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Numerical simulation of a collapsing bubble subjecgravity

P. Koukouvinis*®, M. Gavaises, O. Supponef, M. Farhaf
'City University London, Northampton Square, Lon&@1V OHB, United Kingdom
’EPFL-LMH, Avenue de Cour 33 Bis, CH-1007 Lausanne

Abstract. The present paper focuses on the simulation ob¥pansion and aspherical collapse of a
laser-generated bubble subjected to an acceler@&idnand comparison of the results with instances
from high-speed videos. The interaction of theitlgand gas is handled with the Volume Of Fluid
(VOF) method. Compressibility effects have beenuided for each phase to predict the propagation
of pressure waves. Initial conditions were estimdteough the Rayleigh Plesset equation, based on
the maximum bubble size and collapse time. The lsition predictions indicate that during the
expansion the bubble shape is very close to sg@te@n the other hand, during the collapse the
bubble point closest to the bottom of the contatt@relops a slightly higher collapse velocity than
the rest of the bubble surface. Over time, thisseaumomentum focusing and leads to a positive
feedback mechanism that amplifies the collapsdliodat the latest collapse stages, a jet is forraed
the axis of symmetry, with opposite direction te #cceleration vector, reaching velocities of even
300m/s. The simulation results agree with the olegkrbubble evolution and pattern from the
experiments, obtained using high speed imagingystypthe collapse mechanism in great detail and
clarity.

Keywords: Numerical simulation, compressible bubble dynamibspble collapse in pressure
gradient, interface capturing, cavitation.

I. INTRODUCTION

Traditionally, the dynamics of the bubble growttdamllapse are described using the Rayleigh-
Plesset equatidrf, which is a simplified form of the Navier Stokeguations, applied in a spherically
symmetric configuration. Even though modificationf the Rayleigh Plesset equation have been
formulated over time, in order to address issuissngrfrom simplifications in the original derivati,
such as compressibility effeétsor bubble interactioris still the main assumption of spherically
symmetric bubble evolution remains.

In practice, bubbles are never perfectly spheriBabble development is very sensitive to the
presence of asymmetries, manifested in the forrbonindary presence (e.g. walls, free surfaces),
external forcing terms and pressure gradients ftotable that the developed asymmetry during the
collapse of the bubble gives rise to the formabbietting phenomena. There are many examples of
both experimental and numerical studies illustgathre above effects. To be more specific:

The first experiments conducted on the behavioububle/bubble clouds in the vicinity of
boundaries (walls, free surfaces) that are pubheigilable, are by the US navy, see &.g-he work
of Benjamin and ElliS is one of the first experimental works on a fundatal level to show high
speed movies of the asymmetric collapse of bubislegrious configurations close and far from
walls, showing the asymmetries during the collagrse the formation of microjets. Similarly, one of
the first numerical works that have examined thituémce of walls in the vicinity of collapsing
bubbles is the pioneering work of Plesset and Claapmvho utilized the Marker-and-Cell method to
track the interface of a collapsing bulbléhey have compared their results against another
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experimental study, by Lauterborn and BblIBuring the collapse, the bubble deformed in a non
spherically symmetric way, with a jet formed towattie wall. A detailed literature review on past
works on bubble interaction with boundaries caridumd in the books of Brenngfi and Leightof
Later on, Mitchell and Hammift studied the aspherical bubble collapse due tortfieence of a
constant pressure gradient, again with the Marker@ell method. The review paper of Blake and
Gibsort! discusses the advances in the analytical, expetahand numerical work conducted on the
behaviour of bubbles in the vicinity of boundarissch as rigid walls, deformable/flexible materjals
liquid/liquid or liquid/gas interfaces.

In a continuing effort towards the understanding prediction of cavitation erosion, works on the
aspherical bubble collapse are still ongoing. EXaspf such works on the fundamental level, are
e.g. the work of M. Tinguely, who investigated, among other subjects, the deftion of a bubble
in the vicinity of a hydrofoil, due to the localgssure gradient. The important finding is thatltoal
pressure field can dramatically affect the way wbltide collapse and the direction of the formed jet.

On the numerical side, various methodologies haenlemployed for the bubble description. One
of the first methodologies, still being used forbble clusters, is the Boundary Element Method,
where only the surface of the bubble is discrefizetwtable works are the work of Mendez et*4l.
focusing on the interaction of bubbles, or the woflChahine et df examining the deformation of
the bubble and the interaction with the materiahatwall in an effort to understand erosion damage
due to microjet. Other notable examples are th&wbOsterman et af, using the Volume Of Fluid
(VOF) for simulating the bubble collapse in theirity of walls under the influence of acoustic
fields, the work of Hawker et &f, based on front tracking techniques for pressuaeevinteraction
with bubble, and the work of Lauer et'3l.using level set methodology for simulating bbbl
configurations near walls.

In this work, the aspherical collapse of a laseregated bubble due to the influence of an external
acceleration field in initially stagnant water ieaenined with CFD techniques, aiming to replicate th
experiments that have been conducted by EPFL Ialmpiation with ESA, as described in the work
of Obresckow et df ?° Briefly described here, the experiment consiéis spherical bubble, created
in water contained in a cubic test chamber, usingreeen, high-power laser pulse. The ambient
pressure level inside the test chamber is regulatitl a vacuum pump and water is at room
temperature. The external acceleration field carthigegravitation field of earth, or the apparent
gravitational field experienced by the bubble untlee flight conditions in the aforementioned
experiments. In the simulations, the bubble intarfas captured with the Volume Of Fluid (VOF)
method and compressibility effects in both gaslandd phases are included. Contrary to the work of
Osterman et af, the Tait equation of state is used for the ligindtead of a linearized one, since it is
more accurate to the IAPWS ddfaat extreme conditions. To the authors' knowledgeprevious
work has been done to predict the aspherical cs#lab bubbles in presence of gravity with the VOF
method, so this can be considered as a fundamsatklexamining the capability of current models
to predict such configurations.

The main features that this work aims to replieatethe following:

- Macroscopic flow evolution (qualitative): the tially spherical bubble grows and then collapséds. A
the last stages of its collapse a jet forms opedsithe direction of the pressure gradient, i@nfthe
bottom of the tank towards the top, which pierdeshiubble. This process is shown in Figure 1; it is
in general, axisymmetric, with the axis of symmdiging the vertical axis passing through the centre
of the bubble. It is of utmost interest to show thubble evolution at the collapse and the tramsitio
from a nearly spherical shape to the deformed twritis jet piercing the bubble. While the same
effect can be derived from experiments, it canreosbown with clarity (see e.g. Figure 9f), due to
magnification, frame rate, resolution and lightiagues.



Figure 1. Evolution of the bubble shape, showirgagh and collapse/rebound. Gravity acts at theaadrtlirection, towards
the bottom. At rebound, an upwards moving jet sble inside the bubble.

- The time evolution of the bubble size (quanitigt the bubble size can be estimated through the
high speed images taken during experiments. Sedwbble may deform in a toroidal shape at its
collapse, bubble size will refer to the instantarsiyp maximum diameter at the horizontal direction.

In previous experimental work conducted by EPFhpa-dimensional scaling law, governing the
collapse asymmetry and outcome, has been formuteténllows®:

Z - ‘DdRmax (1)
P, ~ Py

Where\Dp\ is the pressure gradient due to gravitationaldpr@. o[ g, Rnax iS the maximum bubble

radius, p, is the pressure at cavity level apgdis the vapour pressure. The higher {healue, the

more pronounced the aspherical collapse and th@late is.

An extensive database of high speed videos and ateasurements for different experimental
conditions, including gravitational acceleratios, available at the EPFL website, conducted in
collaboration with ESA, fot values ranging from 0 to 0.089 Additional experiments, conducted at
EPFL facilities, are available also, withvalues reaching up to 0.014. CFD simulations wiith to
replicate selected bubble cases at diffefaratiues, ranging from zero to 0.014.

Il. NUMERICAL MODEL

The numerical model that has been used for the sliFDlations is based on the Volume Of Fluid
(VOF) method, since it is of interest to maintaisharp interface between the two involved phases,
gas and liquid. Surface tension effects are inadudgen though they are considered minor/negligible
for the jet development, given an indicative Webember of ~50000 for the jet inside the bubble,
considering a jet velocity of ~150m/s, jet radidisBBum and liquid water properties. As mentioned,
only two phases are involved, liquid water and nondensable gas, whereas vapour presence and
mass transfer is ignored. Continuity and momentguatons are solved and thermal effects are



ignored. The equations solved, based on the cosiptes viscous form of the Navier-Stokes
equations® **using a commercial flow solver Fluent 18, are:

- Continuity equation:

9 4 Apu)=0 2)
ot
whereu denotes the velocity vector of the flow field.

- Momentum equation:

%+D(puDu)=—Dp+Dﬁ+pg+f 3)
wherep is the density of the fluidy is the pressurgy is the gravity vectorf, are body forces and is
the stress tensor, defined as follows:

r = gf0u +(0u)" |+ A0 w) @)

In eq. 4,1 is the identity matrix and is the dynamic viscosity of the fluid; for the pyshases it is
set to 1mPa and 17.{Pas for water and air accordingly. Tertrdenotes the bulk viscosity of the
fluid which acts only on passing waves, commonlytse2/3: %> ?* ?® The Reynolds number of the
flow ranges from less than 1000, when the bubblee®s maximum size, to even 90000 during the
early expansion and latest collapse phases. Howésmethe majority of the simulation time, the
Reynolds number is around 10000-20000. Due tottbag variation of the Reynolds number and its
relatively low average value, that corresponds tpaim a transitional-mildly turbulent flow regime,
it was chosen not to use any turbulence model.

Surface tension effects are included with the Donim Surface Force model (Brackiif) as a
volume force only in cells that are identified asiaterface, i.e. where volume fraction varies hestw
zero to unity.

- Volume fraction equatidft

a"2;%+D(a,oeu):0 (5)
wherea represents the volume fraction gigdthe density of the gas phase. In the interfaceresdn
varies from zero to unity, volume fraction averagiis performed for determining the value of
viscosity and density.

Even if in the actual experiment there is significinfluence of heating effects, due to laser
interaction with the liquid, the resulting fluidas¢ is not possible to describe with traditionalatpn
of states, such as ideal gas or other, since plagem&ration and reactions take place. As a
compromise we chose to reduce the complexity ofttleemodynamic model of the fluids involved
and correlate pressure only to density. Even whith amission of thermal effects, both phases are
assumed compressible, obeying the following eqoatad state:

- for the liquid, the Tait equation of state:

s
n Po

where, p, is liquid density, equal to 998.2kgint, the speed of sound, equal to 1450m/s, at the
reference statp,=2340Pa. The exponentis set to 7.15, according to relevant literatunengakly
compressible liquids, such as wéler
- for the gas, a polytropic equation of state isdis

p=ko" (7)
Constantk is set assuming that the gas is air and has atyleris1.225kg/m at a pressure of 1
atmosphere (101325Pa). The exponeig a polytropic exponent, depending on the thegmachic



process inside the bubble, e.g. for adiabaticétjsal to the heat capacity ratio and for isothéria
unity. It is set close to unity, ranging from 1.0251.125, depending on the case, see also Tahk |I.
will be mentioned later, this is done based on-&mal-error basis, in order to fit the collapsediand
maximum bubble size with the experimental data.

In order to minimize the effect of numerical difiois, which could affect the development of the
bubble during the whole process of growth and pska high order schemes have been used. To be
more specific, second order upwind schemes have bsed for the discretization of density and
momentum, while the VOF phase field has been digee using an implicit compressive
differencing interface schenf@ *° Time stepping is done with an adaptive methodprider to
achieve a Courant-Friedrichs-Lewy (CFL) conditf8tior the free surface propagation of 0.2; this is
necessary to limit as much as possible the interéiffusion and maintain solution accuracy at the
vicinity of the free surfacé’. The solver used is implicit pressure based aisl rdmoves any
restrictions on the acoustic Courant number, wisdt maximum ~5, considering the minimum cell
size and the maximum velocity. All the 2-phase $ations to be presented in the current work are
set-up as 2D axisymmetric. The reasons for thiscseh are the axial-symmetry that dominates the
whole phenomenon until the late stages of the nmetbophase and the significantly reduced
computational cost of an axisymmetric simulatiorcomparison to the full 3D simulation; just for
reference, the simulations presented in the cumemk were conducted on a modern desktop
computer over 2-3 days of computational time. flth 3D simulation was to be pursued, then the
computational cost would have been significantihler, necessitating the usage of a cluster.

Apart from the solution of the 2-phase compresdidgier Stokes equations, a very useful tool for
the estimation of the bubble expansion/collapse simd time evolution is the Rayleigh-Plesset
equation. The standard Rayleigh-Plesset equatiars used, in the following form:

o 3., R)" 20 R
RR+=R?|=p, =P+ Pyo| = | ———4u— 8

where:
- p is the water liquid density, 998.2kg/m

_ . . - dR .. - d2
Ris the bubble radius; = At and R %tz

- pv is the vapour pressure.
- P., is the pressure at the bubble level, includinghyrostatic pressure depending on the case (see

also Table I).

- Pgo Is the initial bubble pressure, tuned to predistnailar bubble evolution as the experiment.
- g is surface tension; here a value of 0.072N/m éslus

- 1 is the dynamic viscosity of water, i.e. 1T0°Pa.s

- nis a polytropic exponent, set close to unity athengas equation of state.

It has to be kept in mind that one of the main aggions of the Rayleigh Plesset equation is the
spherical bubble in an infinite liquid volume. dtclear that the main cases of interest are nbeqibr
spherically symmetric, due to e.g. the gravitatidireld, and in a bounded space, so one cannot
expect a perfect match between the experimentaimerical simulations and the Rayleigh Plesset
equation results. Still the Rayleigh-Plesset eguatian assist both in the validation of the progose
methodology and in the set-up of the simulationfoliow, since it can provide quick estimates o th
bubble response for given initial conditions.

As stated above, in the present investigationy#pour pressure is ignored, both in the Rayleigh-
Plesset equation and in the 2-phase Navier-Stakat@1. Whereas the vapour pressure is definitely
not insignificant, the fast expansion and collapSéhe bubble poses some questions on whether the



mass transfer through the bubble interface isdastigh so that the vapour pressure inside the dubbl
is always equal to saturation pressure.

Ill. VALIDATION OF THE METHODOLOGY

Before moving to complicated cases, with boundaaes complex bubble deformations, a
preliminary study is conducted with the aforememtid methodology, in order to compare its
predictions the Rayleigh Plesset equation. For ¢hise, which corresponds tolavalue of 0, the
whole process of bubble growth and collapse is gy symmetric. The bubble to be simulated
corresponds to a case examined in the literatufeomjnet et al., for more information sée

- the bubble has an initial radiusf=10um

- the surrounding liquid pressure &, =1bar

- the gas inside the bubble obeys an isentropiodlvn=1.4

- the liquid density is 1000kgfand dynamic viscosity 1mPa.s

- surface tension coefficient4s0.07N/m

- amount of gas inside the bubble corresponds tdiledqum radius of m %2 this corresponds to
an initial pressur@y of ~6900Pa inside the bubble.

- there is no vapour inside the bubble (vapour mrassfer is omitted).

Since the configuration resembles a sphericallyrsgtric collapse, a 2-dimensional axisymmetric
computational domain was used to represent the léultd the surrounding liquid; the domain
resembles a half-circle, as shown in Figure 2, with bubble centre placed at the origin (0, 0). The
computational mesh is of O-grid type to preserve the spherical symmetry of the bubiikrface,
limit numerical diffusion and prevent introductiofinumerical artefacts. Note that the Navier-Stokes
solution requires a finite computational grid, thtssminimize the influence of the pressure faldfie
the boundary is placed 100 times the initial radiusy from the bubble. Experience has shown that
placing the boundary closer can lead to a dranatierestimation in the collapse time of the bubble.
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Figure 2. The computational domain and mesh fowdtielation case.

In Figure 3 the evolution of the bubble radiuscuo&ted with the Rayleigh-Plesset equation and
the Navier Stokes is shown, from the beginninghef ¢ollapse until the rebound atusl It becomes
apparent that both solutions are practically idstigiving confidence to continue with the more
complicated cases with the inclusion of gravity andndaries. Bubble mass is maintained accurately,
with a maximum error of 0.03%. Also, as shown igufe 4, the bubble interface remains spherical at
all stages; this is expected since the whole cardiipn has spherical symmetry.
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Figure 3. Bubble collapse evolution; comparisomigen the Rayleigh-Plesset equation and Navier Stalasion.
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Figure 4. Bubble collapse sequencelfad for the validation case. The thick black contins line denotes the bubble
interface and the dashed-dotted line the axis winsgtry.

IV. EXPERIMENTAL GEOMETRY AND COMPUTATIONAL MESH

The computational domain simulated is based orditmensions of the water container that has
been used for parabolic flight§ i.e. a box of inner dimensions 178.2x178.2x190R2(Width x
Length x Height). Since the simulations are inh#ye2D axisymmetric, a 2D rectangular domain of
was used with the same cross-section as the drigimdainer, i.e. 100.5 x 190.2mm. Experience has
shown that using a domain with the same crossesed@s the actual container is essential for
capturing the correct collapse of even the largabble, withR,o~7.2mm {~0.014).

The computational domain is positioned in such § vt the point (0, 0) corresponds to the
bubble centre (see Figure 5), which lies on the akisymmetry. No-slip wall boundary conditions
are placed at the side and the bottom of the amertaand fixed pressure at the open top of the
container; in the experiments the container is eoted to a vacuum pump that achieves a desired
pressure level.



The 2D rectangular domain was meshed with a bltelctaired strategy, with local refinement in
the area of interest, which spans in a radius ah&mound the origin; as with the validation cabe, t
mesh in the vicinity of the bubble is of O-grid &prhe aim of this refinement region is to capture
with adequate resolution the bubble growth andapsk, without needing an excessive amount of
computational elements in the whole container. Tadicular type of meshing ensures that as the
bubble becomes smaller and smaller there will ligh elements to describe it, since the cell size
decreases as one moves towards the centre of bidebiNote that there is also refinement at the
vicinity of the free surface, though not as fineirashe vicinity of the bubble, since the free sid
deformation is not of interest in this study. Thnputational domain consists of 200000 cells and in
the area of interest the cell size varies fromrb@ 0.4tm near the origin.

The container is initially filled with 140mm of wettand the bubble is generated at 70mm from the
bottom. The ambient pressure the experiments amduobed varies from 7500 to 10100Pa. This
pressure is imposed at the fixed pressure boundapgnding on the case, and is initially set agthe
region of the computational domain; the hydrostatimponent of the air column is omitted since it is
insignificant (the hydrostatic pressure of airasd than 0.1Pa at the experiment's ambient consljtio
for a column of 50mm height). On the other hand, water part is initialized with the hydrostatic
pressure, since its contribution is not negligiBeavitational acceleration is imposed as a monmntu
source term, depending on the exact value of therérental conditions for each case.
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Figure 5. Configuration used for the simulationftL#he 2D computational domain used. Middle amythti the block-
structured computational mesh with refinement andhea of interest.

A summary of the examined cases, with the main ntapb conditions mentioned is highlighted
below:
Table I. Conditions for the various test casesgt@kxamined

Poair Ap Py Rmax g p (
Case Reference nanfé )
(Pa) (Pa) (Pa) (mm) (m/S) (Pa) (109
1 8938 7190 2460 4,345 10.18 cavityl24 9650 6.142
2 10174 8980 2460 4.549 18.12 cavityl47 11440 9.162

3 7514 5360 2840 ~7.2 9.81 - 8200 13.702




The laser-generated bubble is introduced as a pigbsure gas bubble, located at the same
location as in the experiments, i.e. 70mm belowftée surface. This is done by patching an amount
of gas in a circular shape at the origin, initiatlius R, and initial pressurgo. Initial radiusR, is
estimated based on the observed minimum radiusgladllapse; in all cases the bubble radius at the
collapse is ~0.3-0.5mm. The initial bubble size ttabe smaller than the bubble radius at collapse,
considering the periodic nature of the Rayleighs&¥¢ equation in the absence of damping terms. On
the other hand, a very small size would be bottblproatic to resolve and will impose very small
time-stepping, in order to preserve accuracy ofittherface. Thus, an initial radius of 0.1mm was
chosen as an initial bubble size, since it was doadequate to give good predictions of the bubble
evolution, while being computationally efficientr@solve.

The initial bubble pressure is chosen so that thedipted bubble growth/collapse time and
maximum radius matches the relevant from the emp@is. This process is done in two stages: the
first stage is by using the Rayleigh-Plesset eqoatio quickly estimate approximate pressure levels
that are needed in order to predict a similar belfiighaviour as in the experiments. It has to bé kep
in mind that the deviation from spherical symmeind the existence of boundaries will render this
initial pressure estimate somewhat inaccuratetifarreason, the second stage is using the dedcribe
methodology in a trial and error basis until theximaum bubble radius is predicted appropriately.
After going through this two stage methodology, ithigal pressures and polytropic exponents shown
in Table Il have been determined (see also theigiezt evolution of the bubble radius, using the
Rayleigh-Pesset equation, in Figure 6). The vamatif the polytropic exponent has a weak effect in
the collapse time. If the same polytropic exponanl.05 was used in all cases, with appropriate
initial pressure to reach the same maximum bubdtius, the deviation from the experimentally
determined collapse times would increase by ~3%imax.

Table Il. Initial conditions for the various testses to be examined

Case Ro (Pa) n(-)

1 8.310’ 1.00
2 1.7510° 1.075
3 6.2510° 1.125
9 s
- Case ]
8 =
7 -
ge-
Es
j]
Z 4
<
&~ 3
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l =
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Figure 6. Predicted growth/collapse for the thrages with the Rayleigh-Plesset equation.



V. RESULTS

In this section, selected results of the aforenoemrtl cases will be presented. Each figure is aplit
the middle, at the axis of symmetry. The left gHrthe figure shows the pressure field and thetrigh
the velocity magnitude. The thick black line ind&sthe bubble interface. In all cases gravity acts
towards the bottom of the figure, as shown in Fegbr Results include indicative frames from the
bubble growth, collapse and rebound, showing thehjgt forms inside the bubble and pierces the
bubble. Moreover a graph indicating the bubble uaddevelopment is shown for each case,
comparing with the experimeftt

Figure 7 shows a comparison of the bubble sizendutie growth and collapse phases, between
the computations and the experiments. As showmtiteh between the experimental and numerical
results is, in overall, good for all cases. Theyamception a slight underestimation of the cokaps
time mainly for case - 1 and case - 2. The errowéen numerical and experimental collapse times is
3% for case -1, 2.6% for case - 2 and 0.6% for e&se

The process of bubble growth, collapse and rebausdnilar for cases 1-3. The main difference
is at the exact temporal evolution and the velooftyhe jet formed inside the bubble just before th
rebound. The whole process is shown in detail fmsec3, in Figure 8, Figure 9 and Figure 10
respectively. It can be described as follows:

At the first time instances the bubble expandsasiptly, forming a pressure wave that radiates in
a spherical way at all directions (see e.g. Figlresee also Figure 11). It has to be mentioned tha
this pressure wave reflects on the walls and the furface, causing a rather complicated pressure
field due to the superposition of reflected tensawrd pressure waves. The bubble expands and
reaches a maximum radius and minimum pressure shelomw:

- radius 4.3mm at ~1.5ms for case £30.006), with minimum bubble pressure 1000Pa

- radius 4.5mm at ~1.5ms for case £20.009), with minimum bubble pressure 800Pa

- radius ~7.2mm at ~2.26ms for case £-3(014), with minimum bubble pressure 330Pa.

After the maximum bubble size, the bubble startsoitapse. During the collapse, even at the first
stages, it is clear that there is a slight biathatcollapse velocity at the bottom of the bubbke, at
the bubble interface closest to the bottom of thietainer. Collapse velocity is slightly higher taer
(see Figure 9a). This effect is due to the presguaelient acting on the bubble in the form of
hydrostatic pressure. Eventually, this bias acta pssitive feedback mechanism, due to momentum
focusing, leading to even higher velocities at ltidble bottom, as the bubble collapses further, see
Figure 9c, d. As the bubble reaches closer toiitsnmum size, a jet forms at the bottom of the bebbl
with direction opposite to the pressure gradieeg &igure 9c, d. The relevant photo from the
experiment (Figure 9f) shows clearly a deformeah-gpherical bubble, with indications of an internal
jet structure. The predictions show that the gt & radius and velocity as follows:

- radius ~8@m and velocity ~180m/s, for case -1

- radius ~110m and its velocity ~210m/s, for case - 2

- radius ~110m and a velocity ~360m/s, for case - 3. Note thigtd¢orresponds to a Mach number
of ~0.80 for the gaseous phase inside the bublle-@r25 for the liquid surrounding the bubble.

The jet impacts the opposite side of the bubblercpig it and entraining a pocket of gas around
the point of impact, see Figure 10a. During theagson the gas pocket and the expanding bubble
form two attached toroidal structures, see Figie. As the bubble expands, the jet gets thinner and
thinner, resembling a needle, see Figure 10e;ighi®nfirmed by experimental observations in the
work of Obreschkow et at’. Indicative instances are provided from the experits, note that most
of the images were captured from a high speed camtea frequency of 20000 frames per second.
The only exception is Figure 9f, which is obtairfeain a different high speed camera, used only at



the collapse interval where flow dynamics are Miast, running at 1:50° frames per second. Also
note that the scale is not the same in all the Isitiom instances, in order to be able to show ¥ith

detail the bubble development, especially at celiap
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Figure 7. Comparison between the CFD simulationtaadxperiment bubble size evolution.
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maximum size. The CFD results are at left and tbh bpeed photos from the experiment at the righgnever applicable.
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during the collapse is ~360m/s, which corresponds¥Mach number of ~0.80 for the gaseous phasemBgaified insert

in (f) has the same scale as the simulation (e).

Images from the experiment indicate that, afterrdt®ound, the bubble interface is rippled, see
Figure 10d. This is an interfacial instability, pebly a form of the Richtmeyer-Meshkov instability,
caused by the interaction of the emitted shock waide the bubble interface. Such an effect is not
replicated by the simulation, mainly due to theoheSon employed.
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Figure 10. Case 370.014: Bubble rebound. Note the jet pierces theblmiforming a toroidal structure. At later stages
forms a protrusion at the bubble surface with élésneedle-like structure inside the bubble, rentred the jet.

In Figure 11 the density gradient magnitude is shéov selected instances of the simulation to
produce numerical Schlieren imag¥s during the initial expansion and rebound of theblile.
Initially a circular pressure wave forms, expandragdially around the bubble (at g9, due to the
explosive bubble growth. At the bubble collapseegaes of pressure waves are formed due to the jet
impact on the bubble wall and the very high bulvdl acceleration. In Figure 12(Multimedia view)
an animation of the bubble development is shownpraslicted by the simulation, for the better
understanding of the bubble shape and flow fieldwgion.
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Figure 11. Numerical Schlieren type images, by shgwontours of the density gradient. The initisdgsure wave due to
the bubble expansion is visible, as well as thequre2 waves from the jet impact and rebound obthbdle. The red line
shows the bubble interface.

Figure 12. Animation showing the evolution of théoble. The video is split in half by a verticaldinThe left part shows
the pressure field and the grey isosurface is agg8bnstruction of the bubble interface. The rigiutt ghows the velocity
magnitude and the black continuous line is the lulrtterface. Note that due to the large expanaimhcontraction of the
bubble it is impossible to show with clarity the alé evolution. Thus, at §i8 the camera zooms out and at 4.766ms the
camera zooms in closer to the bubble. (Multimediavy.

VI. DISCUSSION

As shown from the results of this numerical stuthg existence of the pressure gradient, in the
form of a hydrostatic pressure field, is enougttrigger an aspherical collapse. During the bubble



growth stage, as well as at the maximum radiusbthuble size remains closely to spherical for cases
1 to 3, with a maximum deviation from a perfecibhsrical shape of ~1@n (or less than 0.2% of the
radius). However, during the early stages of théapse phase there is a slightly higher collapse
velocity at the bottom of the bubble, due to existe of the hydrostatic pressure gradient. As the
bubble collapses, this slight velocity differensdurther amplified due to momentum focusing, that
the concentration of liquid motion to a smaller amdaller region, sek Eventually, at an instance
close to the rebound, a high velocity jet, withoo#ly higher than 150m/s, with the exact velocity
depending on the case, is generated at the botfotineobubble with a direction opposite to the
pressure gradient. This jet pierces the bubbletlagd, as the bubble grows, leaves a needle-like tra
on the axis of symmetry, while the bubble interf@stibits a conical protrusion, aftermath of the
violent jet impact. The predicted behaviour is mio what is found from experimerits

It is of interest to note that even for the smadigsure differences encountered in this study, lwhic
correspond to a bubble potential energy of lessqoal to 10mJ at maximum size, the jet formed at
the collapse has a velocity that may exceed 150Bventually this corresponds to water hammer
pressures of at least 2000bar during the impacteaed peaking up to 4500bar - such values are
comparable with the yield stress of metal alloyshasSS3161%.

Considering the computational aspects of this wibrdx following have to be highlighted:

- The whole phenomenon is very sensitive to theirate resolution of the pressure field. This is
especially hindered by the existence of pressurk tansion waves. Attention has to be paid to
discretization schemes and time stepping, in otdeachieve convergence at each time step, good
representation of the pressure gradients and agcofdhe interface.

- The computational mesh has to be structured ¢h suway that it allows accurate resolution of
the bubble, both at maximum and minimum bubblessiZzéhe mesh structuring used in the present
work enables high resolution even at very sma#isizue to the O-grid structure.

- Despite the simplistic model of the gaseous plaskthe omission of heat transfer effects, the
bubble growth/collapse was captured with accuracyplving the formation of the jet due to
hydrostatic pressure gradient.

- To a certain extent, discrepancies from the arpmts are to be expected due to the
configuration of the container; in the simulatidhe container corresponds to a cylinder, whereas in
reality it is a rectangular domain. This will prdihahave an effect on the exact wave pattern dinee
side surface of the cylinder acts as a focusingamof pressure waves on the bubble, which lies on
the axis of symmetry.

VIl. CONCLUSION

The subject of the present paper is to examinediapse of laser generated bubbles subject to
gravity and to provide insight in the mechanism tbé asymmetry formation as well as the
computational complexities involved. Four differectinfigurations have been tested, one in the
absence of gravity, which yielded a perfectly spfadly symmetric collapse. When gravity influence
is included, an asymmetry is induced in the cobapalocity, due to the uneven pressure distribution
around the bubble. Over time the collapse veloeisymmetry is amplified due to momentum
focusing, leading to the formation of a jet at bwtom of the bubble with direction opposite to the
gravity vector. The jet pierces the bubble and ®arprotrusion in the bubble interface; at the same
time the remainder of the jet becomes like a needlllethe previous numerical observations are
confirmed by high speed imaging of experimentsiilar conditions, conducted by EPFL with
collaboration with ESA.
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Nomenclature

¢ Non-dimensional scaling law (-)

|Vp| Pressure gradient (Pa/m)

P) Density (kg/m)

g Acceleration of gravity (mf$

Rimax Maximum bubble radius (m)

p., Pressure at cavity level (Pa)

n Tait equation exponent (for liquid) (-)

u Dynamic viscosity (Pa)
u Velocity vector field (m/s)

T Stress tensor (Pa)

g Acceleration of gravity (mf$

f Body/volume forces vector (NAn
A Bulk viscosity coefficient (Pa.s)
a Gas volume fraction

00 Reference density (kgfn

Co Reference speed of sound (m/s)

Po Reference pressure (Pa)

K Constant of polytropic gas proceEs Pa J

(kg/m3)rl

n Polytropic exponent for gas (-)

R Bubble radius (m)

Ry Initial bubble radius (m)

R Bubble interface velocity (m/s)

R Bubble interface acceleration (/s

Py Vapour pressure (Pa)

Pgo Initial gas pressure (Pa)

o Surface tension (N/m)

Ap Pressure difference (Pap, - p,
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