
              

City, University of London Institutional Repository

Citation: Massol, O. (2011). A cost function for the natural gas transmission industry: 

further considerations (11/03). London, UK: Department of Economics, City University 
London. 

This is the unspecified version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/1464/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


 
 
 

 
Department of Economics 

 
A cost function for the natural gas transmission industry: 
further considerations 

  
 

Olivier Massol1 

 
 City University London 

And 
Center for Economics and Management, IFP School 

 
  
 

Department of Economics 
Discussion Paper Series 

No. 11/03 
  
 

 
1 Department of Economics, City University London, Social Sciences Bldg, Northampton Square, London EC1V 0HB, UK ; and Center for Economics and Management, 
IFP School, Rueil-Malmaison, France; Email: olivier.massol@ifpen.fr 

 
 



 1 

 

A cost function for the natural gas transmission industry: 

further considerations 

 

 

Olivier MASSOL a b ∗∗∗∗ 

 
a Center for Economics and Management, IFP School, Rueil-Malmaison, France 

b Department of Economics, City University London, UK  

 
 

ABSTRACT   

This article studies the cost function for the natural gas transmission industry. In addition to a 

tribute to H.B. Chenery, it firstly offers some further comments on a recent contribution 

(Yépez, 2008): a statistical characterization of long-run scale economies, and a simple 

reformulation of the long-run problem. An extension is then proposed to analyze how the 

presence of seasonally-varying flows modifies the optimal design of a transmission 

infrastructure. Lastly, the case of a firm that anticipates a possible random rise in its future 

output is also studied to discuss the optimal degree of excess capacity to be built into a new 

transmission infrastructure. 
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Introduction 

As far as engineering economics is concerned, the year 2009 corresponded to a special anniversary: 60 

years ago, Hollis B. Chenery, a then promising PhD student – he later became the World Bank's Vice 

President for Development Policy – published a seminal article that illustrated how the production 

function of microeconomic theory can be rewritten with engineering variables (Chenery, 1949). His 

goal was to present a rigorous analysis of the cost function of an industry whose total production 

function consists of several processes which can be combined in varying proportions to produce a 

given output. As an illustration, he provided an illuminating case study based on the natural gas 

transmission industry. Analyzing the design of a simple infrastructure – a compressor station and a 

pipeline – he remarked that the combination of processes is such that it is possible to increase output 

by adding more compressors while keeping the same pipeline or, in the long run, simultaneously 

varying both parameters. As he has shown, this flexibility is the origin of the massive scale economies 

observed in that industry. Despite a considerable early influence in the academic community (e.g.: 

Smith, 1957, 1959; Thomson et al., 1972), the engineering economist approach pioneered by Chenery 

has gradually disappeared from the applied economic literature. Apart from rare exceptions like Callen 

(1978), most of the economic and/or policy articles dedicated to the natural gas industry did not 

consider this engineering approach. Given the impressive regulatory reforms implemented in that 

industry during the last decades, this fall into oblivion is somehow astonishing. 

On the engineering side, Chenery's ideas have also infused the operations research literature. During 

the last decades, the problems associated with the construction and subsequent management of large 

transmission networks have offered a stimulating field of research. Many models have thus been 

developed: to define the optimal operation of an already developed infrastructure (De Wolf and 

Smeers, 2000), or to identify the optimal expansion plans of that infrastructure (Kabirian and 

Hemmati, 2007; André et al., 2009), or to choose the optimal long-run design for a network whose 

topology is given (Hansen et al., 1991; De Wolf and Smeers, 1996; Ruan et al., 2009). Besides these 

numerical models, strong analytical results have also been obtained for special cases. For example, 

André and Bonnans (2010) studied the optimal design of a "trunkline system" (i.e. a long-distance, 

wide-diameter pipeline that has several compression stations installed along the pipe) and proved that 

the optimal design of these infrastructures involves regularly spaced compression stations (except 

perhaps for the last one), a unique pipe-diameter for the whole system (except perhaps for the last pipe 

element) and equal compression ratios for the compressors (except perhaps for the last one). Clearly, 

the technical sophistication of these contributions cannot be compared with Chenery's simple setting. 

Nevertheless, these articles share an obvious intellectual relation with Chenery (1949) and it is 

somehow unfortunate that this proximity has unintentionally been forgotten. 
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Hopefully, a recent article published in this Journal (Yépez, 2008) has provided a refreshing revival of 

Chenery's ideas. In addition to the perpetuation of this method, at least three reasons can be advanced 

to illustrate the value added by this contribution. Firstly, the paper presents a clear and modernized 

version of Chenery’s methodology which includes some interesting engineering refinements, such as a 

more recent version of the gas flow equation, and the possibility to deal with a non-steady elevation of 

the pipeline. Secondly, Yépez derived a set of analytical equations that describe how total, average and 

marginal costs vary with output in the short run. And last but not least, Yépez provided a detailed case 

study based on a Mexican project. As this presentation of Chenery (1949) only represents the tip of an 

iceberg, some complements may be needed to shed some light on Chenery's shrewd thoughts on the 

gas transmission industry. 

This article is organized as follows. In the first section, a complete review of the Chenery-Yépez 

model aims at offering some eclectic complements. In the second section, an extension of that model 

is provided to deal with the case of seasonal variations in the volumes of gas to be transported. The 

influence of these variations on the optimal design of the transmission equipment is discussed. 

Investment recommendations are then addressed in the last section to analyze the rationale of a 

“building ahead of demand” behavior.  

1 – A commented review of the Chenery-Yépez approach  

In this first section, three points are successively discussed: the long-run optimal decision, the short-

run one and a complementary remark on an alternative formulation of the long-run problem. 

1.1 Long-run economics 

Both authors developed a rigorous model-based cost function for a simple gas transmission 

infrastructure: a compressor pumps a daily flow of natural gas Q  into a pipeline that runs a given 

distance l .  

In Chenery (1949) and Yépez (2008), output and investment decisions are assumed to be taken 

separately and the estimate of output is supposed to be made prior to the investment decision. This 

assumption is consistent with industrial practice because, in many cases, this flow is an outcome of 

exogenous negotiations between a natural gas producer and a group of buyers. As the firm is assumed 

to have perfect information on the volume of gas to be transported and on the associated revenues, the 

project's value is maximized by an investment program which minimizes the total cost of production 

over the period. Since output is assumed to remain steady all through the infrastructure lifetime, the 

optimum plan also minimizes the annual total costs. In this long-run decision, two engineering 

variables are considered: D  the inside diameter of the pipe, and H  the compressor horsepower.  
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Production function  

Any combination of inputs ( ),D H  must be compatible with the technological constraints faced by 

the gas transmission firm. In that industry, two engineering relations must simultaneously hold. 

The first relation is a flow equation that gives the frictional loss of energy through the pipe – measured 

as pressure drop between the inlet pressure 1P , and the outlet one 2P  both in psia (pounds per square 

inch absolute) – obtained while piping a given steady flow rate Q  in MMcfd (million cubic feet per 

day) across a distance l  (in miles) on a pipe whose inside diameter is D  (in inches). A flow equation 

typically requires two things: the general flow equation derived from thermodynamic reasoning, and 

an empirically-determined friction coefficient (Mohitpour et al., 2003; Shashi Menon, 2005). Several 

empirical models (Weymouth, Panhandle, AGA...) have been proposed to determine the value of that 

friction parameter as a function of engineering variables (e.g.: pipe diameter, Reynolds number...) and 

gas flow-regimes (laminar, partially turbulent, turbulent). Hence, gas engineers have to arbitrarily 

choose a model. For a high-pressure infrastructure that must transport a given high flow rate gas with a 

given pressure drop, the Weymouth model is known to provide a reasonably conservative value for the 

pipe-diameter (Mohitpour et al., 2003; Shashi Menon, 2005). Because of safety concerns, this model is 

usually recommended for pipe design decisions (Mohitpour et al., 2003 p. 79). That's why, the 

Weymouth equation has been assumed in this study. This choice is consistent with Chenery (1949) 

and Yépez (2008). With the assumption that there is no elevation change in the pipeline and that the 

terminal pressure 2P  is an exogenously determined parameter, the Weymouth flow equation is 

(Mohitpour et al., 2003; Shashi Menon, 2005): 

2

8/30 1

2

1
c P

Q D
Pl

� �
= −� �

� �
,       (1) 

where 0c  is an exogenous constant parameter. 

The second relation gives the power required to compress natural gas from a given inlet pressure 0P  to 

a predefined outlet pressure 1P  (Yépez, 2008):  

( )1. 1H c R Qβ= − ,        (2) 

where H  is the horsepower per million cubic feet of gas, R  is the pressure ratio 1 0 1P P ≥  and both 

1c  and β  are positive dimensionless constant parameters with 1β < . 
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For the sake of simplicity, the terminal pressure 2P  at the delivery point is assumed to be equal to the 

inlet one 0P  as in Chenery (1949). These two technological equations can then be simplified (by 

eliminating R ) into a single engineering production function that has to be equal to zero:  

( )
2

2

2 16 /3
0 1

, , 1 1 0
lQ H

F D H Q
c D c Q

β� �
= + − + =� �

� �
.     (3) 

This production function embodies the key features of the gas transmission industry and suggests the 

possibility of a smooth continuous substitution between pipe-diameter and compression horsepower. 

From a strict technical perspective, the combination of these two capital factors (diameter and 

compressor horsepower) is such that it is possible to increase output by adding more compressors 

while keeping the same pipeline or increasing the pipeline diameter while keeping the same design for 

the compressors. 

Annual costs   

As far as costs are concerned, two different elements have to be considered. Firstly, the total yearly 

capital and the operating cost per mile is given by a smooth function of the inside diameter D  and the 

pipe thickness τ . Following Chenery (1949) and Yépez (2008), τ  is assumed to be a linear function 

of the pipe diameter which allows a univariate expression of the pipeline cost. With Yépez’s 

terminology, this cost function is named ( )DC D  and is equal to ( ) ( )1 2.L C D C Dα + , where ( )1C D  

is the replacement value of line per mile dependent on the diameter; Lα  is the fixed-cost annual 

percentage charge dependent on the depreciation and real interest rates so that ( )1.L C Dα  gives the 

annual cost of the line per mile, and ( )2C D  the annual operation and maintenance cost per mile.  

The annual cost of the compressor station ( )HC H  constitutes the second type of cost. Again: 

( )HC H  is the sum of two smooth functions of H  the horsepower: ( )3.C C Hα  and ( )4C H ,  where 

Cα  is the fixed-cost annual percentage charge dependent on the depreciation and real interest rates, 

( )3C H  is the replacement value of the compressor station dependent on the installed horsepower 

capacity and ( )4C H  is the operation and maintenance cost. 

Obviously, the choice of functional specifications can play a non-negligible role on gas transmission 

economics. Hence, they deserve a short discussion as we notice some differences in the literature. In 

Chenery (1949) and in most operation research studies, a linear specification has been assumed for 
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these annual cost functions. Yépez (2008) makes a different choice as these annual costs ( )DC D  and 

( )HC H  are assumed to be strictly increasing, smooth and concave functions of the indicated 

engineering variable (the diameter or the compression horsepower). The resulting unit costs of the 

pipeline and compressor inputs are thus assumed to decrease with the indicated engineering variable 

(see Appendix 1 for a summary and a discussion on these cost assumptions).  

Problem formulation 

For a rational firm that must transport a given flow Q , the objective is to find a technologically-

compatible combination of inputs that minimizes its annual total costs. Hence, the firm's long-run total 

cost function ( )LRTC Q  can be defined as follows: 

( )LRTC Q  = 
( ) ( )

( )
,

Min    .

s.t.        , , 0.

D HD H
l C D C H

F D H Q

� +�
	

=�


     (4) 

With the functional specifications and the numerical parameters presented in Yépez (2008), this 

constrained minimization problem has a unique solution. This optimal mix of inputs ( )* *,D H  can be 

obtained thanks to the Lagrangian method. The Lagrangian function �  for this constrained 

minimization problem is: 

( ) ( ) ( ) ( ), ,  = . , ,D HD H l C D C H F D H Qλ λ+ +� .    (5) 

And the optimal solution ( )* *,D H  satisfies the first-order necessary conditions: 

( ) ( ) ( )', ,  = . , , 0D

F
D H l C D D H Q

D D
λ λ∂ ∂+ =

∂ ∂
�

    (6) 

( ) ( ) ( )', ,  = , , 0H

F
D H C H D H Q

H H
λ λ∂ ∂+ =

∂ ∂
�

.    (7) 

Where, ( )'
DC D  (respectively ( )'

HC H ) is the marginal annual cost of the pipeline (respectively of 

the compressor station). Note that a straightforward property of that optimal combination of pipeline 

diameter and the horsepower of the compressor station ( )* *,LR LRD H  can be exhibited. These two first-

order conditions imply that the optimum combination ( )* *,LR LRD H  satisfies: 
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( )
( )

( )
( )

* *' *

' *
* *

, ,.

, ,

LR LRD LR

H LR
LR LR

F
D H Ql C D D

FC H D H Q
H

∂
∂= ∂
∂

.      (8) 

Scale economies, some empirical evidences 

In his discussion on the long-run economics of the natural gas transportation industry, Yépez noticed 

the presence of significant economies of scale. His affirmation was inspired by the shape of the long-

run cost curves as both long-run average cost (LRAC) and long-run marginal cost (LRMC) are 

decreasing and the former exceeds the later. To complete this plot-inspired remark, some additional 

results may be useful to quantify those scale economies. In another paper, Chenery suggested that the 

long-run cost function of the gas pipeline has an almost constant elasticity of output with respect to 

cost over most of its range (Chenery, 1952). Thus, an acceptable approximation of the long-run total 

annual cost function ( )LRTC Q  may be provided by the function 
1

Q ψγ , where γ  is a constant and 

ψ  represents a scale coefficient (with that specification, the ratio of average cost to marginal cost is 

constant and equal to ψ ). Given that Yépez’s analysis differs from Chenery (1949) (as it includes a 

modernized version of the technological relations and a non-linear specification for the input cost 

functions ( )DC D  and ( )HC H ), the validity of Chenery’s approximation needs to be validated with 

a statistical approach.  

Hence, an investigation based on Griffin's "pseudo data" method seems needed (Griffin, 1977, 1978, 

1979). This method was developed in the 1970s. At that time, available computational technologies 

prohibited the direct inclusion of cumbersome detailed engineering models in large inter-industry 

simulation models. The "pseudo data" approach was seen as a computational-friendly tool able to 

simplify complex process models into single-equation cost functions. Each of these cost functions 

depicted the long-run total cost for various quantities and was estimated from a data set generated 

from the associated industry process model. In the present study, a data set of 84 observations was 

generated by running several instances of Yépez's model with the list of parameters presented in 

Appendix 1. In these numerical simulations, the output varied from 0.25 to 21 Bcm/year (billion cubic 

meters of gas per year) – i.e. 25.6 to 2147.5 MMcfd – by regular steps of 0.25 Bcm/year. Here, cost 

data were drawn over a sufficiently wide range that represents usual operation conditions in the natural 

gas transmission industry. Based on these “pseudo data”, simple relationships can be statistically 

estimated. Thanks to the usual log transformation, an Ordinary Least Square (OLS) regression is 

sufficient to estimate the specification suggested in Chenery (1952). Table 1 presents the empirical 

results for this statistical cost function. 
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Table 1: Empirical results obtained from an OLS regression on Chenery’s specification. The 

numbers in parentheses are standard errors of coefficients. 

( )log LRTC  = 12.34312 +  0.613467 ( )log Q  

  (0.000984)  (0.000145)  
      

R2 = 0.999995 ;       S.E. of regression = 0.001218 

The goodness of fit measure R2 indicates an excellent explanatory power which is quite unusual for 

such a simple specification. The estimated values are highly significant as the t-statistics suggest that 

the probabilities attached to the real values being 0 are insignificant. Hence, Chenery's specification 

provides an acceptable approximation of the long-run total cost function.  

As far as the long-run scale coefficient ψ  is concerned, these findings confirm the presence of 

significant scale economies: for any given output, the Long-Run Average Cost is always 63% greater 

than the Long-Run Marginal Cost. This result undoubtedly reinforces the pertinence of Yépez's 

conclusion on the design of appropriate pricing policies: a long-run marginal-cost pricing would not 

allow the firm to break even (Yépez, 2008).  

1.2 Short-run cost economics 

In the short-run, there are some technical and economical restrictions on the substitutability between 

the two factors D  and H . As suggested by Chenery (1952), it seems reasonable to consider any 

already installed pipeline as an indivisible factor. Following Yépez (2008), we thus assume that the 

short-run adjustments needed to serve an additional demand are obtained by increasing the 

compression horsepower while keeping the pipeline unchanged.  

For a given pipeline whose diameter is D , the engineering production function (3) can be reorganized 

to define a short-run factor demand function ( )DH g Q=  that gives the amount of compression 

horsepower H  required to propel the daily flow rate of natural gas Q . Here, Dg  is a smooth, strictly 

increasing and strictly convex function: 

( )
2 2

1 2 16/3
0

. 1 1D

lQ
g Q c Q

c D

β� �
� �� �= + −� �� �
� �� �
� �

.      (9) 

With this technology, it is clear that a 100% increase in the quantity to be transported through a given 

pipeline requires a more than 100% increase in the compression horsepower.  
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Using (9), Yépez (2008) defined a single variable expression for the Short-Run Total Cost function 

( )SRTC Q  that includes a significant fixed pipeline cost and an output-variable compressor cost:  

( ) ( ) ( )( ). D H DSRTC Q l C D C g Q= + .      (10) 

From (10), single variable expressions can easily be obtained for the Short-Run Average Cost function 

( )SRAC Q  and the Short-Run Marginal Cost function ( )SRMC Q . As a brief comment on the short-

run economics of that industry, it may be interesting to underline that the Short-Run Average Cost 

function ( )SRAC Q  has the usual "U-shaped" curve as illustrated in Figure 1. A formal proof of this 

affirmation is straightforward in the case of Chenery's linear compressor cost function. With the 

functional specification and numerical parameters used in Yépez (2008), my investigations also 

confirmed the presence of a "U-shaped" curve.  
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Figure 1: U-shaped Short-Run Average Cost curves obtained with various pipe-diameters. 

1.3 Long-run vs. short-run, an alternative and simplified view 

This subsection aims at showing that the long-run problem studied by both Chenery and Yépez can be 

reformulated in a simplified manner.  

First, attention is focused on the role played by the pipe-diameter in the short run. Any change in that 

diameter has a major impact on the short-run economics of the transmission equipment since it 

changes the repartition of the total cost between fixed costs (pipeline related costs) and output-

dependant ones (the compression costs). In some sense, the pipe-diameter can be viewed as an index 

of scale that characterizes the size of an installed transmission equipment (Chenery, 1952).  
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For a given flow rate of gas to be transported Q , the engineering production function (3) can also be 

reorganized to get the compression horsepower H  required in the short run as a function of the 

pipeline diameter D  (provided that D  remains strictly positive): 

( )
2 2

1 2 16/3
0

. 1 1Q

lQ
f D c Q

c D

β� �
� �� �= + −� �� �
� �� �
� �

.      (11) 

Because of the technical substitutions mentioned earlier, Qf  is a differentiable strictly decreasing 

function of the pipe-diameter. 

The influence of the pipe-diameter D  on the Short-Run Total Cost to transport a given flow rate of 

gas Q  is described by the cost function parameterized by Q : 

( ) ( ) ( )( ).Q D H QSRTC D l C D C f D= + .     (12) 

Obviously, the pipeline element ( ). Dl C D  is usually a strictly increasing function of the pipe-

diameter, whereas the annual compression cost ( )( )H QC f D  is strictly decreasing with respect to D . 

A simple reformulation of the long-run cost minimization problem can now be proposed. Each strictly 

positive value of D  corresponds to a unique Short-Run Total Cost function that is parameterized by a 

continuous parameter: Q . Hence, a family of Short-Run Total Cost functions indexed by a continuous 

variable D  can be defined. For a given output Q , each of these functions provides a short-run total 

cost and those values vary with the pipeline diameter D . In this subsection, it will be proven that the 

long-run cost minimization problem can be viewed equivalently as selecting an appropriate (and 

unique) element in that family of short-run cost curves.  

Restated with simple algebra, the goal is to find the particular Short-Run Total Cost function that 

minimizes the annual cost of transporting a given flow Q  of gas. As D  is assumed to be a continuous 

parameter, a necessary condition for minimum annual cost is that the derivative of Short-Run Total 

Cost with respect to D  be zero: 

( ) 0QdSRTC
D

dD
= .        (13) 

Equivalently,   
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( ) ( ) ( )( )' ' '. D Q H Ql C D f D C f D= − × .      (14) 

As usual, an economic interpretation can be given to that expression: at the optimum, the marginal 

cost of the pipeline is exactly equal to the marginal compression horsepower economy. 

From a technical perspective, some straightforward arguments can be given to illustrate the existence 

of a unique solution. As ( )QSRTC D  is differentiable with  ( )0
lim QD

SRTC D+→
= +∞  and 

( )limD QSRTC D→+∞ = +∞ , it is clear (Rolle’s theorem) that there is at least one solution to equation 

(13). Of course, the uniqueness of that solution depends on the functional specifications chosen for 

both DC  and HC . With Chenery’s linear specifications, the function ( )QSRTC D  is strictly convex 

and thus has a unique global minimum. With the concave specifications defined in Yépez (2008), 

convexity is no longer verified but the numerical values used in Yépez (2008) insure a U-shaped curve 

with the succession of two strictly monotonic patterns: a decreasing one and an increasing one. As a 

result, there is also a unique minimum cost with Yépez’s specification. Hence, the  problem at hand is 

a well-behaved one. Let's denote *
SRD  that unique solution to (13). 

It is now time to compare *
SRD  with those denoted ( )* *,LR LRD H  obtained when solving the long-run 

cost minimization programme proposed by Chenery and Yépez. Here comes an interesting lemma: 

Lemma 1: Assume a gas transmission firm with the costs and engineering production 

function as described above. For that firm, the long-run optimal combination of inputs 

( )* *,LR LRD H  that solves Yépez's cost-minimizing program is exactly equal to 

( )( )* *,SR Q SRD f D , those obtained with the single variable problem above.  

For the interested reader, a straightforward proof is provided in Appendix 2. 

This approach simplifies the long-run problem as it only requires solving a single variable equation. In 

the following sections, that simplification will be helpful to illustrate some new results. Besides, this 

method provides a clear argument for presenting the Long-Run Total Cost curve as the lower envelope 

of the Short-Run Total Cost curves (see Figure 2 for an illustration).  
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Figure 2: The Long-Run Total Cost curve as the lower envelope of the Short-Run Total Cost 

ones. 

 

2 – Dealing with seasonal variations  

Chenery (1949) and Yépez (2008) studied the case of transmission equipment that is planned to 

transport a steady flow of natural gas Q  all through the year. Obviously, gas consumption varies over 

time – across seasons, weeks and days. Moreover, the amplitude of these variations can be large. A 

typical illustration is provided by the seasonal swing observed in countries where natural gas is largely 

used for heating. For example, in north-western Europe approximately two-thirds of the gas is 

consumed during the winter period (October–March). Furthermore, “residential users consume about 

90 percent of their overall gas during the winter period. For local gas providers, it is therefore not 

uncommon to have daily peaks in gas delivery in the winter amounting to more than ten times the 

delivery on a summer day." (Höffler and Kübler, 2007, pp. 5206-5207). In many cases, gas cannot be 

stored near end-users. Significant seasonal fluctuations can thus be observed in the daily flows of gas 

to be transported.  

How is the short-run total annual cost impacted by these seasonal fluctuations? How does this seasonal 

pattern influence the optimal design of an infrastructure? These are precisely some of the questions 

addressed in this second section. 

2.1 A further distinction: expansion vs. contraction costs 

This preliminary subsection provides a useful piece of methodological background. Following the 

usual convention, Yépez (2008) defines the short-run as a period of time in which the quantity of at 
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least one input is fixed (here, pipe-diameter D ) and the quantities of the other input H  can vary. As 

in classic microeconomic theory, the long-run corresponds to a hypothetical situation in which the 

quantities of all inputs can vary. Aside from that usual distinction, a further distinction could be 

valuable for analyzing the short-run economics of that industry: that of expansion and contraction 

costs. That distinction, pioneered by the “French marginalist school”, relies on the asymmetry between 

plant expansion and plant contraction since some fixed costs incurred in case of expansion cannot be 

recouped in case of contraction (Cf. Dreze, 1964, for a comprehensive survey). In fact, Chenery also 

perceived the pertinence of that further distinction: “The functions resulting from fixing the pipe size 

(scale of plant) and varying other factors (amount of pumping equipment, etc.) will be called 

"intermediate" cost functions. It is possible to move along the intermediate cost curves only as long as 

demand is expanding. A contraction of demand will involve a movement along a "plant" curve (...) 

where the only important variable is fuel consumption.” (Chenery, 1952, p. 4). 

The framework presented in Yépez (2008) provides an interesting starting point to implement that 

distinction in the natural gas industry. On the assumption that the pipe-diameter remains unchanged in 

the short run, the output-variable element corresponds to the total annual cost of the compressor 

stations that includes the capital costs and the operation and maintenance costs. Given that any 

expansion requires the installation of an additional compression capacity whose annual cost is fully 

captured in this short-run cost function, it is clear that Yépez’s short-run total cost function describes 

the variation of annual cost if output always increases. But in case of a sudden and temporary drop in 

output, rigidity would probably be observed in the downward adjustment of the compression capacity. 

Stated differently, it means that there are few chances for such a restriction in output to be 

accompanied with an instantaneous premature scrapping of the excess in compression capacity. 

With those remarks in mind, and using the previous notations, a simple reformulation can now be 

proposed to distinguish between expansion and contraction costs. For a gas transmission infrastructure 

that transports a given flow 0Q  with a pipeline whose diameter is D  and an adapted compression 

capacity ( )0 0DH g Q= , the total expansion cost incurred to serve a larger steady flow-rate of natural 

gas 0Q Q≥  is given by Yépez’s short-run total cost function ( )SRTC Q  that includes the extra 

capital expenses required for the installation of an additional pumping capacity. In case of a 

contraction in the output to 0Q Q< , the annual compression station cost ( )3 0.C C Hα  remains 

unchanged whereas the operation and maintenance costs are reduced to reflect a lower annual rate of 

operation of the compressors.  

To summarize, the short-run total expansion cost function SRTEC  of that infrastructure is given by: 
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( ) ( ) ( )( ) ( )( )3 4 0. . ,           D C D DSRTEC Q l C D C g Q C g Q Q Qα= + + ∀ ≥   (15) 

Whereas the short-run total contraction cost function SRTCC  is: 

( ) ( ) ( ) ( )( )3 0 4. .D C DSRTCC Q l C D C H C g Qα= + + 0,                 Q Q∀ <   (16) 

Hence, the short-run total cost function takes either one or the other expression depending on whether 

Q  the output to be served, is larger or not than the initial level 0Q . As far as short-run marginal cost is 

concerned, we notice a discontinuity for the particular output 0Q Q= . For this output, the right 

derivative, i.e. ( )( ) ( )( )3 4.C D D

d
C g Q C g Q

dQ
α� �+
 �, gives the marginal expansion cost whereas the 

left derivative, i.e. ( )( )4 D

d
C g Q

dQ
� �

 �, corresponds to the marginal contraction cost. Explicit 

reference must thus be made to one of these concepts when considering practical applications of 

marginal costs. More generally, the possible non-equality of left-hand and right-hand short-run 

marginal costs at adapted capacity has already been emphasized in the literature (see for example 

Pierru, 2007, for an economic interpretation in the case of linear-programming models). 

2.2 The case of seasonal variations 

As I have pointed out, gas consumption varies with the seasons, weeks and days. To analyze the 

influence of these seasonal variations, we study the case of a rational firm that plans to build an 

equipment to transport time-varying gas flows. Here, a daily time scale is assumed and the analysis 

concentrates on the between-day variability in the gas flow rate. A steady flow regime is thus assumed 

within each day. This analysis could arguably be adapted to a different time unit provided that the 

duration of this time unit remains large enough compared to those of the transient periods during 

which an unsteady-state gas flow is observed in the pipe (because the modelled flow equation is only 

granted for steady-state gas flows). So, the firm is supposed to know tq  the future daily flow of gas 

demanded on day t , and pQ  the peak flow to be transported on that infrastructure (i.e. : 

p tt
Q Max q= ). A one-year periodicity is assumed for the gas flows (i.e.: 365t tq q += ). Given that a 

100% load factor corresponds to the steady flow case studied above, a strictly less than one load factor 

is assumed for that infrastructure, meaning that there is at least a day t  with t pq Q< . In this case, the 

compressor horsepower varies from one day to another and the horsepower required on day t  is 

named tH . During that day, the associated operation cost of the compressor is assumed to be equal to 
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1/365th of ( )4 tC H  the operation cost of the compressor that would be observed in case of a steady 

operation at tH  all along the year.  

Here again the firm’s decision can be analyzed as an annual cost-minimization problem. As in the 

Chenery-Yépez approach, the problem faced by the firm can be viewed as a cost-minimization 

program: 

{ }
( ) ( ) ( )

( ) { }
{ }

365

3 4
, , 1

1
Min    . .

365

  s.t.       , , 0,           1,...,365 ,

              ,                       1,...,365 .

p t t

D C p t
D H H t

t t

t p

l C D C H C H

F D H q t

H H t

α
=

+ +

= ∀ ∈

≤ ∀ ∈

�

    (17) 

The objective is to minimize the annual total cost incurred to transport the daily flows { } { }1,...,365t t
q

∈
 

with an equipment whose compressor station has a capacity pH  and whose pipeline has an internal 

diameter D . Of course, pH  must imperatively be large enough to provide any of the compression 

horsepower ( ){ } { }1,...,365tt q t
H f D

∈
= . Given that the model at hand is fully deterministic, there is no 

incentive to build any extra capacity and the compression capacity to be installed is thus supposed to 

be equal to the minimum required to serve those peak flow pQ . Hence, the peak compression 

horsepower pH  is given by ( )
pQf D .  

Once again, this problem can be reformulated as a single variable optimization programme: i.e. finding 

the unique optimal diameter { }
*

tqD  that minimizes the short-run total contraction cost function 

SRTCC  to serve the flows { } { }1,...,365t t
q

∈
 knowing that this infrastructure must be capable of 

supplying the peak output pQ , i.e. { }( )*
p tp Q qH f D= . 

The optimal pipeline design, denoted { }
*

tqD , minimizes the following annual cost function 

{ } ( ) ( ) ( )( ) ( )( )
365

3 4
1

1
. .

365p tt D C Q qq
t

SRTCC D l C D C f D C f Dα
=

= + + � . A necessary condition is that 

the derivative of that cost function with respect to pipeline diameter D  be zero:  

{ }
{ }( )* 0t

t

q

q

dSRTCC
D

dD
= .        (18) 
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As usual, that condition has its economic interpretation. At that optimum, the marginal increase in the 

pipeline cost is exactly equal to the marginal compression cost reduction.  

As a benchmark, it is interesting to compare this optimal pipeline diameter { }
*

tqD  with those, denoted 

*
pQD , that would have been chosen if the firm had had to transport a steady flow pQ . As the 

infrastructure must be designed to transport the peak flow pQ , each of the two following combinations 

of inputs: { } { }( )( )* *,
pt tQq qD f D , and ( )( )* *,

p p pQ Q QD f D  represents a technology-compatible choice. 

Proposition 1:  

Assume a gas transmission firm with a seasonal-varying output, costs and engineering 

production function as described above. For that firm, the long-run optimal combination 

of inputs { } { }( )( )* *,
pt tQq qD f D  involves a smaller diameter and a larger horsepower 

capacity than those that would have been installed to serve a steady daily flow equal to 

the peak value pQ  .  

A proof of that result is provided in Appendix 2.  

This result is rational: a lower load factor creates an incentive to lower the transportation cost by 

preferring a mix of inputs that includes more compressor horsepower (that generates flexibility) and 

less pipeline. 

3 – Building ahead of demand, an irrational decision?  

This section provides a discussion on the optimal investment policies that can be derived from the 

Chenery-Yépez approach. In his discussion on the economics of the natural gas transportation 

industry, Yépez (2008, p. 80) suggests that: “Whatever the planned level of output, the rational firm 

will select a transportation system whose short-run average total cost is tangent to its LRAC at that 

capacity”. It is tempting to confront this rule with the investment decisions actually taken in the gas 

industry.  

3.1 Preliminary remarks  

Evidence drawn from the gas industry provides numerous cases of transmission infrastructures that 

were designed with a significantly oversized diameter. The "Yamal pipeline" – an impressive 56-inch 

diameter infrastructure that runs from the Yamal peninsula (northern Russia) to Germany across 

Belarus and Poland – provides an archetypal example. Since its construction in the late 1980s, the gas 

flow transported on that pipeline has never exceeded 20 Bcm/y, which is a relatively low figure 
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compared to the initial plans (Victor and Victor, 2006). Another case is given by the contemporary 

Nabucco project, a large gas transmission infrastructure that has been proposed for construction across 

South-East Europe and Turkey to carry gas from the Caspian region to Austria and other European 

markets. The design chosen for this project involves a large diameter (56 inches) that looks 

considerably oversized for the expected flow (8 Bcm/y). In both cases, a cost-minimizing design based 

on the Chenery-Yépez approach would certainly suggest a smaller diameter/compression horsepower 

ratio. Why did the teams of skilled and experienced planners who designed those infrastructures prefer 

alternative solutions based on larger diameters? 

This question calls for a closer examination of the model's hypotheses. More precisely, the planned 

infrastructure is designed to transport a steady flow Q  whose value is known and is expected to 

remain steady during the entire project's life. This assumption allows an analysis of the decision in a 

static and deterministic framework. In the previous industrial cases, this important condition was not 

fulfilled. For the "Yamal pipeline", the initial plan was based on the construction of two parallel 56-

inch pipelines allowing an export potential of 67 Bcm/y. Up until now, only one of these two pipelines 

has been built, with a reduced number of compressors from the original plan (Victor and Victor, 

2006). As far as Nabucco is concerned, a phased design has also been adopted. It relies on a single 

large-diameter pipeline with a compression capacity initially adjusted to transport 8 Bcm/y during the 

first phase. Then, continued additions of compression capacity will ultimately allow an increase in its 

output to 31 Bcm/y, a large flow that justifies a 56-inch diameter. In both cases, the planner's decision 

to use an oversized pipeline diameter reflected the perceived massive – but uncertain when the 

pipeline design was decided – export perspectives to the European gas markets. Stated differently, 

planners explicitly take into consideration the possibility of there being significant, but still uncertain, 

expansions in the flows that will be transported during the infrastructure's lifetime.  

3.2 Overcapacity, an irrational decision?  

The aim of this subsection is to propose a simple extension of the Chenery-Yépez framework to take 

into consideration the remarks above; hence, to analyze the rationality of such a "building ahead of 

demand" behavior. This discussion echoes the so-called capacity expansion problem studied in 

economic theory, a field also pioneered by H.B. Chenery. In his seminal contribution, Chenery (1952) 

discussed the effect of technology on investment behavior with the goal to illustrate how the 

simultaneous presence of growing demand and economies of scale may motivate the construction of 

an oversized equipment. Stated differently, Chenery (1952) proved that “a building ahead of demand” 

decision can be rational. Following that contribution, the optimal degree of excess capacity to be built 

into a new facility has motivated an admirable stream of literature with a noteworthy extension 

provided in Manne (1961) that analyzed the case of a random-walk pattern of trends in demand (see 

Luss, 1982, for a complete survey).  
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In this subsection, a simple framework is used to analyze whether that "building ahead of demand" 

behavior can be observed in the gas transmission industry. For expository reasons, a simple discrete 

time context will be used (extension to continuous version is straightforward). To do so, I focus on the 

case of a firm that, at date 0t = , is considering the construction of a single-line transportation 

infrastructure that is expected to transport a given steady daily flow of gas 0Q  over a predefined 

planning horizon of Y  years. Given the long durability of gas transmission equipments, it is assumed 

that there will be no equipment replacements during that period.  

Compared to the previous models, we now consider the case of a possible future expansion of the 

output. Hence, there is a known date T , { }1,...,T Y∈  at the beginning of which the possible output 

expansion will be decided or not. The decision outcome is still uncertain but is assumed to be 

restricted to two cases: either a sudden output expansion to a known value 1Q , with 1 0Q Q> ; or a 

status quo to 0Q . The probability to observe a rise to 1Q  is denoted p .   

If such an additional output was to be decided, the cheapest way to accommodate that additional flow 

would be the addition of compression horsepower. Hence, the planner's set of decision variables can 

be restricted to three elements: the pipeline diameter D , the initial compressor horsepower 0H  

required to move 0Q , and the compressor horsepower 1H  that could eventually be needed to transport 

1Q  from date T  to Y .  

As above, the annual total cost of the equipment designed to transport a steady daily flow 0Q  during 

the predefined planning horizon Y  is given by ( ) ( )0. D Hl C D C H� �+
 �. Besides, planners have to take 

into consideration a possible extra compression cost in case of an output expansion. It is assumed that 

the increased horsepower 1H  can be obtained by installing, at the beginning of year T , more 

compressors in addition to the existing ones at a total cost: ( ) ( )3 1 3 0C H C H− . Clearly, these new 

compressors will only be used during Y T− .  

Evaluated at year T , the annual equivalent extra-cost required to install and operate these new 

compressors during Y T−  is denoted ( )0 1,C H H∆  and is equal to:  

( ) ( ) ( ) ( ) ( )0 1 3 1 3 0 4 1 4 0, . ;
H

C H H C H C H C H C Hα
∆

∆ = − + −� �
 �   (19) 
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where 
H

α
∆

 is the fixed-cost annual percentage charge dependent on the depreciation and real interest 

rates to operate those additional compressors during Y T− . In fact, 
H

α
∆

 is obtained by computing the 

constant annual outlay stream that has an expected present value equal to that of all future cost outlay 

over the horizon Y T− . In most real cases, we have 
H H

α α
∆

> . 

A risk-neutral planner is supposed to minimize the expected total annual cost of that infrastructure 

subject to the usual engineering equations: 

( ) ( )
( )

( )

( )
( )

0 1
0 0 1, ,

0 0

1 1

1
Min    . ,

1

s.t.        , , 0

             , , 0.

D H TD H H
l C D C H p C H H

r

F D H Q

F D H Q

� �+ + ∆
 � +

=

=

   (20) 

Using the previous modus operandi, this problem can easily be rearranged into a single-variable 

objective function to be minimized. In fact, the optimal pipeline diameter computed for a probability 

p  is *
pD  and must minimize the expected total annual cost function:  

( ) ( ) ( )( ) ( ) ( )( )
( )
0 1

0

,
 .

1

Q Q

D H Q T

C f D f D
C D l C D C f D p

r

∆
� �= + +
 � +

.  (21) 

With the cost specifications presented in Yépez (2008), this is a smooth function that has a unique 

minimum. Thus, a necessary (and in that case sufficient) condition for a minimum is:  

( )* 0p

dC
D

dD
= .         (22) 

That condition has its economic interpretation: at the optimal diameter, the marginal increase in the 

pipeline cost is exactly equal to the expected marginal reduction in compression cost. 

As a benchmark, a planner could find it interesting to confront that outcome with the optimal diameter 
*
0D   that would have been selected in case of a zero probability for the sudden net increase in output.  

Proposition 2:  

Assume a gas transmission firm with a probability p  for a sudden rise in its output at 

date T , with costs and engineering production function as described above. For that 

firm, the long-run optimal combination of equipment to be installed at date 0t =  
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involves a pipeline diameter *
pD  that is larger than those, denoted *

0D  that would have 

been installed by a planner that did not take into consideration this possible future rise in 

output.    

Again, a straightforward proof of that result is provided in Appendix 2.  

This result has important implications for the design of appropriate regulatory policies. In many 

countries, the level of prices charged by gas transmission firms is subject to public control. In many 

cases, a rate of return regulation is implemented. This form of regulation sees costs as exogenous and 

observable and forms prices on the basis of observed costs and the appropriate rate of return on 

capital. One of the principal criticisms that has arisen for this kind of regulation is based on the so-

called Averch-Johnson effect. According to Averch and Johnson (1962), the profit-seeking behavior of 

the regulated firm subject to rate of return regulation induces a distortion in the input choice: the 

optimal choice of that firm is not the cost-minimizing one. More precisely, the capital/labour ratio 

chosen by the firm subject to rate of return regulation is greater than the cost-minimizing capital/labor 

ratio for the given level of output. Obviously, such a statement calls for a condemnation of the 

tendency of regulated firms to engage in excessive amounts of durable capital accumulation to expand 

the volume of their profits. It also suggests some reforms, such as a regulatory control over the input 

choice, or the implementation of more sophisticated regulatory approaches (Laffont and Tirole, 1993). 

The case analyzed above suggests a different explanation for the firm's preference for a capital 

intensive technology. Here, the firm's decision to choose an input mix that includes a larger 

diameter/horsepower ratio – i.e. a greater capital/energy ratio – is completely independent of the 

regulatory environment, such a choice is entirely motivated by an anticipation of possible future 

output expansion. 

Conclusions 

Throughout this article the cost functions for the natural gas transmission industry presented in 

Chenery (1949) and Yépez (2008) are discussed in the light of some key features of that industry. A 

commented review of the Chenery-Yépez methodology has enabled the derivation of some interesting 

insights, such as an empirical quantification of the scale economies encountered in that industry and a 

straightforward single-variable reformulation of the long-run problem. Two notable extensions have 

also been provided to deal (a) with the case of a seasonal varying output, and (b) with those of an 

uncertain future output expansion. Besides, the discussions have also highlighted a couple of 

important implications for the design of appropriate regulatory policies in that industry.  

The Chenery-Yépez method has great merit: it offers a simple engineering-based approach to 

determine the analytical cost functions encountered in the natural gas transmission industry. For this 

reason, it is worth being considered as a valuable tool to get a better understanding of the gas pipeline 
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economics. Moreover, it provides a useful complement to the purely statistical approach in the 

determination of production, cost, and factor demand relationships. A tribute must thus be paid to the 

late H.B. Chenery for his inspiring work. 

Of course, the gas transmission infrastructure studied in this paper – a single compressor and a 

pipeline – is a simple one. In many countries, the development of the natural gas industry came with 

the construction of a complex transmission network. The optimal designs of these infrastructures have 

generated an affluent operations research literature and many numerical models have been proposed. 

Yet, very few analytical results have been obtained for these general cases. As an exception, a recent 

contribution (André and Bonnans, 2010) provides some analytical recommendations for the optimal 

design of a long-distance pipeline that has several compressor stations installed along the pipe. This is 

clearly a more complex case than Chenery (1949) as it involves the determination of the pipe-

diameters, the size, the number and the spacing of the compressor stations. Technologically, a 

variation in station spacing can somehow be viewed as an alternative for varying the horsepower per 

station. The expansion of the previous results to this more complex setting constitutes an attractive 

research challenge.  
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APPENDIX 1 

All the numerical simulations presented in this paper are entirely based on the following assumptions 

chosen for a hypothetical 100-mile long project ( l  = 100 miles). The technical specifications for the 

gas are exactly those used in Yépez (2008):  

 Tb  base temperature 520�R 
 T   mean flowing temperature 535�R 
 Pb  base pressure  14.73 psia 

1P   initial pressure in the pipe 1070 psia 

2P   terminal pressure in the pipe 838 psia 

 G  gas specific gravity for the gas in the region  0.62 
 Z  compressibility factor  0.8835 
 �  dimensionless constant 0.22178 

Hence, the dimensionless constants have the following values: 0c  = 0.742 and 1c  = 183.2 (Yépez, 

2008).  

Publicly available information on cost data for that industry is rather scarce. As far as costs are 

concerned, the data come from Yépez (2008) and seem to be the result of a statistical investigation. 

Despite the absence of some of the classical attributes of a typical empirical study (e.g.: a description 

of the data, a discussion on the regression results: t-statistics, R2...), we can reasonably consider that 

Yépez (2008) constitutes a reliable and publicly available source that should be preferred to many a 

lesser man’s studies.  

The annual cost parameters (in US Dollars) are thus those presented in Yépez (2008): 

( ) 0.881 0.559
1. , 7144.59L C D Dα τ τ= ; 

( ) 0.809
2 317.61C D D= ; 

( ) 0.9016
3. 1256.33C C H Hα = ; 

( ) 0.4523
4 6145.177C H H= ; 

Moreover, the pipe thickness τ  is assumed to be a linear function of D  the inside diameter: 
110
Dτ = . 

This formulation has been suggested by concerns about pipe stability (cf. Ruan et al., 2009, p. 3044). 

Hence, the annual cost of the line per mile is ( ) 0.881 0.559
1 0.559

7144.59
.

110L C D Dα += . 
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APPENDIX 2 

Proof of Lemma 1: 

For a given flow of gas to be transported Q , it is clear that ( ) ( )* * *,Q SR LR LRSRTC D LRTC D H≥  

(otherwise, there would be an obvious contradiction with ( )* *,LR LRD H  being the unique optimal 

solution to the programme (2) as the combination ( )( )* *,SR Q SRD f D  would provide a lower cost). We 

now have to prove that ( ) ( )* * *,Q SR LR LRSRTC D LRTC D H= . As a textbook example of a reductio ad 

absurdum, we assume that ( ) ( )* * *,Q SR LR LRSRTC D LRTC D H>  and have a closer look at the solution 

( )* *,LR LRD H . As that solution imperatively satisfies the engineering equation (1), we have a relation 

between *
LRD  and *

LRH : ( )* * ,LR Q LRH f D= . Hence, ( ) ( )* * *,Q SR LR LRSRTC D LRTC D H>  corresponds 

to ( ) ( ) ( )( )* * *.Q SR D LR H Q LRSRTC D l C D C f D> + . Given that the right-hand side of that equation is 

nothing but ( )*
Q LRSRTC D , we have an obvious contradiction with *

SRD  being the unique diameter 

that minimizes the Short-Run Total Cost to transport Q .          Q.E.D.  

We shall need one technical lemma before we can prove more useful results. Remember that: 

( )0,1β ∈  is a technological parameter that intervenes in (2), and ( ) ( )D Qg Q f D=  is the horsepower 

demand function defined in (9). Hereafter, we denote: ( )':D Qh Q f D�  the marginal impact of the 

pipe diameter on the horsepower required to move the gas; ( )C H  a compressor cost function; and 

( ) ( )( )': .D D Dk Q h Q C g Q�  a smooth function that gives the marginal impact of the pipe diameter 

on the compression cost to transport Q  on an infrastructure with a pipe diameter equal to D . 

Lemma 2 (technical): Assume the following specification for the compressor cost function: 

: . bC H a H�  with 0 1b< < , there exists a non-empty interval ( ),b bββ  that depends on 

β , so that: for all ( ),b b bββ∈ , the gradient ( )Ddk
Q

dQ
 is strictly negative for all 0Q > . 

Proof of Lemma 2:  

To simplify the notations, we denote ( ) 2
0.l cθ −= . The sketch of the reasoning is as follows. After 

rearranging, this gradient can be re-written as: ( ) ( ) ( ) ( )' . .Dk Q A Q B Q E Q= , where: 
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( ) ( )( )
( )

22 3 ' 16
1 2 3

. . . .8
. . .

3 .
D

D

c Q C g Q
A Q Q D

D g Q

β θ
θ

−
� �

= − +� �
� �

; ( )
2 2

16/ 3

.
1

Q
B Q

D

β

θ� �
= +� �
� �

 and 

( ) ( )( ) ( )( ) ( )( ) ( )( )
16

2 3. . 1 . . . 1 . . . 1 2. 1E Q b B Q B Q b Q D b B Q B Qθ θ β� � � �= − + − + − + −
 � 
 �. 

We remark that: ( ) 0A Q <  and ( ) 1B Q >  for all 0Q > . As ( )( ). 1B Q b −  can take negative values, 

we cannot affirm that ( )E Q  is strictly positive for all Q . Nevertheless, we remark that E  is a 

smooth function that verifies ( )0 0E =  and ( )' 0 0E = . Hereafter, we are going to propose some 

conditions on b  that are sufficient to insure the strict convexity of E  and focus ''E . Interestingly, if 

1b µ≥  where ( ) ( ) 1
1 1 . 3 4µ β β −= − + , the fact that ( ) 1B Q ≥  is sufficient to obtain:  

( ) ( )
216

'' 2 3. .E Q F Q Q Dθ
−

� �
≥ +� �

� �
,   Q∀ ,      (23)  

where ( )F Q  is a "well-behaved" polynomial of degree 4: a quadratic polynomial of the variable 2Q . 

Looking at ( )F Q , we can notice: (i) that the coefficient of 4Q  is strictly positive iff 2b µ>  where 

( ) 12
2 2. 4 5µ β β

−
= + +  and (ii) that the constant coefficient is strictly positive. So, if 2b µ>  and the 

discriminant of this quadratic polynomial of 2Q is negative, then ( )F Q  will have no real root and it 

will take only strictly positive values. Interestingly, this discriminant is directly proportional to  

( ) ( ) ( )2 2 2 21 12 6 18 10 6 9 6b b bβ β β β β βΦ = + + − + − + − +   which is strictly negative iif: (i) the 

polynomial ( )bΦ  has two real roots 3µ  and 4µ  with 3 4µ µ< , and (ii) ( )3 4,b µ µ∈ .  

Hereafter, we denote ( )1 2 3, ,b Maxβ µ µ µ=  and ( )4 ,1b Minβ µ=  and we can notice that: for all 

( )0,1β ∈ , the interval ( ),b bββ  is non-empty. So, if ( ),b b bββ∈ , all the conditions above are 

simultaneously satisfied and (23) insures that E  is a strictly convex function. As ( )' 0 0E = , it is now 

clear that ( )' 0E Q >  for all 0Q > . As E  is a strictly increasing function for all 0Q >  that verifies 

( )0 0E = , the function E  only takes strictly positive values for all 0Q > . As ( ) 0A Q <  and 

( ) 1B Q >  for all 0Q > , the gradient ( ) ( ) ( ) ( )' . .Dk Q A Q B Q E Q=  is thus strictly negative for all 

0Q > .           Q.E.D. 
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Proof of Proposition 1: 

The short-run total cost to transport the daily flows { }tq  on a transmission infrastructure designed to 

transport a peak output pQ  is given by:  

{ } ( ) ( ) ( )( ) ( )( )
365

4 4
1

1
365p p tt

t p

Q Q qq
t

q Q

SRTCC D SRTC D C f D C f D
=
<

� �= − −

 �� , 

where ( )
pQSRTC D  is the function previously described that gives the short-run total cost to 

transport a steady flow pQ  and { } ( )
tqSRTCC D  is the short-run total contraction cost. The derivative 

of that second function w.r.t. D  is equal to:  

{ } ( ) ( ) ( )( ) ( )( )
365

4 4
1

1
365

pt

p t

t p

Qq
Q q

t
q Q

dSRTCC dSRTC d
D D C f D C f D

dD dD dD=
<

� �= − −

 �� . 

As the diameter *
pQD  satisfies condition (13), we have: 

{ } ( ) ( ) ( )( ) ( ) ( )( )365
* ' * ' * ' * ' *

4 4
1

1
.
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t

p t p t p p p p p

t p

q
Q q Q q Q Q Q Q Q

t
q Q

dSRTCC
D f D C f D f D C f D

dD =
<

� �= × − ×� �
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Hereafter, we are going to show that this value is strictly positive. We denote: ( )':D Qh Q f D�  the 

marginal impact of the pipe diameter D  on the compression horsepower required to transport Q  on 

a given infrastructure, and ( ) ( ) ( )( )'
4.D D Dk Q h Q C g Q=  the marginal impact of the pipe diameter 

on the compression cost incurred to transport Q  on that infrastructure. Two cases must be 

distinguished depending on the assumed specification for the operation cost of the compressor: 

- Case #1: Chenery's linear specification is assumed: ( ) '
4 4.C H C H=  with '

4 0C > . Here, 

( )Dk Q  is directly proportional to ( )
1

2
3 21

2 19 /3 2 16 /3
0 0

8. . .
. . . 1

3. . .D

c l l
h Q Q Q

c D c D

β

β
−

� �−= +� �
� �

. As 

( )0,1β ∈ , the gradient of Dh  w.r.t. Q  is strictly negative for all 0Q >  and so is ( )'
Dk Q . 
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- Case #2: Yépez's concave specification is assumed: ( )4 .C H d Hψ=  with 0d >  and 

0.4523ψ = . In that case, we can check whether the conditions stated in Lemma 2 are verified or 

not. With the numerical parameters provided in Yépez (2008), 0.22178β =  and 

( ) ( ), 0.423 , 1b bββ ≈ . As ( ),b bββψ ∈ , the gradient of Dk  w.r.t. Q  is strictly negative for all 

0Q >  (Lemma 2).  

So, in both cases: the smooth function Dk  is strictly decreasing. As a strictly less than one load factor 

is assumed, there is at least a day t  that verifies t pq Q<  and thus: 

( ) ( )( ) ( ) ( )( )' ' ' '
4 4 0

t t p pq q Q Qf D C f D f D C f D× − × > . Gathering these inequalities across all the days 

t  with t pq Q< , and evaluating them for *
pQD D=  insures that  { } ( )* 0t

p

q
Q

dSRTCC
D

dD
> .  

Given that: (i) the short-run total contraction cost is locally strictly increasing with D  in the 

neighbourhood of the particular diameter *
pQD , and (ii) { }tqSRTCC  is a differentiable function with a 

unique minimum, it indicates that the optimal diameter { }
*

tqD  is on the left of *
pQD  which means that 

{ }
* *

pt QqD D< . Thus, a gas transmission firm that serves a fluctuating demand prefers to choose a mix of 

inputs { } { }( )( )* *,
pt tQq qD f D  based on a smaller diameter and a larger compression capacity than those 

chosen in case of a steady demand equal to pQ , i.e.: ( )( )* *,
p p pQ Q QD f D .     Q.E.D.  

Proof of Proposition 2: 

As in the Proof of Proposition 1, the sketch of the proof relies on an evaluation of the sign of the 

derivative of the expected total annual cost function with respect to pipeline diameter D  evaluated for 

the particular diameter *
0D  . As C  is a smooth function with a unique minimum, this information 

allows us to conclude on the relative size of *
0D  and *

pD  because a negative (conversely positive) 

value clearly suggests that * *
0 pD D<  (conversely * *

0 pD D> ). 

*
0D  satisfies condition (22) in the particular case of 0p = . In case of 0p > , the derivative of  C  

with respect to D  evaluated at *
0D D=   is equal to: 
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( )
( )

( ) ( )( )0 1

* * *
0 0 0

1
. . ,

1
Q QT

dC d
D p C f D f D

dD dDr
= ∆

+
,     (24) 

where ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )
0 1 1 0 1 03 3 4 4, .

HQ Q Q Q Q QC f D f D C f D C f D C f D C f Dα
∆
� �∆ = − + −
 � . 

Let's start with the operation cost of the compressor 4C . It has been proven (cf. Proposition 1) that 

the marginal impact of the pipe diameter D  on the operation cost of the compressor - i.e. the function 

( ) ( ) ( )( )'
4.D D Dk Q h Q C g Q=  -  is strictly decreasing with Q . Hence, we have: 

( ) ( )( ) ( ) ( )( )
1 1 0 0

' ' ' '
4 4. . 0Q Q Q Qf D C f D f D C f D− < ,   for all 1 0Q Q> . (25) 

A similar line of reasoning can also be applied with the capital cost of the compressor 3C . Renaming  

( ) ( )( )' '
3: .D Q Qk Q f D C f D� , two cases can also be considered depending on the specification 

assumed for the capital cost of the compressor. If (Case #1) Chenery's linear specification is assumed 

- i.e. ( ) '
3 3.C H C H=  with '

3 0C > , we know (cf. Proposition 1) that ( ) ( )' ' '
3.D Dk Q C h Q=  is strictly 

negative for all 0Q > . If (Case #2) Yépez's specification is assumed - i.e. ( )3 .C H c H ε=  with 0c >  

and 0.9016ε = , the value of the compression parameter used in Yépez (2008) - i.e. 0.22178β =  - 

is compatible with ( ),b bββε ∈  as defined in Lemma 2. Hence, the gradient of Dk  w.r.t. Q  is strictly 

negative for all 0Q > . So, in both cases, ( ) ( )( )'
3: .D D Dk Q h Q C g Q�  is strictly decreasing i.e.:  

( ) ( )( ) ( ) ( )( )
1 1 0 0

' ' ' '
3 3. . 0Q Q Q Qf D C f D f D C f D− < ,   for all 1 0Q Q> . (26) 

Combining (25) and (26), the derivative of the incremental compression cost ( ) ( )( )
0 1

,Q QC f D f D∆  

w.r.t. D  is strictly negative for all 1 0Q Q> . Thus, ( )*
0 0

dC
D

dD
<   for all  1 0Q Q> . Q.E.D.  


