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Abstract 
Previous psychophysical experiments with normal human observers 

have shown that adaptation to a moving dot stream causes 

directionally specific repulsion in the perceived angle of a 

subsequently viewed, moving probe.  In this paper, we used a 2AFC 

task with roving pedestals to determine the conditions necessary and 

sufficient for producing directionally specific repulsion with 

compound adaptors, each of which contains two oppositely moving, 

differently colored, component streams. Experiment 1 provides a 

demonstration of repulsion between single-component adaptors and 

probes moving at approximately 90° or 270°. In Experiment 2 

oppositely moving dots in the adaptor were paired to preclude the 

appearance of motion. Nonetheless, repulsion remained strong when 

the angle between each probe stream and one component was 

approximately 30°. In Experiment 3 adapting dot-pairs were kept 

stationary during their limited lifetimes. Their orientation content 

alone proved insufficient for producing repulsion. In Experiments 4–

6 the angle between probe and both adapting components was 

approximately 90° or 270°. Directional repulsion was found when 

observers were asked to visually track one of the adapting 

components (Experiment 6), but not when observers were asked to 

attentionally track it (Experiment 5), nor while passively viewing the 

adaptor (Experiment 4). Our results are consistent with a low-level 

mechanism for motion adaptation. It is not selective for stimulus 

color and it is not susceptible to attentional modulation.  The most 

likely cortical locus of adaptation is area V1. 

  



Introduction 

Psychophysical and physiological evidence combine in suggesting 

that motion processing within the central visual system occurs in at 

least two stages (Movshon & Newsome, 1996). In the first stage, 

motion signals are measured within local regions of visual space by 

mechanisms whose preferred directions are orthogonal to their 

preferred axes of orientation, but nonetheless respond to all 

directions within ±90° of their preference, due to the "aperture 

problem." Veridical estimates of direction can be obtained when 

multiple first-stage signals are combined using the "intersection of 

constraints" rule  (Adelson & Movshon, 1982; Ferrera & Wilson, 

1990; Movshon, Adelson, Gizzi, & Newsome, 1985; Rodman & 

Albright, 1989).  

 

Evidence for the two-stage model comes from experiments on 

transparent motion.  When two sets of independently positioned dots 

move in opposite directions, both directions of motion are visible. 

Snowden, Treue, Erickson, and Andersen (1991) showed that V1 

neurons stimulated by one direction of moving dots were largely 

unaffected when dots moving transparently in the opposite direction 

were added to the stimulus.  Most neurons sampled from MT, on the 

other hand, show some degree of suppression from dots moving the 

opposite direction (unless they are given a binocular disparity, which 

makes them appear in a different depth plane; Bradley, Qian, & 

Andersen, 1995). This finding suggests that motion signals are 

averaged over a larger spatial scale in MT, possibly for the purposes 

of noise reduction and smoothing (Qian & Andersen, 1994).   

 



Qian and Andersen (1994) replicated these findings, using oppositely 

moving dots that were paired in close spatial proximity. V1 neurons 

were little affected by the pairing, while MT neurons tended to be 

suppressed.  Qian, Andersen, and Adelson (1994) had previously 

noted that neither direction of motion is seen in the paired dot 

display. It seems only to flicker.  

 

Analogous results have been obtained with drifting gratings. They 

activate individual neurons (Qian & Andersen, 1994) and produce a 

positive BOLD response (Heeger, Boynton, Demb, Seidemann, & 

Newsome, 1999) in both V1 and MT, but whereas the addition of 

otherwise identical, oppositely drifting gratings suppresses the 

responses in MT, it does not suppress the response in neurons or the 

magnitude of the BOLD response in V1. Apparent motion is also 

absent from this "counterphasing" stimulus. It too merely appears to 

flicker. 

 

Some of the best evidence for the two-stage model comes from 

adaptation experiments. For example, Kohn and Movshon (2003) 

showed that adaptation to small patches of drifting grating could 

reduce the contrast-gain of directionally selective, MT neurons in 

anaesthetized, paralyzed macaque monkeys.  However, this 

happened only when the adapting and probe stimuli were presented 

in the same, small, sub-area of the MT neuron's receptive field.  Kohn 

and Movshon inferred from this result that the primary locus of 

adaptation is in the smaller receptive fields of V1 neurons, and that 

this adaptation is merely inherited by MT.  We can conjecture that 

MT neurons would similarly inherit adaptation from V1, when the 



latter was stimulated with counterphasing gratings or the paired-dot 

stimulus.  

 

There have been many psychophysical demonstrations of adaptation 

to moving stimuli. Prolonged inspection of a drifting grating or 

drifting dots is known to produce a selective loss of sensitivity to 

movement in the adapting direction (Sekuler & Ganz, 1963; Morgan, 

Chubb, & Solomon, 2011), a reduction of perceived velocity in the 

adapting direction (Thompson, 1981), and repulsion of the perceived 

angle of motion away from the adapting angle (Levinson & Sekuler, 

1976). In this paper, we examine motion adaptation to paired dots. 

The two-stage model of motion perception predicts that adaptation 

to paired-motion stimuli or counterphasing gratings should result in 

selective adaptation to both directions of motion. Consistent with this 

prediction, we report repulsion of the perceived angle of motion 

away from the both angles in the adapting stimulus.  

 

Our study is a straightforward extension of Levinson & Sekuler's 

(1976). They used transparently moving (i.e. unpaired) dots. Human 

observers were adapted to a set of dots moving at 120° (i.e. up and to 

the left) combined with a set moving at 300°.  We shall use the 

notation 120/300 for this stimulus.  Following adaptation, observers 

were shown probes of 90° and adjusted the orientation of a line to 

their perceived direction of movement.  The probe was repelled away 

from the 120° component of the adapting stimulus by the same 

amount as it had been from an adaptor containing a single 120° 

component. (We refer to this as 120/120.)  However, no repulsion of 

a 90° probe occurred from a 300/300 adaptor.   



 

We predict a similar result with adaptation to a paired-dot moving 

stimulus, even though it is seen as flickering rather than moving.  To 

test the prediction we adapted to a 30/210 paired-dot stimulus and 

tested with probe dot streams moving at 0 and 180°.   We predicted 

that both probes would show clockwise repulsion.  To measure the 

effect we analyzed psychometric functions from a 2AFC task with 

roving pedestals. This allowed us to determine the actual angle at 

which the probes appeared to the observer to move horizontally.  To 

show that the predicted CW shift was not a static tilt after-effect, we 

used a control in which the paired dots formed a Glass pattern, with 

clear orientation but no movement.  

 

The only previous study of adaptation to paired motion of which we 

are aware was by Blaser, Papathomas, and Vidnyanszky (2005), who 

used the same logic as ours to predict repulsion of orientation from 

the components. These authors adapted to 0/180 and tested at 90°. 

No repulsion would be expected in this case when the two sets of 

dots have the same motion energy, because the probe would be 

repelled in opposite directions by the two components. However, 

Blaser et al. used different colors for the leftwards and rightwards 

moving dots, and reported repulsion of red probes from red 

adaptors, and green from green.  In other words, the effects of 

adaptation were color-specific.  To test for color specificity using our 

own 2AFC psychophysical methods, we adapted to R0/G180 and 

tested with R0, R180, G0 and G180 probes. 

 

 



General Methods 

Stimuli were presented on a 60-Hz frame-rate Sony Trinitron 

monitor, viewed from 75 cm so that 1 pixel subtended 1.275 arcmin 

at the observer’s eye.  Except where otherwise stated, the viewing 

parameters were as close as possible to those of Blaser et al. (2005). 

The circular aperture size was 4.25°; the dot diameter was 0.0425°; 

the dot lifetime was 5 frames (80 ms); and the velocity of adapting 

dot movement was 2.5 deg/s.  The number of dots was 256 (or 128 

green and 128 red, in the transparent condition). The initial 

adaptation period was 40 s. Subsequent "top-up" periods were 8 s 

each. Background screen luminance was 50 cd/m2 in Experiment 1, 

but ~0 in Experiments 2–6, as in the experiments reported by Blaser 

et al. The central fixation point was a 0.05° white square. (Blaser, et 

al. also had a central fixation point but its size is not specified.) 

 

The luminances of the red and green dots were chosen to be equally 

salient in the transparent stimulus. Blaser et al. (2005) did not 

specify their dot luminance values but state that they were calibrated 

for isoluminance for each subject. (Presumably isoluminant with 

each other, not with the dark background.)  Except in experiments 

with transparent motion, we used only green dots. 

 

Eye position was measured with an EYELINK 1000 far-infrared 

reflection recorder. 

 

The stimuli and a typical trial sequence are illustrated in Fig. 1.  (See 

also Supplementary Material, DemoAdaptRedTestRed.mp4.) Each 

session began with a 40-s adaptation period, during which the 



observer was instructed to maintain fixation.  This was followed by a 

sequence of 192 trials. Every 50 trials, the observer was instructed 

by a message on the screen to take a rest, following which a key press 

initiated another 40-s adaptation period. On all other trials the 

adaptation period was 8 s. The adapting stimulus consisted of 256 

green dots randomly scattered in the circular aperture. Each of these 

dots moved rightwards with a limited lifetime of 5 frames (Morgan & 

Ward, 1980a, 1980b), at the end of which it was replaced by a dot in 

a random position within the aperture. Any dot that reached the edge 

of the aperture was wrapped to the mirror image position on the 

aperture, with a small horizontal shift towards the center equal to 

two dot diameters. 

 

 

Fig. 1. Schema of the experimental procedure.  In experiments with 
motion transparency, the adapting stimulus was replaced by equal 
numbers of red and green dots, moving in opposite directions. 
 



Our psychophysical method combines 2AFC with a roving pedestal 

(Morgan, Melmoth, & Solomon, 2013). This combination is designed 

to obscure the relationship between our hypotheses and the 

observer's response. This is advantageous because it prevents simple 

cognitive biases from masquerading as a true perceptual bias (cf. 

Morgan, Dillenburger, Raphael, & Solomon, 2012). 

 

Each "adaptor" was followed by two probe stimuli.  A 0.2-s delay 

preceded each 0.5-s probe. Although the two probes moved in 

slightly different directions (see below), both directions were close to 

the "reference" direction, which could be either straight up, straight 

down, left, or right. The observer’s task was to press a key (1 or 2) to 

indicate which of the two probes appeared to move in a direction 

closest to the reference direction. We refer to one probe as the 

"pedestal." Its direction of motion was selected from the pedestal 

angles , with respect to the reference. The other probe 

moved in a direction that was the sum of this same pedestal and a 

"test level," randomly selected from the set

.  We refer to this probe as the "test" 

stimulus. Note that the angles of the two probes could be on opposite 

sides of the reference. Each of the 8 × 3 × 2 kind of trial was repeated 

in a random sequence without replacement, making a total of 192 

trials per session.   

 

Data from each session were fit with a two-parameter signal-

detection model, to obtain values of the observer’s bias (μ) and just-

noticeable difference (JND; σ).  These correspond intuitively (but 



not mathematically) to the 50% point and inverse slope of the 

psychometric function in the Method of Single Stimuli (MSS), as used 

for example by Blaser et al. (2005). 

 

Signal-detection model 

Within the context of signal-detection theory (Green & Swets, 1966), 

the apparent directions of the two probes can be described by 

normal distributions S and T, such that 
 
S ∼ N p+ m ,s 2 2( ) and 

 
T ∼ N p+ t + m ,s 2 2( ), where s 2  is the variance of the performance-

limiting noise, p and p + t represent the physical directions of drift, 

and µ represents any perceptual bias, such as may be induced by 

adaptation. Given these definitions, the probability of choosing the 

pedestal is given by 

 

Pr "S"( ) = Pr S < T( )

= Pr
S2

T 2
<1
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Morgan et al. (2015) noted that S2 T 2  is a random variable having a 

doubly noncentral F-distribution. Its denominator's noncentrality 

parameter is 2 p+ m + t( )
2

s 2 , its numerator's noncentrality parameter 

is 2 p+ m( )
2

s 2 , and both denominator and numerator have 1 degree 

of freedom. However, evaluating the doubly noncentral F-

distribution can be computationally intensive. Here we provide an 

equivalent formulation, which can be calculated very quickly: 
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The participants were the three authors (MM, JS, KS), four 

psychophysically experienced colleagues (BD, JF, AJ, NN) not 

involved in the design of the experiment, and two paid volunteer 

undergraduates (TP and DP) who were not aware of the purpose of 

the experiment.  Not all participants took part in all experiments. 

 

Experiment 1 

The purpose of the first experiment was to measure the size of the 

orientation repulsion effect using our own methods and stimuli, and 

to introduce the reader to the analyses used in the subsequent 

experiments.  Observers adapted to a single component moving at 0° 

(horizontally to the right), and were tested with both upwardly and 

downwardly moving probes, randomly interleaved within a single 

session (sampling without replacement).  On each trial, after a top-up 

adaptation, two stimuli were presented in temporal succession and 

the observer had to report which of them was closer to the vertical. 

(See General Methods.)  

 

Results (Experiment 1) 

Examples of the raw psychometric functions from which we derive 

estimates of bias and JND are shown in Fig. 2.  These were derived 

from a single testing session with one naive observer (TP) 

comprising 192 trials (3 pedestals × 8 test levels × 2 reference 

directions × 4 repeats). The first row shows results with one 

reference direction (90°: see arrow to the right), the second row 

shows the other reference direction (270°).  The vertical axis shows 

the probability that the observer chooses the pedestal, rather than 



the test (horizontal axis).  The solid symbols show the data, each 

point being based on only 4 repeats, which explains the quantization 

of the probability to only 5 levels.  The third row shows the data from 

the first two rows combined, with a reversal of the test and pedestal 

values of the first row, to take account of the reverse bias expected 

for the 90 and 270 cases.   

 

The data in Fig. 2 are best summarized within the context of signal-

detection theory. Nonetheless, a rough estimate for the size of the 

motion after-effect can be obtained from inspecting the raw 

psychometric functions. First consider those obtained with pedestals 

of zero. With a zero pedestal and a zero test level, we expect the 

observer to choose the pedestal 50% of the time, even if they have a 

perceptual bias. Furthermore, if the rightward moving adaptor 

produces CCW biases (i.e. positive angles) in the observer's percept 

of both probe stimuli, then the observer should be less likely to 

choose any particular probe (as more vertical) when an additional 

CCW angle is added to it. Results in the top row (central panel) are 

consistent with this prediction. Observer TP invariably selected the 

pedestal as more vertical, whenever an CCW angle was added to the 

test. Conversely, probes containing a CW (negative) test level may 

appear closer to vertical, making observers less likely to select the 

pedestal. The observer should be least likely to select the pedestal 

when the cue level is exactly opposite to the observer's bias, and the 

psychometric function should be symmetric around this value.   

 

Now consider the case where there is a non-zero pedestal.  If the 

pedestal is in the same direction as the observer’s bias, both probes 



will seem shifted from the vertical by an amount equal to the bias 

and the pedestal.  Test levels in one direction will make the test look 

more vertical than the pedestal, test levels in the other direction 

make it look less vertical.  Consequently, the psychometric function 

should be sigmoidal in the region around the point (0, 0.5). See the 

top right and middle left panels for examples. 

 

Finally, consider the case where the pedestal and bias are in opposite 

directions. In this case, a small test value (positive or negative) can 

make the motion of the test indiscriminably different from vertical, 

and consequently the observer should only rarely select the pedestal. 

Results of this nature can be seen in the top left and middle right 

panels.   

 

Inspection of the raw data in Fig. 2 makes clear that adaptation to 

rightward motion produced a positive (CCW) bias in the perception 

of upward moving probes (top row of panels) and a negative (CW) 

bias in the perception of downward moving probes (middle row). 

Biased functions like these can be compared to the unbiased 

functions obtained from "non-frame dependent" participants in a 

rod-and-frame task (see Morgan, et al., 2015, Fig. 3). 

 



 
Fig. 2.  Psychometric functions obtained from one observer (TP) in 
Experiment 1.  The arrows show the direction of the reference.  The 
bottom row shows the data for the top two rows combined, with 
reversal of the pedestal and test levels in the top condition.  For 
further explanation see the text. Note that the Test Levels (horizontal 
axis) are added to the pedestal value in the test stimulus. Positive 
values are CCW. 
 

 

Red curves in Fig. 2 show the fit of the signal-detection model. This 2-

parameter model was simultaneously fit to all 96 trials depicted in 

the top row; it was fit again to all 96 trials depicted in the middle 

row; and finally it was fit to all 192 trials in the bottom row. The 

results of these fits are summarized in Fig. 3. The sign of the bias is in 

the direction expected if the probes are repulsed from the 0° adaptor. 

Thus, upwards moving dots are apparently displaced CCW (positive 

bias) and downwards moving probes are displaced CW (negative 

bias).  The rightmost bar for each observer shows the net repulsion 
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effect, obtained by combining the same direction of test. This is 

positive in all observers.  One observer (JS) had a large overall CW 

bias, which inverted the repulsion to an apparent attraction with the 

upward reference, but his combined data were in the repulsion 

direction.   Values of bias (left-hand panel) and JND (right-hand 

panel) are quite similar, as is commonly found when applying MSS to 

the measurement of classical perceptual biases such as the Muller-

Lyer (Morgan, Hole, & Glennerster, 1990) and in 2AFC measures of 

the "rod and frame" effect (Melmoth, Grant, Solomon, & Morgan, 

2015).  To test whether the biases were significantly different from 

zero we used a log-likelihood analysis, comparing the two-parameter 

fit (μ; σ) to a constrained fit with μ set to zero.  Under the null 

hypothesis (i.e. μ = 0), twice the difference in log likelihoods between 

the two fits is distributed as  with df=1 (Hoel, Port, & Stone, 1971). 

Values of this test statistic for the 6 observers were 23.7872, 5.3444, 

19.5877, 20.6917, 28.5069, and 8.0290. All these values are larger 

than that (5.024) required to reject the null hypothesis at the 

α=0.025 level of significance. 

 

These results confirm the report by Levinson & Sekuler (1976) that 

there is repulsion of a moving dot stream away from the direction of 

an orthogonal adapting stream. 

 



 

Fig. 3.  Results of Experiment 1. The left-hand and right-hand panels 
show maximum-likelihood estimates of bias (μ) and JND (σ), for 
each observer. From left to right, the three bars for each observer 
show estimates derived from (1) trials with an upward reference (2) 
trials with an downward reference, and (3) all trials fit together. Each 
error bar contains the central 95 percentiles of a parametric 
bootstrap distribution (sample size: 1600).  
 

Experiment 2 

Having confirmed the repulsion effect of Levinson & Sekuler (1976) 

with our own method, we used it to determine whether there is 

adaptation to paired motion (Qian, et. al., 1994). Six observers were 

tested with adaptation to 30/210 (i.e. oblique) adaptors. Two of 

these six (MM, KS) were, in addition, adapted to 150/330. (See 

General Methods.) The results for 30/120 were combined with those 

for 150/330, after reversal of test and pedestal values for the latter, 

so that a positive bias would represent repulsion. Trials with 



leftward and rightward references were randomly interleaved.  Data 

were analyzed in the same way as in Experiment 1.  

 

Results (Experiment 2) 

Psychometric functions for one observer (MM) are shown in Fig. 4. In 

this case, unlike Fig. 2, we find the same direction of bias for both 

reference directions, so the third row shows the results for the first 

two rows combined, without reversal of sign.  Summary results are 

shown in Fig. 5. All observers show a net bias (bar 3) in the predicted 

direction, although BD has a strong CCW bias that destroys the 

symmetry of her data.  Test statistics for our log-likelihood analysis 

were: 127.2109, 35.9124, 32.8900, 2.3710, 40.2409, 10.3021, and 

6.9878. Thus we can reject the null hypothesis (μ = 0) for six of our 

seven observers. A t-test for the significance of the net biases being 

drawn from a distribution of observers with zero mean gives the 

result t(6)=8.47; p=0.00015. 

  



 

Fig. 4.  Psychometric functions obtained from one observer (MM) in 
Experiment 2, based on a total of 381 trials. The arrows show the 
reference direction.  The bottom row shows the data for the top two 
rows combined.  For further explanation see the text. 
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Fig. 5. Results of Experiment 2, in which the adapting stimulus 
consisted of paired dots moving in opposite directions. The left-hand 
and right-hand panels show maximum-likelihood estimates of bias 
(μ) and JND (σ), for each observer. From left to right, the three bars 
for each observer show estimates derived from (1) trials with a 
rightward reference, (2) trials with a leftward reference, and (3) all 
trials fit together. Each error bar contains the central 95 percentiles 
of a parametric bootstrap distribution (sample size: 1600).  As in Fig. 
3, the μ  values are expressed as the angle of repulsion.  
 

Experiment 3 
Although the results of the previous experiment may seem 

compelling evidence for directionally specific adaptation, there is an 

alternative interpretation based on the static tilt after-effect (Gibson 

& Radner, 1937; Meese & Georgeson 1996). Indeed, the paired-dot 

stimulus had a strongly striated appearance, along the axis of motion.  

These "motion streaks" could have affected the apparent orientation 

of similar streaks in the probe stimuli, and the latter could have 

affected judgments of motion direction (Geisler, 1999).  



 

Levinson and Sekuler (1976) discussed this objection to their 

interpretation of transparent motion adaptation, and rejected it on 

the cogent grounds that adaptation to a single component direction is 

directionally specific.  For example, adaptation to 120/300 produces 

CW repulsion of a 90° probe, as does adaptation to 120/120: but 

adaptation to 300/300 produces no repulsion.  If adaptation were 

based on motion streaks, then 120 and 300 adaptors should have the 

same effect, since they differ only in direction, not in orientation.   

 

To satisfy ourselves on this point, we replicated Levinson & Sekuler's 

experiment with three observers (MM, AJ, JS), and obtained the same 

results (not shown here).  However, this rebuttal of streaks is not 

completely convincing for the case of paired dots, because it is 

possible that streaks are stronger in this case than for a single 

direction of moving dots.  We therefore designed a stimulus that had 

a strongly oriented structure but no motion.  This consisted of the 

paired dots used in the previous experiment, but they did not move 

during their lifetime.  Observers BD, AJ, and JF were adapted to 

30/120.  Observer JS was adapted to 150/330.  Observers MM and KS 

experienced both conditions in different sessions. The results for 

30/120 were combined with those for 150/330, after reversal of cue 

and pedestal values for the latter, so that the overall bias would 

represent a repulsion. The stimulus had a strongly striated 

appearance, as would be expected from a Glass pattern (Glass, 1969), 

but had no motion along the axis of the striations. Such motion as 

there was in the pattern was orthogonal to the striations, arising 

from the nonuniform distribution of motion energy imposed by the 



orientation structure (c.f. Morgan & Tyler, 1995, who used a 

cylindrical lens to study the Pulfrich effect with random dynamic 

noise).    

 

Results (Experiment 3) 

The summary results are shown in Figure 6.  For only one of the six 

observers (KS, who had a strong overall CW bias) was the net bias 

significantly different from zero. (Values of the test statistic for the 

log-likelihood analysis were 0.9485, 3.2081, 8.5696, 1.2002, 0.0056, 

and 0.9527.)  A group t-test showed that the difference from zero was 

not significant: t(5)=1.582, p=0.1745.  This was in contrast to the 

paired motion case [Experiment 2; t(5)=7.12; p=0.00084].   Another 

paired t-test showed that the difference between the two 

experiments in those observers who did both was also significant: 

t(5)=4.644; p=0.0056. We conclude that the adaptation found with 

moving, paired dots is unlikely to be explained by the static tilt after-

effect. 

 

 

 



 

Fig. 6. Results of Experiment 3, in which the adapting stimulus 
consisted of stationary, paired dots.  The left-hand and right-hand 
panels show maximum-likelihood estimates of bias (μ) and JND (σ), 
for each observer. From left to right, the three bars for each observer 
show estimates derived from (1) trials with a rightward reference, 
(2) trials with a leftward reference, and (3) all trials fit together. Each 
error bar contains the central 95 percentiles of a parametric 
bootstrap distribution (sample size: 1600).  
 

Experiment 4 
Blaser et al. (2005) described directionally specific repulsion of a 90° 

probe, following adaptation to both a transparent and a paired-dot 

stimulus with 0/180 components.  This adaptation is unexpected, 

because the two components should cancel out.  However, the two 

sets of moving dots were colored red and green, and the adaptation 

was found to be color-specific.   We tried to repeat this result using 

our own stimuli and psychophysical methods.  We adapted to a 

0/180 transparent stimulus of rightwards-moving green dots (0°) 



and leftwards-moving red dots (180°).  Next we tested with 

interleaved upwards (90°) and downwards (270°) references, exactly 

as in Experiment 1. (For a demo see Supplementary Material  

DemoAdaptTransTestRedandGreen.mp4.) In separate sessions, 

the probe dots were either red or green. If there were a color-

contingent motion adaptation effect from a transparent stimulus, we 

would find opposite directions of repulsion with the two different 

probe colors.   

 

Fig. 7 shows three bars for each observer. From left to right, the three 

bars for each observer show estimates derived from (1) trials with a 

upward reference, (2) trials with a downward reference, and (3) all 

trials fit together. Results for the two colours are combined with 

appropriate sign reversal so that a positive effect indicates repulsion.  

Clearly, there was no significant net bias.  Values of the test statistic 

for the log-likelihood analysis were 2.2334, 0.1068, 0.0061, 0.0567, 

and 0.9399. Thus we cannot reject the null hypothesis (μ = 0) for any 

of our five observers. 

 

We conclude that our psychophysical technique does not produce 

any evidence for significant color-specific, directionally selective 

motion adaptation from a transparent stimulus. 

 

 

 

 
  



 

Fig. 7. Results of Experiment 4. The left-hand and right-hand panels 
show maximum-likelihood estimates of bias (μ) and JND (σ), for each 
observer.  From left to right, the three bars for each observer show 
estimates derived from (1) trials with an upward reference, (2) trials 
with a downward reference, and (3) all trials fit together. Trials with 
green probes and red probes have been combined. Each error bar 
contains the central 95 percentiles of a parametric bootstrap 
distribution (sample size: 1600).   
 

Experiment 5 

We wondered whether Blaser et al. (2005) obtained a color-

contingent adaptation by involuntarily attending to one of the 

components in the adapting stimulus. After attending to red, for 

example, there might be an adaptation specific to the movement 

direction of the adapting red dots. This would be a direction-specific 

adaptation, not a color-specific effect. Just such an effect has been 

reported (Lankheet & Verstraten, 1995), albeit it with a different 

stimulus array and a different psychophysical procedure. (They used 



MSS to find the null point in the signal-to-noise ratio.)  To examine 

this possibility, we repeated Experiment 5 but with attention to one 

component of the transparent stimulus.  Observers attempted to 

follow the motion of either the green or the red dots "in the mind’s 

eye" but without actually tracking.  We admit that these instructions 

are not very precise, and could elicit a number of different strategies, 

such as attempting to follow individual dots attentively, or attending 

to a particular apparent depth plane. We verified informally with the 

EYELINK recorder that observers were not tracking the target.  In 

blocks with ATTEND TO RED the probe stimuli were red. In blocks 

with ATTEND TO GREEN they were green. Thus, a possible direction-

specific adaptation was confounded with a possible color-contingent 

adaptation, as in the Blaser et al. experiment. (Though not, we think, 

in Lankheet & Verstaten, 1995, where the color of the probes was not 

the same as that of the attended component.) 

 

Results (Fig. 8) showed no significant net effect of attended color on 

adaptation.   Values of the test statistic for the log-likelihood analysis 

were 1.5563, 0.0711, 2.9851, 0.6382, 3.5382, and 3.841 for the 5 

observers (MM, JS, KS, BD, TP). Thus we cannot reject the null 

hypothesis (μ = 0) for any of our five observers. 

 

 

 

 
 



 

Fig. 8.  Results of Experiment 5. The left-hand and right-hand panels 
show maximum-likelihood estimates of bias (μ) and JND (σ), for each 
observer.  From left to right, the three bars for each observer show 
estimates derived from (1) trials with a rightward reference, (2) 
trials with a leftward reference, and (3) all trials fit together. Trials 
with attend-to-green and attend-to-red probes have been combined. 
Each error bar contains the central 95 percentiles of a parametric 
bootstrap distribution (sample size: 1600).   
 
Experiment 6 
A possible explanation of adaptation to transparent motion is pursuit 

eye tracking (see Discussion). To test the possible role of tracking, we 

adapted observers to a transparently moving stimulus, while they 

were instructed to pursue a white fixation point moving with the 

same velocity as of one of its components.  The actual movement of 

the fixation point was a saw-tooth; it moved instantaneously to the 

left-hand side of the circular aperture (Fig. 1), when it reached the 

right-hand edge. 

 



Fig. 9 shows the results for observers MM, JS, KS, BD, AJ, JF, and TP.  

All observers showed an aftereffect in the expected direction 

(repulsion from the direction of tracking).   Values of the test statistic 

for the log-likelihood analysis were 31.7869, 16.6479, 1.4562, 

106.4826, 16.3963, 20.7043, and 4.5260. Thus we can reject the null 

hypothesis (μ = 0) for 6 of our observers, but not for KS.  Overall, 

despite the high variance between observers, the data can reject the 

null hypothesis that the 7 observers are drawn from a population 

with mean of zero [t(6)=2.55, p=0.0437]. 

 

 
Fig 9. Results of Experiment 6. The left-hand and right-hand panels 
show maximum-likelihood estimates of bias (μ) and JND (σ), for each 
observer. From left to right, the three bars for each observer show 
estimates derived from (1) trials with an upward  reference, (2) trials 
with a downward reference, and (3) all trials fit together. Each error 
bar contains the central 95 percentiles of a parametric bootstrap 
distribution (sample size: 1600).   
 



Discussion 

The results of our first experiment (Experiment 1) confirm the 

finding by Levinson and Sekuler (1974) that a horizontal moving 

adaptor causes repulsion in orthogonal probes (0° and 270°).  The 

results of our Experiment 2 support the claim by Blaser et al. (2005) 

that motion adaptation can be produced by a paired-dot stimulus 

(Qian, et al., 1994).  We found that a 30/210 paired-dot adaptor 

caused directional repulsion in both 0° and 180° moving probes.  The 

finding of adaptation to paired motion, added to the further finding 

by Levinson and Sekuler that adaptation to one component of a 

transparently moving stimulus is no weaker than to a single 

component, gives strong psychophysical support to the two-stage 

model of motion processing (Adelson & Movshon, 1982; Movshon & 

Newsome, 1996).  According to the two-stage model, elaborated to 

include adaptation, V1 neurons respond to one component of paired-

dot or transparently moving stimuli as if the other component were 

absent.  V1 neurons also adapt to their input (Kohn & Movshon, 

2003), and these two facts taken together imply that they would 

adapt to paired-dot and transparent stimuli, as we and Sekuler and 

Levinson found.  MT neurons, on the other hand, merely inherit their 

adaptation from V1, and they combine, to a greater or lesser extent, 

motion in opposite directions within their receptive field.  This is 

generally held to explain why paired-dot stimuli are not seen to 

move, although the linking hypothesis here has not been made clear 

or justified. Presumably it is that perception should be linked more to 

later stages in a processing hierarchy than to earlier, because later 

stages are closer the response buttons or tongue.  

 



On the other hand, our results (Experiment 4) did not confirm the 

factual basis for the claim (Blaser, et al. 2005) that there is repulsion 

of a 90° probe from both components of a 0/180 paired-dot adaptor.  

Such repulsion would not be expected from our logic, since the two 

adapting components would cancel out.  Blaser et al. attempted to 

prevent this cancellation by making the oppositely moving dots of 

different colors, and testing with single colors.   Since our experiment 

was a conceptual replication (Schmidt, 2009) rather than an exact 

replication we cannot be certain why our results are different. 

Differences include the psychophysical method (2AFC rather than 

MSS, which has one stimulus and two possible responses), statistical 

methods of analysis, the use of colors that appeared equally salient to 

the observer, rather than equiluminous, and the absence in our 

experiment of stationary dots of the opposite color to the moving 

probe, which were present in Blaser et al.   

 

Differences in the outcomes of different psychophysical procedures 

have already been noted elsewhere and perhaps deserve more 

attention. Mather & Sharman (2015) have argued that the claim for 

adaptation based on imagining the adaptor (Winawer, Huk, & 

Boroditsky, 2010) depends on response bias with the MSS.   When 

the decision was changed from "which direction is the probe moving" 

to "in which half of the stimulus array is there coherent movement," 

the effect of a imaginary adaptor disappeared. Similarly, using a 2AFC 

procedure, Morgan (2014) failed to find spatiotopic adaptation of tilt 

adaptation, which had been reported by Turi & Burr (2012) using the 

MSS.  In another example, again using 2AFC, Morgan (2014) failed to 

find an effect of attentional load during motion adaptation, which had 



been reported by Taya, Adams, Graf, and Lavie (2009) using the MSS.  

On the other hand, there are good reasons for rejecting response bias 

as an explanation for the paired-motion findings of Blaser et al. 

(2005), since they showed that participants were unable to report 

the association between color and motion in a forced-choce task.  

 

Concerning statistical procedures, we have little to say. Blaser et al. 

(2005) present only group data in their paper.  Individual 

psychometric functions were not analyzed, and the significant result 

applies to the group data (Blaser, personal communication).  It is 

possible therefore, that some observers, including those that were 

naïve, did not show a significant effect. This is an important 

difference from our analysis, which considers the observers 

separately, except where we report population t-tests. 

 

Although our manipulation of attention did not produce a directional 

after-effect, Lankheet and Verstraten's (1995) manipulation of 

attention did. The reason for this discrepancy remains unclear. One 

possibility is that our observers used a less effective strategy for 

maintaining one component "in the mind's eye." Another  obvious 

difference is that we used a directional repulsion effect, while 

Lankheet & Verstraten (1995) measured the dynamic motion after-

effect with a signal-noise ratio method.   

 

We tried informally to find a dynamic motion after-effect after 

attending to transparent red-green motion, by using probes 

comprised of stationary dots. (Each dot had a limited lifetime of 5 

frames.) This produced a clear motion after-effect after adaptation to 



a single direction (red dots only; see DemoAdaptRedTestDVN.mp4); but 

all we could see after transparent adaptation 

(DemoAdaptTransTestDVN.mp4), with or without selective attention, 

was the vague motion orthogonal to the axis of adaptation predicted 

(and found) by Grunewald and Lankheet (1996).  The generality of 

the attention-contingent adaptation clearly needs further 

investigation.  Raphael, Dillenburger, & Morgan (2010) examined the 

effect using transparent streams of expanding/contracting 

black/white dot streams.  An effect was found, but it was noisy and 

inconsistent over observers.  The main effect was a massive, 

idiosyncratic bias towards reporting "expanding" or "contracting." 

 

Another possible mechanism for the after-effect of transparent 

motion is pursuit tracking of one of the two components.  It is known 

that tracking of a moving texture can produce a compelling motion 

after-effect opposite to the direction of tracking, even though the 

tracking tends to stabilize the moving stimulus on the retina (Anstis 

& Gregory, 1965).  Both an extra-retinal motion signal (Freeman, 

Sumnall & Snowden, 2003) and adaptation to the stationary 

background (Morgan, Ward, & Brussel, 1976) may be involved.  

Tracking was not controlled in the experiments of Blaser et al. (2005) 

and Lankheet and Verstraten (1995), and is thus a possible 

explanation of the positive findings. However, in a different kind of 

after-effect due to attentional tracking, Verstraten, Hooge., Culham, & 

van Wezel (2001) found no evidence that involuntary pursuit was 

involved, so we cannot assert that pursuit is a general explanation for 

adaptation following attentional tracking. Nor did we find an after-

effect of tracking in all our observers (only 6 out of 7 observers in 



Experiment 6). Future experiments on adaptation to transparent 

motion, and experiments on "attention" to motion generally,  clearly 

ought to control for pursuit eye movements. 
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Supplementary Material 
 
Demonstration Movies.  The mp4 movies available at 
https://owncloud.sf.mpg.de/index.php/s/KltJeAUADngWadO show 
representations of the stimuli used in the experiments.  These are not 
identical to the actual stimuli.  The frame rate is nominally 50 Hz 
instead of the 75 Hz used in the experiments, and the colors will 
depend on the viewing platform.  Colors should be adjusted if 
possible so that red and green dots are equally salient.  All the movies 
were designed to be viewed in a repetitive loop: adapt-probe-probe-
adapt-probe-probe-adapt…. 
 
DemoAdaptRedTestRed.mp4 shows the basic 2AFC design used in 
the experiments. The adapting stimulus (5 s) consists of red dots 
moving at 30°, with a limited lifetime of 5 frames. This is followed, 
after a 0.2-s blank interval, by the two probe stimuli (0.5 s each), in 
sequence. In this case, the first and second probes move with angles 
of 5° and –5°, respectively. Although they are equally far from the 
horizontal (0°), the probes should look asymmetrical following 
adaptation, with the 5° stimulus appearing roughly horizontal and 
the –5° stimulus shifted clockwise. 
 
DemoAdaptTransTestRedandGreen.mp4 presents an adaptor 
consisting of red and green dot streams moving in opposite 
directions. This is followed by red probes, moving in the same 
direction as the adapting red dots.  As in the previous movie, these 
probes are moving at +5° and –5°, respectively. The adaptor is then 
repeated, and followed by green probes.  If there were a color-
contingent adaptation, the red probes would appear to move in 
different directions from the green probes. 
 
DemoAdaptRedTestDVN.mp4 presents a single-direction red 
adaptor, followed by tests of dynamic visual noise, consisting of 
stationary but limited-lifetime (5 frame) probes.  The probes should 
appear to drift in the opposite direction to the adaptor.  
 
DemoAdaptTransTestDVN.mp4 is similar to the previous movie, 
but the adaptor consists of red and green dots moving in opposite 
directions.  This is followed by two red probes. The adaptor is then 
repeated and followed by two green probes.  The probes may show a 

https://owncloud.sf.mpg.de/index.php/s/KltJeAUADngWadO


drift in the opposite direction to one of the adapting components 
because of unequal luminance balance, but the question is whether 
this direction is different for the differently colored probes.  Another 
question is whether the apparent direction of the probes is altered by 
attending to one of the differently colored adapting components 
(Lankheet & Verstraten, 1995). Another effect that may be observed 
is transparent motion in the tests, orthogonal to the adapting axis 
(Grunewald & Lankheet, 1996). 
 
 
 
 
 


