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Abstract

Structural estimation of labor adjustment costs suffers from a myriad of specification errors, largely

due to data constraints. The literature usually assumes that adjustment decisions are made at the firm

level, that adjustment happens at the frequency at which a firm is observed (typically annually or quar-

terly), and that adjustment costs are incurred on net changes in employment. This paper builds and

estimates a dynamic optimization model of labor adjustment of establishments using data that permit

1) specifying any desired adjustment frequency (including daily adjustment), 2) using the micro unit of

an establishment, 3) estimating the model based on net and on gross employment flows and 4) allowing

for simultaneous hirings and separations. Results for adjustment costs depend crucially on the model

specification. Only a monthly adjustment model yields positive cost parameters, while estimates from

quarterly and annual adjustment models imply negative adjustment costs (that is adjustment implies a

gain rather than a loss). Estimating the model on net employment changes imply hiring and separation

costs of more than four annual median salaries, while the model on gross changes implies costs on the

order of two annual median salaries. Adjustment costs differ significantly between small and large es-

tablishments. However, a static specification of the model performs equally well as the dynamic model

with respect to out-of-sample predictions.
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1 Introduction

Estimating the magnitude and structure of labor adjustment costs has a long tradition in economics1, and the

literature has acknowledged and confronted a number of challenges2. The first problem is the choice of the

unit that makes hiring and separation decisions (“spatial” aggregation). In a pioneering paper Hamermesh

(1989) has shown that at the plant level we observe long spells of inactivity followed by lumpy labor adjust-

ment – indicating either the presence of fixed costs of adjustment or non-differentiability at a net adjustment

of 0 (see Abel and Eberly (1994)). Aggregated to the firm level, labor adjustment appears to be much more

frequent and smooth, suggesting a convex adjustment cost function. Most of the literature interested in the

adjustment costs per se (rather than using them as a device for a better model fit) has used plant or firm-level

data over higher aggregates ever since. A similar problem occurs with “temporal” aggregation (Hamermesh

(1992)). A plant or firm is more likely to change its employment in the long run. Thus, an infrequently

observed plant is likely to exhibit no or few inactive periods with the same implications for cost estimates as

in the spatial aggregation case. This is also acknowledged in Varejão and Portugal (2007) who use quarterly

data. The third issue is the correct specification of the cost function. Hamermesh and Pfann (1996) regard

the hypothesis of convex adjustment costs as rejected by the data. Other types of costs that have been used in

the literature are fixed costs, linear costs, and production disruption costs3. The forth problem is about using

net vs. gross employment flows. Data reporting only the stock of employment at fixed intervals necessitates

the use of net flows. However, if adjustment costs are costs of hiring and separations, gross flows should be

used as in Abowd and Kramarz (2003) and Kramarz and Michaud (2010). Abowd et al. (1999) and Burgess

et al. (2001) show that net and gross flows differ considerably within an establishment, even within a skill

group. The fifth problem concerns heterogeneity of labor. This closely relates to the previous point. All

structural estimations of adjustment costs have specified a production function with one type of labor with

no acknowledgement that in such a framework it makes no sense for an establishment to hire and fire within

a period. Thus, adjustment costs in such a model can only be incurred over net changes. Goolsbee and Gross

(2000) show how this heterogeneity aggregation impacts on estimates of capital adjustment costs. Finally, a

choice has to be made whether adjustment costs should be estimated off reported costs by firms and estab-

1This paper is about labor adjustment, but the problems associated with estimating capital (or any factor) adjustment costs are
almost identical.

2Hamermesh and Pfann (1996) is an excellent survey for the literature until 1996 and addresses all of the following points.
3One or several of those components have been used by Abel and Eberly (1994), Abowd and Kramarz (2003), Aguirregabiria

and Alonso-Borrego (2014), Asphjell et al. (2014), Bentolila and Bertola (1990), Bloom (2009), Cooper et al. (2015), Ejarque and
Portugal (2007), Lapatinas (2009), Pfann and Palm (1993), Nilsen et al. (2007), Rota (2004), and Varejão and Portugal (2007).
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lishments or off a structural model. If the objective is to quantify adjustment costs, the former is preferable

and is done by Abowd and Kramarz (2003) and Kramarz and Michaud (2010). Still, not all costs might

be captured by establishment reports. In that case, or if interest lies in comparing models with and without

adjustment costs, or in counter-factual policy evaluations, structural estimation is the method of choice.

This paper focuses on structural estimation. I parameterize labor adjustment costs in a model of dynamic

programming where an establishment chooses its optimal employment given the state of world and taking

into account that its choice will affect its state vector in the next period. As such, this paper is in the

same tradition as Aguirregabiria and Alonso-Borrego (2014), Cooper et al. (2015), Hamermesh (1992),

and Rota (2004) to name but a few. I do not claim to estimate the costs per se, but provide and compare

a set of estimates from different model specifications. Based on the likelihood function derived from the

dynamic programming model, I derive some hypotheses about how the estimated adjustment costs will

change with respect to 1) different levels of time aggregation, 2) different levels of spatial aggregation, and

3) using net or gross flows of employees. I do not assume that labor is homogeneous. These hypotheses

are tested empirically. Thus, this paper addresses the points of temporal and spatial aggregation, net vs.

gross flows, and labor heterogeneity, not offering a solution in terms of the “correct” level of aggregation

or flows to be used, but highlighting how these choices matter intuitively and practically, and demonstrating

this empirically.

What allows me to analyze this question is a data set which is particularly well suited to this topic.

I use linked employer-employee data from Germany which records annual sales figures for a sample of

establishments, and, crucially, exact starting and ending days of employment spells for each employee

(subject to paying social security contributions) who works in one of the establishments. This allows me

to assume any employment adjustment frequency, from daily to annual, and to observe the gross flows of

employees within any period.

I build a model of linear hiring and separation costs which accommodates churning, the observation

of simultaneous hirings and separations, and estimate it for different aggregation levels, and separately for

adjustment costs defined over gross vs. net flows. I show that the most important factor contributing to higher

adjustment cost estimates are the number of observations of inactivity. The economically most sensible

estimates of adjustment costs are obtained for a model of 1) monthly adjustment on 2) gross employee flows

and figure around 40,000 Euros per hire and per separation. However, without an external source on the
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magnitude of adjustment costs there is nothing to compare these estimates against4.

Despite the above mentioned difficulties economists should have an interest in estimating adjustment

costs. Macroeconomists will be interested in the effect of adjustment costs on unemployment and the la-

bor market effects of the business cycle (as in Bentolila and Bertola (1990) and Hopenhayn and Rogerson

(1993)). Policymakers will be interested in the role of adjustment costs when considering labor market in-

terventions such as wage subsidies in a recession (such as the German Kurzarbeit program), and economists

working in industrial organization should know the right specification of a firm’s objective function for pur-

poses such as estimating a production function. Labor economists are, I presume, intrinsically interested.

2 Model

Establishments are infinitely lived and maximize the present value of current and all expected future profits.

They are price takers in product and factor markets and their only choice variables are how many workers to

hire, and from how many to separate. I assume that the establishment cannot observe the quality of a worker

it hires, but it observes the quality of its employees. However, it cannot pay individual-specific wages. If

the establishment decides to separate from employees, it will do so from the ones with the smallest marginal

productivities. Hiring or separating from workers incurs adjustment costs. The general formulation of an

establishment’s problem is given by

V (xt , lt−1) = max
ht , ft

π(xt , lt ,ht , ft)−C(ht , ft)+βExt+1|xt ,ht , ftV (xt+1, lt)

where xt is a vector characterizing the state that is relevant for the firm’s decision, π is the expected profit

function, and ht and ft are the (non-negative) number of hires and separations chosen by the firm; lt−1 is

the stock of workers before any hiring or separation decisions are made. The next period is discounted at

the rate β, and C is the adjustment cost function. Expectations are taken over the future state conditional on

the current state and current actions. At the beginning of period t the establishment observes its number of

employees lt−1, their productivities (as part of xt), and other relevant state variables. It then decides on ht

and ft . After hiring, the productivities of new hires become known to the establishment. The current profits

4Unfortunately, but not unsurprisingly, estimates in the literature have a very wide range. For Germany, Mühlemann and Pfeifer
(2013) report hiring costs between 4,000 and 6,000 Euros per hire. However, Hamermesh and Pfann (1996) cite some accounting
studies which find adjustment costs of one year of payroll costs for the average worker. More on this in the discussion section.
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are only expected, as the establishment only has an expectation over the quality of its new hires before the

hiring is made. The problem becomes dynamic through the link between the inherited employment, hires,

separations and the new stock of employees:

lt = lt−1 +ht − ft +ηt ht ≥ 0, ft ≥ 0

where ηt are changes in employment outside of the control of the establishment such as voluntary quits and

retirements.

If the adjustment cost function were differentiable everywhere, for example (ht − ft)2, it would be easy

to derive an Euler equation and to estimate the adjustment cost parameters with generalized method of

moments. However, the evidence against an everywhere differentiable cost function is quite strong (see

Hamermesh and Pfann (1996)). Employment changes are relatively rare, and tend to be lumpy if they

occur, suggesting either the presence of fixed costs or non-differentiability at the point of no adjustment.

Moreover, at least for small establishments, assuming a continuously adjustable level of employment is also

problematic, in particular if the empirical model is set up in a way that non-activity translates into higher

adjustment cost estimates, thus confounding adjustment costs with indivisibilities of labor5. I model the

adjustment cost function to be linear in hires and separations, thus introducing a non-differentiability at zero

adjustment and consequently a range for the state space that will make inactivity the optimal choice of an

establishment as in Abel and Eberly (1994). An Euler equation approach with non-differentiability is still

possible as demonstrated in Aguirregabiria (1997) and Cooper et al. (2010), though the requirements for

consistent estimation of this Euler equation are unlikely to be met (the main problem being the endogeneity

of the moment of adjustment, see Aguirregabiria (1997) for a detailed exposition).

Let the profit function be given by

π(At , lt ,ht , ft) = S(At(ht , ft), lt)−wt lt

where wt is the average wage paid in the establishment, and S denotes sales net of intermediate inputs. Sales

depend on the number of workers, but also on At which can be thought of as an amalgam of a number of

variables such as the product price, factor productivity, a measure of average worker quality, exogenous

5This point is also made in Lapatinas (2009) who models the choice of employees as a discrete choice.
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demand for the product or any combination of those. I assume that At depends on hirings and separations

and follows an autoregressive process of order one, so that At = fA(At−1,ht , ft ,εt), where ε is an iid random

variable. I further assume that for a given l, S is invertible in A, so that we can write At−1 = g(lt−1,St−1).

Thus, we can characterize the current sales as a function of current hiring and separation choices (and

therefore current employment), previous period’s employment, previous period’s sales, and an unobservable

(for the researcher) component ε:

St = f (At , lt)

= f (At−1,ht , ft ,εt , lt)

= f (St−1, lt−1,ht , ft ,εt , lt)

The state vector of the establishment when considering its employment decision thus consists of St−1, lt−1,εt

and the current wage paid to its employees wt . This formulation circumvents having to specify a production

function. Nothing rules out that an establishment might hire and separate simultaneously. For example,

observing low employee productivity, an establishment might choose to replace an unproductive with a

productive worker, since by doing so it can increase sales (through A) even though it holds its number of

employees constant. Denoting the observable state variables xt = (wt ,St−1, lt−1), we can write the establish-

ment’s optimization problem as

V (xt ,εt) = max
ht , ft

π(xt ,εt ,ht , ft)−C(ht , ft)+βExt+1,εt+1|xt ,εt ,ht , ftV (xt+1,εt+1) (1)

This problem has a unique fixed point V ∗ (see Theorem 9.6 in Stokey and Lucas (1989)). I denote the

optimal decision rule to this problem by δ(xt ,εt) = (h∗(xt ,εt), f ∗(xt ,εt)). This decision rule is guaranteed to

be a function (rather than a correspondence) if π is concave and C is of the form

C(ht , ft) = τ
f ix
1(ht > 0 ∨ ft > 0)+ τ

+ht + τ
− ft ht ≥ 0, ft ≥ 0

where τ f ix is a fixed cost of hiring and/or separations, 1 is the indicator function, and τ+ and τ− are “unit”

costs of hiring and separations respectively. The function π−C is K-concave and the resulting decision

rule is of the (S,s) type (see Scarf (1959) and Aguirregabiria (1999) for this result). Following the steps in

Aguirregabiria (1999), the decision space of the firm can be split up into four discrete areas: Let H be the
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discrete choice of h > 0 and f = 0, F the choice of h = 0 and f > 0, P (for put) the choice of h = 0 and

f = 0, and B (for both) the choice of h > 0 and f > 0. Denote the choice set by D = {H,F,P,B}. These

choices are exhaustive and mutually exclusive. Let d be the discrete choice of an establishment: d ∈ D.

With each of these choices, there is an associated optimal level of hires and separations. For example, for

d = H, we would constrain f = 0, but h would be the solution to the problem

V H(xt ,εt) = max
ht>0

π(xt ,εt ,ht , ft = 0)−C(ht , ft = 0)+βExt+1,εt+1|xt ,εt ,ht , ft=0V (xt+1,εt+1)

Let δd(xt ,εt) = (hd(xt ,εt), f d(xt ,εt)) denote the solutions for h and f in the discrete regime d. For a current

choice d, next period’s value function itself can be split into the four discrete choices so that

Ext+1,εt+1|xt ,εt ,dtV (xt+1,εt+1) = E
[

max
j∈D

(
V j(xt+1,εt+1)

)
|xt ,εt ,dt

]

The “discrete” version of the firm’s problem in equation 1 is thus given by

V (xt ,εt) = max
dt

π(xt ,εt ,δ
d(xt ,εt))−C(δd(xt ,εt))+βE

[
max
j∈D

(
V j(xt+1,εt+1)

)
|xt ,εt ,dt

]
(2)

and the solution to this problem is denoted d∗t (xt ,εt).

To summarize, the establishment considers a discrete action (and the associated optimal h and f ). In

doing so, it forms expectations of the future state given its current state and this discrete action. It knows

that in the next period it will again choose among the best of the four discrete options (and the associated

optimal h and f ). Finally, to make this model estimable, I need to make the unobservable components of the

profit and cost functions additive. Following again Aguirregabiria (1999) I thus model

π(xt ,εt ,δ
d(xt ,εt)) = E(πd(xt))+ ε

d,π
t

where the first term is the expected profit under discrete choice d, and ε
d,π
t captures unobservable shocks to

the profits under this discrete choice. Similarly, let

C(δd(xt ,εt)) = E(Cd(xt))+ ε
d,C
t
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so the adjustment costs are based on the expected adjustments under the choice d and an unobservable

component ε
d,C
t . To simplify the notation from here on I define

u(xt ,dt)≡ E(πd(xt))−E(Cd(xt))

ε
d
t ≡ ε

d,π
t + ε

d,C
t

εt = (εH
t ,ε

F
t ,ε

P
t ,ε

B
t )

With xt containing three components, and having another set of four variables in εt , this is a formidable

problem to solve. Rust (1987) shows that under some assumptions the dimensionality of this problem can

be greatly reduced by eliminating the εt from the state space. The following standard assumptions need to

be made:

1. The shocks εd
t are independent across alternatives, across time, and follow an extreme value type I

distribution (we will see that we will not need to normalize the scale parameter).

2. The distribution of the future observable state variables is independent of εt conditional on the current

state variables and the discrete choice, that is F(xt+1|dt ,xt ,εt) = F(xt+1|dt ,xt).

The second assumption is known as the conditional independence assumption. It allows to integrate out

the shocks from equation 2. Denoting V̄ (xt) =
∫

ε
V (xt ,εt)dGε(εt), and taking expectations with respect to ε

I can derive

∫
ε

V (xt ,εt)dGε(εt) =
∫

ε

max
dt

(
u(xt ,dt)+ ε

d
t +βExt+1,εt+1 (V (xt+1,εt+1|xt ,dt)

)
dGε(εt)

V̄ (xt) =
∫

ε

max
dt

(
u(xt ,dt)+ ε

d
t +βExt+1 (V̄ (xt+1|xt ,dt)

)
dGε(εt) (3)

With assumption 1) I get

V̄ (xt) = log

(
∑
d

exp(u(xt ,dt)+βExt+1 (V̄ (xt+1|xt ,dt)))

)
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and choice probabilities

P(dt |xt) =
exp(v(dt ,xt)/σ)

∑ j∈D exp(v( j,xt)/σ)
(4)

with

v(dt ,xt)≡ u(dt ,xt)+βE(V̄ (xt+1|xt ,dt))

being the choice-specific value function and σ being the scale parameter of the type I extreme value dis-

tribution. In the framework of dynamic discrete choice models, the scale parameter is not identified if all

additive terms in u are multiplied by parameters to be estimated. As we will see, in this model u will contain

a term (the wage bill) that allows identification of σ.

Rust (1987) shows that equation 3 is a contraction mapping and suggests a nested fixed point algorithm

to estimate this model. Aguirregabiria and Mira (2010) provide a discussion of solution algorithms. Still,

the computational burden is quite great, since one has to solve for V̄ at every step of the likelihood iteration.

I thus follow the exposition in Aguirregabiria and Mira (2010) to greatly simplify the computation of the

likelihood function. First, let the expected profit function be given by

E(πd(xt)) = E(St |xt ,dt)−wtE(lt |xt ,dt)

Sales, for reasons that I will explain later, will be measured with error. Furthermore, let us consider an

adjustment cost function of the form

C(ht , ft) = τ
+ht + τ

− ft

with expected adjustment costs conditional on x and the discrete choice d

E(Cd(xt)) = τ
+E(ht |xt ,dt)+ τ

−E( ft |xt ,dt)

I can thus write

u(xt ,dt) = z(xt ,dt)θ
′
u

with

z(xt ,dt) = [E(St |xt ,dt) wtE(lt |xt ,dt) E(ht |xt ,dt ∈ {H,B}) E( ft |xt ,dt ∈ {F,B})] (5)
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and

θu =
(
1/σs −1 − τ

+ − τ
−)

Here σs is included as distinct from σ due to the measurement error in sales6. In the appendix I show –

using the result from Hotz and Miller (1993) on expressing E(εdt |dt ,xt) in terms of choice probabilities and

closely following the steps in Aguirregabiria and Mira (2010) – that the choice specific value function can

be written as

v(xt ,dt) = z̃(xt ,dt)θ
′
u + ẽ(xt ,dt)θ

′
e

where the expressions for z̃, ẽ and θe are in the appendix. Furthermore, I can derive the following recursive

equation7

W (x) = ∑
d∈D

P(d|x)×
(
[z(x,d),e(x,d)]+βF(x′|x,d)W (x′)

)
(6)

where W (x) is defined in the appendix. W (x)∗ is the unique solution to equation 6 and is needed to compute

z̃ and ẽ and ultimately the choice probabilities in equation 4.

Note how this formulation greatly simplifies the estimation once one has an initial estimate of the choice

probabilities P and the state transition probabilities F . Since the last equation does not contain any parame-

ters to be estimated, the vector W needs to be solved only once rather than at each step of the maximization

algorithm.

3 Estimation

The estimation proceeds in three steps. First, I need to obtain estimates of the state transition probabilities

F(x′|x,d) and of the choice probabilities P(d|x). Second, I solve for the unique fixed point of equation 6.

Third, I maximize the likelihood function based on the choice probabilities in equation 4.

In the data, I observe sales, employment, wages paid to every worker, the number of hires and the number

of separations. I assume every worker at any point of time is paid the same wage within an establishment,

which I take to be the median wage in the establishment rather than the mean due to some right-censoring

issues of the wage data. I discretize the state space into an array of ωw×ωS×ωl points, where I choose

6I defer the discussion about sales to the sales section.
7The steps of the derivation are in the appendix.
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ωw = 14 for the wage, ωS = 20 for sales, and ωl = 31 for employment, creating thus an array of 8,680

points. I choose the cell boundaries for w and S to have an equal number of observations in each cell. For l,

I choose a fine discretization for small l, and wider intervals for higher levels of employment. For each of

these points and each discrete choice, I calculate P(d|x) by a nearest-neighbor estimator. In particular, I first

normalize the state vector (w,S, l) to a mean of zero and an identity variance matrix. Call the normalized

data (w̄, S̄, l̄) and the normalized state point x̄. For each normalized x̄, I calculate the Euclidean distance of

this point from the normalized data observations, and choose the k observations with the smallest distance.

The relative frequencies of the discrete choices among those k observations are used as estimates for P. I

follow Pagan and Ullah (1999) in choosing k =
√

n. The transition probability array F(x′|x,d) is estimated

in the same vein, but only among observations with the discrete choice of interest.

The components of the vector z(x,d) are also estimated by a nearest-neighbor algorithm. In particular,

I estimate E(S|x,d), E(l|x,d), E(h|x,d), and E( f |x,d) as the average sales, average employment, average

hires and average separations among the k observations with discrete choice d and the smallest distance to

the normalized state point x̄.

Having all these objects in place, I start with an initial guess for the vector W (x′), to iterate on equation

6 until convergence is achieved. Then I calculate z̃ and ẽ for each observation. The parameter vector for

the likelihood in equation 4 can be written as θu/σ = θ̃u = (1/(σsσ) −1/σ − τ+/σ − τ−/σ) and

θ̃e = (1 µ/σ). The parameter µ/σ cannot be identified, since the corresponding element in e(x,d) is equal

to one for each choice, and the likelihood requires differences in variables across choices. The remaining

parameters are estimated by maximizing the log likelihood function of the sample. The cost parameters,

the costs of hiring and separating from one worker are given by τ+ and τ−. The parameter σ is the scale

parameter of the type I extreme value distribution, and determines the variance of the distribution as π2

6 σ2.

It gives a measure of how variant the distribution needs to be to account for the hiring and separation

heterogeneity of otherwise similar establishments and/or to account for the choice of d of an establishment

which based on its choice specific value functions v(x, j) should have chosen a different alternative. The

stronger the model is in predicting the observed choices of the sample establishments, the smaller this

variance should be. It is thus maybe comparable in spirit to the mean squared error in a linear regression

model.

The reader might have noticed a certain inconsistency in parametrically estimating choice probabilities
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(call them P2) in equation 4 relying on the non-parametrically estimated initial choice probabilities (P1). I

follow the methodology in Aguirregabiria and Mira (2002) who show that P itself is a fixed point in the

sense that iterating on P will lead to a unique solution of the recursive function of P. Thus, I use P2 based

on the estimated parameters θ, to feed them into a renewed computation of W . Then this W is used to obtain

P3, and the procedure can be repeated any number of times or until convergence in the parameter vector is

achieved. In the estimations this was the case after four iterations.

Finally, given that the final likelihood maximization uses many constructed variables based on a state-

space discretization and non-parametric estimation, I do not calculate standard errors of the estimates. De-

pending on the exact specification, obtaining one set of results on a high-performance computer using 20

nodes takes a few hours. Bootstrapping the standard errors with 500 replications would take me a few weeks.

Instead of calculating standard errors, I evaluate the performance of my model by out-of-sample predictions.

3.1 Identification

The likelihood function I am maximizing is just the likelihood function of a multinomial logit model, and

has thus a unique maximizer, so the model is identified in that sense. In this subsection I am interested in the

intuition of what will determine sign and magnitude of the structural coefficients. I estimate the parameters

of this model freely. The data can invalidate this model in a variety of ways. In particular, common sense

would require 1/(σsσ) > 0, −1/σ < 0, −τ+ < 0, and −τ− < 0. That is, sales increase the value of a firm,

the scale parameter is positive, paying wages decreases the value of the firm, and labor adjustment is indeed

costly8. I can ask now: what do the data need to be like to yield these signs? The intuition can be captured –

and the exposition simplified – if in this section we ignore the continuation value part of the value function.

The likelihood of choosing the observed choice c out of a set D in a multinomial logit model is

P(d∗ = c) =
exp(xcβ′)

∑a∈D exp(xaβ′)

=
1

1+∑a6=c exp((xa− xc)β′)

This likelihood will be the greater the smaller each component of (xa− xc)β
′ is. Thus, if the coefficient

on sales is to be positive, the sales value among the chosen alternative needs to exceed the sales value

8To borrow from Tolstoy, there is only one way in which the model can be “correct”, but many ways for it to be “wrong”.
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among the non-chosen alternatives sufficiently frequently. In general, the chosen option should dominate

the non-chosen alternatives with respect to sales. The reverse is required for the coefficient on the wage

bill. Ceteris paribus the wage bill paid under the chosen option needs to be lower than the wage bill under

the non-chosen options sufficiently often to guarantee a negative sign on the associated parameter. Next,

consider the hiring cost parameter, so that xd = E(ht |xt ,dt). Suppose the chosen action is c = P, that is to

neither hire nor separate from any worker. xc in this case will be zero (since no one was hired), but xa will

be either zero (if a = F) or a positive number (if a = H or a = B). Thus, (xa− xc) ≥ 0. The same can be

established for the separation cost parameter. This will decrease the associated coefficient (τ+) to increase

the likelihood. Contrast this with the choice of both hiring and separating, that is c = B. For the hiring

cost parameter, two of the alternatives (P and F) will result in (xa− xc)≤ 0 (since xa = 0 and xc = xB > 0)

while for the alternative H the sign of (xa− xc) is not known a priori. Thus, unless xH is always much

greater than xB, this choice will tend to increase the hiring cost parameter. A similar argument can be made

for the separation cost parameter. Finally, the choice H will tend to increase the hiring cost and decrease

the separation cost parameter, and the reverse will be true for the choice F . Thus, as economic intuition

suggests, the more inactivity we see in the sample, the smaller the parameters −τ+/σ and −τ−/σ will be

(and the greater τ+ and τ− will be provided they are positive). Conversely, having many B choices in the

sample will increase the same parameters. In order to obtain positive τ+ and τ− we should thus have a

sufficient number of inactive observations in our sample. This highlights quite clearly the issues of temporal

and of size aggregation. First consider time aggregation. In practice, the shorter the intervals at which firms

are assumed to revise their employment, the more likely they are to be inactive. Any hiring or separation

during a month will also be a hiring or separation during the year, but a hiring or separation during the year

could still mean eleven months of inactivity compared to one month of activity. As for size aggregation,

a firm with thousands of employees is much more likely to be active than a small establishment. Treating

the large firm as one entity – with one decision maker for hires and separations – and observing this entity

constantly in employment adjustments should lead us to infer that it hiring and separating cannot be too

costly, at least for small adjustments.
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4 Data

The data are linked employer-employee data from Germany (LIAB longitudinal model version 3), covering

the years 1993 to 2007. The data have a survey based employer side, and an administrative employee side.

The employer survey is conducted annually through in-place interviews. The sampling unit is an establish-

ment (in German Betrieb), not a firm as a legal entity. Roughly an establishment is a spatial and commercial

unit. A firm might thus have many establishments. The population are all establishments with at least

one employee subject to social security contributions. The sampling method is stratified random sampling,

with larger establishments (in terms of employment) being oversampled. The survey collects information

on annual sales, expenditures on intermediate inputs, employment, investment and many other areas. The

employee side of the data comes from the administrative records of the German Employment Agency. Ev-

ery employee subject to social security contributions must be reported by the employing establishment to

the Agency for the purpose of computing and collecting social security contributions. As such, the estab-

lishment must also report the exact salary paid to the employee. From this administrative data, I know the

beginning and the end date of employment spells of any employee employed by any of the establishments

surveyed by the establishment panel. More information on the data can be found in Jacobebbinghaus (2008).

The main advantage of this data is the accurate observance of all employment flows. This is what allows

me to use gross rather than net flows and what allows me to include the discrete option of simultaneous

hiring and separation (in addition to only hiring and only separation) to the choice set. I outline now how I

clean the data:

1. The establishment survey reports the stock of employees paying social security for the 30th of June.

I compare this reported number to the stock of social security paying employees on the same day

from the administrative records. Ideally both numbers should be the same. I drop establishment-

year observations where the discrepancy is too large9. I also drop establishment-years which report

a share of social security paying employees among all employees greater than 100%. Finally I drop

establishment-years for which this share is 50% or less and Emin ≥ 3.

2. To avoid the additional complication of establishment entry and exit, I use a balanced panel. To have

a balanced panel, I face a trade-off between the wide and the longitudinal dimension of the panel. A
9Let Emax be the greater of the two employment records, and Emin the smaller, and let ∆ ≡ Emax/Emin. Any observation with

∆≥ 2 is dropped. In addition, I drop observations if ∆≥ 1.66 and Emax ≥ 20, and if ∆≥ 1.5 and Emax ≥ 50.
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balanced panel for the entire sample period would leave me with too few establishment observations.

I pick a panel length of four years, and then select the four consecutive years for which I would have

the maximal number of uninterrupted establishment-year observations.

3. I drop establishments which have more than 300 employees in any of the survey years, thus dropping

17% of the remaining establishments. This reduces the representativeness of the sample but also its

size heterogeneity (the maximum number of employees in this sample exceeds 20,000). Presumably

the excluded establishments (a long right tail) might have very different adjustment costs.

4. Even though I observe the wage paid to every individual employee, the total wage bill at time t is

E(wt)lt . Instead of the mean wage I use the median due to some issues of right-censoring (due to caps

to the social security contributions).

5. I define a hire h in period t as an employment spell which starts between the first and last day of the

period, and if the employee has not been employed by the establishment at any point in the previous

366 days10. If the employee has been employed in the establishment in the previous 366 days, I treat

him as a recalled employee and implicitly assume that this is done without incurring hiring costs. The

recalled worker will still be counted in the employment stock.

6. I define a separation f in period t as an employment spell terminating between the last day of period

t− 1 (e.g. the last day of work is the last day of the finished month) and the day before the last day

of t, and if the employee is not “recalled” within the next 366 days, and if the separation is not from

a worker aged 60 or older who does not start a new employment spell subsequently. With this last

condition I hope to capture retirements, which I also assume do not cause any separation costs.

7. I define employment at time t to be the number of social security paying employees on the last day of

period t.

Finally, I use a randomly selected 90% of the establishment for the estimation, leaving the remaining 10%

for out-of-sample predictions. These choices are admittedly somewhat arbitrary. But one has to take a stand

regarding how to treat data inconsistencies, and what to count as a – potentially costly – hire and separation.

I also estimate the model where hires and separations are defined more loosely. I discuss this in the results

section. These steps leave me with 2,816 establishments. For monthly adjustment frequencies I obtain

10I also estimate the model with a different set of hiring and separation classifications. See results section.
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Figure 1: Size distribution

33,408 establishment-month observations (a few establishments have to be dropped if no employee or no

wage is reported for a month). I do not claim that this sample is representative in any way of all German

establishments. But I repeat that estimating “correct” adjustment costs per se is not the purpose of this paper.

Instead I am interested in the effect of different model specifications on adjustment cost estimates.

To give an idea of the sample I plot in figure 1 the size (in terms of employment) distribution of the

establishments. Most establishments are small with only a few employees, but the right tail is very long.

The more interesting information is shown in figure 2, which shows net labor adjustments for monthly and

for annual frequencies. Note that the scales for the two graphs are different. Within a month, about 60% of

all establishment-month observations do not change their employment stock (this masks some cases of hires

and separations of equal quantity), and almost no establishment has net changes of more than 5 employees.

Contrast this with annual adjustments: No adjustment occurs only in little more than 20% of all cases, and

the tails are much fatter. There is nothing surprising about this. But the implications for adjustment cost

estimates are profound.

Finally, to give a first impression on the importance of distinguishing net from gross adjustments, in

table 1 I tabulate the frequencies of each discrete choice for both gross and net changes. We see that even

for monthly frequencies net adjustments “hide” many cases (16%) of simultaneous hiring and separations.
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Figure 2: Net adjustment

Table 1: Net vs. gross adjustments (percentage of observations)
Month Year

Net Gross Net Gross
Only hire (H) 19.2 13.2 44.6 7.7
Only separation (F) 19.8 15.2 33.6 6.8
No hire, no separation (P) 61.0 55.6 21.8 10.2
Both hire and separation (B) n.a. 15.9 n.a. 75.3
Total 100 100 100 100

Importantly, the establishments are not as inactive as one might think observing only net adjustments (55.6%

instead of 61%). For annual adjustment, the difference between gross and net adjustment is dramatic. 75.3%

of establishments do hire and separate within a year.

4.1 Sales

A substantial problem is posed by the fact that the sales variable is taken from the establishment survey

and thus only available as an annual variable. All other relevant variables (hires, separations, wage, and

employment) can be constructed for any day, but I can not know the revenues for any particular day (or any

other time interval other than a calendar year). Since I will estimate my model using monthly, quarterly,

and annual frequencies, one has to decide how the reported annual sales should be divided unto months and

quarters. I follow two approaches. The first is to assume that sales were evenly distributed for the year. The

second is to assume that sales over months and quarters add up to the annual sales number reported by the
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Figure 3: Annual sales divided to months, even and smooth

establishment, that they are never negative, but that changes from period to period are smooth. In particular,

taking for example monthly sales, I construct sales to solve the following problem:

min
{st}T

t=1

J =
T

∑
t=2

(st − st−1)
2 s.t.

12

∑
t=1

= S1

24

∑
t=13

= S2

...

st ≥ 0 ∀t

where S are the reported annual sales. Figure 3 depicts the two sales series for an establishment. Of

course both series are “wrong”. They contain both classical measurement error due to the establishment

probably reporting only a rounded or an approximate sales number, as well as error due to wrongly allocating

the annual sales to months and quarters. Moreover, in both of the series there will almost certainly be

autocorrelation in the measurement error. But recall that in the estimation the individual sales data are not

actually used. Rather, the expected sales conditional on the state and the discrete choice are used, that is

E(St |xt ,dt), so that the errors in the individual sales data should to some extent cancel out. All sales data are
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net sales, that is revenue minus expenditures on intermediate inputs. This measurement error also explains

the reason for the parameter σs in equation 5. Remember that I estimate expected sales E(St |xt). Suppose

the measurement error at is iid, and that measured sales S̃ relate to true sales S as St = at S̃t . Then E(St |xt) =

E(at S̃t |xt). If the covariance between at and S̃t is zero, we would have E(St |xt) =E(at S̃t |xt) =E(at)E(S̃t |xt).

Thus, E(at) is 1/σs in equation 5.

4.2 Capital

The literature on factor adjustment costs has mostly assumed that adjustment of all other factors is costless.

That is, models of labor (capital) adjustment costs have treated capital (labor) as costless to adjust, and the

present paper is no exception. Bloom (2009) is an exception to this simplification and his results suggest

that neglecting capital adjustment costs might seriously bias labor adjustment cost estimates. The reason

for why this bias would occur is very intuitive. If capital and labor are interdependent, either as substitutes

or complements, adjustments of the two factors are likely to be simultaneous. Thus, costs of investing

might easily be attributed to labor adjustment. A model including capital adjustment costs would need

to include the capital stock as a state variable. The establishment survey includes the value of annual

investments (of course the same difficulty in allocating this annual figure to months and quarters as we

saw for sales would apply). Establishments are also asked what percentage of their investments have been

used to replace depreciated capital. Thus, with external information on depreciation rates (for example

industry-wide) an estimate of the capital stock can be constructed. I constructed capital in this way using

depreciation rate information from the German Statistical Office, but the thus constructed variable exhibited

within-establishment variations which I judged to be not credible (an AR(1) regression of capital produced

an R2 of 0.05). Furthermore, using this variable would expand the state space from three to four variables,

thus diminishing cell sizes for the nearest-neighbor estimates outlined above and multiplying estimation

times by at least one order of magnitude. All these considerations have led me to not include capital as a

separate variable. However, as a “quick and dirty” alternative I have estimated the model with eight instead

of four discrete choices, where each original discrete choice is split into with investment and no investment,

and investment incurs a fixed cost. The choice is with investment if in the observed calendar year the

establishment reported investment of at least 1,000 euros and no investment else. By doing this, I hope to

capture some of the contamination that might accrue due to simultaneous capital and labor adjustments. This
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exercise is just intended as an exploration and I make no claim here that this approach solves the problem of

interrelated factor demand.

4.3 Hours

The data distinguish between part- and full-time employment. A more detailed variable on hours worked is

not available, and I do not use the part- vs. full-time information. Intuitively, the true adjustment costs will

be lower than the ones I estimate. We know that establishments can respond to changing circumstances by

changing the average hours worked or by changing the number (and/or composition) of employees. We are

not observing the instances in which average hours are adjusted. Presumably, if we were able to close the

hours adjustment channel (as in my model), we would see more adjustment through hirings and separations

in the data. That is, adjustment through number of employees is less inflexible than it appears in my final

sample, because establishments can respond to changing circumstances through both channels, of which I

observe only one. Without hours adjustment the establishment would be more active in terms of hiring and

separations and estimation would yield lower adjustment costs.

5 Results

Recall that the parameter vector to be estimated is θ̃u = (1/(σsσ) −1/σ − τ+/σ − τ−/σ). It also

includes −τ f /σ if I include a fixed cost of adjustment which is incurred in any period in which hiring or

separations take place, or−τi/σ if I include a fixed cost of investment as described in the capital section. The

main results for monthly adjustment frequencies are presented in table 2. The first two columns are results

for models where hiring and separation costs are incurred on NET changes. That is, if an establishment

had more hirings than separations I considered its choice to be H, in the reverse case F , and if the two

variables were equal the choice is P. The choice B – simultaneous hiring and separations – does not exist

in this model. By necessity this would be the model when employment is available only as a stock variable,

or if labor is treated as homogeneous, in which case the choice B would be economically non-sensible if

adjustment is costly. The first column divides annual sales evenly across the months of the year, and the

second shows results were sales have been smoothed according to the procedure described in section 4.1.

Qualitatively the results are in line with expectations. The sale parameter and the scale parameter of the
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Table 2: Adjustment cost estimates (in 1,000 euros)
Discrete choices Three Three Four Four Four Eight
Sales Evenly divided Smoothed Evenly divided Smoothed Smoothed Smoothed
1/(σsσ) 0.0018 0.0015 0.0022 0.0021 0.0008 0.0023
−1/σ -0.0045 -0.0042 -0.0057 -0.0059 -0.0041 -0.0065
−τ+/σ -0.36 -0.34 -0.23 -0.21 0.22 -0.24
−τ−/σ -0.49 -0.48 -0.24 -0.23 0.33 -0.25
−τ f /σ -1.96
−τi/σ -14.18
Hiring cost (τ+) 80.85 79.41 40.84 35.92 -53.79 36.14
Separation cost (τ+) 108.73 113.19 41.49 38.88 -80.63 38.03
Fixed cost (τ+) 481.54
Investment cost (τ+) 2164.39

error term are positive, and both hiring and separations are costly. Where the model fails is in delivering

adjustment costs in a realistic range. Even though I don’t have any priors about these costs11, hiring costs of

80,000 Euros per hire and separation costs of 110,000 Euros per separation seem too high12. An interesting

result is that the results are insensitive to which sales measure I use. This is because individual measurement

errors due to dividing annual sales largely cancel each other out – irrespective of how the division is carried

out – when creating expected sales conditional on the state and the discrete choice. Columns three and

four add the fourth option B to the model. This decreases the frequency of P choices in the data, since

in the 3-choice model some cases in which both hirings and separations occur would have been classified

as P. In line with the intuition given in the identification section, less inactivity should increase the cost

parameters, and this is indeed what we observe. The cost parameters in the 4-choice model are 50 to 65

percent smaller than in the 3-choice model. Moreover, hiring and separations seem equally costly, while in

the 3-choice model separations were 30% more costly than hirings. This is a crucial result. It demonstrates

that the distinction between net and gross adjustments is very important for the estimated costs. Column 5

adds a fixed – and symmetric – adjustment cost to the model. Unfortunately this model does not work well.

The fixed cost of adjustment is extremely high, and every additional hire or separation actually reduces this

cost13. Finally, the sixth column shows results from a model where the investment choice has been added

to the choice set, creating eight discrete choices as described in section 4.2. While investment clearly is

an important cost factor, it is surprising that the remaining parameters are only negligibly affected. The

adjustment costs are virtually equal to the result of column 4. As mentioned earlier, this last specification

11The only estimated hiring costs for German establishments are from cite and lie between 4,000 and 6,000 Euros.
12Median annual earnings in the data are around 19,000 Euros.
13All models with fixed adjustment costs have exhibited this result, so I do not pursue this specification any further.
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Table 3: Adjustment costs – Different choice frequencies (in 1,000 euros)
Frequency Monthly Monthly Quarterly Quarterly Annually
Sales Evenly divided Smoothed Evenly divided Smoothed not applicable
1/(σsσ) 0.0022 0.0021 0.0003 0.0003 0.0018
−1/σ -0.0057 -0.0059 -0.0002 -0.0003 0.0031
−τ+/σ -0.23 -0.21 0.06 0.06 -0.41
−τ−/σ -0.24 -0.23 0.10 0.11 -0.54
Hiring cost (τ+) 40.84 35.92 -300.73 -184.14 -135.39
Separation cost (τ+) 41.49 38.88 -496.29 -333.92 -175.55

Observations 33,408 11,152 2,816

is misspecified since capital is not included as a state variable, but the result suggests that investment is

orthogonal to the remaining variables of this model.

Table 3 presents results for different assumptions on the frequency of hiring and separation decisions.

All models are estimated with four discrete choices. The first two columns are for monthly data and replicate

columns 3 and 4 from table 2. The next two columns show results from the model where decisions are made

at the beginning of each quarter, and the last column shows results from annual adjustments. Since sales are

reported in annual frequency, this variable can be taken as it is reported.

The outstanding result here is again how sensitive the parameter and cost estimates are to the choice of

the assumed adjustment frequency. Comparing monthly to quarterly frequency we can rely on the intuition

outlined in section 3.1: Less inactivity is observed in quarterly data. Consequently, the parameters −τ+/σ

and−τ−/σ are greater than in the monthly model, to the extent that hiring and separations are not costly any

more. At quarterly frequency, the data clearly rejects the adjustment cost model. Why this relationship does

not hold up for annual adjustments is puzzling, but the reader should bear in mind that the data is reduced

to one twelfth of the observations (2,816), considerably increasing the noise in the data.

Consider next in table 4 how results respond to changes in the model assumptions or sample selection.

All results are for monthly adjustment freqencies. Since the two sales variables yield very similar results,

I only report results for the evenly divided sales variable. I first compare the benchmark model (table 2,

column 3) to a model with lower discount factors, one with an annual discount factor β of 0.5, and one

with β = 0, making this a static model, e.g. the firm is not forward looking. Decreasing the discount factor

reduces the magnitudes of the sales and wage variables, since the expected future stream is discounted. In

a static model, only the differences between alternatives in the current period matter. In a forward-looking
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Table 4: Adjustment costs – Alternative specifications (in 1,000 euros)
Specification Benchmark β = 0.5 β = 0.0 Alternative adjustment Small firms Cost heterogeneity
1/(σsσ) 0.0022 0.0023 0.0017 0.0019 0.0033 0.0020
−1/σ -0.0057 -0.0082 -0.0832 -0.0048 -0.0128 -0.0064
−τ+/σ -0.23 -0.20 -0.05 -0.21 -0.38 -0.56
−τ−/σ -0.24 -0.23 -0.19 -0.15 -0.79 0.22
− τ+∗log(w̄)

σ
-0.51

− τ−∗log(w̄)
σ

0.18
Hiring cost (τ+) 40.84 24.93 0.63 42.62 29.83
Separation cost (τ+) 41.49 27.47 2.28 31.24 61.88

model, it is the differences in the current and the expected future flows associated with the choices. This

“inflation” of the variables does not occur with the number of hires and separations. We see the outcome of

this in the second column: The magnitude of the coefficient −1/σ increases because the magnitude of the

wage difference between alternatives decreases. Therefore the adjustment cost estimates are reduced. The

same argument applies for the static model in column 3. The wage coefficient increases in magnitude. But

we also see that the hiring and separation parameters increase in magnitude. An informal look at the data

reveals that contemporaneous wages and adjustments are much more correlated than their present discounted

values. In any case, hiring and separation costs are clearly much lower when the discount factor is reduced.

Next, I estimated the model defining a hire to be the beginning of an employment spell IF the employee

has not worked for the same employer in the previous 185 days, and a separation the end of an employment

spell IF the employee will not work for the same employer within the next 185 days. Importantly, compared

to the benchmark model, retirements are now also counted as separations. As this clearly creates more

separations, we should observe lower separation estimates, and this is indeed what we observe. The hiring

cost parameter is hardly affected. Next, I constrain my sample of firms to those with at most 100 employees

(compared to 300 in the benchmark model). This gives an indication about the effect of aggregation in the

firm size. Smaller firms will adjust less frequently, and the cost parameters should be greater in magnitude.

This is what we observe in column 5. Finally, I allowed the adjustment costs to be dependent on the average

log wage paid in the establishment by including the interaction terms E(ht |xt ,dt ∈ {H,B}) ∗ log(w̄) and

E( ft |xt ,dt ∈ {F,B})∗ log(w̄) into the z(xt ,dt) vector. The results in column 6 suggest that if average wages

in the establishment are higher, adjustment costs are lower, e.g. a 10% increase in wages increases hiring

costs by 0.22*0.1 = 0.022 thousand (220) Euros, and increases separation costs by 180 Euros. This is likely

to be a consequence of greater establishments paying higher wages.
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6 Performance

I now turn to an issue which in my opinion in the framework of structural models has remained somewhat

unsatisfactory. How can we evaluate/validate a structural model? And against which benchmark? An ideal

setting would be to estimate a structural model for a certain time period, and use the estimated model to

predict outcomes for another time period in which one of the structural parameters is changed (I will call

this “treatment” in line with the treatment effect and evaluation literature). This is the route followed by

Aguirregabiria and Alonso-Borrego (2014). That would be informative about the usefulness of the model.

A well-designed, reduced form policy evaluation would give us a credible treatment estimate. Since the

unique purpose of the latter is to quantify the treatment effect, the structural modeller could not hope to beat

the reduced form estimate with the predictions of the structural model. Comparing structural models with

reduced-form policy evaluations in this way seems misguided, since the purpose of structural models is not

primarily, or even if it is, not uniquely, to evaluate a particular treatment. Be that as it may, the present paper

does not have a structural change to evaluate.

A sensible evaluation would be based on comparing the goodness of fit (e.g. the Pseudo R-squared

based on the likelihood function) and the fraction of correctly predicted outcomes between the structural

model and a naive reduced form model. This can be done for the estimation sample, or for out-of-sample

observations. What should the naive model be? If I had estimated the structural model based on three

outcomes (that is net hiring, net inactivity, and net separations), my model should at least outperform a

simple ordinal choice model such as ordinal logit with sales, average wages, and the employment stock

(the same state variables as in the structural model) as explanatory variables. But one of the strengths of

the present paper is precisely having the fourth choice of both hiring and separations simultaneously, and

the four choices do not have a natural ordering. Thus, the best comparison I can make is with respect to

a multinomial logit model consisting of the aforementioned four choices, and using the same z(xt ,dt) as

in the full dynamic model to characterise the choices, but disregarding the dynamic aspect. This amounts

to using z instead of z̃ and ẽ in the likelihood function. The test is therefore about whether modelling this

problem as a dynamic discrete choice model improves on treating it as static. I present two performance

measures: the pseudo R2 defined as 1−LLu/LLr, where LLu is the log-likelihood of the model and LLr is

the log-likelihood of assigning a probability of 25% to each choice; and the fraction of correctly predicted

outcomes, where a correct prediction is defined as the observed choice having a higher probability of being
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Table 5: Out of sample performance
Pseudo R2 Fraction predicted

Non-parametric 0.260 0.63
Dynamic Model 0.088 0.40
Static Model (β = 0) 0.079 0.42

chosen than all alternatives. These two measures are calculated for 1) the non-parametric, initial choice

probabilities described in the estimation section, 2) the dynamic model, 3) the static model. All measures

are calculated for a randomly selected 10% of the original sample which were excluded from the estimation

sample.

Table 5 shows the performance measures for these three models. As expected, the non-parametric

estimates outperform the parametric predictions. The parametric models are based on four parameters, the

non-parametric model separately calculates choice probabilities for 8,680 points in the state space. It serves

here as an ideal benchmark. The interesting comparison is between the dynamic and the static model. No

significant difference exists between the performances of the two models. The pseudo R2 of the dynamic

model is slightly higher, but the fraction correctly predicted even slightly lower than in the static model.

Accounting for the dynamic aspects of an establishment adds nothing to the model performance in terms

of out-of-sample predictions despite having very different estimated adjustment costs – a phenomenon that

relates to the poor identification of the discount parameter in these types of models (see Abbring and Daljord

(2016) for a treatment of this). The performances are similar because both models fit the data using the same

choice and the same state variables. But the estimates are very different because the differences between

the values of the different choices are much greater in the dynamic model than in the static model, since the

former is composed of the entire expected future stream of profits associated with a choice. This opens up an

interesting question of model selection regarding the dynamic aspects of dynamic discrete choice models.

7 Discussion and conclusion

I have analysed labor adjustment costs using a structural dynamic discrete choice model of establishments’

hiring and separation decisions. I did this using linked employer-employee data from Germany which

allowed me to observe all the in- and out-flows of employees in an establishment, and thus to distinguish

net from gross flows. My objective was to analyse which model specifications – in terms of temporal
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aggregation and net vs. gross adjustments – yield cost estimates in accordance with economic intuition.

Using monthly choice frequencies, the signs of the four parameters are in line with economic intuition

and with model assumptions. Hirings and separations are costly, the scale parameter of the extreme value

distribution is positive, sales are profitable, and paying wages is unprofitable (ceteris paribus). One of

the main objectives of the paper was to show that the timing assumptions, that is the assumed frequency

of revising hirings and separations, should matter for the estimated costs, and I have demonstrated that

they indeed matter a great deal. The change in the parameters in moving from monthly to less frequent

choice frequencies changed the cost parameters in line with my predictions. Indeed, the estimation results

clearly rejected quarterly and annual adjustment frequencies. Another main objective was to highlight the

importance between gross and net changes. Again, in line with predictions, I showed that adding the choice

of simultaneous hiring and separations result in smaller adjustment costs – the reduction is more than 50%. I

also investigated a number of other specifications and sample restrictions and found that adjustment costs are

estimated to be higher for smaller establishments, and that less restrictive definitions of separations decrease

the cost parameter. All these results work through the channel of how much activity is observed. Shorter

choice frequencies, not classifying retirements as separations, using smaller establishments, and using only

net adjustments all result in higher adjustment costs. This is intuitive. Economic conditions change all the

time. If firms do not respond frequently by adjusting employment it must be costly to do so. In that sense

the present analysis has been very instructive.

However, the dynamic model has not outperformed a static one but has resulted in very different ad-

justment cost quantities (e.g. a separation costs 2,000 Euros in the static, and close to 40,000 Euros in the

dynamic model). Given the similar performances of the static and dynamic model and the very different cost

estimates, an open question is how one could discriminate between the two models to reject one in favour

of the other.
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Appendix - Derivation of W (x)

Recall the choice-specific value function

v(xt ,dt) = u(xt ,dt)+βExt+1,εt+1 (V (xt+1,εt+1)|xt ,dt)

I can rewrite this as

v(xt ,dt) = u(xt ,dt)+
∞

∑
i=1

β
iExt+i,εt+i

(
u(xt+i,d∗t+i)+ ε

d∗t+i |xt ,dt

)
(7)

I can separately characterize the parts containing u and ε. For u:

u(xt ,dt)+
∞

∑
i=1

β
iExt+i,εt+i

(
u(xt+i,d∗t+i)|xt ,dt

)

= u(xt ,dt)+
∞

∑
i=1

β
iExt+i,|dt ,xt

[
∑

dt+i∈D
P(d∗t+i = dt+i|xt+i)u(xt+i,dt+i)

]

= z(xt ,dt)θ
′
u +

∞

∑
i=1

β
iExt+i,|dt ,xt

[
∑

dt+i∈D
P(d∗t+i = dt+i|xt+i)z(xt+i,dt+i)θ

′
u

]

=

(
z(xt ,dt)+

∞

∑
i=1

β
iExt+i,|dt ,xt

[
∑

dt+i∈D
P(d∗t+i = dt+i|xt+i)z(xt+i,dt+i)

])
θ
′
u (8)

For ε:

∞

∑
i=1

β
iExt+i,εt+i

(
ε

d∗t+i |xt ,dt

)
∞

∑
i=1

β
iExt+i|xt ,dt

[
∑

dt+i∈D
P(d∗t+i = dt+i|xt+i)E

(
ε

dt+i |xt+i,d∗t+i = dt+i

)]
(9)

The expression E
(
εdt+i |xt+i,d∗t+i = dt+i

)
is the expected value of the shock to choice dt+i given that this

choice dominated all alternatives. The important insight of Hotz and Miller (1993) is to show that this can

be expressed as a function of the choice probabilities. In the case of the type I extreme value distribution,
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this expectation is given by14

µ+σ(γ− lnP(dt |xt))≡ e(xt ,dt)θ
′
e

with e(xt ,dt) = (1 γ− lnP(dt |xt)), θe = (µ σ), and γ is Euler’s constant. The parameters of the distri-

bution (µ and σ) are usually not identified and set to 0 and 1 respectively. Replacing this in equation 9 I

get
∞

∑
i=1

β
iExt+i|xt ,dt

[
∑

dt+i∈D
P(d∗t+i = dt+i|xt+i)e(xt ,dt)θ

′
e

]
×

(
∞

∑
i=1

β
iExt+i|xt ,dt

[
∑

dt+i∈D
P(d∗t+i = dt+i|xt+i)e(xt ,dt)

])
θ
′
e (10)

Now, having derived expressions 8 and 10, I rewrite 7 as

v(xt ,dt) = z̃(xt ,dt)θ
′
u + ẽ(xt ,dt)θ

′
e (11)

where

z̃(xt ,dt) = z(xt ,dt)+
∞

∑
i=1

β
iExt+i,|xt ,dt

[
∑

dt+i∈D
P(d∗t+i = dt+i|xt+i)z(xt+i,dt+i)

]
(12)

and

ẽ(xt ,dt) =
∞

∑
i=1

β
iExt+i|xt ,dt

[
∑

dt+i∈D
P(d∗t+i = dt+i|xt+i)e(xt ,dt)

]
(13)

If x is discrete with distribution function f (xt+1|xt ,dt), following Aguirregabiria and Mira (2010),

z̃(xt ,dt) and ẽ(xt ,dt) can be shown to have the following recursive expressions:15

z̃(xt ,dt) = z(xt ,dt)+β ∑
xt+1

f (xt+1|xt ,dt)

(
∑

dt+1∈D
P(dt+1|xt+1)z̃(xt+1,dt+1)

)

ẽ(xt ,dt) = β ∑
xt+1

f (xt+1|xt ,dt)

(
∑

dt+1∈D
P(dt+1|xt+1)(e(xt+1,dt+1)+ ẽ(xt+1,dt+1))

)
14I am greatly thankful to Aureo de Paula for providing me with a reference with the proof of this.
15The derivation is straightforward and in the next section of the appendix.
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Now define

Wz(x) = ∑
d∈D

P(d|x)z̃(x,d)

We(x) = ∑
d∈D

P(d|x)(e(x,d)+ ẽ(x,d))

so that

z̃(x,d) = z(x,d)+β∑
x′

f (x′|x,d)Wz(x′)

ẽ(x,d) = β∑
x′

f (x′|x,d)We(x′)

where x′ denotes the state vector in the following period. Writing W (x)≡ [Wz(x)We(x)], W (x)∗ is the unique

solution to the recursive equation

W (x) = ∑
d∈D

P(d|x)×
(
[z(x,d),e(x,d)]+βF(x′|x,d)W (x′)

)
(14)

Appendix - Derivation of z̃(xt ,dt) and ẽ(xt ,dt)

Derivation of z̃(xt ,dt):

z̃(xt ,dt) =z(xt ,dt)+β ∑
xt+1

F(xt+1|xt ,dt)

(
∑

dt+1∈D
P(dt+1|xt+1)z(xt+1,dt+1)

)
+

β
2
∑
xt+1

F(xt+1|xt ,dt)

(
∑

dt+1∈D
P(dt+1|xt+1)

[
∑
xt+2

F(xt+2|xt+1,dt+1)

{
∑

dt+2∈D
P(dt+2|xt+2)z(xt+2,dt+2)

}])

+ · · ·

=z(xt ,dt)+β ∑
xt+1

F(xt+1|xt ,dt)

(
∑

dt+1∈D
P(dt+1|xt+1)[

z(xt+1,dt+1)+
∞

∑
k=1

β
kExt+1+k|xt+1,dt+1

{
∑

dt+1+k∈D
P(dt+1+k|xt+1+k)z(xt+1+k,dt+1+k)

}])

=z(xt ,dt)+β ∑
xt+1

F(xt+1|xt ,dt)

(
∑

dt+1∈D
P(dt+1|xt+1)z̃(xt+1,dt+1)

)

32



where the last equation follows from

z̃(xt ,dt) = z(xt ,dt)+
∞

∑
j=1

β
jExt+ j|xt ,dt

(
∑

dt+ j∈D
P(dt+ j|xt+ j)z(xt+ j,dt+ j)

)

Derivation of ẽ(xt ,dt):

ẽ(xt ,dt) =β ∑
xt+1

F(xt+1|xt ,dt)

(
∑

dt+1∈D
P(dt+1|xt+1)e(xt+1,dt+1)

)
+

β
2
∑
xt+1

F(xt+1|xt ,dt)

(
∑

dt+1∈D
P(dt+1|xt+1)

[
∑
xt+2

F(xt+2|xt+1,dt+1)

{
∑

dt+2∈D
P(dt+2|xt+2)e(xt+2,dt+2)

}])

+ · · ·

=β ∑
xt+1

F(xt+1|xt ,dt)

(
∑

dt+1∈D
P(dt+1|xt+1)[

e(xt+1,dt+1)+
∞

∑
k=1

β
kExt+1+k|xt+1,dt+1

{
∑

dt+1+k∈D
P(dt+1+k|xt+1+k)e(xt+1+k,dt+1+k)

}])

=β ∑
xt+1

F(xt+1|xt ,dt)

(
∑

dt+1∈D
P(dt+1|xt+1){e(xt+1,dt+1)+ ẽ(xt+1,dt+1)}

)

where the last equation follows from

ẽ(xt ,dt) =
∞

∑
j=1

β
jExt+ j|xt ,dt

(
∑

dt+ j∈D
P(dt+ j|xt+ j)e(xt+ j,dt+ j)

)
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