesian network with M ∗M nodes showing the correlation

between each intrusion type (represented as nodes). Consider two intrusion types A and

B. According to [102], the correlation likelihood of an alert of type B occurring given an

earlier alert of type A is calculated as:

P(Corr(A,B) =
1

|corr(A,B)|
×∑(a,b) ∈Corr(A,B)e

(ta−tb)
2

K (2.4)
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Figure 2.12: Qin’s Bayesian-based correlation model [133]

Note that only one alert attribute is considered - time where ta and tb are the times-

tamps of alerts a and b, Corr(A,B) is the set of all pairs of alerts of type A and B that

occurred within a given time threshold of each other, K is a parameter in a Gaussian de-

cay function such that the time correlation value decays exponentially as the difference

between the timestamps increases. Ren et al. [135] also proposed a Bayesian correlation

model that discovered causal relations and dependencies between intrusion alert types.

In contrast to the model proposed by Marchetti et al. [102], more than a single attribute

was used. Kavousi and Akbari’s correlation model extended the correlation model by Ren

et al. [135] in order to optimise the discovery of causal relations process by adding extra

techniques to refine the learnt Bayesian network.

Rather than modelling posterior probability of intrusion types co-occurring, another

approach is to model the posterior probability that two alerts would be correlated given

some evidence is taken into account. This approach is used by Qin [133]. Alongside using

pre-requisites and consequences to correlate alerts, Qin [133] uses conditional probability

which measure the likelihood of various attack objectives given two events are correlated.

In the inference model, the root node represents the hypothesis that two alerts are corre-

lated and each child node represents a type of evidence. This is illustrated in Figure 2.12.

The benefit of the first application of Bayesian Inference in alert correlation is that it

allows capturing causally and relational correlated alert pairs. For example, if P(a j|ai)>

P(a j), then ai has a positive influence on a j occurring. Likewise if P(a j|ai)< P(a j), then
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ai has a negative influence on a j occurring [29]. On the other hand, a disadvantage in the

application of Bayesian inference is that if combined evidence is dependent, the overall

results would be biased.

Other Statistics approaches

Qin [133] also proposed a statistical based correlation engine based on Granger Causality

Test (GCT), for discovering alerts which share a causal relationship. The intuition is that

if an alert ai is the cause of another alert a j, then ai should precede a j. To apply GCT, they

split a stream of alerts into sliding windows and represent each sliding window in a time

series where a time series is an ordered set of time intervals t and the ith entry in a time

series represents the number of alerts that occurred during a given time. Their approach

used two variables X and Y as attributes of the time series representations. Furthermore,

GCT uses statistical functions to test if lagged information on a time-series of variable

X provides any statistically significant information about another time-series variable Y .

The output of the test would indicate if two alerts from either the same time series or

multiple time series are correlated. In their work, they claim that the GCT approach is

more effective than typical correlation coefficients for example Pearsons coeffient. More

recently, the GCT approach is used for alert correlation in work by Maggi and Zanero

[100].

2.6.5 Visualisation based correlation

Visual Analytics is the science of analytical reasoning facilitated by interactive visual

interfaces [165]. Bertin, a theorist in information visualisation defined the theoretical cat-

egories to grouping visualisations namely:- Diagrams, Networks and Maps [30]. More

specifically related to security analysis, [154] identified five core applications for security

visualisations namely:- host/server monitoring, internal/external monitoring, port mon-

itoring, router behaviour and attack patterns. The visual correlation methods in alert

correlation are described with respect to both models.

Network Visualisation

Networks are popular in alert correlation. Visualisations that fall under this category are
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Figure 2.13: VisAlert - A Radial Network Visualisation proposed by Livnat et al. [98]

those where line visual elements can be used to connect a set of other visual elements

together to show a relationship[30].

Livnat et al. [98] proposed VisAlert, a radial network visualisation which allows a secu-

rity analyst to correlate alerts (visually) based on their relation with network hosts. As

shown in Figure 2.13, the visualisation consists of multiple layered circles [Figure 2.13].

The innermost circle contains a set of internal hosts which are being monitored and repre-

sented as grey circles in Figure 2.13. The outermost arcs on the other hand, each represent

an intrusion alert type. An edge between a grey circle representing an intrusion type and

an outer arc representing a host indicates the host has been affected by the intrusion. The

visualisation also uses a set of spiral layers to represent temporal information. In Figure

2.13, these are the spirals between the innermost circle and outer arcs.
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Figure 2.14: Avisa - A radial network visualisation proposed by Shiravi et al. [152]

Shiravi et al. [152] also proposed a radial network visualisation Avisa for alert cor-

relation [152]. Unlike VisAlert which was used to represent alerts from various systems,

Avisa is specifically for the IDS alert types. In this correlation system, the circumference

of the radial is split into 2 arcs. The first arc is used to represent different intrusion types

and the second part is used to represent internal hosts in the network. The lines (i.e. edges

or links) between each type also show that the connected host has been targeted by an

attacker using the connected intrusion type. Similarly to VisAlert grouping techniques

are used to categorise alerts by intrusion types and both are suitable for representing a

high volume of alerts. Both Shiravi et al and Livnat et al illustrated successfully how the

visualisation representations could be used to detect a progressive attacks over a period of

time by comparing the visualisation snapshots at different times.

Other alert correlation visualisation techniques that fall under the network category in-

clude Spiral View [31] and Yang et al’s network visualisation in [177]. An effective

approach to visualising large volumes of network traffic is taken in ClockMap [83].

ClockMap manages a large space of IP addresses and visualises upto 300 million entries

of network traffic collected as NetFlows. The main visual representation is a network

view which provides an overview of the traffic flowing in and out of internal hosts. Each

host is represented as a node that is split into 24 segments. Each of the segments repre-

sents an hour of the day and the colour of each segment represents the intensity of the
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Figure 2.15: ClockMap - A network visualisation [83]

traffic at that hour of the day. Figure 2.15 shows ClockMap.

Diagrams

Bertin defined diagrams as visualisations where correspondences can be established be-

tween all the divisions of one component and all the divisions of another [30]. In simpler

terms, these are visualisations that use two or more axes to represent data relations.

Figure 2.16 shows Snort View, a diagram visualisation proposed by Koike and Ohno

[84] which shows alert correlations by representing the relations between the source IP

addresses of the alerts and the time in which the alerts occurred. It represents this infor-

mation in a two dimensional graph where the y-axis lists the set of source IP addresses

and the x-axis represents an ordered set of time stamps. In alert logs source IPs are usu-

ally one of the most variant attributes therefore there are usually a large amount of unique

source IPs. This quickly presents a challenge in Snort View because it becomes cluttered

as the number of Source IP addresses increases.

A diagram visualisation proposed by Musa and Parish [112] was developed specifically

for analysing Snort alerts . The diagram visualisation was a 3D scatterplot used to show

the relationship between internal hosts and the magnitude of alerts which affected them.

In the scatterplot, the x-axis represents time, the y-axis internal hosts and the z-axis rep-

resents frequencies of a set of alerts at a specific time period affecting a specific internal

host. Alerts were grouped together based on similar attributes such as those that share
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Figure 2.16: Snort view for Alert Correlation developed Koike and Ohno [84]

the same source port and destination IP. Figure 2.17 illustrates Musa and Parish’s 3D

Scatterplot.

Figure 2.17: A 3D Scatterplot visual representation of alerts by Musa and Parish [112]

Other examples of diagram visualisation which have been used in alert visualisation

and correlation include IDSRainstorm [2], IDGraph [136], and NIVA [126].
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Maps

Maps are visualisations which represent geographical locations on a map type visuali-

sation. SATURN Rowlingson et al. [143] uses cartography maps for visualisation alert

correlations by showing the relationship between the origin and destination of alerts. Fig-

ure 2.18 shows an example.

Figure 2.18: Geo-location Map visualisation developed by SATURN [143]

Challenges in using Visual Methods for Alert Correlation

Security devices raise a large amount of alerts and according to [22], a vast amount of

these alerts may be irrelevant thus tagged as false positives. When visualising this data,

a range of challenges need to be addressed. For example, the Volume and the number of

Dimensions in the alert data may exceed the capacity of a visual representation. Typically

alert data may have up to 10 dimensions. Visualisations which represent up to 3 dimen-

sions such as Musa and Parish’s scatterplot may be difficult to interpret when used to

visualise a large amount of data. On the other hand, more effective visualisations such as

Avisa and VisAlert only accommodate two dimensions. Either approach indicates that a

lot of data is unaccounted for in these visual representations. This may lead to perceiving

misinterpreted correlations. The quality of the alert data may also present a challenge.

Due to the large volume of false positives, useful information such as patterns and corre-

lations may be difficult to immediately perceive. As a result it may be more effective to

pre-analyse the data before using visual methods.
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Table 2.4: Summary of Prior and State of the art Alert Correlation Techniques

Classification Technique
Alert to
Vulnerability

Alert to
Network
Knowledge

Alert to
Attack Knowl-
edge

Alert to Alert

Similarity based Ruleset Roschke et al.
[140], Morin
et al. [109], Cup-
pens and Miège
[46], Yu et al.
[179], Morin
et al. [110]

Liu et al. [97] Roschke et al.
[141, 142]

Yu et al. [179], Li
et al. [90], Wang et al.
[171], Morin et al.
[110], Ebrahimi et al. [55]

Weighted metrics
&
Distances

Noel et al. [125] Ahmadinejad and Jalili
[8], Dain and Cunningham
[49]

Clustering
Frequent Pattern
mining Lagzian [87] Sadoddin and Ghorbani

[145], Jinghu et al. [75],
Khan et al. [82]

Others Taha and Ghaffar [163],
Shittu et al. [156], Liu
et al. [96]

Case based Ning et al. [118], Lin et al.
[94], Sundaramurthy et al.
[162], Ning et al. [116],
Ou et al. [129], Zali et al.
[180]

Sequential based Bayesian/Probablistic Cheng et al. [43] Benferhat et al.
[29], Kavousi and Akbari
[79], Marchetti et al.
[102], Du and Yang
[54], Benferhat et al. [28]

Artificial Intelli-
gence

Bateni et al. [26]

Statistical Ou et al. [130], Bateni and
Baraani [25], Li et al. [90]

Visualisation
based

Diagrams Musa and Parish [112],
Xiao et al. [175], Abdullah
et al. [2], Ren et al. [136]

Maps
Networks Yang et al. [177], Shiravi

et al. [152], Ying et al.
[178], Bertini et al. [31],
Du and Yang [54]

2.7 A Taxonomy for Intrusion Alert Prioritisation Tech-

niques

2.7.1 Introduction

In this section, the techniques used to achieve alert prioritisation are reviewed. A mea-

surable priority is assigned to alerts which indicates how severe the attack it represents

may be. This also determines how immediate the alert should be addressed by a secu-

rity analyst or response system. While this is often regarded as trivial, in 2013, it was

reported in Verizon [168] that 84% of attacked organisations contained evidence of the
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attack in their network logs - most of which were not immediately addressed by security

analysts or other response systems. Various reasons exist as to why attacks are commonly

unaddressed, however, a key reason often identified is that the volume of network logs is

so high that it is difficult to identify events related to real threats thus, most evidence of

attacks are ignored. Intrusion alerts are types of evidence of a potential network attack

and according to Axelsson [22] the false positive rate of an IDS (which can be up to 99%),

makes it difficult to identify true positive alerts hidden in the mass. Re-prioritising alerts

based on validating the alerts with respect to real threats could vastly improve the attack

detection rate.

Alert prioritisation is applied in similar domains such as in static code analysis where

a vast amount of false positive alerts are also generated [70].

In the intrusion detection domain, only a few research studies such as [185, 17, 124]

and [114] have been done in this area as most prioritisation techniques are based on heuris-

tics and methods used by vendors of IDSs and alert correlation products. Furthermore,

many aim to tackle the issue of false positives by improving the detection methods of the

IDS either by improving the detection approaches used by an anomaly detection IDS or

fine-tuning the signatures used by a signature based IDS. Prioritisation of alerts is only

one of the many ways to address false positive alerts.

Recently, [16] provided a comprehensive research study on prioritising security

alerts. In their work, three categories of prioritisation metrics - static, vulnerability and

post-incident based prioritisation metrics are presented. The state-of-the-art research in

this section is reviewed and discussed according to this taxonomy.

2.7.2 Static based Prioritisation

This prioritisation technique focusses on assigning a priority value to alerts triggered with-

out knowing if the intrusion represented by the alert was successful. The prioritisation is

solely based on what is known of the intrusion type and its potential effects.

Based on observation, static based prioritisation metrics are commonly applied

to commercial signature based intrusion detection systems such as Snort[139] and is

achieved by assigning a prioritisation value to each signature in an IDS’s configuration.
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The limitations of static priority metrics is that they require extensive expertise such that

in order to assign prioritisations to given intrusion signatures, expert knowledge about the

effect of the intrusion signatures is required. Furthermore, this approach requires frequent

maintainability. As old signatures are deprecated and new ones are recreated, a manual

effort is required to assign new prioritisation to newly created signatures. In addition,

static alert prioritisation results in homogeneous alert prioritisation. This means that all

alerts sharing the same signature will always share the same priority. e.g. in signature

based detection, all alerts of type x will always have priority Px. This however should not

be the case, as other factors such as the value of the asset and the validation of the alert

should be considered.

Other than expert knowledge which is required, it is unknown if research effort can

be applied to improve static prioritisation as there was no prior research identified.

2.7.3 Vulnerability based Prioritisation

As discussed in Section 2.5.2, intrusion alerts are often correlated with vulnerability pri-

oritisation techniques. This focuses on assigning priority values to alerts based on whether

their associated vulnerability confirms that the intrusion represented by the alert was suc-

cessful or not.

In [140], an alert is first correlated to a host’s system properties and vulnerabilities.

Following this, the alert is assigned the priority of the CVE associated with the alert’s

respective vulnerability. In the model by Roschke et al. [140], alerts with less than a

priority value of 5.0 are filtered. The priority is a quantitative value based on the Common

Vulnerability Scoring System (CVSS) which is a standard framework for prioritisation

vulnerabilities [105]. The CVSS scoring ranges between 0 - 10 and are defined as follows.

• Vulnerabilities are labelled "Low" if they have a CVSS score of 0.0-3.9.

• Vulnerabilities will be labelled "Medium" if they have a CVSS score of 4.0-6.9.

• Vulnerabilities will be labelled "High" if they have a CVSS score of 7.0-10.0.
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2.7.4 Post-Incident based Prioritisation

Post-incident based prioritisation focusses on “investigating and evaluating incidents

based on the level of potential risk after incidents occur” [16] . This technique seeks

information about assigning priorities from various sources (including the vulnerability

based prioritisation) before finally combining the information into a single priority value.

Anuar [16] classifies information for this type of prioritisation into: 1) System related

which measures the impact of the intrusion on the targeted network host, system or asset

and 2) Attack related which measures the likelihood that the intrusion is a threat.

System Related

System related metrics measure the impact of an alert if it was successful. A key factor

which determines the severity of an alert is the value of the target which it affects. In

previous work [15, 132], a targeted host’s value can be measured by evaluating what type

of asset the host is and the type of network access the host would give to an intruder if

successfully compromised.

Attack Related

The system related priority metrics indicate how likely an alert is a true positive intru-

sion. Porras et al. [132] first proposed an alert ranking framework, M-Correlator, with

a prioritisation component that consisted of two security metrics: relevance and prior-

ity scoring. Relevance scoring measures the validity of an alert while priority scoring

measured the severity of an alert given the targeted asset’s value. The relevance scor-

ing was computed using validation information derived during alert reduction. Thus, the

higher the likelihood that a targeted host is vulnerable to a given intrusion, the higher the

relevance scoring.

The priority scoring combined an interest score which measured the degree to which

an analyst expressed interest in the attack category the alert belonged. Using a Bayesian

model they determine the overall priority of an alert based on the acquired evidence.

A limitation in their approach is that knowledge from alert correlation is not taken into

account during the prioritisation despite their framework consisting of a similarity based

correlation component.
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A more robust alert prioritisation system is proposed by Alsubhi et al. [15, 14] who

define 7 attack-related prioritising metrics. One of the metrics, called alert relationship

metric measures the degree to which the alert correlates with successive alerts. Using this

prioritisation metric a high value could indicate the alert is potentially a causal alert. The

reliability of the security device which raised the alert is also taken into account.

Zomlot et al. [185] also proposed a prioritisation model for the alert correlation

system they had previously presented [162]. In their work on prioritisation, they use

Dempster-Shafer to assign a degree of belief to alerts received from the correlation sys-

tem which indicated the likelihood of true positivity given the quality of the IDS sensor

which raised the alerts.

Noel and Jajodia [124] proposed an alert prioritising framework which used a differ-

ent metric. The metric calculated the proximity of an alert to a critical asset. Thus, alerts

targeted at assets closer to critical assets had a higher priority over those further away.

Additionally, Porras et al. [132] identified that a metric of Interest which does not fall

under either of these classifications. In their work they describe Interest as a subjective at-

tribute which describes the degree to which an analyst may be interested in a type of alert.

Intuitively, interest levels positively correlate with severity and relevance. An analyst is

likely to be more interested in alerts with high severities and high relevance scores. In the

prioritisation metrics proposed by Valeur et al. [167] and Porras et al. [132], interest levels

were defined by assigning ‘measures of interest’ to different classes of alert types such as

Denial of Services (DoS), read and write attacks, privacy violations etc. Each class was

associated with a manually defined interest value.

2.8 Summary

In this chapter the pioneering as well as state of the art taxonomies for classifying intru-

sions and intrusion detection systems were reviewed. Two levels of intrusions were iden-

tified. Signature and Anomaly detection methods are primarily targeted at discovering

low-level intrusions. However, both detection methods have a high false positive rate and

neither are suitable for detecting high-level intrusions. Detecting a high level intrusion
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from low-level intrusions can increase attack knowledge and can be used to filter false

positive low-level intrusions. Salah et al. [146] proposed a framework for detecting high

level intrusions. The most significant components in this framework are the correlation

and prioritisation components.

Salah et al. [146] and Valeur et al. [167] each provided classification models for

grouping techniques used in the correlation component. Salah et al. [146] identified

the challenges involved in using similarity metrics and case based methods for discov-

ering high-level intrusions. Similarity metrics are often unsuitable because these metrics

only detect correlations when low-level intrusions share similar attributes. Vincent Zhou

et al. [169] however identified that modern attacks (high-level intrusion) are collabora-

tive, stealth and span over a long period of time, thus, a set of low-level intrusions part of

the same attack may not share similar attributes. Case based methods which are domain

knowledge dependent and appear to be more robust require a large amount of expertise

and resources which require constant updates in order to remain effective. Salah et al.

[146] identified sequential in particular probabilistic approaches as the most popular in

correlation research progression.

As described in Section 2.6, probabilistic analysis in alert correlation requires learn-

ing the likelihood of two or more alerts correlating given one or more conditions are

met. Deriving the complete conditional probabilities for a stream or database of alerts

requires considering a large number of variables such as the likelihood of various alert

types correlating, the likelihood of correlation they occur over a period of time, as well as

the likelihood of correlation given based on their attribute values. As more variables are

considered, the complexity of the correlation process increases significantly. Thus there

is often a trade-off with performance and accuracy in many correlation models.

In this thesis we investigate how to build a probabilistic correlation technique which

is optimal in speed and has a high accuracy rate by using similarity metrics to filter out

non-trivial variables during the building of a probabilistic correlation model. This is de-

scribed in details in Chapter 3.
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The second significant component that was identified was the prioritisation compo-

nent. During the critical review of prior art in prioritisation techniques, it was observed

that despite correlation analysis providing a wealth of attack knowledge, very few state-

of-the-art models consider knowledge gained during correlation analysis for prioritisa-

tion. In this research study, we investigate how to improve prioritisation through using

knowledge gained during correlation. This is detailed in Chapter 4.
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Chapter 3

Statistical Alert Correlation for

Discovering Attack Structures

3.1 Overview

The increased size, structure and value of a modern day network has resulted in an ex-

ponential increase in network activity consequently leading to an equivalent increase in

network traffic, network attacks and subsequently, an increase in the number of alerts

triggered by security devices on the network. Hence, many of the correlation techniques

described in Section 2.6, particularly those proposed in earlier years, require improve-

ments in speed and accuracy. Many remote attacks of today are also stealthier and much

more sophisticated. When traditional correlation approaches are used, the correlation

between key phases of an attack may not be detected.

Despite these limitations, researchers such as Zhou et al. [182] identified that security

alert correlation analysis is still a viable solution to gaining attack insight and detecting

attacks. They also identified that the issue of how to effectively increase correlation per-

formance and accuracy remains unsolved and is an open ended research problem.

In this Chapter, our object is to generate high-level global and synthetic alerts through

applying alert correlation. The focus is to improve the rate of attack detection through im-

proving the accuracy of correlation analysis. Three key factors which affect the accuracy

of a correlation model have been identified:
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1. The duration of the attack: More and more remote attacks known as advanced

persistent threats are carefully crafted and well planned [72]. The attackers invest

time in infiltrating the victim’s network without being detected. In this case an

attack could be carried out over several months or years. For example, in 2012 a

large and complex threat called Stuxnet was discovered which infected an estimated

100,000 machines across 150 countries. It was targeted at disrupting the operations

of critical infrastructures which ran industrial control systems. Prior to detection,

the attack was said to have existed for almost a year [57].

For a correlation model to successfully link each of the phases of such an attack,

the correlation model would need to continuously analyse a large dataset captured

over months or years. As described in Section 2.3 of Chapter 2.1, the amount of

data flowing through an average sized network in a single day could be terabytes

in size. Performing such an analysis with a year’s data is almost infeasible if not

impossible.

2. The origin of the attack: Many remote attacks are distributed. In some cases,

the origin of the attack is spoofed. Both issues imply that a single attack may be

carried out using multiple source identities. Take for instance the attack campaign

called GhostNet which successfully compromised over 1,000 computers belonging

to a number of non-governmental organisations. These compromised computers

were used to infiltrate systems from over 100 countries which included systems

from organisations located in the UK. In such cases, a correlation model may not

be able to find the link between the different phases unless expert knowledge is

incorporated into the correlation model. The link between the attacks initialized by

the multiple sources may not be detectable from analysing the data.

3. The phases of the attack: Although the final impact of an attack may be remote,

each of the phases of the remote attack may not be remote. Some of the phases

may be physical attacks and these are not included in network logs. In some cases,

the attacks carried out are zero day and therefore may go undetected by a security
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device such as an IDS (these are known as false negatives). An example of such

an attack is the Hydraq attack(also as Aurora) which was detected to have compro-

mised a major organisation. In this attack, a zero day exploit discovered in Internet

Explorer was used to deliver a Trojan called “Hydraq.Trojan” to the targeted net-

works [59]. In such scenarios, this means if a signature IDS was used as the security

measure on the network, it is highly unlikely to detect the attack. While an anomaly

IDS may detect the attack, it is also highly unlikely. We are therefore presented with

missing alerts i.e. false negatives.

In Section 2.6 of Chapter 2, three categories of correlation methods were identified.

Salah et al. [146] identified Similarity correlation methods as the simplest yet the least

effective approach given they rely heavily on the similarity between alert features in or-

der to discover correlations. However, with respect to the limitations identified above,

when the origin of an attack is distributed or ambiguous, alerts that represent the same

attack may not share the same source or destination addresses therefore similarity cor-

relation methods will miss such correlations. Case based methods being more effective

with finding correlations, require an extensive amount of expertise knowledge to func-

tion. In order to cover the wide range of today’s network attacks and their variations, the

number of required rules to define each attack case would require an infeasible amount

of effort. Therefore, it was concluded during this research study that sequential correla-

tion methods have the most potential for addressing the described limiting factors without

compromising performance. In prior art,[146, 28], this technique is described as fast,

scalable, optimizable, and are suitable for correlating alerts despite missing attack phases.

Both further identified the popularity of sequential correlation models based on Bayesian

Inference due to their transparency, ease of use and ability to handle uncertain correla-

tions.

Our objective is to generate accurate high-level global alerts, however, given the

limiting factors addressed, the research aim in this chapter is to answer the following

question “Can an optimised Bayesian inference correlation model analyse a large volume

of security alert data whilst still providing high quality correlations despite the missing
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data and noise contained in the alert data?”. By achieving high quality correlations we

are subsequently improving how well IDSs detect attacks and through achieving this, it

becomes possible to eliminate false positive alerts. This is in accordance with the primary

objectives of this research study as described in Section 1.2.

Whilst Bayesian inference appears to be an ideal approach, its limitations cannot be

ignored. In Section 2.6, we described a survey on correlation models which were based

on Bayesian inference. From this survey, we identified the following limitations:

1. The time complexity of computing Bayesian networks in alert correlation is depen-

dent on at least three factors - the number of alerts used to train the model, the types

of alerts it is to be trained to correlate, and the attributes of the alerts considered dur-

ing correlation. Let each factor be represented as a variable n,m,k respectively. For

example, the Bayesian approach proposed by Ren et al. [135](described in Section

2.6) required that for a historical dataset of n security alerts to be used for training

where there are k alert attributes their correlation model would use approximately
k

∑
i=1

n!/k!(n− k!)! iterations to discover relevant conditional probabilities before fi-

nally computing a Bayesian network of m2 nodes. Despite, Bayesian correlation

models being scalable, the defined factors for alert correlation can easily increase

the time complexity thus a longer duration of time would be required to train the

model using a dataset with larger values of n,m, and k.

2. Bayesian inference assumes attributes are independent. When considering the at-

tributes of alert data, dependencies may exist between features, for example, at-

tribute http intrusions will often be associated with attribute port number 80. If

both attributes are considered during the learning phase, a Bayesian model would

(by default) assign equal weights to each attribute, which, if heavy dependencies

exist in the dataset would eventually lead to inaccurate correlations. A potential so-

lution is to utilise a single attribute during the model training. The Pseudo-Bayesian

correlation model proposed by Marchetti et al’s which is inspired by Bayes Theo-

rem utilised only one temporal property - time. In comparison to Ren et al. [135],
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Marchetti et al. [102] model reflects a better performance (i.e. lower time complex-

ity). The complexity of their causal relation discovery process can be described

as quadratic as it does not explore other properties. The challenge however is that

“Is a single attribute sufficient?”. Our observation is that too few features result in

false correlations.

3. Incomplete or unrepresentative training data will result in an inaccurately trained

correlation model. Noise is typically a problem in alert data. Training data with a

large noise component would increasingly affect the accuracy of the training pro-

cess.

In this Chapter we aimed to combine Bayesian inference, a sequential correlation

approach with a similarity correlation approach to achieve high quality correlations. This

allows to benefit from both the approaches. Two hybrid models are proposed. The rest of

this chapter is outlined as follows: Section 3.2 introduces the correlation models which are

proposed in this study. Section 3.3 describes the case studies and datasets used to evaluate

the proposed models. Section 3.4 presents the experiments’ results and evaluation of

the correlation models. It evaluates the proposed correlation models against the state-

of-the-art presented. Finally, in Section 3.5 the conclusions are discussed including the

motivation and framework for Chapter 4.

3.2 Proposed Approach: A Temporal Statistical Correla-

tion Model

Two probabilistic correlation models are proposed. Both systems receive a stream of in-

trusion detection alerts as input, discover intrusion alerts related to the same attack(s)

based on prior probabilities and new evidence and output these discoveries in a com-

prehensive data structure. Figure 3.1 illustrates this overall concept. For clarification

purposes, a set of key definitions are provided.
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Figure 3.1: Overview of Correlation Models

3.2.1 Definitions

Alert

An alert is represented as a 6-tuple (α1,α2, ...,α6) where the elements of the tuple are the

attribute values of the alert’s timestamp, source IP, source port, destination IP, destination

port, and intrusion type respectively. These attributes are either text, IP address or of nu-

meric data types. An alert of type Ta is an alert instance which has Ta as the value for α6.

Meta-alert

A meta-alert is a higher-level alert which contains one or more low-level alerts (e.g.

Snort alerts) grouped together during correlation. Figure 3.2(a) shows a set of intrusion

alert tuples labelled a1 to a6. After some form of correlation, a logical relation such as

Figure 3.2(b) is established and is referred to as an “Alert Correlation Graph”.

In prior research [167, 117, 162], a meta-alert has been referred to as a hyper-alert,

hyper-alert graph, alert correlation graph and attack graph. To ensure clarity, only the

terms meta-alert and alert correlation graphs are used in this Chapter. In general, the

term meta-alert is used when describing correlated alerts. As a more technical definition,

particularly when referencing the “graph” data structure of the correlation alerts depicted

in Figure 3.2(b), the term “Alert Correlation Graph” is used.

Alert Correlation Graph

An alert correlation graph is a weighted directed acyclic connected graph G = (V, E)

where V represents a set of nodes and each node v ∈ V represents a 6-tuple low-level

alert. Each edge, evi,v j ∈ E is a connection between two nodes vi,v j which indicate that 1)
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1 a1: (03/07 -16:28 , 1.1.1.40 ,26582 , 5.5.5.3 , 25, Policy attempted download of a pdf)

2 a2: (03/07 -16:28 , 5.5.5.3 , 3727, 10.0.0.3 , 25, Policy attempted download of a pdf)

3 a3: (03/07 -17:30 , 1.1.1.43 ,48097 , 5.5.5.3 , 25, Policy attempted download of a pdf)

4 a4: (03/07 -17:30 , 5.5.5.3 , 3730, 10.0.0.3 , 25, Policy attempted download of a pdf)

5 a5: (03/07 -17:35 , 1.1.1.48 ,53514 , 5.5.5.3 , 25, Policy attempted download of a pdf)

6 a6: (03/07 -17:35 , 5.5.5.3 , 3727, 10.0.0.3 , 25, Policy attempted download of a pdf)

(a)

(b)

Figure 3.2: (a)A set of alert tuples -(timestamp, source IP, source port, destination
IP, destination Port, and intrusion type) before correlation and (b) A meta-alert/alert

correlation graph

vi and v j are correlated and 2) vi represents an alert that occurred before v j. The weight

of the edge depicts the correlation strength between both alert nodes.

3.2.2 Approach One: Correlation using Bayesian Inference and A-

prior Rule Learning

Figure 3.3 illustrates the architecture of the first proposed correlation model.

Figure 3.3: Architecture of the Posterior Correlation Model.

A correlation matrix is built by the off-line correlation component and is periodically

used and updated by the on-line correlation component. The correlation model consists

of two knowledge tables: (i) Correlation Likelihood Table and (ii) Correlation Constraint

Table. A correlation likelihood represents the strength between two alert types Ta and

Tb. More specifically, it refers to the likelihood of an alert of type Tb occurring after an
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alert of type Ta. For any two alert types, Ta and Tb, the correlation likelihood L(Ta,Tb)

is conditional to a constraint being true. The relationship between correlation likelihood

and constraint is represented in Equation 3.1.

L(Ta,Tb) = P(Ta→ Tb|C) (3.1)

A constraint, C, is a rule which captures the conditions under which two alerts are

correlated. For example a constraint such as {timea,b ≤ 20 secs} indicates that both alert

types Ta and Tb are correlated when they occur within 20 seconds of each other. Another

illustration of a constraint is {destIPa,b = 1}, this indicates that both alert type Ta and Tb

are correlated when they share the same destination IP (In other words, the difference

between their destination IP addresses is zero). Table 3.1 illustrates further examples of

constraints encountered.

Constraints Descriptions

{DestPorta,b =1 } The destination port of alert of Ta and an alert of Tb must
be identical

{DestIPa,b ≥=0.5} The destination IP of alert of Ta and an alert of Tb must
be common up to at least the 2nd Octet.

{DestIPa,b ≥ 0.5,
SourceIPa,b ≥ 0.2,
DestPorta,b=1 }

The destination IP of alert of Ta and an alert of Tb must
be common up to at least the 2nd Octet, their source IPs
must be common up to at least the 1st Octet and their
destination port must be identical.

Table 3.1: Examples of Constraints between Alert Types

When two alert types have n : n > 1 constraints between them, the correlation likeli-

hood between the two alert types is the minimum likelihood of the n constraints:

L(Ta,Tb) = min{P(Ta→ Tb|Ci)}n
i=1 (3.2)

where the probability of Ta→ Tb occurring given Ci is defined as:

P(Ta→ Tb|Ci) =
P(Ta→ Tb)∗P(Ci|Ta→ Tb)

P(Ci)
(3.3)
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In Equation 3.3, given a set of historical alerts, P(Ta→ Tb) refers to the number of times Tb

occurs after Ta in the same time window W with respect to the number of times Ta occurs

in that same window. P(Ci) refers to the number of times an alert of Type Tb occurs after

an alert of Ta where both types satisfy constraint Ci with respect to the number or times

Ta occurs in the total historical alert dataset H. Finally, P(Ci|Ta→ Tb) is the probability

of Ci given both Type Ta and Tb occur within the same time window.

Algorithm 1 shows how the off-line correlation component computes all correlation

likelihoods and constraints.

Algorithm 1 Offline Correlation Process for Approach One
1: function OFFLINE PROCESS

2: A = All alert attributes

3: H = Historic Alerts

4: T = All alert types in H

5: T ′ = All pairs of types in T

6: for all Ta,Tb ∈ T ′ do

7: C(Ta,Tb) =

8: GETCONSTRAINTS(A,Ta,Tb)

9: L(Ta,Tb) =

10: min{

11: P(Ta→ Tb|C(Ta,Tb)i)

12: }n
i=1

13: end for

14: end function

1: function GETCONSTRAINTS(C,Ta,Tb)

2: k = 1

3: C(Ta,Tb)← /0

4: Get first order feature set

5: for all ci ∈C do

6: if P(Ta→ Tb|ci)> θ then

7: C(Ta,Tb)←C(Ta,Tb)k ∪ ci

8: end if

9: end for

10: Gets k relevant feature sets

11: k← 2

12: C← /0

13: while (C(Ta,Tb)k−1 6= /0) do

14: C← All k combinations from

15: C(Ta,Tb)k−1

16: for all ci ∈C do

17: if P(Ta→ Tb|ci)> θ then

18: C(Ta,Tb)k ←C(Ta,Tb)k ∪ ci

19: end if

20: end for

21: k+1

22: end while

23: return C(Ta,Tb)

24: end function

Lines 1 to 5 describe the dataset required to initialise the off-line process. A is the

set of alert fields used, H is a set of historical alerts used to train the model which are

retrieved from log files or an alert database, T is a finite set of all values possible for field

type and T ′ is a set containing all 2-permutations of the set T where T ′i represents the ith
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Ta,Tb pair.

For each pair, the function GETCONSTRAINTS generates a set of constraints by com-

puting all possible k-combinations of the attributes in A using a step-wise a-priori ap-

proach (this was inspired by Ren et al. [135]). Firstly, we start with the k−combination

where k = 1. This means we generate constraints of length 1, where each constraint, C

only contains one attribute a ∈ A. For each constraint, we measure the probability that Ta

will occur before Tb given they have the constraint C in common. If the probability does

not exceed a given threshold θ , it is pruned and considered as non-relevant to the pair

Ta,Tb. At the end of each incremental stage, non-pruned constraints are used to generate

K +1 combinations : k <= |A|. This is how the constraint 3 in Table 3.1 is generated.

Each incoming alert a j, received in real-time is analysed against a set of alerts S =

{a1,a2, ...,an} that had occurred within the last Tθ seconds before alert a j. To determine

if a j and an alert in S are correlated, their types are extracted and used to find the relevant

correlation likelihood and constraints (stored in the knowledge repository by the offline

component). Two alerts are correlated if:

1. The correlation likelihood of Type ai and Type a j is greater than or equal to a

threshold, Cθ

2. At least one of the respective constraints of Type ai and Type a j holds true for ai

and a j.

Each analysed historic alert is stored as a node in the database. If the incoming alert

a j is correlated with an existing alert ai, a j is added to the meta-alert which ai belongs to.

Consequently, an edge is added to the meta-alert to depict the correlation.

3.2.3 Approach Two: Correlation using Bayesian Inference and

Weighted Scoring

The architecture of the second proposed correlation model is very similar to Figure 3.3.

Similarly, in order to correlate alerts in real-time, this approach requires that the rela-

tionship between various alert types are learnt in an off-line training model which is pe-

riodically updated. The approach also consists of two key components. In the off-line
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correlation component, a training set is required. The model learns the correlation likeli-

hoods between all alert types. This is done to model the sequence of events that lead to

an attack. For example, the correlation likelihoods model “The likelihood of PortScan in-

trusion alerts co-occurring” or “The likelihood of buffer-overflow intrusions occurring in

sequence with sql-injection intrusions”. The training set, D enables the computation of the

correlation likelihood matrix. Given the training set, D where 1) each entry d ∈ D repre-

sents an alert tuple, and 2) n is the number of unique alert types observed, the correlation

matrix is computed as an n-by-n matrix containing the correlation likelihoods between

every pair of n alert types. Each entry C(Tp,Tq) in the correlation matrix contains the

correlation likelihood between two alert types. The correlation likelihood between two

alert types, Tp,Tq is defined as:

C(Tp,Tq) = P(Tp|Tq) =
P(Tq|Tp)∗P(Tp)

P(Tq)
(3.4)

To calculate C(Tp,Tq), for every alert type pair Tp,Tq all alerts of type p and type q

are extracted. An alert is of type Tp if it has the value Tp for its “type” attribute. In addition

Dp is the set of all alerts in the training set of type Tp. We then define the following:

P(Tq) =
|Dq|
|D|

(3.5)

P(Tp) =
Dp

|D|
(3.6)

P(Tq|Tp) =
# of times successfully correlatedTpwithTq

# of times attempted to correlateTp with Tq
(3.7)

In equation 3.7, # of times attempted to correlate Tp with Tq is the # of times success-

ful and unsuccessful correlations attempted. Two alerts are correlated if their weighted

similarity scoring is above a threshold θ . Given two alerts, ai,a j, their weighted scoring

is computed by combining the following similarities between the alerts:

1. Time Proximity ( f1). This feature represents the time proximity between two alerts.
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It is derived as a sigmoid function such that the time proximity between two alerts

decreases as the time between them increases. In Equation 3.8, t represents the time

difference between two alerts in minutes.

f1 =
1

1+ et ; (3.8)

2. Common Prefix Similarity( f2, f3). This compares the source and the destination IP

of ai to the source and destination IP of a j respectively. It is a measure that indicates

that ai and a j are targets to a similar destination node or/and are from a similar host.

The higher the value, the more likely this statement holds true.

The common prefix length measure is applied for all IP address features. It is the

common prefix bits between any two IPs as shown in Table 3.2.

Table 3.2: IP Common Prefix Length

172.16.113.20 10101100 . 00010000 . 01110001 . 11001111
172.16.115.20 10101100 . 00010000 . 01110011 . 00010100
Common Mask 11111111 . 11111111 . 11111100 . 00000000

22/32 = 0.68

An alternative comparison is also provided. This is the Crossed Common Prefix.

This similarity metric measures the similarity between the source and the destina-

tion IP of ai to the destination and source IP of a j respectively. This feature indi-

cates that a j is a responsive intrusion to ai. For example, if DestIPai == SourceIPa j

it could indicate that ai was a successful attempt to exploit DestIPai . After this

success,a j could indicate that this host is now performing intrusive activities. On

the other hand, a j could be an alert indicating echo activity which was a response

to ai. In this case not only is the above condition satisfied but also SourceIPai ==

DestIPa j . Since f2 and f3 conflict each other, i.e. the relationship between two

intrusions is likely to be one or the other but not both, we select only one of the

features based on the feature with the highest similarity.

3. Port Similarity ( f4). This feature indicates 1 if both alerts share the same destination
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port and 0 if they don’t.

Using the described similarities, the similarity weighted scoring, WS(ai,a j) is de-

rived using Equation 3.9 where F is the set of the similarity measures described above

and ωk is the weight assigned to the kth similarity. The correlation matrix is stored in a

correlation model repository similar to the one shown in Figure 3.3.

WS(ai,a j) =

|F |
∑

k=0
ωk× fk(ai,a j)

|F |
∑

k=0
ωk

(3.9)

Given the knowledge acquired in the off-line process, a stream of alerts received in

real-time can now be analysed. This is performed by an on-line model which attempts

to correlate each alert in the stream to an alert occurring before it. The overview of the

online correlation analysis is illustrated in Figure 3.4.

Figure 3.4: Processes involved in the Online Correlation Component of the Dempster
Shafer Correlation Model.

For each alert in the stream, ai, the model finds a set of potential correlation candidate

alerts PC = {a1,a2,am} such that ∀a j ∈ PC,a j 6= ai. PC contains zero or more previously

analysed alerts which occurred within an acceptable time window of ai. We use Tθ to

denote the acceptable time window. This means that the timestamp of ai and a j must be

no more than Tθ apart. Tθ is measured in seconds unit.

Given PC = /0, this means no potential candidate alerts are found. In this case, a new
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meta-alert is created and ai is added to a new meta-alert. When one or more potential

candidates are found, i.e. PC 6= /0, the process proceeds with feature extraction. For each

potential candidate, a j : a j 6= ai, the similarity weighted scoring between each potential

candidate and ai is computed. This is referred to as evidence 1.

For each potential candidate, a j : a j 6= ai, we also extract their respective correlation

likelihood from the correlation matrix. This is referred to as evidence 2. Note that this

is the prior probability of the alert type of a j given the alert type of ai. This probability

indicates the probability that ai and a j will be correlated without even considering their

weighted scoring. Finally, correlation strength between two alerts is the average of both

evidences.

A configurable correlation threshold, θ is used to determine strong correlations. ai

is correlated to every alert in PC with an overall correlation likelihood that exceeds θ .

Since each candidate alert had been previously analysed, it already belongs to meta-alert.

Let M be the set of all meta-alerts that the members of PC belong to. If |M| > 0 all the

meta-alerts are merged to form a single new meta-alert gm. Otherwise, the single member

of M is denoted as gm. To add a j to gm, a j is added as a vertex in gm and for every alert

in PC that also belongs to gm, the value of C(a j,gm) is assigned to a new edge created

between a j and am ∈ gm for am.

3.3 Datasets

For experimental purposes, a series of network remote attacks are carried out on two

simulated networks. Both experiments and datasets are provided by external institutions.

Our objective is to use these datasets to evaluate how well the proposed correlation models

generate global high-level alerts given that the models were designed to overcome certain

limitation factors in alert correlation. With this, we aim to be able to identify false positive

alerts better and furthermore, gain attack insight. The details of the attacks, simulated

networks and collected data are described next in Section 3.3.1 and 3.3.2.
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3.3.1 Case Study I: DARPA 2000

The DARPA Case Study was a cyber security experiment carried out in March/April 2000

and includes two attack scenarios LLSDOS1 and LLSDOS2. A full evaluation of the

experiment is described by Lippmann et al. [95]. It is publicly available and has been

used for model evaluation in many research studies including - [171, 145, 121, 101, 135].

Therefore it allows us to compare our model with prior-art. In both scenarios, a DDoS

attack is launched against a simulated US government network (referred to as AFB). The

DARPA network architecture [95] of the US government network is illustrated in Figure

3.5.

Figure 3.5: Network Architecture of Simulated US Government from DARPA Case
Study [95]

The DDoS is targeted on a host situated on the simulated government network. In

both attack scenarios, a remote attacker breaks into the network, compromises three net-

work hosts 1) A Linux 2.0.27 machine, a SunOS 4.1.4. machine and a Solaris 2.5.1

machine by exploiting their service vulnerabilities and finally launches a DDoS from the

three hosts. Both attacks are carried out over 5 steps and described in Table 3.3.

LLSDOS1

Table 3.3 illustrates this is a naive DDoS attack. Network traffic logs in tcpdump format

are collected from the Inside Sniffer depicted in Figure 3.5. According to the DARPA doc-

umentation [95], the data was captured over a span of approximately 3 hours on Tuesday,

7 March 2000, from 9:25 AM to 12:35 PM, Eastern Standard Time. The attack occurred
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Table 3.3: Phases of the LLSDOS1 and LLSDOS2 Darpa 2000 Activity

Steps LLSDOS1 Intrusion Activity LLSDOS2 Intrusion Activity

1 IPsweep of the AFB from a remote site Probe of AFB via the HINFO query

2 Probe of live IP’s to look for the sad-
mind daemon running on Solaris hosts

Breakin-to AFB via the sadmind ex-
ploit

3
Breakins via the sadmind vulnerabil-
ity, both successful and unsuccessful on
those hosts

FTP upload of DDoS software and at-
tack script, to break-into more AFB
hosts.

4
Installation of the trojan mstream
DDoS software on three hosts at the
AFB

Initiate attack on other AFB hosts. (re-
peat of step 1 and 2)

5 Launching the DDoS Launching the DDoS

within the documented time window. Since no intrusion detection systems were deployed

on the network, we configured a Snort intrusion detection system in offline mode to parse

the sniffer logs. The default snort configurations are used and all snort default rules were

switched on. From the internal sniffer network traffic logs, 27,145 snort intrusion alerts

were generated. From the DMZ sniffer logs, 2282 intrusion alerts were generated. Since

the offline Snort analysis was performed in 2015 and the actual data was collected in

2000, it is assumed that all phases of the attack would be recognised by the snort IDS

therefore, there should be 0% false negatives and 100% true positives. However, there

maybe a large volume of false positives, the percentage of this is unknown.

LLSDOS2

This is a more stealth distributed denial of service attack. Network traffic logs in tcpdump

format are also collected from the Inside Sniffer depicted in Figure 3.5. According to the

DARPA documentation, the data was captured over a span of approximately 1 hour, 45

minutes on April 16 2000, from 14:45 to 16:28. The attack occurred within the docu-

mented time window. Similarly to LLSDOS1, a Snort intrusion detection system with

default configuration is used to parse the sniffer logs. From the internal sniffer network

traffic logs, 13226 snort intrusion alerts were generated. From the DMZ sniffer logs, 580
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intrusion alerts were generated. It is also assumed that all phases of the attack would be

recognised by the snort IDS.

3.3.2 Case Study II: Northrop Grumman

A cyber range experiment was carried out in 2012 by industrial partners of the British

Telecom Security Practice Research Labs [173]. The cyber-range experiment models a

simulated computer network which comprises of two sub-networks - a main network with

approximately 200 workstation clients and a branch network comprising of 10 worksta-

tion clients. To model real network activities, the experiment utilised comprehensive

scripts for simulating email sending, server activity and content download activities. Fig-

ure 3.6 shows the network architecture.

Figure 3.6: Network Architecture of Simulated Network from Northrop Grumman
Case Study

In total, the cyber-range experiment includes four different attacks on the simulated

network (carried out across four days). Only two of the attack dataset are considered in

this study.
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NGDMZ1

This is an attack to exploit the DMZ web server shown in Figure 3.6. The attacker aims

at compromising the DMZ web server by exploiting its vulnerabilities. The attacker is

situated outside the network. The attack comprised of 4 phases - DMZ Scanning (Casual

& Intense), vulnerability assessment, exhaustive penetration and brute-force audit from

the attacker on the web server. Normal network activity includes server activity such as

email routing from a DMZ mail server to an internal mail server and network pinging

between the DMZ mail and FTP servers.

Table 3.4: Phases of the NGDMZ1 and NGDMZ2 Attacks during the Northrop Grum-
man Cyber-range Experiment

Steps NGDMZ1 Intrusion Activity NGDMZ2 Intrusion Activity

1 Attack1 starts casual port scanning
against Web Server

Attack1 starts casual port scanning
against Web Server

2 Attack1 starts intrusive port scanning
against Web Server

Attack1 starts intrusive port scanning
against Web Server

3 Attack1 performs Nexpose vulnerabil-
ity assessment on Web Server

Attack1 performs Nexpose Exhaustive
Penetration audit on Web Server

4 Attack1 performs Nexpose Exhaustive
Penetration audit on Web Server

Attack1 performs Nexpose webscan as-
sessment on Web Server

5 Attack1 performs Nexpose Bruteforce
audit on Web Server

Attack1 performs Nexpose Bruteforce
audit on Web Server

The data was captured over a span of approximately 24 hours on Tuesday, 2 March

2012, from 00:00AM to 23:59PM, GMT whereby the attack occurred between 11:00AM

to 14:00PM. The logs from the DMZ IDS are to be analysed by the proposed models.

3199 intrusion alerts were generated. The exact number of true positives is unknown.

From inspecting the data, it is known that the false positives are high.

NGDMZ2

This is a repetition of the NGDMZ1 attack with slight modification. The data was cap-

tured over a span of approximately 5 hours on Tuesday, 5 March 2012, from 10:24AM to

15:00PM. The DMZ logs are also collected. 3226 intrusion alerts were generated. The

numbers of false positives are high and true positive rate is unknown.
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3.4 Evaluation
The key objective of this Chapter identified in Section 3.1 was to investigate if attack

detection could be improved by generating accurate global high-level alerts through com-

bining similarity and sequential correlation techniques. The two proposed models are

evaluated to determine if there is improved attack detection and correlation accuracy. The

following metrics are used:

3.4.1 Metrics

False Positive Correlation Rate : For any given dataset, the false positive correlation

rate (FPCR) measures the quality of the correlation model by measuring the number of

incorrect correlations that took place. This is defined as:

FPR =
FP
N

=
# of incorrectly correlated intrusion alert types

# of correlated intrusion alert types
(3.10)

True Positive Correlation Rate : The TPCR evaluates the ability of the system to cor-

rectly correlate alerts. It is defined as follows:

TPR =
TP
P

=
# of correctly correlated intrusion alert types

# of true positive correlated intrusion alert types
(3.11)

Time Complexity : As well as improving the accuracy of correlation models, it was also

mentioned in Section 1 that we aimed to achieve this without compromising the perfor-

mance of the model. For the proposed models, the time taken by the offline and online

processes is measured in comparison to existing models.

Observation : Given that an alert correlation graph represents a set of intrusions that con-

stitute part or an attack, one or more alert correlation graphs should also represent a single

attack. Similarly, an alert correlation graph should represent no more than a single attack

unless two attacks are highly related or similar. Using observation, we investigate how

well each alert correlation graph depicts its corresponding attack.
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3.4.2 Environment

During the experiments, the correlation models were developed in Java and evaluated on

a 64-bit Windows System with an Intel(R)Core i5 CPU processor at 2.40GHz, JVM 1.4.2

and 6GB for maximum heap memory.

3.4.3 Evaluation One - DARPA Case Study

This evaluation is based on the DARPA case study. Both a naive and stealth DDoS attack

is described in Section 3.3. To evaluate the proposed models, The correlation matrices are

generated via the off-line components using the dataset captured from the naive attack -

LLSDOS1, and the stealth attack data - LLSDOS2, is analysed by the on-line components

as a stream of real-time events.

Off-line Results

42 intrusion types were discovered in the LLSDOS1 inside and DMZ logs. Therefore

both correlation models generated a 42-by-42 correlation matrix. Figure 3.7 shows a list

of all the intrusion types.

This evaluation is focussed on model 2. The off-line components of this model

was tested using a range of configurations. Table 3.5 shows the TPCR, FPCR and time

duration taken to generate the correlation matrices given a range of varying parameters,

Tθ and Cθ . The values for both parameters where selected using trial-and-error. In each

iteration an increase in the size of the correlation window, Tθ and Cθ is done by at least

doubling is current value. A larger value for Tθ enables the detection of attacks carried

out over a longer time period and vice versa. Smaller values for Cθ enable the detection

of both naive and stealth attacks. In Table 3.5, Tθ is represented in minutes.

Table 3.5 shows that in Test cases 1 - 3 where a small time window threshold ranging

between Tθ = 1− 10 mins, combined with a high correlation thresholds of Cθ = 0.8,

yielded a better performance (i.e. a higher TPCR and lower FPCR).

Test cases with larger window thresholds (such as such as Test cases 4 - 6 and 10
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Figure 3.7: Intrusion types and categories triggered by Snort IDS for LLSDOS1

- 12 on Table 3.5 yielded a higher false positive rates (FPCR). This is undesirable as it

indicates that particular alert types which should not be correlated were being correlated.

It also indicates that alerts part of multiple attacks are being identified as a single attack.

A possible explanation to this is that many of the alerts in the DARPA LLSDOS1 dataset

share common attributes. To minimise such false positives, the similarity threshold was

set to a higher threshold. When Cθ was set to a higher correlation threshold value, the

correlation strictness increased and a higher value ensured only close related alerts(i.e.

alerts with highly similar features), were correlated.

The time taken to generate the 42× 42 matrix given 3199 intrusion alerts and 42
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Table 3.5: Evaluation of Offline Analysis using LLSDOS1

Model 2
Test case Tθ Cθ FPCR TPCR Time (seconds)

1 1 0.8 0.01 0.77 192
2 5 0.8 0.01 0.77 353
3 10 0.8 0.01 0.78 356
4 20 0.8 0.02 0.76 497
5 40 0.8 0.02 0.76 444
6 180 0.8 0.02 0.77 815
7 1 0.4 0.05 0.64 242
8 5 0.4 0.08 0.69 372
9 10 0.4 0.11 0.70 381

10 20 0.4 0.16 0.70 394
11 40 0.4 0.23 0.70 554
12 180 0.4 0.49 0.70 761

intrusion types was O(42× 3199) for Model 2. While this indicates a large number of

iterations, the analysis took approximately 7 minutes. The top 10 correlations of Model 2

are shown in Table 3.6.

Table 3.6: Top Correlation generated by Model Two Offline Correlation using LLS-
DOS1 dataset

Model 2
Top Correlated Pairs Ta,Tb P(Tb|Ta)

ICMP-INFO Destination Unreachable Port Unreachable ,
ICMP-INFO Destination Unreachable Port Unreachable

0.84

ICMP-INFO PING,ICMP-INFO Echo Reply 0.61

ORACLE describe attempt , SHELLCODE x86 NOOP 0.73

DNS excessive queries of type ANY - potential
DoS,RSERVICES rsh root

0.70

TELNET login incorrect,WEB-CGI db2www access 0.36

NETBIOS NT NULL session,POLICY failed FTP login
attempt

0.31

DNS large number of NXDOMAIN replies - possible
DNS cache poisoning,NETBIOS NT NULL session

0.63

RPC portmap Solaris sadmin port query udp request,RPC
sadmind UDP PING

0.26

WEB-CGI redirect access,SNMP AgentX/tcp request 0.56

Table 3.6 shows the correlations derived by Model 2 using the configuration Tθ =

10mins and Cθ = 0.8. The first two pairs show correlations between intrusion types that
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capture the reconnaissance activity. These correlations depict that many of the host IP ad-

dresses and ports swept by the attacker were in-existent. It also depicts that over 50% of

the ip addresses pings discovered hosts. Following this, the remaining lines depict correla-

tions between intrusion types that reflect a series of exploits of services on the discovered

hosts and multiple failed attempts to logon to the discovered (and potentially exploited)

hosts. These correlations are consistent with the attack phases described in Section 3.3.

For Model 2, a total of 103 correlations between intrusion types were discovered (includ-

ing the 10 illustrated in Table 3.6). 80 correlations were true positive correlations while

23 were false positives thus, using the FPCR and TPCR metrics defined in Section 3.4, a

1% FPCR and an 78% TPCR was achieved.

Comparison of proposed approach to prior State of the art

A comparison between the proposed model and an existing model proposed by Ren et al.

[135] is performed. While more recent research such as [79] exists, the model proposed

by Ren et al. [135] provides a more comparable platform due to the well documented

design and their choice of evaluation methods. This existing model was also evaluated

using the same LLSDOS dataset. Both Figure 3.8 & 3.9 shows that both the proposed

models in this research have lower false positives rates and lower true positive rates re-

spectively. While a lower false positive rate is desirable, the true positive rate indicates a

lesser performance. A possible reason is that the truth table used to evaluate the dataset

was not appropriately labelled since this was done manually based on the our knowledge.

In most cases, majority of the alerts were expected to be correlated. It is likely that this is

not the case.

Online Results

In the on-line component, the alerts from scenario LLSDOS2 are correlated using the

correlation matrix and constraints generated from the off-line component with the config-

uration described in Line 3 of Table 3.5. A total of 238 graphs were generated. Figure

3.10 shows an alert correlation graph generated by the on-line component.

89



3.4. EVALUATION

Ren et al Model One Model Two
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.8: FPRC from LLSDOS1 Dataset
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Figure 3.9: TPRC from LLSDOS1 Dataset

3.4.4 Evaluation Two - NG Case Study

Similarly to the DARPA analysis, to evaluate the proposed models, the correlation matri-

ces are generated via the off-line components using the dataset captured from the naive

attack - NGDMZ1, and the stealth attack data - NGDMZ2, is analysed by the on-line

components as a stream of real-time events.
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Figure 3.10: Alert Correlation Graphs generated from the DARPA LLSDOS2 Activity

Off-line Results

32 intrusion types were discovered in the NGDMZ1 attack. Therefore, both correlation

models generated a 32 by 32 correlation matrix. Figure 3.11 shows a list of all the in-

trusion types. The off-line components of both models were also tested using a range

of configurations for Cθ and Tθ . The results are shown in Table 3.7. Tθ is measured in

minutes and the Time column represents the duration of the analysis process in seconds.

Table 3.7 shows that high quality correlations were achieved particularly by Model

2. Similarly to the DARPA evaluation, it is observed that for Model 2, test cases 1 - 6,

there are better quality correlations i.e. high TPCR and low FPCR when Cθ is set to a

high value in comparison to Model 1. It was also observed that the window Tθ did not

affect the accuracy of the model nor the time taken to analyse the data.

Given the consistency with the DARPA evaluation, it was concluded that this was

as a result of both networks being simulated and of small to medium size, therefore,

the similarity between the attributes in the network traffic and security alerts were also
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Figure 3.11: Intrusion Types and Categories Triggered by Snort IDS for NGDMZ1

high. Hence, using a high correlation threshold minimised the false positive correlations

and correctly identified the true positive correlations. The scope of the attacks were also

limited i.e. the same attacker attacked a limited number of hosts.

Table 3.8 shows the top correlations produced by both the proposed models using the

configurations - Tθ = 30 mins and Cθ = 0.8. Overall, Model 2 shows a higher accuracy

rate with lower false positives and higher true positives, this is shown in Figure 3.12 and

Figure 3.13

Online Results

Using the same configuration - Tθ = 30 mins and Cθ = 0.8, 165 alert correlation graphs

were generated by Model 2.

Fig.3.14 shows a set of alert correlation graphs generated by Model 2. Due to the fre-

quent communication between servers on the network, many ICMP Ping and Reply alerts
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Table 3.7: Evaluation of Offline Analysis using NGDMZ1

Model One Model Two
Test case Tθ Cθ FPCR TPCR Time FPCR TPCR Time

1 1 0.8 0.50 0.80 74 0.02 0.88 20
2 5 0.8 0.50 0.80 89 0.02 0.91 52
3 10 0.8 0.50 0.81 121 0.02 0.91 62
4 20 0.8 0.50 0.81 134 0.02 0.91 70
5 40 0.8 0.59 0.81 116 0.02 0.90 77
6 180 0.8 0.61 0.99 142 0.02 0.92 95
7 1 0.4 0.55 0.77 79 0.05 0.85 19
8 5 0.4 0.55 0.81 93 0.07 0.83 50
9 10 0.4 0.58 0.81 98 0.14 0.74 63

10 20 0.4 0.58 0.81 108 0.29 0.61 71
11 40 0.4 0.58 0.81 159 0.45 0.53 79
12 180 0.4 0.74 1.00 181 0.66 0.58 99

Table 3.8: Top Correlation generated by Model One and Model Two Offline Correla-
tion using NGDMZ1 dataset

Model 1 Model 2
Top Correlated Pairs Ta,Tb Constraints P(Tb|Ta) P(Tb|Ta)

ICMP-INFO Destination Unreachable Port
Unreachable,ICMP-INFO Destination Unreachable
Port Unreachable

SourcePort=1,
DestIP=1,
SourceIP=1,
DestPort=1

1 0.77

SHELLCODE x86 inc ecx NOOP,WEB-MISC HP Open-
View NNM getnnmdata.exe CGI hostname parameter
buffer overflow attempt

SourcePort=1,
DestIP=1,
SourceIP=1,
DestPort=1

1 0.69

SHELLCODE x86 inc ecx NOOP,WEB-MISC HP Open-
View NNM getnnmdata.exe CGI ICount parameter buffer
overflow attempt

SourcePort=1,
DestIP=1,
SourceIP=1,
DestPort=1

1 0.60

WEB-MISC Microsoft ASP.NET information disclosure
attempt,WEB-MISC Apache Tomcat allowLinking URI-
encoding directory traversal attempt

SourcePort=1,
destSourceIP=1 1 0.50

POLICY attempted download of a PDF with embedded
Flash over smtp,POLICY attempted download of a PDF
with embedded Flash over smtp

SourcePort=1,
DestIP=1,
SourceIP=1,
DestPort=1

0.5 0.84

WEB-MISC Microsoft ASP.NET information disclosure
attempt,WEB-IIS WEBDAV nessus safe scan attempt

SourcePort=1,
destSourceIP=1

1 0.50

ATTACK-RESPONSES 403
Forbidden,ATTACK-RESPONSES
Invalid URL

SourcePort=1,
DestIP=1,
SourceIP=1

1 0.47

were triggered by the IDS. This resulted in many frequent alert correlation graphs such

as Figure 3.14(b) which capture the Ping-Reply behaviour between servers. These graphs
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Figure 3.12: FPRC from NGDMZ1 Dataset
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Figure 3.13: TPRC from NGDMZ1 Dataset

typically contained an average of 2 - 4 alerts occurring between 2 - 3 minutes of each

other. Fig3.14(a) illustrates an alert correlation graph which captures the behaviour of an

outsider sending suspicious email to a client residing on the network. After studying the

network topology and configurations it was discovered that packets were routed from the

outsider to the DMZ mail server and from the DMZ mail server to the internal mail server

where the mail content becomes available to the local client. Many graphs (although with

variations of size and noise) captured this network behaviour. Finally, Fig3.14(c) shows

the alert correlation graph of the real attack launched by the attacker on a DMZ web

server. Most of the attacks in this graph were targeted to exploit web vulnerabilities.
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3.5 Conclusion

At a high level, this objective of this chapter was to generate accurate global alerts us-

ing alert correlation to depict network attacks more efficiently. In order to achieve this,

this chapter aimed to address the following question: “Can an optimised Bayesian infer-

ence correlation model analyse a large volume of security alert data whilst still providing

high quality correlations despite missing and ambiguous alerts?”. Two sequential based

correlation models were proposed. Both used feature similarity combined with Bayesian

inference to detect more high quality correlations i.e. lower false positive correlations and

higher true positives. The models were tested on two datasets, both of which contained

short duration attacks. Both correlation models consisted of two parameters, Tθ and Cθ

which were used to optimise correlation accuracy.

For Model 1, a-priori frequent pattern mining was applied to detect frequent patterns

referred to as constraints from the training data. The constraints combined with Bayesian

probabilities were used to determine the correlations between intrusion types in the off-

line process. The objective behind this approach was to explore automated rule generation

and to discover more specific correlations. Model 1 was inspired by a prior existing

model, [135]. With respect to the models performance, the results inTable 3.6 and Table

3.8 showed that in the tested environment, the time taken to analyse approximately 2,000

alerts was on average 44 seconds. With respect to the models accuracy, the results showed

that there was a high true positive rate, this indicating that despite the volume of the

dataset and noise in the dataset, correct correlations were still detected. The results also

showed that there was also a high false positive rate during certain configurations of the

model. The observation was that this high false positive rate was due to the generation

of irrelevant frequent patterns which were later used in determining if two intrusion types

were correlated. It is suggested that for this approach to be highly successful, rules could

be validated or pruned using expert knowledge or additional constraints. In conclusion,

Model 1 provides high quality correlations despite noise or missing data however, it also

provides a high false positive rate and this is undesirable.
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For Model 2, weighted similarity scoring was integrated into the process of con-

structing the Bayesian network during the off-line process. The objective behind this was

to provide a faster approach than Model 1 with the likelihood of a reduced false positive

rate. This was successfully achieved. The results in Table 3.6 and Table 3.8 showed that

its speed performance was similar to Model 1 however, with respect to the accuracy, a

significantly lower false positive rate was achieved.

In comparison to prior art, we have shown that our models have a better false positive

correlation rate but slightly lower true positive correlation rate. The shows that in some

cases, a trade-off in performance and accuracy must be made. This partially answers the

question we aimed to address. While Bayesian inference based correlation models can

provide high quality correlations, a trade-off between accuracy and performance may be

required.

The on-line processes of both models was evaluated using observations. Both models

showed the ability to detect alerts part of the same attack by grouping them into alert cor-

relation graphs. In the on-line analysis, both models generated over 200 alert correlation

graphs. While this shows a data reduction of approximately 85%. The major challenge

in the on-line process is that given the large number of alert correlation graphs generated,

a security analyst may still need support in identifying which alert correlation graphs are

relevant. In this Chapter, a manual approach was used to investigate the alert correlation

graphs and to determine which alerts were interesting and non-trivial.

While the initial research question was answered, another issue was raised. This

relates to how to successfully determine which alert correlation graphs reflect real attacks.

During the experiments detailed in this Chapter (Section 3.4.3 and 3.4.4), relevant graphs

were manually selected based on a number of factors such as: the number of alert nodes

contained in the graph, the network hosts involved, the duration of the graph, and the

interval rate between each alert. Chapter 4 investigates how to convert such factors into

a qualitative priority metric for identifying attack related graphs and filtering non-trivial

graphs in order to eliminate false positive alerts.
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Chapter 4

Temporal and Probablistic Outlier

Metrics for IDS Alert Prioritisation

4.1 Overview

As was discovered in Chapter 3, correlation analysis successfully detects events related to

the same attack. It was also discovered that given intense network traffic, a large number

of alert correlation graphs each representing one or more attack scenarios may be detected.

In order to determine which attack scenarios and alert correlation graphs are non-trivial,

prioritisation analysis can be performed. Due to the large volume of security alert data

to be prioritised, it would be infeasible, error prone and resource consuming to fulfil the

prioritisation process manually, therefore automated approaches are used.

Salah et al. [146] described a prioritisation component as one which performs sever-

ity and attack analysis (Fig.4.1). Similarly, Anuar [16] described that the priority of a

security alert can be determined by factors which measure - (1) the impact of the security

alert on the affecting network and (2) the likelihood that the alert is a real threat. While

the first factor has little relevance to research studies and is subjective to the network’s

assets, determining whether one or more security alerts are likely to lead up to an attack

remains a challenge in the domain due to ambiguities involving the network, the attacker

and the attack itself.

In this Chapter, a set of new metrics for prioritising security alerts are explored,
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Figure 4.1: Details of a prioritisation component as proposed by [146]

proposed and evaluated. The prioritising metrics are based on the three factors that were

considered earlier in Chapter 3. We defined these factors as key factors to measuring the

complexity of an attack.

1. The duration of the attack: In Chapter 3, alert correlation graphs which were de-

veloped over various time durations were discovered. In the evaluation described

in Section 3.4.4 of Chapter 3, it was observed that at least 40% of alert correla-

tion graphs represented network ping-reply graphs activity. These alert correlation

graphs spanned over shorter time periods in comparison to other alert correlation

graph types. Following this observation we propose the following question,“Would

a metric which measures the duration of an attack be useful for measuring the com-

plexity of an attack? For example, the longer the duration of the attack, the higher

the metric value?”.

2. The origin of the attack: In Chapter 3, we also observed that alert correlation

graphs could be used to determine the origin of an attack given that alert corre-

lation graphs contained alerts triggered from internal network hosts and/or external

network hosts. While this would require a small amount of network knowledge, by

measuring this property, we aim to answer the following: “Would a metric which

measures whether the attack is internal or external be useful for prioritising secu-

rity alerts?”.

3. The anonymity of an attack: Finally, it was observed that the anonymity of an
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attack was difficult to characterise from the alert correlation graphs. This is mainly

because no knowledge of the attack an alert correlation graph represents is known.

It is unknown until user validation if the alert correlation graph is itself a false

positive correlation. In this Chapter, an approach for potentially measuring the

anonymity of an attack is explored.

Anuar et al. [18] described five factors for measuring the likelihood of an attack,

namely - exploitability, severity, sensitivity, similarity and frequency. An observation

made during our research study was that the exploitability, severity and sensitivity were

commonly used factors for defining prioritisation metrics, for instance, these factors were

considered in work by [18, 17, 16, 14] and [15]. These factors are derived from known net-

work knowledge such as knowledge contained in the vulnerability and topology databases

(illustrated in Figure 4.1). It was also observed that despite the vast research on alert corre-

lation, knowledge learnt during alert correlation is rarely used to prioritise alerts. During

the literature survey carried out, only few researchers such as [15, 14, 166] considered

alert correlation knowledge when prioritising IDS alerts.

In [18], the exploitability, severity, and sensitivity metrics of an alert were measured

by using network knowledge while similarity and frequency [18, 17, 16] were measured

based on statistical analysis. For each alert, a heuristic function for IP address and port

similarity was used to derive the similarity measure by computing the degree to which

a given alert’s IP addresses and ports were similar to another alert’s IP addresses and

ports. For each alert, the frequency factor was measured as the number of times the alert’s

type occurred. In their work, they combine the values from each factor using Analytic

Hierarchy Process (AHP) to determine an alert’s overall priority. Njogu et al. [122] and

Nguyen et al. [114] also used the frequency factor alongside a set of other metrics. In the

prioritisation approach proposed by Njogu et al. [122], four metrics were combined using

fuzzy logic to determine the overall priority. In the approach by Nguyen et al. [114], a

decision tree classifier was used to combine the values. When tested on real data, they

recorded a 90% accuracy rate. Their model successfully identified and filtered 70% of the

false positive security alerts.
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A more robust alert prioritisation system is proposed by Alsubhi et al. [15, 14] who

defines seven metrics for prioritising alerts. One of the metrics, an alert relationship

metric is highly similar to the similarity metric. The alert relationship metric prioritises

causal alerts by measuring the degree to which an alert correlates with successive alerts

and similarly to the approach by Njogu et al. [122], they use a fuzzy logic to combine the

output of the seven metrics.

While each of these prioritisation approaches combine a set factors, we argue that

the attack information gained using the frequency and similarity factors is minimal and

in some scenarios misleading. For example, it is misleading to assume alerts with high

frequencies should have higher priority. A well known example of an alert type with

high frequency but low priority is the Port Scan. Such an alert type often occurs in high

magnitude without indicating an immediate threat. In addition, both the similarity and

frequency metrics can be classified as similarity based correlations. Thus, they are very

basic metrics. In Chapter 3 we identified these metrics as not being able to quantify alerts

which are part of stealth attacks.

In this Chapter we address how to effectively use the knowledge learnt from corre-

lation analysis to enhance prioritisation analysis. The significant difference between the

prioritisation metrics and prior art is that we focus on measuring a new set of properties

which can mainly be observed when alerts are correlated into groups (i.e. alert corre-

lation graphs). More specifically, we measure temporal relationships between alerts, IP

relationships and anomaly alert patterns. Since these three metrics characterise elements

from the duration, origin and type of attack, we hypothesise that these metrics combined

will provide better insight to an attack in comparison to the alert similarity, frequency

and relationship metrics. Four new metrics are proposed based on features extracted from

alert correlation graphs. Another major difference between the methods proposed in this

chapter and prior art such as similarity and frequency metrics is that our proposed metrics

are measured from the results of temporal correlations. In Chapter 3, it was identified that

temporal correlation are more likely to capture the relationship between alerts that reflect

a stealth attacks. Therefore, we also hypothesise, that if performed effectively, these new
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prioritisation metrics can correctly prioritise alerts from stealth attacks. The results from

Chapter 3 showed that correlating alerts into alert correlation graphs provided a better

overview of a potential attack. The correlation also showed that alert correlation graph

features such as their size, structure, content and temporal properties were useful in deter-

mining which alert correlation graphs were interesting and which were non-trivial. Each

of these proposed metrics are novel.

The rest of this chapter is organised as follows: Section 4.2 describes the imple-

mentation of each metric and Section 4.3 describes the datasets and case studies used to

evaluate the metrics. In Section 4.4 & 4.5, the metrics are evaluated and their effectiveness

is addressed.

4.2 Technical Approach: Novel Alert Prioritisation Met-

rics

Figure 4.2 illustrates the process of the prioritisation metrics. Given a stream of n alert

correlation graphs G = {G1,G2, . . . ,Gn}, four priority metrics are derived for each graph,

Gi. Using a user defined threshold, graphs with lesser priorities are filtered out and the

highly prioritised graphs are presented for validation. The four new prioritisation metrics

are described next.

4.2.1 Attack Duration Metric (ADM)

The ADM is a metric with a value between 0 and 1 that accounts for the duration of an

attack. In Section 3.2 of Chapter 3, related alerts are structured into an alert correlation

graph. Alert correlation graphs with wider time ranges indicate intrusive activity occur-

ring over a longer period of time. An alert correlation graph with an ADM value closer

to 0 indicates it occurred over a short time period while an alert correlation graph with an

ADM value closer to 1 indicates it occurred over a longer time period.

A sigmoid function is used to derive the ADM. Let the time-range of an alert corre-

lation graph, G be represented as Rt(G) = |t0− tn| where t0 is the timestamp of the earliest

alert in G, tn is the timestamp of the last alert added to G, and the unit measure for Rt is
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Figure 4.2: The Proposed Prioritisation Process
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Figure 4.3: Sigmoid Function for Attack Duration Metric and Attack Interval Metric.

minutes. As Rt(G) increases, the ADM value of G increases as a function of the sigmoid

curve in Figure 4.3. In the function, α modulates the steepness of the curve. By default,

α is selected experimentally and determines how quickly the y−axis increases. When

Rt(G)) increases beyond a point, the ADM value nears its max i.e. 1 and does not exceed

1. β is also selected experimentally and represents the point on the x−axis which meets

the middle of the y− axis (i.e. 0.5). For example using the value β = 20 as shown in
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Figure 4.3, the y−axis of the graph centres at 20 minutes thus indicating that two alerts

with a time difference of 20 minutes would produce an ADM of 0.5.

4.2.2 Attack Interval Metric (AIM)

This metric accounts for the interval between the steps of the attack. For example, shorter

intervals could indicate quick attacks such as DDoS while longer intervals could indi-

cate more stealth attacks. Although longer intervals do not take precedence over shorter

interval, a graph with a smaller interval rate is assigned a lower value and vice versa.

The AIM can provide vital information. For example, an alert correlation graph with

a high ADM and a low AIM indicates that a large volume of related alerts occurred rapidly

between each other over a long period of time. This is a common attribute of a severely

extreme DDoS attack.

AIM(G) =

n

∑
k=1

ti

n
(4.1)

The AIM of an alert correlation graph, G, is the mean time interval between the

alerts in an alert correlation graph. For explanatory purposes, let all the alerts in an alert

correlation graph be placed as an ordered set of alerts, A = a0,a1, ...,an. It(G) will be

the set of all the time intervals between the alerts such that t = t0, t1, ..., tn−1 where ti =

ai+1(t)−ai(t). The interval rate between a set of related events has been previously and

successfully used in prior art [32]. The mean interval (measured in minutes) is used to

derive a value between 0 - 1 by using the same sigmoid function as above (Figure 4.3).

4.2.3 Outgoing Rate Metric (ORM)

This metric accounts for the origin of the attack. Typically, attacks may be internal or

external. Domain knowledge is required to use this metric. For each alert correlation

graph, FM is the ratio of intrusions triggered by internal hosts to the total number of

intrusions in the alert correlation graph. This value also ranges from 0 - 1. Therefore,

lower values, indicate most intrusions are triggered by external attackers, a value of 0.5

indicates there is a consistent communication between internal and external hosts (which
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Figure 4.4: Outlier Example

could further indicate command and control activity or ping-reply activity) while values

closer to one indicate internal attacks.

Let the set of alerts triggered by internal hosts in a single alert correlation graph, G

be denoted as A′(G) : A′ ⊆ A(G) i.e. A(G) is a set of all the alerts contained in G. then:

FM(ACG) =
|A′(G)|
|A(G)|

(4.2)

4.2.4 Outmet

The Outlier Metric (Outmet), accounts for the unusualness of the attack depicted by the

alert correlation graph.

The Outmet of an alert correlation graph is measured using the local outlier factor

algorithm proposed by Breunig et al. [34]. Given a set of alert correlation graphs, the

more an alert correlation graph differs to the set, the higher its Outmet priority. Figure

4.4 illustrates a set of alert correlation graphs represented in Euclidean space based on

their similarities to each other. g3 represents an alert correlation graph which shares com-

mon attributes with many other alert correlation graphs. Therefore, this graph as well

as the cluster surrounding it will have lower Outmet priorities. On the other hand, g1

and g2 differ to many of the observed correlation graphs, therefore they have higher Out-

met priorities. Given an alert correlation graph database, GD, the Outmet for each alert

correlation graph G, is computed over 5 steps:
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1. ∀Gi ∈GD : Gi 6= G, derive the structural distance between G and Gi. The structural

distance focusses on the differences between two graphs nodes and edges. For

simplicity purposes, this ignores the temporal order of the alerts in the graph as

well as the structure of the graph. In addition, it is only concerned with the types of

alerts contained in the graphs and whether they have any in common. Thus, given

two alert correlation graphs G1 and G2, the structural distance is defined using the

Jaccard similarity coefficient [134]:

StructDist(g1,g2) = 1− g1(V,E)∩g2(V,E)
g1(V,E)∪g2(V,E)

(4.3)

Where V and E are the nodes and edges contained in a graph.

While other distance metrics for computing graph distances such as Graph Edit Dis-

tance [134], Cosine Similarity [134] were considered, for simplicity and efficiency

purposes, the Jaccard distance proved effective.

2. ∀Gi ∈ GD : Gi 6= G, derive the kth reachability distance between G and Gi. Gi is an

alert correlation graph in the graphset, GD that is not G and kdist(G) is the distance

between G and it’s kth nearest neighbour.

rdk(G,Gi) = max{kdist(G),d(G,Gi)} (4.4)

3. Derive the local density of G: This is the inverse of the average reachability distance

of G which is defined in Equation 4.5. Nk(G) is the set of alert correlation graphs

that are less than k distance to G.

lrd(G) := 1/

∑
Gi∈Nk(G)

rdk(G,Gi)

|Nk(G)|
(4.5)
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4. Derive the local outlier factor, lo f (G):

lo f (G) =

∑
o∈Ng

lrdg

lrdg j

|Ng|
(4.6)

5. Derive the Outmet from the normalised local outlier factor.

nlo f (g) =
lo f (G)

max{lo f (Gi)}|GD|
i=0

(4.7)

In the next section a set of case studies which provide datasets that require alert

prioritisation are described and in Section 4.4 the described metrics above are evaluated

by measuring how effectively the datasets are prioritised.

4.3 Datasets
To evaluate the prioritisation metrics, a set of alert correlation graphs which require pri-

oritisation are required. Therefore, we use the output from the correlation mode,l Model

2, described in Section 3.2.3. We also use two of the priorly described datasets - DARPA

2000 and Northrop Grumman I described in Section 3.3.1 and 3.3.2 respectively. A sum-

mary of how alert correlation graphs are generated from these datasets is given:

Using the DARPA 2000 dataset, the IDS alerts from the LLSDOS1 and LLSDOS2 at-

tack scenario (described in Section 3.3.1) are first analysed using Model 2 (also described

in Section 3.4.3) with configuration parameters: Cθ = 0.5 and Tθ = 180mins. During the

on-line analysis, 54 alert correlation graphs are generated. The generated alert correlation

graphs are to be analysed and used in the evaluation of the proposed prioritisation metrics.

Using the Northrop Grumman I dataset, the IDS alerts from the NGDMZ1 and

NGDMZ2 attack scenario (described in Section 3.3.2) are also analysed using Model

2 with the same configuration parameters as above. During the on-line analysis, 30 alert

correlation graphs were generated. The generated alert correlation graphs are to be anal-

ysed and used in the evaluation of the proposed prioritisation metrics.

In addition to the above datasets, we present an additional case study and dataset in
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order to improve the validation process. This is described next in details.

4.3.1 Case Study III: Northrop Grumman II

The Northrop Grumman case study introduced in Section 3.3.2 consisted of four attack

scenarios where only two were described and used to evaluate the correlation models.

This Chapter uses a third attack scenario to evaluate the proposed prioritisation approach.

Figure 4.5 illustrates the network with respect to this scenario and Table 4.1 shows the

steps of the attack.

Figure 4.5: Network Architecture of Simulated Network from Northrop Grumman
Case Study with respect to scenario NGINT

NGINT

The network was captured over a span of approximately 24 hours on Tuesday, 6 March

2012, from 00:00AM to 23:59PM, GMT whereby the entire attack (i.e. Steps 1 - 17 of

Table 4.1) occurred between 11:00AM to 14:00PM. From the knowledge of the attack

it is assumed Step 1 - 3 and Step 15 - 17 of Table 4.1 and will not be traceable from

the intrusion logs. This is because Steps 1 - 3 depict an internal attack on the branch

enterprise which is outside the scope of both IDS. Similarly Steps 15 - 17 are an attack

against the firewall outside the scope of the IDS.

The logs from the Internal IDS and DMZ IDS were collected. A total of 1,280 alerts
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were triggered by the Inside DMZ and 369,129 by the DMZ. A total of 370,409 intrusion

alerts were generated. Aside the main attack other network activities also occurred within

the time-frame. Normal network activity also triggered benign alerts.

Table 4.1: Phases of the NGINT Attack During the Northrop Grumman Cyber-range
Experiment

Steps NG Internal Attack Activity (NGINT)

1 Backtrack started on Branch client 10.1.0.201 (insider)
2 Quick scan from 10.1.0.201 of local subnet
3 Intense scan from 10.1.0.201 of local subnet
4 Quick scan from 10.1.0.201 of 10.0.0.0/24
5 Quick scan from 10.1.0.201 of 10.0.2.0/24
6 Unsuccessful attempts to break into 10.0.0.3 and 10.0.0.21 from 10.1.0.201

7 Unsuccessful attempts to get MUSER9 to open malicious email from
geek@coldmail.com with reverse backshell payload in attached PDF

8

Spearphishing attempt via email to MUSER9 from geek@coldmail.com con-
taining weblink to malicious website at Attack1 with multiple exploits. The
attempt was unsuccessful because the malicious website recognized as “dan-
gerous” by AV (Microsoft Forefront)

9 Successful spearphishing attempt via email to MUSER9 from
geek@coldmail.com with link to malicious website at Attack1

10 Malicious site exploits just one vulnerability which was not detected by AV
(Microsoft Forefront)

11
Attack1 gained full control over MUSER9’s computer (5.5.5.4) and collected:
1) system information and running processes 2) password hashes and SSH keys
and 3) screenshot of MUSER9’s desktop

12 Download files (boot.ini) from MUSER9 to Attack1
13 Attack1 attacker obtains admin rights on MUSER9

14 Attack1 explores MAIN intranet using MUSER9’s computer as pivot and ob-
tains access to MFILE file share

15 Several short DOS attacks from Attack2 against 4.4.4.2.
16 DDOS from traffic generator against 4.4.4.2
17 DDOS from traffic generator against 4.4.4.2

These alerts are analysed by the correlation Model 2 described in Section 3.2.3 using

configuration parameters: Cθ = 0.5 and Tθ = 30mins. 1995 alert correlation graphs were

generated. At least one alert correlation graph should contain one or more alerts that

depict the main attack. The generated alert correlation graphs are to be analysed and used

in the evaluation of the proposed prioritisation metrics.
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4.4 Evaluation

4.4.1 Metrics

Our objective is to illustrate the usefulness of the proposed metrics in filtering out false

positive alerts. Similarly to the evaluation in Chapter 3, the false positive and true positive

evaluation metrics are used. We define these metrics with respect to prioritisation.

True Positive Rate (TPR)

A good performance will indicate a higher TPR. This is measured as:

TPR =
TP
P

=
# of correctly prioritised alerts

# of true positive alerts
(4.8)

False Positive Rate (FPR)

This compares the false positive rate in the alert dataset before and after applying the

proposed prioritisation metric. A good performance will indicate a lower FPR after the

metrics have been applied. The false positive rate is measured below:

FPR =
FP
N

=
# of incorrectly prioritised alerts

# of prioritised alerts
(4.9)

Environment

During the experiments, the prioritisation models were developed in Java and evaluated

on a 64-bit Windows System with an Intel(R)Core i5 CPU processor at 2.40GHz, JVM

1.4.2 and 6GB for maximum heap memory.

4.4.2 Evaluation One: Darpa 2000 LLDOS2

13,806 alerts were generated. A large volume of alerts with type“DNS response for rfc”

were generated. We noted that this alert type was due to snort mis-configurations therefore

a manual process was used to eliminate these alert types. this reduced the alert data to 856

alerts. In addition, 54 alert correlation graphs were generated from 856 alerts. In order

to provide a detailed analysis of each metrics performance, each proposed metric is first

used to prioritise the alert correlation graphs prior to using Outmet to combine the priority

values into an overall priority.
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Figures 4.6 - 4.9 show timeseries graphs of the alerts expected to be highly prioritised

over time against the alerts which were actually prioritised by each metrics. A highly

prioritised alert is an alert with a prioritisation metric greater than Pθ . Let P(ai) be the

priority of an alert ai then:

P(ai) =


High Priority f (ai)≥ Pθ

Low Priority Otherwise
(4.10)

The function f (ai) represents the priority value achieved from prioritising an alert

(ai) with either the ADM, AIM, FM, Outmet metrics. In this evaluation, Pθ is set to 0. In

each graph, the 3 hour attack is split across 21 time-windows of length 5 minutes where

the denial-of-service attack occurs at Time T20.

Results and Discussion

The DARPA attack occurred over a short time period, consisting a series of persistent

exploits and finally a denial of service attack both carried out by a set of compromised

hosts on the victim’s network. The outgoing rate metric is expected to highly prioritise

alerts which represent attacks that are carried out by internal network hosts. In Figure 4.6,

it is shown that the outgoing rate metric’s actual prioritised alerts are consistent with the

expected prioritised alerts with a True Positive Rate of 92%. For a comparative study, the

frequency metric (described in Section 4.1) is also used to prioritise the same alerts. The

results from the frequency priority metric is shown in Figure 4.7. This metric focusses

on highly prioritising intrusion types that occur in large volumes therefore, only the alerts

which represented the denial of service attack were highly prioritised. It is shown the

actual and expected priority of the alerts is consistent with a True Positive Rate of 70%.

The ADM and AIM metrics had a lower performance in the DARPA attack scenario

analysis. Both the ADM and AIM focus on prioritising alerts which represent intrusions

carried over longer periods of time with wider time intervals. Since the DARPA attack

occurred over a short period of time i.e. approximately 3 hours, the attack durations and

interval rates observed in the alert data were equivalently low (as expected). Figure 4.8,
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Figure 4.6: Performance of Outgoing Rate Metric on DARPA Dataset showing Actual
vs Expected Priority Distribution
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Figure 4.7: Performance of Attack Frequency Metric on DARPA Dataset showing
Actual vs Expected Priority Distribution
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Figure 4.8: Performance of Attack Duration Rate Metric on DARPA Dataset showing
Actual vs Expected Priority Distribution

shows the results from prioritising the alerts with ADM. The AIM failed to prioritise any

alerts as high priorities.

The priorities from ADM, AIM and FM are combined using Outmet. Figure 4.9

shows the overall priorities. Outmet successfully prioritised all 781 alerts correctly. It

was observed that Outmet produced a higher performance because it identified all alerts

as true positives. While it produced a high true positive rate of 100%, a false positive rate

of 8% was also produced.
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Figure 4.9: Performance of Outmet on DARPA Dataset showing Actual vs Expected
Priority Distribution

4.4.3 Evaluation Two: Northrop Grumman 2012 DMZ Attack

Figure 4.10 shows a timeseries graphs of the alerts expected to be highly prioritised. Sim-

ilarly to the evaluation of the DARPA dataset in the previous Section (Section 4.4.2), an

alert is highly prioritised if the value assigned to it is greater than 0.5. These alerts repre-

sent the attackers intrusion attempts to exploit the Web Server by persistently attempting

a range of web exploits on the targeted network host. In each figure, the 24 hour attack

is split into time-windows of length 5 minutes where the web exploit activity occurs be-

tween T100−T150. In order to provide a detailed analysis of each metrics performance,

each proposed metric is first used to prioritise the alert correlation graphs prior to using

Outmet to combine the priority values into an overall priority.

Results and Discussion

In this scenario, the attack duration, attack interval, outgoing rate and frequency metrics

failed to prioritise the appropriate alerts. This is likely as a result of this attack being more

stealth than the attack in the evaluation described in Section 4.4.2. In this scenario, the

attacker persistently attempts a range of buffer overflow and executable code techniques
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Figure 4.10: Expected Priority Distribution for Northrop Grumman II DMZ Attack
Dataset
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Figure 4.11: Actual Priority Distribution for Northrop Grumman II DMZ Attack
Dataset

which only triggered a low volume of alerts. This caused the intrusion alerts to bypass

the frequency metric. In addition, the attacker uses an off-site host thus the outgoing rate
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metric fails to prioritise the alerts triggered by the attacker. The attacker also performs the

web exploit attack within short time periods of 1-2 minute bursts, bypassing the attack

duration or attack interval metrics.

Outmet however, achieved a True Positive Rate of 96.8% by successfully prioritising

the alerts as expected. It was observed that Outmet successfully prioritised the web-

exploit alert correlation graphs because they were anomalies in comparison to many other

alert correlation graphs in the dataset which represented benign network activity. This is

shown in Figure 4.11. It was also observed that a set of alerts which were expected to

have low priorities were highly prioritised. In this scenario, all alerts related to the web-

exploit were grouped into the same alert correlation graph. Thus while a TPR of 96.8%

was achieved, a false positive rate of 12.3% was also achieved.

4.4.4 Evaluation Three: Northrop Grumman 2012 Internal Attack

This attack consisted of high network activity where only 0.25% of the alerts generated

depict the attack described in the case study.
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Figure 4.12: Prioritisation Results using Outgoing rate Metric on the Northrop Grum-
man II Internal Attack Dataset
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Overall, the outgoing rate, attack duration metric and Outmet prioritised approxi-

mately 150,000, 2000 and 3000 alerts respectively. This resulted in a true positive rate

of 78%, 38% and 57% respectively. The number of alerts assigned high priorities by the

outgoing rate and attack duration metrics greatly exceeds the ideal quantity. This resulted

in a high false positive rate of 98% for both outgoing and attack duration metric. The false

positive rate for Outmet was significantly lower at 1.98%.
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Figure 4.13: Prioritisation Results using ADM on the Northrop Grumman II Internal
Attack Dataset

A Comparison between Outmet and Prior Art

In this scenario, the comparative frequency metric which was used in work by [16] failed

to prioritise any alerts correctly. It however, prioritised a large number of irrelevant alerts

resulting in a true positive rate of 0% and a false positive rate of 53%. This aligns with

the argument in Section 4.1 that alerts representing stealth attacks may not occur in large

volumes and that furthermore, alerts which occur in large volumes are not always real

threats.

From the results, Outmet has the most accurate performance. More specifically, Out-

met showed a low false positive rate and a high true positive. Similarly to the scenario in
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Figure 4.14: Prioritisation Results using Outmet on the Northrop Grumman II Internal
Attack Dataset

Section 4.4.3, it was observed that the alerts which represented the attack in this scenario

were aggregated into 3 - 5 alert correlation graphs. Since the attack occurred over a short

time period and was performed by an external attacker metrics such as the interval metric

and outgoing rate metric were not suitable.

4.5 Conclusion

In this Chapter a novel statistical prioritisation technique for quantifying the temporal and

spatial characteristics of an attack were proposed for discovering malicious and attack be-

haviour. The first metric, attack duration metric (ADM) was based on a sigmoid function

which assigns high priority values for a set of related alerts or events occurring on the net-

work over a long period of time. Similarly the attack interval metric used in conjunction

with the ADM provides additional information of the volume of an attack. Both metrics

were proposed to work effectively for detecting denial of service activity. Next, a heuris-

tic metric for detecting potential botnet activity or any attack which involves hosts on the
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victim networks as the source of the attack was proposed and finally, a prioritisation met-

ric based on probabilistic outlier analysis was proposed. This metric, Outmet categorises

anomaly network activity as malicious attack behaviour.

The metrics were individually tested on datasets collected from three case studies

consisting of denial-of-service attacks, a brute force web-exploit and a stealth host com-

promise. In general, it was observed that the most effective metric was Outmet which

showed the ability to prioritise a range of alerts representing different attacks. The least

effective metric was the interval rate metric. In addition, the metrics were compared to

a simple pre-existing metric. The results showed that in stealth attacks, the proposed

metrics in this chapter outperformed the pre-existing metric.

A potential bottleneck to the prioritisation process is that it is highly dependent on

alert correlation and the generation of a set of alert sequences of graphs which each fully

or partially depict an attack. Given poor quality correlation, the prioritisation process may

be significantly affected negatively.

In summary, the primary objective of this Chapter was to prioritise intrusion activity

in order to (a) eliminate false positive intrusion activity and (b) to reduce the challenges

involved in gaining attack insights due to the volume and complexity of intrusion activity.

Chapter 5 takes a different approach to improving attack insights. In Chapter 5, intrusion

activities are grouped into clusters in order to provide attack discoveries. In order to

achieve this, a partition-based clustering approach for grouping intrusion activity into

clusters in real-time is explored. In addition to providing attack information, this approach

is aimed to be used as an aid in the discovery of attack patterns which are commonly

observed in known and unknown network attacks. The primary objective is to be able to

gain further attack insights.
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Chapter 5

Real-Time Clustering of Attack Pattern

Graphs for the Discovery of Related

Attack Behaviour

5.1 Introduction

Ning et al. [115] identified the importance of developing techniques to deal with the over-

whelming information contained in a set of alert correlation graphs. In the previous Chap-

ters(3 and 4) it was shown that an intense volume of intrusion activity on a network could

result in a high volume of complex alert correlation graphs each potentially containing

a high volume of nodes and high node interconnectivity. Since such a large volume of

data is difficult for a system analyst to interpret, a prioritisation approach for filtering

trivial graphs was proposed in Chapter 4. However, as the results showed, false positive

filtering could lead to the filtering of valuable graphs mislabelled as trivial. In order to

avoid this issue, a different approach to addressing the overwhelming information is pro-

posed in this Chapter. Generally, organizing data into clusters reveals internal structures

of the data. In this Chapter, it is hypothesised that the application of cluster analysis will

be suitable for organising similar alert correlation graphs into groups. This could also

successfully aid in discovering consistent characteristics which are commonly observed

in specific attacks, for example “which attack features best describe a denial-of-service
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attack or worm propagation?”.

Ning and Xu [120] first explored the potential of clustering alert correlation graphs

by using Graph Edit Distance to perform basic similarity analysis between graphs. How-

ever, in the last decade since their approach was proposed, very little research has been

done in clustering alert correlation graphs. This is likely as a result of the difficulties

presented in graph clustering. Aggarwal et al. [5] identified that the underlying structure

of graphs introduces major challenges during cluster analysis due to the fact that many

traditional clustering algorithms which are suitable for vector based objects require sta-

tistical measures such as vector sums, euclidean distances, probability distributions and

averages. While these can be easily derived for vectors, these cannot be easily extracted

from graphs.

In this Chapter, two approaches were investigated for performing cluster analysis

on alert correlation graphs. Firstly, adapting the graphs to fit traditional clustering al-

gorithms was considered. Bunke and Neuhaus [37] described in their work that while

most traditional clustering algorithms are purpose built for vector structures, by convert-

ing graphs to vectors, many clustering algorithms become applicable. Thus, a method for

embedding Graphs in Vector Spaces by Means of Prototype Selection which was stud-

ied extensively in [37, 138, 36] was explored. In this approach M graphs are reduced

to M N−dimensional vectors where N represents a uniformed dimension for describing

M graphs. This dimension reduction can be described as a multi-dimensional scaling of

the M×M distance matrix between M graphs into an M×N matrix. While their work

shows that clustering using graph embedding in vector space outperforms some tradi-

tional approaches, we identified that graph embedding in vector space will not scale over

an evolving stream of graphs. Since alert correlation is a real-time application, a key ob-

jective in this research is to be able to simultaneously perform alert graph clustering in

real time.

Thus, in the second approach, adapting a real-time traditional clustering algorithm

to fit the graph data was considered. Prior art [37] showed that traditional clustering algo-

rithms such as KNN classifiers which use minimal statistics can be successfully adapted
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to the graph domain.

The contributions of this Chapter are as follows: Firstly, we focus on extending an

algorithm - "CluStream" [3] for clustering an evolving continuous stream of data to suit

the graph domain. This Chapter also explores the possibility of using alert correlation

graphs to build attack patterns. An attack pattern is a generic representation of an attack

that commonly occurs in specific contexts [108]. Fernandez et al. [58] describes that

attack patterns provide a coherent benchmark for identifying attacks on the network. We

hypothesise that a cluster representative is a potential attack pattern.

In the next section the adaptation of the CluStream algorithm is described. We ex-

periment with two datasets - Northrop Grumman data and a competition challenge, we

measure the quality of the clusters and how the clusters evolve over a period of time. Fol-

lowing, the proposed clustering analysis described above, we propose a heuristic method

to extracting attack patterns from a set of clustered alert correlation graphs.

5.2 Proposed Approach: Online Clustering of Alert Cor-

relation Graphs

Figure 5.1 illustrates the clustering process. The graph refining and clustering process

are described in this section. The graph refining component receives a stream of alert

correlation graphs from the correlation model described in Chapter 3.

5.2.1 Graph Refining

Given a stream of alert correlation graphs which each represent one or more attack sce-

narios, we propose a method to automatically extracting the attack pattern of an alert

correlation graph. The attack pattern is a “more abstracted/generalised version of the

alert correlation graph” which provides an easier approach to comprehending the attack

the alert correlation graph represents. In this proposed approach, a more abstract repre-

sentation of an attack pattern learnt from alert correlation graphs is developed.

Attack Steps

Let an Attack Pattern Graph be represented as pG = (pV, pE, pI). In the set of vertices,
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Figure 5.1: Clustering Process

pV in the attack pattern graph, each vertex pv∈ pV represents a step in an attack and each

step is represented by a type of intrusion. We revisit the definition of an alert as a 6-tuple

where α6 is the intrusion type of the alert. Let an alert correlation graph aG = (aV,aE)

be considered. The set aV is an ordered set of all 6-tuple alerts which are contained in

aG. Then, an attack pattern graph vertex pv is created for every one or more consecutive

alerts in aV with the same source IP, target IP, target port and intrusion type.

While a vertex in an attack pattern is only represented by the intrusion type, the

remaining attributes are used to aggregate and label the edges. For every alert vertex avi

in an alert correlation graph there is a bijective mapping to a vertex, pvi in its respective

attack pattern graph. Therefore for every edge aeavi,av j there is a mapping to the source

vertex pvi and the target vertex pv j. Two edges are aggregated if they share the same

endpoints. The set pE contains all aggregated edges from the alert correlation graph.

In an alert correlation graph each edge eavi,av j is labelled based on a quantitative

measure of the strength of the correlation between avi and av j. In its respective attack

pattern graph, each edge is labelled using a qualitative measure of the similarity between

its end points. Each edge label is a 3-tuple (S1,S2,S3) where Si is a piece of information
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made up of a qualitative measure and an attribute. The source IP, target IP and target port

are the attributes considered where S1 is associated with source IP attribute, S2 with the

target IP and S3 with target port. In addition, three quantitative measures are considered.

1. Identical: Si is given the value “identical” if the ith attribute value for both end-

points are identical. This is represented by concatenating the qualitative value with

the attribute such as “Identical target IP”, “Identical source IP” or “Identical target

port”.

2. Similar: If the ith attribute value for both endpoints is not identical, however, the

similarity is greater than a defined threshold such as 0.5, it is said that both end-

points have a “similar” attribute. Thus, S1,S2,S3 would be represented as “similar

target IP”, “similar source IP” or similar target port” respectively. We use the simi-

larity metrics defined in [157].

3. Different: If however, the ith attribute value for both endpoints is less than a defined

threshold, the different qualitative measure is used.

Attack Features

In an attack pattern graph pG = (pV, pE, pI), pI is the set of useful attack information.

This describes the conditions under which the attack pattern may be observed. Temporal

and relevant attacks related features, in particular, those used to define the priority metrics

in Chapter 4 are automatically extracted from the respective alert correlation graph of the

attack pattern graph.

5.2.2 Clustering Similar Attack Patterns

Task 1: Given a set of attack pattern graphs, G = {g1,g2, . . . ,gn}, the initial task is to

split G into k Clusters, C = {C1,C2, . . . ,Ck} where k ≤ n such that Ci ∈C contains only

similar attack pattern graphs.

The process is initialised with an adaptation of the k-means++ algorithm [20]. In

order to partition G into k clusters, two key steps are performed:
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Random initialisation of centroids

Let M = {M1,M2, . . . ,Mk} be the set of centroids in the cluster space. Each cluster, Ci

is represented by a centroid, Mi. Given G, k attack pattern graphs from G are selected at

random using the k-means++ seeding technique to fill the set M.

Iterative member and centroid selection until convergence

This step is iteratively performed until k-means++ converges. In this implementation of

k-means++, k-means++ is said to converge when the selected centroids no longer change.

The iterations until convergence involves two steps:

• Assign each graph g ∈ G to its closest cluster: For a given g 6∈ M, we assign g to

the cluster with the closest centroid to g:

argmin{dist(g,M j) : g 6∈M}k
j=1 (5.1)

The distance between any two attack pattern graphs is given by computing the eu-

clidean distance between their attack duration, interval rate, outgoing rate and their

structural difference. For simplicity purposes as well as to minimise complexities,

the structural difference between any two attack pattern graphs is given using the

Jaccard similarity coefficient [134]. This metric measures the number of nodes and

edges common in both graphs. As mentioned in Chapter 4, more accurate metrics

such as Graph Edit Distance can also be used, however, the time required to com-

pute the distance exponentially increases given a large set of vertexes and edges.

Thus, there is often a trade-off between time and accuracy. Since the aim is to

perform real-time analysis, we aim to minimise lagging in the analysis process as

much as possible. Thus, the structural distance is defined as:

structDist(g1,g2) = 1− g1(pV, pE)∩g2(pV, pE)
g1(pV, pE)∪g2(pV, pE)

(5.2)

• Re-compute the centroids: Typically, the centroid of a cluster is represented by

computing the mean of the cluster [149]. While this is easy to compute for vector
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data structures, the mean of a set of graph data structures is not straight forward to

compute [149]. Let us assume a Graph Set of n graphs = {G1,G2, . . . ,Gn} where

Gi = (V,E). The mean of the graph would be based on the vertices and edges in

the graph set. Given that V and E are the set of vertices and edges represented by

categorical data (not numerical), the mean cannot be computed.

A method proposed by Schenker et al. [149] is adopted whereby the mean graph of

a Graph Set is successfully substituted for the median graph of the Set. This is more

logical to compute. For a given cluster C of size m, we define the median graph, M

as the centroid of the cluster which is the member in C with the minimum average

distance to all other graphs in C:

Mi← argmin


m
∑
j=0

dist(gi,g j)

m


m

j=1

: g ∈C (5.3)

In the case where there is more than one median graph one is selected at random.

Task 2: We consider a situation where new attack pattern graphs may be received in

real-time. For every new attack pattern graph, g′ received in real-time which has not been

clustered, the task is to update the cluster space C by allocating g′ to a cluster.

We create an adaptation of the CluStream [6] and GMicro algorithms for clustering

of graphs in real-time [3]. Given a new attack pattern graph, g′ and a set of previously

existing clusters C = {C1,C2, . . . ,Ck}, g′ is either 1) absorbed by an existing cluster or 2)

placed in a new cluster.

Firstly, we attempt to add g′ to an existing cluster, Ci ∈C. Similarly to the approach

defined in Equation 5.1, we attempt to add g′ to the cluster with the minimum distance

between g and its centroid. We refer to this cluster as Cmin. In certain cases, g may be

unfit to be absorbed by Cmin if despite Cmin being the closest cluster to g′, the members

of g′ are still highly dissimilar to g′. We define g′ as being unfit for Cmin if the distance
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Figure 5.2: Maximum boundary of a cluster

between g′ and Cmin is greater than the maximum boundary value Cmin. The maximum

boundary of any cluster, Ci is computed as the root mean square deviation (rmsd) of all

the graphs in Ci from its centroid Mi. Figure 5.2 illustrates this process intuitively.

maximum_boundary(Ci) =

√
∑

m
j=0 dist(Mi,g j)

2

m
(5.4)

We note that for a cluster with a single graph, the rmsd would be 0 thus, a heuristic

is applied. Since Cmin has no members, we look for the closest graph to Cmin in the cluster

space C. Let the closest graph to Cmin be denoted as gmin. Note that gmin cannot be a

member of Cmin. Intuitively, given that gmin was at an unknown point unsuitable to be

added to Cmin, then g′ should only be added to Cmin if and only if 1) the distances between

g′ and Cmin is less than the distance between Cmin and gmin and 2) the nearest cluster is

active (explained further below).

Given that g′ cannot be added to a pre-existing cluster, then the following conclusions

can be drawn:

• g′ is a novel type of attack pattern whereby no other attack pattern similar to g′ will

be discovered. In this case, g′ is just an outlier.

• g′ is a novel type of attack pattern whereby other attack patterns similar g′ may be

discovered in future. In this case g′ is the beginning of a new cluster in the stream

of graphs.

In either scenario, since it will be unsuitable to add g′ to an existing cluster, a new

cluster is created. Similarly to [3], to minimise redundant clusters a ‘maintenance’ process

is adopted by the algorithm. This involves: 1) De-activating in-active clusters and 2)

Merging highly similar clusters.
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De-activating inactive clusters

A cluster is de-activated if the time difference between its last added graph and the last

received graph in the stream (in this case g)is less than a user defined threshold θt .

Merging clusters

If a cluster cannot be deactivated, an attempt to merge the two closest clusters is made.

While merging the two closest clusters may be straight forward, this is generally a naive

approach and may lead to high errors in the clusters. Let Figure 5.3(a) be considered

where C1 and C2 are the two closest clusters. From visually inspecting the cluster space

it can be concluded that C1 and C2 are not a natural cluster and should therefore not be

merged. On the other hand, consider Figure 5.3(b) where C1 and C2 are still the closest

clusters however the density of C3 and C4 is lower. In this case both C1 and C2 appear

to be a natural cluster and a merge appears suitable. Note that the decision to merge the

two clusters in either scenario can be drawn from whether the merge would significantly

increase the square sum errors in the cluster space.

Figure 5.3: Suitable Merge Process

Therefore, to decide if two clusters Ci and C j should be merged, we perform a tem-

porary merge and call the new cluster Ci j, the centroid of the cluster is re-selected and the

density of Ci j is computed as Di j. The average density of the remaining clusters is also

computed, Dī j. If Di j is less than Dī j clusters Ci and C j will be merged.

If neither de-activating or merging can be performed, then no ‘tidy-up’ process is

required. Thus, the number of clusters becomes k+1. It is noted that in an extreme case

where many of the attack patterns are highly dissimilar, the number of clusters may in-

crease significantly and at most equivalent to the number of attack pattern graphs received
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on the stream. Thus, we propose a new parameter kmax which defines the maximum num-

ber of clusters allowed. If the number of clusters equals kmax, the merge procedure will

be forced.

Extracting Novel Attack Pattern Graphs

For each cluster of attack patterns, the centroid is extracted as the most representative

pattern of the cluster.

Time and Memory Complexities

We review the time and memory requirements needed to (1) Perform graph refining (2)

Initialise the clustering process and (3) Dynamically update the cluster space in real-time

upon receiving new graphs from the stream. For graph refining the time complexity re-

quired to refine a single graph is O(|V |+ |E|). At worst case, each attack pattern graph

has the same number of nodes and edges. This requires an additional O(|V |+ |E|) mem-

ory storage. For the initialisation process, let I be at worst case, the number of iterations

required before k-means++ converges during the initial task of initialising k clusters with

n graphs. In addition, let d be at worst case, the largest graph size. Since the cluster space

evolves over time, a value less than 10 for k is suitable. We tested the initialisation process

with k = 2 and k = 10 in order to evaluate the time complexity where the average graph

contained approximately 100 nodes and edges. Figure 5.4 shows that the time complex-

ity for the initialisation process is linear. Following the initialisation process, each graph

received in real-time is clustered in at worst case, O(k× (d)) time.

In frequent pattern mining, the task of finding all frequent sequences in a huge

database with m attributes may at worst case discover O(m f ) frequent sequences of length

f [111]. A well-known frequent graph mining algorithm, gSpan [176] has time complex-

ity of O(k f n+r f ) where k is the number of occurrences of a frequent subgraph in a graph

in the database, f is the number of frequent subgraphs, n is the number of graphs, and r is

related to the internal computations of gspan [39]. Given this knowledge, we believe that

the complexity of our approach is far less than frequent sequence or subgraph mining.
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Figure 5.4: Complexity of Cluster Initialisation

5.3 Evaluation
The main objective of clustering attack pattern graphs in real-time was to discover novel

attack patterns which would robustly describe specific types of attacks. Two alert datasets

which capture DDoS, network infiltrations, worm propagation and network reconnais-

sance are analysed. We aim to be able to use real-time cluster analysis to show the cate-

gories of attacks occurring on the network as well as to show how the attacks vary over

time.

5.3.1 Metrics

The correlation model described in Chapter 3 is used to transform a set of alerts into a set

of meta-alerts represented as alert correlation graphs. Despite the alerts being historical

events, the alerts are analysed in a streaming approach. In order to evaluate the quality of

the clusters, the fundamental cluster separation and cohesion are measured. The definition

for both metrics are provided.

• Cluster Cohesion: This measures the distance between the points in the cluster.

Thus, a lower value indicates that items within the cluster are highly similar and

that the cluster is tighter. For the purpose of the experimentations, the Cohesion for

Cluster Ci is defined as the mean distance between the points in the cluster.
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• Cluster Separation: This measures the distance between clusters. Thus a higher

value indicates that clusters are highly dissimilar to other clusters. Hence, a

high value is more desirable. In the experimentations, given a set of clusters

C = {C1,C2,C3, . . . ,Cn}, the cluster separation for Ci is defined as the mean dis-

tance between the points Ci and the points in every other cluster ∀C j ∈C : C j 6=Ci.

In addition, the performance of the clustering process is measured. The datasets and

their results are described next.

5.3.2 Environment

The clustering algorithm is implemented in Java and tested on a 64-bit Windows System

with an Intel(R)Core i5 CPU processor with 2.40GHz, JVM 1.4.2 and 6GB for maximum

heap memory.

5.3.3 Evaluation One: NG 2012 Internal Attack

160,000 Snort IDS alert logs were selected from the dataset described in Section 4.4.3.

These alerts were collected over a 24 hour period from a computer network with 200

clients. The logs contain alerts which represent one major attack which occurred over

17 steps. In this experiment, these steps are aggregated into 5 main phases across the 24

hour period. These phases are described in Table 5.1. In addition, the logs contain alerts

which represent network activity that was identified as malicious activity. Such activity

included email content which appeared potentially malicious, abnormal host pinging and

abnormal pinging of unreachable servers and ports. These activities repeatedly occurred

over the 24 hour period.

Using the phases of the attack, we define 6 time periods where T0 represents the time

period before the main attack occurred, T1T4 represents the time periods of the 5 phases

of the main attack and T5 represents the time after the main attack. It is to be noted that

not all phases of the alerts are captured in the alert logs. Some alerts are missing for Time

periods T1 and T2b.

The aim is to investigate if cluster analysis aids in distinguishing repetitive activity

such as network host and port scanning from the main attack which consists of network
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Table 5.1: Details of Network Activities and Remote Attack

Ti Time Periods Network and Attack Activity.

0 00:00:00 - 09:30:00 Normal network activity.
1 09:31:00 - 10:30:00 Quick and Intense Network scanning by attacker

i.e. reconnaissance from the internal attacker to
the main network.

2a 10:31:00 - 12:45:00 Failed exploit attempts on branch client worksta-
tions from internal attacker using shellcode em-
bedded in email content.

2b 10:31:00 - 12:45:00 Successful exploit on internal vulnerable machine
from internal attacker using shellcode embedded
in email content.

3 12:46:00 - 13:35:00 Gain of full control and admin access of vulnera-
ble machine from offsite attacker .

4 13:46:00 - 16:00:00 Offsite attacker uses vulnerable machine to ex-
plore internal network.

5 16:00:00 - 23:59:00 Normal network activit.y

infiltration and a DDoS attack. Furthermore, we aim to discover characteristics for defin-

ing correlated alerts which represent either type of attack.

First, we use the correlation model to generate alert correlation graphs. Each cor-

relation graph groups alerts which are part of the same attack. From the 160,000 alerts

collected from the logs, 146 alert correlation graphs were generated by the correlation

model were the largest graph contained 84164 nodes and 84163 edges and the smallest

graph contained 1 node and 0 edges.

Results and Discussion

The configuration for the Clustering algorithm are as follows: k= 2, kmax = 20, init_val =

10 and max_iteration = 100. Figure 5.5 shows the time duration of clustering each alert

correlation graph. Initialising the clustering process with 10 alert correlation graphs took

260 secs. In comparison to the performance evaluation presented in Figure 5.4 which took

200 secs to analyse 500 graphs, this time duration is significantly higher. It was however

noted that the sizes of the graphs in this scenario were significantly larger and given that

the time complexity of the clustering process is dependent on the graph size, the time

taken for the initialisation in this experiment was within reason.

In Table 5.2, the distribution of the alert correlation graphs over these time periods

are shown. The results show that on average a cohesion and separation of 0.33 and 0.99

were achieved respectively. This indicates that the quality of the clusters derived was
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Figure 5.5: Time Taken During Real-time Cluster Analysis of NG Dataset.

good. The final state of the clusters which were derived at T5 are detailed in Table 5.3.

This includes all the graphs generated across T0 to T5.

Table 5.2: Summary of Clustering Results of Northrop Grumman 2012 Day 3 Dataset
at various time periods

T0 T1 T2 T3 T4 T5

no of clusters 20 20 20 20 20 20
no of graphs 43 60 87 91 114 143

seperation(mean) 0.97 0.99 0.99 0.99 0.99 0.99
cohersion(mean) 0.27 0.33 0.34 0.36 0.34 0.34

From Table 5.3, our investigation shows that larger clusters such as C12, C19 and C20

contain graphs which represent the scanning of hosts, ports and graphs which represent

suspicious mail content. These types of intrusions are the repetitive network attacks which

were low priority and (in some cases) caused as a result of the network configuration.

We investigated smaller clusters as potential outliers or new evolving attack patterns.

Investigation shows that the set of clusters namely - C1 - C6, C9 - C10 and C13 & C14

contained fewer than 3 graphs. Inspecting some of the graphs contained in these clusters

showed that approx. 80% of these graphs contained intrusion activity from the main

attack. Figure 5.6 illustrates two alert correlation graphs found.

A more detailed inspection revealed that the attacker repeated the same attack against
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Table 5.3: Detailed Clustering Results of Northrop Grumman 2012 Day 3 Dataset at
Timeperiod T5

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Duration Rate
low 50% 100% 100% 100% 100% 100% 50% 50% 100% 100%

medium 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
high 50% 0% 0% 0% 0% 0% 50% 50% 0% 0%

Interval Rate
low 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

medium 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
high 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Outgoing Rate
low 0% 0% 0% 50% 100% 0% 0% 0% 100% 100%

medium 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
high 100% 100% 100% 50% 0% 100% 100% 100% 0% 0%

Seperation 1 1 0.98 1 1 1 1 0.99 1 1

Cohesion 1 0 0 0 0 0 0.40 0.90 0 0

Cluster size 2 1 1 2 1 1 2 12 1 1

C11 C12 C13 C14 C15 C16 C17 C18 C19 C20

Duration Rate
low 100% 79% 100% 100% 58% 0% 0% 100% 47% 32%

medium 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
high 0% 21% 0% 0% 42% 100% 100% 0% 53% 68%

Interval Rate
low 100% 95% 100% 100% 100% 100% 100% 100% 100% 100%

medium 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
high 0% 5% 0% 0% 0% 0% 0% 0% 0% 0%

Outgoing Rate
low 0% 14% 0% 100% 0% 0% 100% 0% 87% 91%

medium 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
high 100% 86% 100% 0% 100% 100% 0% 100% 13% 9%

Separation 0.99 0.97 1 1 0.99 0.99 1 0.99 1 0.96

Cohesion 0.27 0.52 0.10 0 0.66 0.58 0.61 0.37 0.72 0.72

Cluster Size 6 42 2 1 12 9 3 10 15 22

multiple targets. For example, Cluster C13 contained two graph members. Both graphs

are highly similar i.e. both graphs depict the same attack steps, were triggered by the

same intruder, however, targeted at different workstations. This indicates that an attacker

is likely to repeat the same behaviour multiple times. Both graphs are depicted in Figure
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 WEB - CLIENT Microsoft Internet Explorer 
 userdata behavior memory corruption attempt 

sourceIP : 66.66.66.4 
destIP : 10.0.2.163 

 WEB - ACTIVEX obfuscated ActiveX object 
 instantiation via fromCharCode 

sourceIP : 66.66.66.4 
destIP : 10.0.2.163 

 POLICY String.fromCharCode with multiple
  encoding types detected 

sourceIP : 66.66.66.4 
destIP : 10.0.2.163 

 SHELLCODE x86 OS agnostic dword additive 
 feedback decoder 

sourceIP : 66.66.66.4 
destIP : 10.0.2.163 

 WEB - CLIENT obfuscated javascript 
 fromCharCode - potential attack 

sourceIP : 66.66.66.4 
destIP : 10.0.2.163 

Figure 5.6: Main Attack from Northrop Grumman 2012 Dataset

5.7 and occurred within a short time period of each other.

 ICMP Destination Unreachable Port Unreachable 
sourceIP : 10.0.0.2 
destIP : 75.75.75.3 

 EXPLOIT Microsoft Windows IppRateLimitIcmp 
 integer overflow exploit attempt 

sourceIP : 10.0.0.2 
destIP : 75.75.75.3 

 ICMP Microsoft Windows remote
  unauthenticated DoS / bugcheck vulnerability 

sourceIP : 10.0.0.2 
destIP : 75.75.75.3 

 ICMP Destination Unreachable Port Unreachable 
sourceIP : 10.0.0.2 
destIP : 35.35.35.3 

 EXPLOIT Microsoft Windows IppRateLimitIcmp 
 integer overflow exploit attempt 

sourceIP : 10.0.0.2 
destIP : 35.35.35.3 

 ICMP Microsoft Windows remote
  unauthenticated DoS / bugcheck vulnerability 

sourceIP:10.0.0.2 
destIP: 35.35.35.3  

Figure 5.7: Similar Attack Patterns Discovered in NG Internal Attack Dataset.

5.3.4 Evaluation Two: VAST 2012 Mini-Challenge 2 Scenario

In this challenge a set of computers in the computer network of a regional office are

infected with spyware and viruses. The computer network consists of 4000 workstations

and 1000 servers. A Snort Intrusion Detection System (IDS) was used by the computer

network and over a 2 day period of the challenge, 51073 intrusion alerts were triggered.

As part of the challenge the task was to identify any noteworthy events, and security trends

which took place for the time period covered in the IDS logs. A full description of the

datasets and attack scenario is available from the Visual Analytics Community 1.

The alert correlation model described in [157] was used to aggregate all alerts into

alert correlation graphs. 842 alert correlation graphs were generated. It was observed

that the largest graph contained 20816 nodes and 20815 edges while the smallest graph

contained 1 node and 0 edges.

1Visual Analytics Community Website : http://www.vacommunity.org/
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Results and Discussion

The configurations for the real-time clustering approach were as follows: k = 2, kmax =

20, init_value = 10, and max_iterations = 100. The toolkit was deployed on the same

machine as described in Section 5.3.3.

The alerts (and alert correlation graphs) are analysed in a streaming approach. Figure

5.8 shows the time performance for clustering each alert correlation graph. The spike in

Figure 5.8 at the 10th graph index indicates that the initialisation of the clustering process

was completed after 2.72s. Thereafter, the mean time for clustering a graph was 31.44ms.
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Figure 5.8: Time Taken During Real-time Cluster Analysis of VAST 2012 Dataset.

In order to evaluate the progression of the clusters over time, we take snapshots of the

clusters’ states approximately every 3 hours over the 39 hour time period. This resulted

in 13 time periods. Table 5.4 shows a summary of the cluster over these time periods.

The results in Table 5.4 show that since only a single graph is established during

the 1st timeperiod, 0 clusters are created. However, in the subsequent timeperiods T1, T2

102 additional alert correlation graphs had been generated. In addition, these graphs had

been clustered into kmax clusters. Thereafter, kmax clusters are maintained. Despite this, a

high cluster separation and low cluster cohesion is still achieved indicating good cluster

quality.
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Table 5.4: Summary of Clustering Results of VAST MC 2012 Dataset at various time
periods

no of clusters no of graphs clustered seperation (mean) Cohersion (mean)

T0 0 1 - -
T1 11 40 0.83 0.2
T2 20 103 0.81 0.17
T3 20 212 0.87 0.2
T4 20 286 0.87 0.2
T5 20 354 0.87 0.21
T6 20 423 0.87 0.21
T7 20 497 0.87 0.21
T8 20 575 0.87 0.17
T9 20 652 0.87 0.17

T10 20 703 0.88 0.17
T11 20 787 0.88 0.17
T12 20 799 0.88 0.17
T13 20 842 0.88 0.16

Table 5.5 shows the details of the clusters after all 842 alert correlation graphs had

been analysed at the final time period T13. In our investigation, 4 clusters stand out. These

are clusters C5 - C8 each Containing 2, 2, 1, and 1 graphs respectively. Based on our

hypothesis in Section 5.2.2, a cluster containing a single item is described as either 1) an

outlier cluster 2) a new evolving cluster. In the case of these clusters, each cluster had

existed from as early as time period T3. This indicates that from time period T3 from T13,

which is a 30 hour time interval, no similar graphs were added to these clusters. It can

therefore be concluded that these clusters and the graphs they contain, are highly likely

outliers.

Two of the clusters C5 and C6 are investigated further. Figure 5.9 and Figure 5.10

shows their centroids (i.e. median graphs). The duration rate of these graphs is 0.81

and 1, both have an interval rate of 0 and an outgoing rate of 1 respectively. These

properties are indicative of an internal attack (measured by the outgoing rate) which is

carried out over a long period of time. These properties are potentially properties of the

spyware. However, while both graphs have similar structure and attack properties, each

graph represents the intrusion activity targeted at different workstations. This potentially

explains their placement in separate clusters.

In Section 5.1, the primary hypothesis is that multiple sequences of correlated alerts

(i.e. alert correlation graphs) which are instances of the same type of attack will likely
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Table 5.5: Detailed Clustering Results of MC2 VAST Challenge 2012 Dataset at
Timeperiod T13

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Duration Rate
Low 0% 100% 72% 51% 0% 0% 0% 0% 40% 4%

Medium 0% 0% 15% 8% 100% 0% 100% 100% 60% 0%
High 100% 0% 13% 41% 0% 100% 0% 0% 0% 96%

Interval Rate
Low 100% 100% 72% 92% 100% 100% 100% 100% 100% 100%

Medium 0% 0% 14% 5% 0% 0% 0% 0% 0% 0%
High 0% 0% 13% 3% 0% 0% 0% 0% 0% 0%

Outgoing Rate
Low 0% 100% 100% 100% 0% 0% 0% 0% 0% 100%

Medium 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
High 100% 0% 0% 0% 100% 100% 100% 100% 100% 0%

Cohersion 0.86 0 0.01 0 0.60 0 0 0 0.16 0.16

Seperation 1 0.87 0.74 0.70 1 1 0.99 0.99 1 0.89
Cluser Size 5 228 127 76 2 2 1 1 5 24

C11 C12 C13 C14 C15 C16 C17 C18 C19 C20

Duration
Low 0% 0% 0% 26% 0% 0% 24% 0% 0% 5%

Medium 0% 0% 0% 6% 0% 0% 3% 0% 4% 2%
High 100% 100% 100% 68% 100% 100% 73% 100% 96% 93%

Interval Rate
Low 100% 100% 100% 100% 100% 100% 97.09% 100% 100% 100%

Medim 0% 0% 0% 0% 0% 0% 2.91% 0% 0% 0%
High 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Outgoing Rate
Low 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Medium 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
High 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Cohersion 0.16 0.13 0.17 0 0.15 0.10 0.22 0.10 0.15 0.15

Seperation 0.84 0.84 0.92 0.66 0.96 0.90 0.73 0.81 0.79 0.75
Cluster size 7 35 11 19 25 18 103 43 51 59

contain similar characteristics or features. The similarities between Figure 5.9 and Figure

5.10 validate this. Figure 5.11 also shows an attack pattern representation of Figure 5.9.

The abstract representation of this graph shares similar characteristics with Figure 5.10 as

well as other graphs in the graph set. Such an attack pattern can be used to characterise a

type of internal attack.

5.4 Conclusion
In this Chapter, a clustering algorithm for categorising multi-attributed direct graphs such

as alert correlation graphs is proposed. The algorithm, which is an adaptation of [3]

has been tested with recent datasets and our results showed that it discovers naturally
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Figure 5.9: Centroid of C5
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destIP: 172.23.0.1
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destIP: 172.23.0.1

Figure 5.10: Centroid of C6

evolving attack patterns, produces high quality clusters and at the same time performances

is memory and time efficient. For future directions of this research, we believe that with

little user validations, the discovered attack patterns can be used to mitigate future attacks

by correlation network events to the steps in the attack pattern with the intentions of

predicting an attackers next steps.
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Figure 5.11: Attack Pattern Graph representaiton of Figure 5.9
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Chapter 6

Visual Analytics for Investigating

Attack Behaviour and Pattern Graphs

6.1 Introduction

Fully automated algorithms alone are often not capable of providing actionable insights

about threat landscapes. [60]. Fischer et al. [60] further described that this is due to

the complex results outputted by automated approaches. Keim et al. [80] also identified

that certain domain problems which require data analysis are complex problems which an

automated approach cannot fully solve. These problems such as understanding the scope

and dynamics of a threat through data analysis require a combination of human analytical

capabilities as well as automated approaches.

Goodall [64] also asserted that while automated approaches are a potential solution

to combating threats, these approaches undervalue the strong analytical capabilities of

humans. This re-instates the importance of including human analytical capabilities in the

process of analysing security data.

Earlier on in Section 2.6.5 of Chapter 2, we introduced Visual Analytics as the sci-

ence of analytical reasoning facilitated by interactive visual interfaces [165]. Visual An-

alytics allows the inclusion of human capabilities at various stages of the process of data

analysis. Such capabilities are used to validate the results, discover knowledge uniden-

tifiable by automated approaches, and to make actionable decisions based on the results.



6.1. INTRODUCTION

Keim et al. [80] proposed a guide to the process of effectively including human intelli-

gence during data analysis. This process, identified as the information seeking mantra

includes four steps: 1) Analyse first, 2) Show the important, 3) zoom, filter and analyse

further, and 4) Details on demand.

Therefore, while the algorithmic approaches proposed in Chapters 3 to 5 effectively

analyse and identify relevant features for discovering and measuring the complexity of

an attack, each of these approaches require a security analyst to analyse further. Take for

instance, Chapter 3 can be mapped to the first step in the information seeking mantra

- “Analyse First”. In Chapter 3, alert correlation was used to achieve data aggrega-

tion whereby groups of aggregated alerts corresponded to the same attack. While this

knowlege is highly useful a security analyst’s input is still required to evaluate the results,

identify the important alert groups and act on the results. In Chapter 4, the process of

“showing the important” was automated by using a prioritisation metric to show only

alert groups which may be relevant to an attack of interest such as a denial of service, or

worm outbreak. Despite this, a security analyst’s capabilities are still required to validate

the prioritised results. This in other words corresponds to Step 3 - “Analyse Further” for

the purpose of validating the results and invoking actions such as threat mitigation.

In this Chapter, a set of visualisation capabilities are proposed and developed for

analysing security alert data. In addition, a set of visualisations are investigated for ef-

fectively visualising the outputs from Chapter 3 to Chapter 5. Shiravi et al. [154] iden-

tified five applications for visualising security data - host/server monitoring, internal/ex-

ternal monitoring, port activity monitoring, routing behaviour monitoring, and attack

pattern analysis. The proposed and developed visualisation techniques are for achieving

host/server monitoring as well as attack pattern analysis. The proposed techniques include

of a time series and correlation graph visualisation. These visualisations are described by

[103] as methods for effectively analysing historical security alert data. We also explore

how the proposed methods can be used in real-time analysis by integrating the developed

techniques into a pre-existing commercial visual analytics software system.

The rest of this Chapter is organised as follows: Section 6.2 describes a dataset
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collected from a network attack experiment. The goal is to evaluate how effectively the

proposed visualisations aid in presenting attack information to a security analyst. Section

6.3 details a set of visualisation methods which we proposed for effectively achieving

“host and server monitoring” as well as discovering and understanding attack patterns.

We develop three visualisations for security analysis. In Section 6.3.1, a time series vi-

sualisation method commonly referred to as the Streamgraph (ThemeRiver) is developed

and applied to analysing security alert data. In particular, this visualisation is applied

in order to analyse host and server activity. In Section 6.3.2, a radial correlation graph

visualisation for identifying correlations between alert attributes is proposed. Finally, in

Section 6.3.3 a correlation graph visualisation is proposed for visualising the alert corre-

lation graphs produced in Chapters 3 - 5. Section 6.4 describes how these visual methods

were integrated into SATURN, a commercial visual analysis tool developed by the Secu-

rity Futures Practice, Research & Innovation, British Telecom. Finally, we conclude this

Chapter in Section 6.5.

6.2 Datasets
To evaluate how effective the proposed visual methods speed up the process of attack

detection, two datasets are used to evaluate the developed visualisation methods. The first

dataset is collected from a private network while the second is a publicly available dataset.

A description of the datasets is given next.

6.2.1 Private Network Alert Data

Due to the sensitivity of this dataset, there is a high anonymity in its description. How-

ever, it can be said that the intrusion alert logs were captured over a five day period on a

network which had been infiltrated by a worm outbreak virus from 21st November to 27th

November 2010. Through studying the dataset it was discovered that the self replicating

and propagating worm was successfully propagating across the network. In total, 46,911

intrusion alerts were triggered. Additional network intrusion activity such as attempts

to exploit web vulnerabilities also occurred simultaneously. For anonymity reasons, the

network topology cannot be detailed.
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6.2.2 USMA CDX2009

The USMA Cyber Defence Exercise (CDX) was held in April 2009 by teams from the

U.S. Military Academy (USMA) and other military colleges. The exercise consisted of

multiple connected networks, a red team and a set of defence teams. Each defence team

was responsible for a network which was configured to run consistent network services

including a web application. In addition, each network was required to integrate three

untrusted workstations. The networks were then attacked by a remote red team. In this

study, we evaluate the network of the USMA team with respect to the attacks from the

red team. In the USMA network, a Snort IDS is placed at the perimeter of the network.

In total, 25,741 alerts were triggered.

6.3 Proposed Security Visual Analytics

6.3.1 Time Series Analysis using Streamgraphs

Streamgraphs are time series graphs which are highly related to the conventional stack

graphs [38]. Byron and Wattenberg [38] proposed that this type of complex layered graph

is effective for displaying large datasets. It solves the problem where the distributions and

occurrences of a large range of entities need to be observed across the same time scale

on the x-axis. Its first application was for visualising trends in music by representing

the music listening behaviour of a user over time (Shown in Figure 6.1). As shown in

Figure 6.1 the x-axis intersects with the centre of the graph’s y-axis and stripes are stacked

symmetrically on both sides of the graph. Each stripe represents the number of times a

user listened to a particular artist during a given time period.

While Streamgraphs are commonly used to visualise Open Source Intelligence and

Social Media data, streamgraphs can be effectively used for gaining attack insight from

security alerts. A common scenario where streamgraphs can be applied is in monitoring

the communication history of a single computer which has frequent communication with

a large number of hosts internal to the network as well as external.
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Figure 6.1: Application of streamgraph for visualisation trends in user’s music listen-
ing behaviour [38]

USMA CDX2009 Alert Analysis using Streamgraph

Figure 6.2 shows a streamgraph which was developed in this study for security alert visu-

alisation. We use this streamgraph to analyse the events that occurred during CDX2009.

The streamgraph in Figure 6.2 shows the distribution of IDS alerts triggered on the first

day of the attack. In this Figure, each stripe represents a host’s alert activity while the

vertical height of the stripe at a given time point, Tx, along the x-axis is a visual represen-

tation of the volume of alerts that occurred at Tx. Two 1-hour spikes can immediately be

observed in Figure 6.2. The streamgraph shows that both spikes represent alerts targeted

at IP address of the the network’s Apache Web Server.

Figure 6.2: Streamgraph Visualising USMA CDX 2009 Dataset - x-axis = Time, y-axis
= target IP address
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In order to evaluate further, the streamgraph is used to show the distribution of alert

types targeted at the Apache Web Server. This is shown in Figure 6.4. In this Figure,

each stripe on the graph represents an intrusion type and the width of the region at a point

in time represents the volume of an alert type targeted at the Apache Web Server. From

Figure 6.4, it can be observed that there is a 15 minute exploit attempt by trying to run

malicious executables on the web server. This is followed by intense scanning of the web

server (Reconnaissance activity) followed by more exploit attempts.This was potentially

an attempt to compromise the Web server.

Figure 6.3: Streamgraph Visualising NG 2012 Internal Attack Dataset - x-axis = Time,
y-axis = targeted IP address

Figure 6.4: Streamgraph Visualising USMA CDX 2009 Dataset - x-axis = Time, y-axis
= Intrusion Type targeted at the Apache Web Server.
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NGINT 2012 Alert Analysis using Streamgraph

This attack scenario consists of a full days attack experiment starting with reconnaissance

network activity by an external attacker followed by stealth attacks and concluding with

a denial of service launched from an external attacker on the defending network. A full

description of the attack is provided in Section 4.3.1 of Chapter 4. Figure 6.3 shows a

streamgraph of the 261,916 alerts triggered from 9.00 - 18.00. Similarly to Figure 6.2,

each stripe in the graph represents the number of alerts targeted at a specific host on the

network. In this Figure, two spikes which depict the increase in the intrusions targeted at

a set of network hosts at two time periods can be observed. When both time periods are

cross referenced with respect to the attack documentations, each spike represents intense

port scanning activity and a denial of service attack respectively. A snippet of these attacks

are shown in Figure 6.1 for a detailed description of the attack, see Table 4.1 of Chapter

4.

Table 6.1: Snippet of NG 2012 Internal Attack Description showing Intense Scanning
and DDoS activity

Steps NG Internal Attack Activity (NGINT)

1 Backtrack started on Branch client 10.1.0.201 (in-
sider)

2 Quick scan from 10.1.0.201 of local subnet
3 Intense scan from 10.1.0.201 of local subnet
4 Quick scan from 10.1.0.201 of 10.0.0.0/24
5 Quick scan from 10.1.0.201 of 10.0.2.0/24

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

15 Several short DOS attacks from Attack2 against
4.4.4.2.

16 DDOS from traffic generator against 4.4.4.2
17 DDOS from traffic generator against 4.4.4.2

Evaluating Streamgraph Alert Analysis

Aigner et al. [9] described that a streamgraph, which they refer to as a ThemeRiver visu-

alisation provides an overview of what is important in a data at a given time. This can be

re-affirmed since in both case studies described above, the streamgraph immediately pro-

vides an overview of the attack exercise allowing an observer to immediately isolate major

attacks such as Denial-of-Service, intense port scanning and brute force web exploits.
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Limitations

The ability to draw effective conclusions using this visual method is dependant on the

volume of data, the layout of the streamgraph and visual attributes such as the coloring

of the graph’s categories. It was observed that the streamgraph is more suitable when

the number of categories along the y-axis are limited to a small or medium set. In some

scenarios, it may be more suitable for visualising intrusion categories but less suitable

for visualising a large set of Source IP addresses. The ordering of the graphs along the

y-axis is also crucial. In our case, the graph is ordered inside out i.e. by placing the stipes

with the highest volume on the outer in the middle of the graph and the stripes with the

least volume on the outer regions of the graph. Thus, attention is drawn to the frequent

elements at the centre of the graph. On the other hand smaller elements may be difficult

to observe. To illustrate this issue, Figure 6.5 is a filtered version of Figure 6.2 which

only shows the intrusion activity on the network after filtering the activity related to the

Apache Web Server. Note that due to the volume of traffic targeted at the Web Server, the

intrusion activity targeted at other hosts cannot be easily seen in Figure 6.2. In the filtered

graph however, periodic trends involving the intrusion activity of other targeted hosts can

be observed. In practice, the application of the streamgraph in security visualisation was

only suitable for overviews and not for advanced attack analysis. To achieve this, a set

of visual methods, referred to as correlation graphs in work by Marty [103] are designed

and applied.

6.3.2 Attack Analysis using Radial Graphs

A Radial Visualisation is the representation of data in an elliptical circular pattern [53]. In

addition, radial visualisations are suitable for visualising relationships (and therefore, cor-

relations), amongst disparate entities [53]. Typically, a traditional correlation graph such

as the graph shown in Figure 6.6 is a matrix diagram which nests multiple scatterplots.

Each scatterplot shows the extent to which two continuous data dimensions are correlated

[103]. For example in Figure 6.6, it is shown that Employee Hours and Cost are positively

correlated while Incidents and Cost are negatively correlation. Note however, that these
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Figure 6.5: Filtered Streamgraph of Figure 6.2 showing USMA CDX 2009 Day 1
Attack

fields are numerical and therefore measurable. Since most security alert fields are nomi-

nal, such traditional diagrams are not useful in this domain. Marty [103] identified that in

security alert analysis, there are two ways to use a correlation graph for analysis. In the

first approach, two data dimensions of the same security alert data log are correlated with

each other. In the second approach, the same data dimension of multiple security alert

logs are correlated. In this section two radial graphs are proposed for achieving the first

type of correlation.
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Figure 6.6: A traditional correlation matrix showing the relationship among multiple
numerical data dimensions [103]
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Radial Communication Graph

The designed radial communication graph is a network visualisation which consists of

nodes and edges. Each node represents a value from the chosen dimension and an edge

represents a communication link between the two nodes. This type of graph is particularly

suitable for visualising IP Address communication on the network. Figure 6.7 shows the

radial communication graph that was designed. In this graph, all IP addresses from a

security alert log (i.e. all source IP addresses and target IP addresses) are collected and

aligned as nodes in a circular pattern. Each edge represents one or more alerts which

show that an alert from IPa triggered an alert targeted at IPb. The thickness of an edge

represents the number of alert instances between two IP addresses.

Figure 6.7: Radial Communication Graph proposed during this research study.
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The proposed radial communication graph can also be used to visualise hierarchi-

cal information such that nodes are ordered according to various groupings (Shown in

Figure 6.7 where nodes represent IP addresses and are grouped according to their logical

locations).

2D Radial Coordinates Graph

The first graph is extended to visualise other arbitrary dimensions from security alert

logs. For example, it was observed that the graph proposed in Figure 6.7 is only suitable

for IP addresses. The radial coordinates graph is an adaptation of the traditional parallel

coordinates which is a common form of visualising high dimensional datasets. In the

parallel coordinates, n dimensions are represented by n lines aligned in parallel. Each

point along a single line represents an attribute of the dimension and a line Lai,b j between

two points represents an entry in the dataset which has value i for dimension a and value

j for dimension b. Figure 6.8 shows a traditional parallel coordinates visualisation.

Figure 6.8: A Simple Parallel Coordinates [103]

Figure 6.9 shows the components of the proposed radial coordinates visualisation.

Unlike the parallel coordinates, the radial coordinates is limited to visualising two dimen-

sions and each dimension is ordered along the circumference of the radial view. While

this means fewer dimensions are visualised, the radial visualisation avoids information

overload - a common problem in visual analytics [80]. For example, a dimension in a

152



6.3. PROPOSED SECURITY VISUAL ANALYTICS

large dataset such as a security alert log may contain a large number of attributes (for

example, IP Addresses). this may result to “over plotting” in the parallel coordinates

causing the visualisation to become cluttered and complex to interpret [76].

Figure 6.9: Components of the 2D Radial Coordinates proposed during this research
study

In the radial coordinates, each dimension consists of two levels and each level repre-

sents the attributes of the dimension. The attributes of the first dimension are represented

as arcs while the attributes of the second are represented as circular nodes. Level One

represents the main dimension to be observed while Level Two is another dimension in

the dataset which allows a grouping and ordering of the attributes in the first dimension.

For example, this is useful when IP addresses are represented on the first level of dimen-

sion one. Rather than a random ordering of IP addresses, dimension two can be used to

order level one according to their physical or logical locations (if this dimension/informa-

tion is available in the dataset). Another example is using the intrusion category to order

intrusion types. In other words, the second level of each dimension allows hierarchical
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structuring. To add clarity to the visualisation, nodes are further coloured according to

their groupings. An example of the components of dimension one are shown in detail in

Figure 6.10.

Figure 6.10: Hierarchical Structuring of alert attributes using 2D Radial Coordinates
Graph

Private Network Alert Analysis using Radial Coordinates

In Figure 6.11, the radial coordinates shows the links between the IPs of potential attack-

ers (i.e. intrusion source IPs) and victims on the private network (target IPs). The source

of the intrusions are represented on dimension two where level one represents the source

IP addresses and level two orders the IP addresses according to their geographical loca-

tion. Similarly, the targets of the intended intrusions is represented on dimension two with

IP addresses on level one and geographical locations on level two. As shown in Figure

6.11, the interactive capabilities integrated into the visualisation supports the inspection

of each attribute in each dimension by fading out non-focussed elements. In Figure 6.11

it is seen that a large number of intrusion are targeted at IP addresses within the US.

Highlighting this attribute in the visualisation enables the user to inspect the source IP

addresses which triggered the intrusions. Also, Figure 6.11 shows that most of the intru-

sions targeted at IPs based in the US were triggered by hosts machines situated in Seoul

and Beijing.

Figure 6.12 shows a radial coordinates plot of the same dataset with a different di-

mension selected for dimension two. In this Figure, dimension two is represented by

the intrusion alert type, however, no grouping is available in the dataset. Figure 6.12

combined with Figure 6.11 shows that there is a strong correlation between intrusions
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Figure 6.11: 2D Radial Coordinates showing Private Network Alert Capture (Dimen-
sion One = Alert Target, Dimension Two = Alert Source).

targeted at US from BEIJING and worm outbreaks - SQL_SSRP_SLAMMER_WORM and

cross site scripting intrusions -HTTP_CROSS_SITE_SCRIPTING.(See Figure 6.12).

Evaluating Radial Graph Alert Analysis

While neither the radial communication graph or radial coordinates visualisations are

suitable for visualising time series data, both graphs are highly suitable for finding at-

tribute correlation or associations which may reflect attack patterns.

Similarly to many visualisations, a key challenge is that an attempt to visualise a

high volume of data would result in a cluttered visualisation which will be difficult to

interpret. Therefore, as the information seeking mantra proposes, pre-analysis is required

first to filter out the important information. In the next section, a set of visualisations for

representing the alert correlation graphs generated by the correlation models in Chapter 3
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Figure 6.12: 2D Radial Coordinates showing Private Network Alert Capture (Dimen-
sion One = Alert Target, Dimension Two = Intrusion Type)

and prioritised by the automated analytical models proposed in Chapter 4 are explored.

Radial Graph Alert Analysis in Comparison to prior state of the art

The Radial coordinates visualisation proposed in this study is compared to similar recent

visualisations proposed in [153] and [183]. Avisa [153], is closest to our Radial Coor-

dinates. Similarly to radial coordinates, Avisa supports visualising two dimensions in a

circular representation. Figure 6.13 shows Avisa (for a detailed description, see Section

2.6.5 of Chapter 2).

A key difference between the radial coordinates and Avisa is that our radial coordi-

nates provides higher user interaction by supporting user selection of dimensions as well

as details on demand (this is shown in Figure 6.11 where non-focussed elements are de-

focussed and details are provided inset). To our knowledge, our proposed radial approach
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Figure 6.13: Avisa - A radial network visualisation proposed by Shiravi et al. [153]

is more dynamic. Nonetheless, Avisa supports additional features not supported by the

proposed radial coordinates. This includes a component which filters the visualisation of

hosts and alerts using on a set of heuristic metrics and standard statistical measurements

such as standard deviations. While similar to the proposed approach, NetSecRadar [183],

supports the visualisation of a multiple security logs. When compared with VisAlert, it

was observed that at a single time, VisAlert supports visualising multiple alert logs in-

cluding Snort alerts, FTP alerts and HTTP alerts. While the design for our 2D Radial

Coordinates differs to VisAlert, our approach can be configured to visualise multiple alert

logs in a single view. Pre-processing however may be required to collect the various alert

logs into a single unified log file. Although VisAlert supports a set of features which are

not supported by the 2D Radial Coordinates, these features can however be easily inte-

grated. Unlike the 2D Radial Coordinates which does not represent the Time attribute,

the timestamps of the alerts are represented in VisAlert using a set of inner cycles where

each inner cycle equally represents a fixed time period. For clarification purposes, this is

illustrated in Figure 6.14. This feature allows the user to quickly discover periodic pat-

terns if configured properly. In addition, VisAlert visualises hosts based on their logical

or physical proximity. While this can also be done in the 2D Radial Coordinates using

grouping, the spatial representation is different.
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Figure 6.14: VizAlert - A radial network visualisation proposed by Livnat et al. [98]

6.3.3 Attack Analysis using Alert Correlation Graphs

Graph based visualisations (referred to as network graphs in [30] semiology of graphics)

are arguably the most common visualisation technique for representing attack graphs.

Many research studies including [123, 128, 144, 135, 162, 141] and many more, visualise

attack graphs and alert correlation graphs using graph based visualisations. While the alert

correlation graphs generated in Chapter 3 and the attack pattern graphs from Chapter 5

are not attack graphs, they share strong similarities.

Typically the graph based visualisation consists of at least two components. A set

of nodes, where each node represents an entity. In an attack graph, a node may represent

a phase in an attack while in an alert correlation graph, a node represents one or more

aggregated alerts. An edge, in either case, represents the transition from one phase/alert

to another.

Alert Correlation Graph Timeline

First, we proposed a time series visualisation which shares similar properties to a Gantt

view [99]. In this visualisation, each alert correlation graph is represented as a node-edge

graph ordered along the time axis, x. In order to position nodes effectively along the y-

axis, a force directed algorithm [62] which pulls nodes with edges together is used. Figure

6.15 shows this visualisation where example alert correlation graphs are highlighted.
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Figure 6.15: Initial Alert Correlation Graph Visualisation proposed during this research
study

Figure 6.16: An alert correlation graph of interest containing repeative bursts of alerts.
Graph is shown without edges to improve clarity.

USMA CDX 2009 Alert Analysis using an Alert Correlation Graph Timeline

Various limitations were identified. The most significant limitation or challenge was the

high volume of clutter attributed to the visualisation resulting in graph overlapping which

made it highly difficult to effectively isolate alert correlation graphs of interest. During

the investigation however, it was possible to isolate a single alert correlation graph with

interesting properties. Figure 6.16 shows this alert correlation graph. In order to show the

properties of interest clearly, the edges are removed from the graph. By plotting the alert
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correlation graph along the time-axis, it was possible to observe a repetitive burst of an

intrusion type consistently occurring every 15 minute interval. Nonetheless, while it was

possible to identify this graph, in general the overview of alert correlations graphs using

the graph represented in Figure 6.15 is inefficient.

An Improved Alert Correlation Graph representation

A second and more effective approach was to visualise each alert correlation graph in-

dividually. This significantly reduced the clutter of the visualisation. In addition, in or-

der to minimise and effectively organise the alert correlation graph nodes and edges, the

GraphViz algorithm [63] was used to calculate the optimal positions of nodes and edges

which minimised edge and node overlapping. Figure 6.17 shows the improved alert cor-

relation graph visualisation. Each node in the visualisation represents a single or set of

alerts and the y-axis positioning of the node is influenced by the order of the node i.e.

the timestamp of the alerts the node represents. The node size indicates the number of

alerts aggregated into a single node and the label and colour of each node represents the

intrusion type. The arrowed edges between two nodes indicate the temporal correlation

between the alerts.

Since the visualisation capability can only visualise a single alert correlation graph at

a time, we developed an interactive feature for ordering alert correlation graphs according

to a set of criteria. This feature allows the security analyst to order a set of alert correlation

graphs by their timestamps, size, priority level (which is gained using the prioritisation

metric proposed in Chapter 4), and cluster-id (which is gained using the clustering ap-

proach in Chapter 5). A navigation component was also integrated into the visualisation

which allows the security analyst to navigate the alert correlation graphs in ascending or

descending order. Zoom and Scroll features were also integrated into the visualisation to

improve interactivity. Figure 6.18 shows these components.

Alert Correlation Graph Visualisation in Comparison to prior state of the art

To the author’s knowledge, the most closest comprehensive system document in research

papers which supported similar visual analytics was proposed by [117] over a decade ago.

The advanced techniques and capabilities in modern visual analytics such as interactivity,
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Figure 6.17: Alert Correlation Graph Visualisation showing Graph generated from
Private Network Alert Data

Figure 6.18: Settings Enabling Effective Options for Sorting Alert Correlation Graphs

filtering, linking, brushing and responsive visual rendering which were applied during the

development of our proposed alert correlation graph visualisation allow our approach to

support more effective alert investigation.
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6.4 Integrating into Pre-existing system
The visualisations described in this Chapter and analytical methods in Chapter 3 - 5 were

integrated into an experimental version of the SATURN Visual Analysis commercial web

application developed by the Security Futures Practice, Research & Innovation, British

Telecom. A brief description of SATURN is given.

SATURN is an AJAX enabled JavaScript web application. The Client-side appli-

cation is a visualisation application which consists of components that allow a user to

interactively load, query, visualise, and analyse a structured dataset while the Server-side

component of the application allows the user to run data analysis on a given queried struc-

tured data. This may include data enriching, filtering, or categorising. These results are

further visualised in the client-side application.

The stream graph, radial and alert correlation graph visualisations were developed in

javascript using the d3.js library [33] and JQuery API 1. All visualisations were integrated

into the client-side application as shown in Figure 6.19.

The algorithms described in Chapter 3 - 5 were developed in Java as back end com-

ponents which are exposed as web services using a range of Web Server APIs. The

architecture in Figure 6.19 illustrates how the correlation view in the client-side requests

for analysis of a security alert log using the visual interface. This prompts the launch of an

XMLHttpRequest sent to the web service via the SATURN API. The XMLHttpRequest

includes a flag to receive a response which contains the results of the correlation. i.e.

one or more alert correlation graphs. The request also contains configuration parameters

selected by the user,this includes correlation thresholds, windows and various configura-

tions required by the correlation model, prioritisation model and clustering components.

The analysis process is launched and starts a flow of analysis to be performed. The final

output of the analysis process transforms the data into json2, a format readable by the cor-

relation view. The components in Figure 6.19 which are highlighted are the contributions

of this research study.

1JQuery Source - https://jquery.com/
2JavaScript Object Notation (JSON) - http://www.w3schools.com/json
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6.5 Conclusion
In this Chapter, visualisations for improving how a user gains insight into security alert

data through the use of visualisation methods were explored. Three visualisation meth-

ods were proposed. We illustrated that visualisation alone is not sufficient for effective

security data analysis. Furthermore, the proposed alert correlation visualisation shows

that interactive visualisations improve the information conveyed by our designed auto-

mated approaches. Finally, we described how the visualisation techniques and methods

described in Chapter 3, 4, and 5 were integrated into a visual analytics tool used for attack

analysis.
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Chapter 7

Conclusion

7.1 Overview
This study was set out to improve attack detection by proposing analytical methods for

analysing security event logs. In Chapter 1, we stated that key pioneering research studies

[116, 46, 86, 49, 166, 72] identified that an understanding of intrusions themselves, not

as singular events, but rather as phased progressions, is required. These research studies

argued that alert correlation enhances the context of an intrusion and subsequently, lead

to the motivation of our research - “To utilise the knowledge gained from alert correlation

to eliminate false positive alerts and increase attack insight”. As a result we formulated

the following research question:

How can the information learnt from alert correlation be used to reduce false

positive alerts? Furthermore, how can this knowledge be transformed into

attack insights in order to increase the attack detection rate of a network?

In order to achieve this, we explored statistical based methods for achieving alert

correlation. To the authors knowledge, this approach provides the best trade-offs between

the speed of the correlation model (measured using time complexities) and the accuracy of

the correlation model, (measured using the false positive and true positive rates). There-

fore, we developed two correlation models based on Bayesian inference. Our findings

described in Chapter 3.4 showed that the accuracy of an alert correlation model, based on

a non-rule set method such as Bayesian inference can successfully identify a high volume
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of true correlations amongst alerts if 1) the correct attributes and features are evaluated

and 2) the model is not over-fitted. On the other hand, we observed that under-fitting the

model would result in a high volume of correlations with very low accuracy. While this

is a crucial issue, parameter estimation and optimisation for alert correlation was outside

the scope of this research. The main focus of this Chapter, was to derive high quality

alert correlation information and explore if, given this data, alert reduction and attack in-

sight could be achieved and furthermore, if this novel approach was more effective than

traditional approaches which do not consider alert correlation knowledge. Thereafter, in

Chapters 4 and 5 we addressed how to utilise the output of the correlation analysis to

achieve false positive reduction and increase attack detection respectively. Our findings

in these chapters were as follows:

In Chapter 4, we aimed to answer the first part of the research question:

How can the information learnt from alert correlation be used to reduce false

positive alerts?

We identified that the most common (and arguably naive) approach to eliminating false

positives was to predominately analyse our correlation data against network and domain

knowledge such as vulnerability scanner logs. However, during the preliminary study, we

covered use-cases whereby such data is unattainable or is in unknown heterogeneous for-

mats which require additional knowledge to translate. This is typically the case in a large

scale computer network. As a result, we took a novel approach. We defined four prioriti-

sation metrics for capturing attack dimensions. Our results showed that while the Outmet

metric was useful and consistently filtered out false positive alerts in varying attack sce-

narios, metrics used to quantify the attack duration, attack interval and outgoing attack

rate were less effective. Overall, when compared against other an existing approach, our

results showed that the Outmet approach significantly reduced false positive.

In Chapter 5 we addressed the second part of the research question:

How can this knowledge be transformed into attack insights?
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To address this we focussed on gaining attack insight by developing analytical meth-

ods which discover consistent attack patterns and features used by an attacker by extract-

ing attack features from alert correlation graphs and mining these features to discover

attack clusters. Our key finding in this Chapter was that the evaluated datasets derived

from our case studies contained repetitive attack behaviour as a result of either real at-

tacker activity or simulated attacker activity due to automated scripting. These activities

were successfully identified frequently during the evaluation. We acknowledge that accu-

racy trade-offs were made to utilise heuristic distance functions in order to improve the

speed of clustering such that it can be performed in near real-time. However, we showed

that due to the nature of the alert correlation graphs, error-tolerant graph matching suffi-

ciently captured the required features. A similar claim is also supported by related work

[82].

In order to ensure that the identified attack insights are turned into actionable intelli-

gence, we explored how to present this knowledge to a security analyst using a range of

visualisation methods in Chapter 6.

The next section highlights the key achievements and contributions of this study to

the domain of security applications and research. In Section 7.3, we suggest other do-

mains where the methodologies in this research may be found useful. Finally, in Section

7.4 we discuss potential future work and some key open ended research questions which

may be relevant to future research studies.

7.2 Contributions

Semi-automated probabilistic correlation model: Two probabilistic correlation models

were presented. We showed that the models require little pre-configuration by a human-

user and can automatically learn relationships between events. The main bottleneck in

the proposed model is that it applies pairwise correlation resulting in quadratic time com-

plexity with respect to n - the number of alerts. This however is a common shortcoming in

alert correlation techniques and can be addressed by using sampling and selection meth-

ods to reduce the data volume. We tested the proposed models with two datasets and
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provided two evaluation discussions. Our results showed that, in comparison to prior art

[135], the Bayesian correlation approach (described in Section 3.2.3), showed on average

a reduced false positive rate.

New Prioritisation Metrics: The four prioritisation metrics proposed in Chapter 4

present a new perspective to prioritising intrusions based on characteristics of a high-level

attack. We tested each metric using three attack datasets. Of the metrics, Outmet showed

the most promising with a best performance of a 100% true positive rate and a 1.98 %

false positive rate with a relatively lower average of 84% and 5% respectively. In compar-

ison to an approach proposed by [14], our findings showed that while Outmet demands

more time and memory requirements, the simplistic and less complex metric which [14]

proposed for prioritisation alerts with high correlations and similarities as high priorities

is not a best approach. Evaluating their model using one of our datasets, we discovered

that their metric produced a false positive rate of 53%. This reduction is not as significant

as Outmets. The design and experimental evaluation of Outmet is published in [159]

An effective algorithm for clustering multi-attributed graphs in real-time: We pro-

posed an adaptation of CluStream, (see Chapter 5 for details) for clustering alert graphs

and sequences. The key achievement in the proposed adaptation is that it allows the clus-

tering algorithm to perform cluster analysis graph data structures. For general purposes,

this algorithm can also be applied to clustering generic multi-attributed directed graphs.

During the evaluation of our adaptation of Clustream, we showed its effectiveness in suc-

cessfully clustering attacks from different attack groups such as denial-of-service attacks

and worm propagations. This is to be published in [158].

A Comprehensive System for Intrusion Alert Analysis: The proposed correlation

models, prioritisation metrics and real-time clustering of alert correlation graphs algo-

rithm can be collectively integrated as a framework for intrusion analysis or can be in-

dividually utilised. Through support provided by the sponsors and collaborators of this

research, the individual components were integrated into a visual analytic tool developed

by the research team at British Telecoms (described in Chapter 6 and published in [159]).
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7.3 Other Applications
In this study there have been a range of contributions all aligned to the improvement of

attack detection. Given that the methods were specifically proposed and tailored for attack

detection, it may be difficult to apply them all together to other domains. The individual

components, however, can be applied. We discuss how some of the proposed analytical

techniques can be applied to other domains.

7.3.1 Network Traffic Analysis

This involves the monitoring and analysis of network traffic data which could be per-

formed for other reasons aside attack analysis. In addition the data sources range from

network traces to layer 7 application logs. Figure 7.1 shows an illustration of how the ra-

dial visualisation proposed in Chapter 6 can be used to present network data for monitor-

ing purposes. In this visualisation, two dimensions of network traffic are shown, it shows

how visualising the source and destination of network traffic can aid in understanding the

flow of monitored traffic.

Figure 7.1: Radial Visualisation developed in this research after the SATURN
integration[155]

7.3.2 Social Network Analysis

Social Network Analysis (SNA) is the study of relations between individuals including

the analysis of social structures, social position, role analysis, and many others [4]. In
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SNA key entities are represented as nodes in a graph and the interactions between the

entities are represented as edges. Visual methods such as the proposed radial view are

well suited for visualising social network data. Aside visual methods, graph theories such

as graph clustering, outlier detection, prediction, and classification are commonly applied

in social network analysis. Therefore, we believe that the clustering algorithm described

in Chapter 5 may be suitable for SNA challenges.

7.3.3 Bioinformatics

Similarly to SNA, the clustering algorithm may be applicable to solving graph related

problems in bioinformatics. In the field of bioinformatics, protein structures can be rep-

resented as graphs. Atoms, chemical compounds and genetic data can also be modelled

using graphs.

7.4 Ongoing Challenges and Future Work
“The challenge is to develop a system that is able to detect all attacks and

produce a minimal number of false positives...” [85].

Kruegel et al. 2005

Ten years on and developing such a system is still a major challenge. Today, the most

well known deployed intrusion detection systems are signature based IDSs [12]. Despite

their limitations, they are simplest and most effective in detecting known attacks and while

there is an opportunity for hybrid and new detection methods such as state-ful protocol

analysis to arise [93], successful anomaly based methods which can be independently

deployed on a network are difficult to attain for two key reasons. Firstly, we argue that

it is impossible to collect network data which fully reflects the differences between all

attacks and normal network behaviour therefore, data modelling performed on insufficient

training data will result in insufficient models. Take for instance, many approaches are

being evaluated using the DARPA 1998 - 2000 datasets. Such datasets are over a decade

old and no longer represent the scales and complexities involved in a modern network

and attack. Given, the availability of sufficient and adequate data, the next challenge is
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to model the differences between attack and normal network behaviour using algorithmic

methods ensuring minimal false positives.

In this study, we focussed on improving signature based intrusion detection systems

by applying post-intrusion analysis methods. We propose that ongoing, research effort

continues to address how to effectively improve intrusion detection in some of the follow-

ing areas.

Adequate Data: Many of the novelties and contributions of this research were made

possible because the case studies and datasets used were based on newer and modern

realistic scenarios. However, too few publicly available datasets with sufficient ground

truth exist and according to [147], no modern publicly available replacements exist for

the DARPA dataset. The collection of adequate datasets for building improved intrusion

detection methods is required. In addition, evaluation techniques, particularly, in alert

correlation are yes to be standardised [85].

Graph Theory Application: Aside attack scenarios and alert correlation graphs, many

entities in network and intrusion detection such as IP-communication which represent

host interactivity and network topologies can be represented as graph structures. There-

fore, graph mining and theories may be suitably applied to this domain. In this research,

only graph clustering was explored. Methods for measuring graph properties for example

measuring the centrality of a graph or performing graph-node clustering for discovering

key hosts (or perhaps botnet controllers) on the network may be suitable.

Parameter Estimation: In Chapter 3, a probabilistic bayesian correlation model which

required the configuration of time-windows, thresholds and the selection of alert features

was proposed. Our results showed that the effectiveness of the selected time-window and

correlation threshold parameters were specific to datasets. While we did not address how

to dynamically select model parameters, this is a key area which may be addressed. In

addition, for post-intrusion analysis, we faced feature selection issues. Which features

are best used? Are port addresses useful? Other parameter estimation issues arose. The

parameter k was also reoccurring in Chapter 4 for outmet and Chapter 5 for the adapta-

tion of Clustream. Dynamic approaches for selecting parameters which produce quality
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clusters has been studied extensively in machine learning.

Prediction Capabilities: Human validated attack patterns can be used for future pre-

dictions. In this research, we have presented a dynamic method for generating attack

patterns. Once validated, such patterns represented as graph structures can be used to

predict future attacks using heuristic, statistical or graph mining methods. Such research

is currently being explored in [181].

This study was set out to improve attack detection by proposing analytical methods

for reducing false positive alerts and increasing attack insight through analysing security

event logs. It has provided a critical argument and, used empirical evidence to show that

event correlation is a key analytical method to understanding high-level attacks which

further aids in the identification of false positive alerts. It has shown that contrary to prior

art the output of automated statical alert correlation methods, (though challenging) can be

effectively utilised in the discovery of attack patterns employed by attackers.
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