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Abstract

We construct and evaluate LM and Neyman’s C(α) tests based on
bivariate Edgeworth expansions for the consistency of the Heckman’s
two-step estimator in selection models, that is, for the marginal nor-
mality and linearity of the conditional expectation of the error terms.
The proposed tests are robust to local misspecification in nuisance
distributional parameters. Monte Carlo results show that instead of
testing bivariate normality, testing marginal normality and linearity
of the conditional expectations separately have a better size perfor-
mance. Moreover, the robust variants of the tests have better size
and similar power to non-robust tests, which determines that these
tests can be successfully applied to detect specific departures from the
null model of bivariate normality. We apply the tests procedures to
women’s labor supply data.
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1 Introduction

Selection models are widely used in applied econometrics. Starting with

the pioneering work of Heckman (1974, 1976, 1979), these models account

for the interaction of the error terms in the outcome and selection equations.

Two different misspecification problems are common in this setting: incor-

rect functional form (e.g. omitted variables or nonlinearity) and erroneous

stochastic structure (distributional misspecification of the random variables).

Through this paper we study the second type of misspecification for the most

common estimation method, the Heckman’s two-step estimator.

The assumption of bivariate normality provides efficient and easy-to-

compute estimation procedures. Maximum likelihood estimates (MLE) and

two-step procedures are available in all statistical packages. While the former

relies on the complete specification of the error terms’ distribution, the latter

is more robust, in the sense that it requires less distributional assumptions.

In general, these methods are not robust to misspecification of the data gen-

erating process (DGP). However, in practice, the normality assumption is

used in a very large number of applications. A literature path concentrated

on testing bivariate normality (Bera and John, 1983, Lee, 1982, 1984, Bera

et al., 1984). However consistent estimates of the parameters of interest only

requires normality of the error term in the selection equation, as well as

linearity of the conditional expectation of the outcome equation error term

conditional on the selection equation one. In this environment, bivariate nor-

mality is a much stronger assumption, which is in general rejected. Our goal

is to devise a testing procedure that allows for separately testing for linearity

of the conditional expectation and normality of marginal distributions, while

allowing some local flexibility on the bivariate distribution of the random

variables.

Misspecification tests using bivariate Edgeworth expansions (BEE) were

first proposed by Lee (1982, 1984), which is the approach followed here.

In BEE, the DGP can be approximated using a basis distribution function

(bivariate normal) and information about the sample own and cross skew-
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ness and kurtosis is added to generate the set of prior admissible family of

distribution functions. Our interest will be centered in a certain subset of

parameters: those related to marginal normality and conditional linearity of

the expectation terms.

Gabler et al. (1993) and van der Klaauw and Koning (1993) proposed a

similar methodology for testing normality in sample selection models using

flexible semi-nonparametric (SNP) specifications introduced by Gallant and

Nychka (1987). Our procedure has two main advantages over SNP. First, it

allows distinguishing among different sources of distributional misspecifica-

tion, i.e. non-normality of any of the error terms or conditional non-linearity.

SNP procedures reject bivariate normality without any constructive indica-

tion on what to do next. Second, in SNP, the distributional parameters (i.e.

ρ and σ in the model below) cannot be, in general, identified if there is any

departure from the null DGP. A major limitation of BEE is that it requires

imposing restrictions on the parameters’ estimates in order to satisfy the non-

negativity of the density function (see for instance Jondeau and Rockinger,

1994). However, the Lagrange Multiplier (LM) procedures we follow do not

require estimation of additional parameters as in the van der Klaauw and

Koning (1993) likelihood ratio tests.

Unfortunately without considering the remaining parameters of the BEE

(those not related to marginal normality and conditional linearity), LM tests

would have incorrect asymptotic size. Therefore, the LM statistics are ad-

justed in a way such that the resulted statistic is orthogonal to the score

functions of the unconsidered BEE parameters. This approach was first de-

veloped by Bera and Yoon (1993) to construct robust LM statistics. These

tests are locally size-resistant, that is, they have correct asymptotic size and

some optimal properties in the presence of local misspecification, although

they may have less power if the alternative hypothesis is not misspecified. We

also compute Neyman’s C(α) test statistics, which are optimal for any
√

n-

consistent estimator (e.g. Heckman’s two-step estimator in selection models),

and we introduce a locally size-robust variant of this test to accommodate
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to the same local misspecification type.

The paper is organized as follows. Section 2 presents a typical selection

model, as well as the role of assuming bivariate normality in the estimation

procedures. In section 3, bivariate Edgeworth expansions are analyzed, and

the derivation of the test statistics are left for section 4. Section 5 contains

details on the implementation and computation of the statistics, while section

6 presents Monte Carlo results. Section 7 applies the test procedures to Mroz

(1987) women’s labor supply dataset. Finally conclusions and suggestions for

future research on this topic are in section 8.

2 Selection models

Consider the following standard selection model. Let i index the observa-

tions in a random sample sample with i = 1, 2, ...n. Assume that our interest

is given by the following outcome equation:

(1) yi = xiβ + ui

where y is an outcome of interest, x is a set of covariates, u is an error term

and β is the main parameter of interest.

A selection mechanism is behind (1), and we only observe y if a certain

event (indexed by the binary random variable c) occurs (i.e. c = 1). Assume

the following selection process:

(2) ci =

{
1 if ziγ + ei > 0

0 if ziγ + ei ≤ 0

}
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where z is another set of covariates, not necessarily disjoint from x, and e is

another error term. The inconsistency of the standard least squares estimates

of equation (1) is in general the result of the non-independence of u and e,

that is, the censoring mechanism depends on the bivariate distribution of

these random variables. Let G(u, e) denote the bivariate distribution function

of the error terms, with corresponding density function g(u, e). Bivariate

normality of g(.) results in a standard estimation method, which could be

based in MLE or two-step estimation procedures. In this case the conditional

mean function becomes

(3) E(y|c = 1) = xβ + ρσλ(−zγ)

where λ(e) = φ(e)
1−Φ(e)

is the inverse Mill’s ratio. While MLE estimators are

sensitive to any kind of distributional misspecification, the two-step proce-

dure (known as the Heckman’s two-step method) is robust to distributional

misspecification if and only if the two following conditions are met:

Condition 1: e has marginal normal distribution.

Condition 2: E(u|e) = ρe, i.e. the conditional expectation is linear.

The first condition specifies the form of the selection mechanism, while the

second specifies how the selection mechanism affects the outcome equation

though the conditional expectation of the error terms.

Several semi-parametric estimators have been proposed for these models
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if those conditions are not satisfied. If condition 1 is violated, there are

alternative methods for estimating γ semi-parametrically or imposing other

marginal distributions (Heckman and Navarro-Lozano, 2003). If condition

2 is violated, the outcome equation is estimated by introducing additional

terms (i.e. polynomials in the inverse Mills ratio, see Buchinsky, 1998) or

by weighted least squares (see Powell and Walker, 1990). Semi-parametric

procedures follow Gallant and Nychka (1987) approach, where Hermite series

expansions of the bivariate normal distribution allows for certain flexibility

(van der Klaauw and Koning, 1993). However, semi-parametric methods are

less efficient and more computationally intensive than the Heckman’s two-

step method. Furthermore, those models are not necessary robust to severe

non-normality. Therefore, testing conditions 1 and 2 is important to avoid

the potentially innecessary cost of a semi-parametric estimation and to detect

potential inconsistencies.

3 Bivariate Edgeworth expansions

Under some general conditions (see Chambers, 1967), the joint density

g(u, e) can be expanded as a series of derivatives of the standard bivariate

normal density function φ(u, e):

(4) g(u, e) = φ(u, e) +
∞∑

r+s≥3

(−1)r+sArs
1

r!s!

∂r+sφ(u, e)

∂ur∂es

where Ar,s are functions of the cumulants (or semi-invariants) of u and e (see

Mardia, 1970, Lee, 1982, 1984). This formulation is known as the bivariate

Edgeworth series expansion1, which is a generalization of the univariate case,

1As it is stated in Mardia (1970, p.12): “The work was initiated as early as 1896
by Edgeworth and he published further papers in 1905 and 1917. Van der Stok (1908),
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the Gram-Charlier and Edgeworth expansions. It follows that the distribu-

tion function can also be expressed in this way as an expansion of bivariate

distribution functions.

(5) G(u, e) = Φ(u, e) +
∞∑

r+s≥3

(−1)r+sArs
1

r!s!

∂r+s−2φ(u, e)

∂ur−1∂es−1

Moreover we have:

(6)
∂r+sφ(u, e)

∂ur∂es
= (−1)r+sHrs(u, e)φ(u, e)

where Hrs are the bivariate Hermite polynomials. The formal formulation of

these polynomials can be found in Mardia (1970), Johnson and Kotz (1972,

ch.34) and Ord (1972, Appendix A) and they are shown in the Appendix 1.

Following Lee (1982, 1984) we can restrict our attention to terms up to

r + s = 4 (i.e. assuming that the terms r + s > 4 are zero), which has

been called a Type AA surface in Mardia (1970)2. For the type AA surface

Ars = κrs, where κrs denotes the cumulants of order (r, s).

A nice feature of BEE is that marginal distributions are univariate Edge-

worth expansions, that is:

(7) g(e) =

[
1 +

∞∑
s=3

A0s

s!
H0s(e)

]
φ(e)

Charlier (1914), Jorgensen (1916). Wicksell (1917, a,b), K.Pearson (1925), an others
contributed to the field in its developing stages. Pretorious (1930) gives an account of
these development. Kendall (1949) extends this to bivariate distributions.”

2Expanding the number of terms considered in the BEE do not affect the results pre-
sented below. We have some preliminar evidence on this matter.
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where H0s denotes the univariate Hermite polynomial of order s and φ is a

standard univariate normal distribution. Therefore a test for the marginal

normality of e can be based on A0s = 0, s = 3, 4, ..., or in the Type AA

surface κ03 = κ04 = 0.

Moreover, the conditional expectation E(u|e) is:

(8) E(u|e) =

∑∞
s=3

(
ρe + A0s

s!
H0,s+1(e) + A1,s−1

(s−1)!
H0,s−1(e)

)
1 +

∑∞
s=3

A0s

s!
H0,s(e)

Under marginal normality of e,

(9) E(u|e) = ρe +
∞∑

s=2

(
A1,s

s!
H0,s(e)

)

Therefore a tests for the conditional linearity of the expectation can be

based on A1s = 0, s = 2, 3, ..., or in the Type AA surface κ12 = κ13 = 0.

It is worth to notice that κrs provide measures of skewness and kurtosis

of the DGP. In particular the parameters that satisfy r + s = 3 determine

skewness, and the ones such that r + s = 4 determine kurtosis, that is,

Skewness Kurtosis

κ30 = µ30 κ40 = µ40 − 3

κ21 = µ21 κ40 = µ31 − 3ρ

κ22 = µ22 − 2ρ2 − 1

κ12 = µ12 κ13 = µ13 − 3ρ

κ03 = µ03 κ04 = µ04 − 3

(Here we use the standard notation µij = E(uiej), the raw moments of a

standard bivariate normal distribution with correlation coefficient ρ.)

Two major drawbacks of the BEE need to be taken into account. First,

truncation of these series after a finite number of terms may lend to negative
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values of the density function and second, some restrictions on the multi-

variate series expansion are needed (see Chambers, 1967). A feature of these

expansions is that tail behavior is restricted. Fat tails and heavy skewness

translate into multimodal densities. Whether this feature is a not desirable

one has to be analyzed given the empirical problem at hand. In time series

studies, fat tails are a distinctive feature that cannot be avoided. However,

in labor and other empirical economics studies, outliers may be result of the

existence of “different” subpopulations, each with a dissimilar probability

distribution.

4 Different test procedures: standard and ro-

bust LM and Neyman’s C(α) tests

Lee (1984) derives a LM test for the bivariate normality of u and e based

on H0 : κ = 0, where κ = {κ30, κ21, κ12, κ03, κ40, κ31, κ22, κ13, κ04}. Note

that three different subsets of interest naturally emerge: testing the marginal

normality of e (condition 1, HC1
0 : κ03 = κ04 = 0), testing conditional linearity

(condition 2, HC1
0 : κ12 = κ13 = 0) or both (conditions 1 and 2, HC1C2

0 : κ03 =

κ04 = κ12 = κ13 = 0). Let p denote the number of cumulants that are tested

in each case.

For notational convenience define:

η = {β, γ, σ, ρ}

κ0 = {cumulants of interest in either H0, H
C1
0 , HC2

0 or HC1C2
0 }

κ1 = {all κ except those in κ0}

Note that those hypotheses considered above do not completely specify
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the joint distribution of the error terms. Moreover, maximum likelihood

estimation of all the parameters involved in the model (i.e. η and κ) is a very

difficult task (see for instance Jondeau and Rockinger, 1994). Our strategy

consists on testing either HC1
0 , HC2

0 or HC1C2
0 , assuming that the DGP is

bivariate normal (i.e. H0), provided that for this case it is straightforward to

estimate η using MLE or the Heckman’s two-step estimator. Moreover, these

estimators are available in any econometric package, while semi-parametric

estimators are not. In sum, our strategy is to use LM-type tests which only

require estimation under the joint null hypothesis, and to correct for the

effect of potential local departures in κ1.

Consider a test procedure for either HC1
0 , HC2

0 or HC1C2
0 and note that the

remaining cumulants (i.e. in κ1) that specify the distribution among the Type

AA family are not our main interest. In other words, κ1 should be considered

as a nuisance parameter. Different tests can be obtained depending on: (i)

what are we willing to assume about κ1, and (ii) how η and κ1 (if necessary)

are estimated.

Let L(η, κ0, κ1) denote the general log-likelihood function for the statis-

tical model of interest. Denote L0(η) as the null model with alternatives

L1(η, κ0), L2(η, κ1) or the full log-likelihood L(η, κ0, κ1). Following the Bera

and Yoon (1993) notation assume that L0(η) = L1(η, κ0 = 0) = L2(η, κ1 =

0); L(η, κ0, κ1 = 0) = L1(η, κ0) and L(η, κ0 = 0, κ1) = L2(η, κ1). Let us

also denote θ ≡ (η, κ0, κ1) and θ̂ = (η̂, 0, 0), where η is the MLE estimator

of η under bivariate normality. In that case, the LM test is the preferred

approach and it can be constructed as:

(10) LMκ0 =
1

n
dκ0(θ̂)

>Jκ0·η(θ̂)
−1dκ0(θ̂)

where for future reference
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da(θ) ≡
∂L(θ)

∂a
=

n∑
i=1

∂Li(θ)

∂a
for a = η, κ0, κ1

J(θ) = E

[
1

n

∂L(θ)

∂θ

∂L(θ)

∂θ>

]
= E

[
1

n

n∑
i=1

∂Li(θ)

∂θ

∂Li(θ)

∂θ>

]
=

 Jη Jηκ0 Jηκ1

Jκ0η Jκ0 Jκ0κ1

Jκ1η Jκ1κ0 Jκ1



Ja·b(θ) = Ja(θ)− Jab(θ)Jb(θ)
−1Jba(θ)

Under the corresponding null hypothesis LMκ0 ⇒ χ2
p(0), where “⇒”

denotes asymptotic convergence in distribution. Under a sequence of local

alternatives of the form H1 : κ0 = ξ0/
√

n, LMκ0 ⇒ χ2
p(λ0) where λ0 =

ξ>0 Jκ0·ηξ0 denotes the non-centrality parameter of the chi-squared distribution

with p degrees of freedom. Now suppose that the true log-likelihood function

is L2(η, κ1), meaning that the alternative L1(η, κ0) is now misspecified. In

that case the sequence of local alternatives becomes H1 : κ1 = ξ1/
√

n and

LMκ0 ⇒ χ2
p(λ1) where λ1 = ξ>1 Jκ1κ0·ηJ

−1
κ0·ηJκ0κ1·ηξ1. Note that an effect of

this misspecification is that, in general, the size of the test is not correct,

even asymptotically. Therefore, not considering the presence of the nuisance

parameters would create a problem of undertesting. It is worth to mention

that this problem may not occur if ξ1(6= 0) belongs to the null space of Jκ0κ1·η,

or Jκ0κ1·η itself is zero3.

3This condition may be exploited in certain occasions to show that standard LM tests
can be used without having to control for misspecification in some parameters. In our case,
some covariance terms among the Hermite polynomials are zero under the assumption of
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If we restrict our attention to local misspecification of the type presented

above, a “robust” LM tests can be constructed as the Bera and Yoon (1993)

adjusted LM tests or Jaggia and Trivedi (1994) conditional score tests.

(11) LM∗
κ0

=
1

n
dκ0(κ1)(θ̂)

>Jκ0·η(θ̂)
−1dκ0(κ1)(θ̂)

where dκ0(κ1)(θ) = dκ0(θ)− Jκ0κ1·η(θ)Jκ1·η(θ)
−1dκ1(θ) is the adjusted score.

In this case, under the null hypothesis and a sequence of local alternatives

in κ1, LMκ0 ⇒ χ2
p(0), that is, the test statistic is robust under local misspeci-

fication of the unconsidered parameters. Under local alternatives of the form

H1 : κ0 = ξ0/
√

n, LMκ0 ⇒ χ2
p(λ2) where λ2 = ξ>0 (Jκ0·η−Jκ0κ1·ηJκ1·ηJκ1κ0·η)ξ0.

Since λ0 − λ2 ≥ 0, the asymptotic power of this test will be less than when

there is no misspecification (this is the problem of overtesting). This test

statistic is the robust LM.

If
√

n-consistent estimates are available, Neyman’s C(α) tests are optimal.

The Heckman’s two-step estimator falls under this class if conditions 1 and

2 (HC1C2
0 above) are satisfied. Let θ̃ = (η̃, 0, 0) be that estimator under

H0. Unfortunately additional assumptions are needed to obtain consistent

estimates of the cumulants that do not belong to the null hypothesis4. For

this reason, Neyman’s C(α) tests may be futile to overcome the problem at

hand. The general form of this test is:

(12) Cκ0 =
1

n
dκ0·η(θ̃)

>Jκ0·η(θ̃)
−1dκ0·η(θ̃)

where dκ0·η(θ) = dκ0(θ) − Jκ0η(θ)Jη(θ)
−1dηκ1(θ) is the effecttive score and θ̃

bivariate normality. This determines that some off-diagonal terms of the Jacobian matrix
may be asymptotically negligible. We do not exploit this line of research.

4Only κ30 and κ40 can be consistently estimated.
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denotes a
√

n-consistent estimator of θ. This test has the same asymptotic

distribution as LMκ0 under the null and alternative hypothesis.

Note the similarities with the LM robust test. In both cases, the nuisance

parameters’ influence has been taken out of the score functions of interest5.

Also note that κ1 does not enter in the computation of the Neyman’s C(α)

statistic, given that it is assumed to be equal to zero, and therefore it is not

robust to local deviations in κ1 . A simple extension of Bera and Yoon (1993)

provides a way of adjusting Neyman’s C(α) tests for local misspecification

of this type. In this case we have

(13) C∗
κ0

=
1

n
dκ0(κ1)·η(θ̃)

>Jκ0·η(θ̃)
−1dκ0(κ1)·η(θ̃)

where dκ0(κ1)·η(θ) = dκ0·η(θ) − Jκ0κ1·η(θ)Jκ1·η(θ)
−1dκ1·η(θ) is the adjusted ef-

fective score.

This test statistics is asymptotically equivalent to LM∗
κ0

under the null

and alternative hypotheses, therefore it is robust in the sense explained above

and optimal when a
√

n-consistent estimator of θ is used.

In the following sections we fully explore the properties of the LM and

Neyman’s C(α) tests in their standard and robust variants.

5 Computation of the test statistics

5.1 MLE and score functions

The general log-likelihood function in this case is:

5As stated in Jaggia and Trivedi (1994), Neyman’s C(α) tests are special cases of their
conditional score tests.
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(14)

L(β, γ, σ, ρ, κ) =
n∑

i=1

1[ci = 1]

(
ln(Φ(νi) + Ki)−

u2
i

2
− ln σ

)
+ 1[ci = 0]

(
ln(Φ(−ziγ) + K̄i)

)

ui =
yi − xiβ

σ
; νi =

ziγ + ρui√
1− ρ2

;

Ki =
∑

3≤r+s≤4

κrs(−1)r+s

r!s!

∫ vi

−∞
Hrs(ui, e)φ(e|ui)de

K̄i =
∑

3≤r+s≤4

κrs(−1)r+s

r!s!

∫ ∞

−∞

∫ vi

−∞
Hrs(u, e)φ(e|u)de

Note that the above formulation allows us to restrict our attention to

univariate normal densities, which in turn simplifies the algebra considerably.

The score functions evaluated at H0 are easily obtained as:

(15)
∂L

∂β H0

=
n∑

i=1

1[ci = 1]
xi

σ(1− ρ2)

(
−φ(νi)

Φ(νi)

ρ√
1− ρ2

+ ui

)

(16)
∂L

∂γ H0

=
n∑

i=1

1[ci = 1]zi

(
φ(νi)

Φ(νi)

ρ√
1− ρ2

)
− 1[ci = 0]zi

(
φ(νi)

Φ(νi)

)

14



(17)
∂L

∂σ H0

=
n∑

i=1

1[ci = 1]

[
ui

σ

(
−φ(νi)

Φ(νi)

ρ√
1− ρ2

+ ui

)
− 1/σ

]

(18)
∂L

∂ρ H0

=
n∑

i=1

1[ci = 1]
φ(νi)√

1− ρ2Φ(νi)

(
ui +

ρνi

1− ρ2

)

∂L

∂κrs H0

=
n∑

i=1

∑
3≤r+s≤4

(−1)r+s

r!s!
1[ci = 1]

∫ vi

−∞
Hrs(ui, e)φ(e|ui)de(19)

+
(−1)r+s

r!s!
1[ci = 0]

∫ ∞

−∞

∫ vi

−∞
Hrs(u, e)φ(e|u)de

Appendix 2 derives explicit expressions for the conditional expectation

of the Hermite polynomials. Following Lee (1984, ,p849–850) the score

functions of the κ parameters are asymptotically equivalent to the differ-

ence between the estimated sample truncated moments of orders (r, s) with

r + s = 3, 4 and the theoretical truncated moments of the bivariate normal

distribution.

5.2 Information matrix estimates

A very important feature of the LM tests is how the information matrix

(IM) is estimated. Consistent estimates can be obtained by the outer product

gradient (OPG) method:
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(20) ĴOPG
ab =

1

n

n∑
i=1

d>iadib, a, b = η, κ

A major drawback of this approach is that several Monte Carlo studies

showed that models that use the expectation of (20) or evaluate the second

derivative of the log-likelihood function (Hessian) under the null have a much

better performance in terms of empirical size. We found that that the best

results, both in terms of size and power, are obtained using the simulated

expectation of Jab where b random draws of size m are generated and the

score functions are created for each (j) simulation (Godfrey and Orme, 2001).

That is:

(21) Ĵ
(j)
ab =

1

m

m∑
i=1

d>iadib, a, b = η, κ

(22) ĴSIM
ab =

1

b

b∑
j=1

ˆ
J

(j)
ab , a, b = η, κ

We consider random draws for (ui, ei), i = 1, 2...m, conditional on X and

Z and based on our prior estimates of η. In turn, this is used to generate

y
(j)
i and c

(j)
i from which (22) is generated.
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6 Monte Carlo results

6.1 Baseline model

Our baseline model is similar to that of van der Klaauw and Koning

(1993).

yi = β0 + β1xi1 + β2xi2 + ui

z∗i = γ0 + γ1zi1 + γ2xi2 + ei

ci = 1[z∗i > 0]

where

xi1, xi2 ∼ iid N(0, 3);

zi1 ∼ iid Uniform(−3, 3);

β0 = 1, β1 = 0.5, β2 = −0.5, γ0 = 1, γ1 = −1, γ2 = 1;

V AR(u) = 4, V AR(e) = 1, CORR(u, e) = 0.2

Monte Carlo experiments for estimating the empirical size and power will

be based on a sample size of n = 1000 (other sample sizes are available

from the Author upon request). To simulate the information matrix we use

b = 100, m = n. All Monte Carlo experiments use 1000 random sample

generations. Rejection rates are based on a theoretical size of 5%.

We test that all the cumulants are zero (bivariate normality, H0 above),
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that both marginal normality and conditional linearity are satisfied (HC1C2
0 ),

and these two hypotheses individually (HC1
0 and HC2

0 respectively). Robust

tests are presented for the last three cases. We compute all tests under both

MLE and two-step estimation procedures.

The estimation of the parameters is done in STATA 9.1 by MLE and

two-step procedures (heckman command). For numerical stability, the MLE

estimator estimates arctan(ρ) instead of ρ and log(σ) instead of σ .

6.2 Empirical size and power

6.2.1 Empirical size

Table 1 presents the empirical size (at the 5% level) for standard and

robust LM and C(α) tests. Using simulation for estimating the IM gets bet-

ter size results than alternative methods (in particular OPG and Hessian

methods, reported in an earlier version of the paper, and available from the

Author upon request). The results show that testing for HC1
0 and HC2

0 sepa-

rately results in a better size performance that the joint tests H0 or HC1C2
0 .

Moreover, only the robust variants of the tests show correct asymptotic size.

Although not reported, similar results are observed for other sample sizes.

6.2.2 Power and size under local perturbations on selected pa-

rameters

The purpose of robust LM tests is to have similar power to non-robust

variants, but smaller size on local departures from bivariate normality. In

order to verify the properties of the tests, we generate observations from dif-

ferent BEE. In each case, a perturbation is applied to a selected parameter in

κ. We report the empirical size and power obtained from samples generated

using non-zero values of selected κ’s, with domain on the set {0.2, 0.4, ...3}.
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The samples were generated using the rejection method. As before the sam-

ple size is set to n = 1000, and for each parameter value we generate 1000

random samples. We report LM and C(α) tests in their standard and ro-

bust variants, where the first are applied to MLE and the second to two-step

estimators.

In the first case, Figures 1 and 2, we apply some skewness on e (affecting

κ03) which should be detected by the HC1
0 -tests (tests for marginal normality

of e, denoted by H ′
0 in the figure) statistics, but it should not affect HC2

0 -

tests (tests for linearity of the conditional expectation, denoted by H ′′
0 in the

figure). For all cases we observe that rejection rates increase with the size

of the perturbation, but HC1
0 -tests do it considerably faster than HC2

0 -tests.

Moreover, the robust variants have smaller rejection rates for both LM and

C(α) tests, which determines that they have less power but better size. LM

tests show higher power (although similar size) than the Neyman’s C(α)

tests.

In Figures 3 and 4, the DGP is constructed using different values of κ04.

As in the last case, we observe that rejection rates increase at higher speed

for HC1
0 -tests than for HC2

0 -tests. However, only in the robust LM test we

observe that the difference in the rejection rates between both types is enough

to show that the test is successful in detecting the correct departure from

bivariate normality.

When the samples are generated using non-zero values of κ12 (Figures 5

and 6), tests for HC2
0 should reject, while HC1

0 -tests should not. Again, all

the test statistics are responsive to perturbations in κ12, and only the robust

variants show good size performance for HC1
0 -tests. In terms of power, LM

tests overshadow C(α) tests for HC2
0 . However when perturbations in κ13

are applied (Figures 7 and 8) the tests do not reject even for high values of

the cumulant parameter. This determines that the conditional linearity may

only be detected in the direction of κ12.

In the next figures, we apply some perturbation in those parameters that

are not of interest either for HC1
0 nor HC2

0 tests. In particular we consider
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perturbation in κ30 (Figures 9 and 10) and κ21 (Figures 11 and 12)6. As ex-

pected all the tests are non-responsive to these DGPs, and C(α) tests show

the best size performances, provided that the two-step estimation procedures

are consistent even in the presence of perturbations in the nuisance param-

eters. Note that HC2
0 -tests are responsive to perturbations in κ21, although

the rejection rates are of no significant concern in the robust variant. In this

case, the robust C(α) test has the best size performance.

6.2.3 Power and size under non-linear conditional expectation

An important feature of these tests, which cannot be found in other tests,

is to detect departures from linearity in the conditional expectation. In

order to observe the performance under non-linear conditional expectation,

we evaluate an ad-hoc DGP with non-linear relationships between the error

terms, satisfying the marginal normality of the selection equation error:

e = w1

u = (e2 − 1) + w2

where w1 and w2 are independent standard normal random variables.

Table 2 reports empirical results for this case. As in Table 1, we only observe

a correct size for robust C(α) tests for marginal normality while every other

variant over rejects considerably. However, the tests for non-linearity are

successful in detecting it.

7 Empirical application

Lee (1984) studies the effect of being in a labor union on the workers

6Similar results are obtained for the remaining cumulants; available from the Author
upon request.
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wage. In this case, there is a strong selectivity for individuals who are in a

union vs. those that are not affiliated. Using the OPG method to estimate

the IM this author found strong evidence to reject H0, that is the hypothesis

that all cumulants are zero, although he cannot reject HC1
0 . Given our Monte

Carlo results we may conclude that rejection of H0 occurs too often and it

may not be used as evidence to reject the use of two-step estimation methods.

In order to evaluate the performance of our testing procedures we use

the well known Mroz (1987) database for studying the labor supply of mar-

ried women. This database was widely used as a reference for many non-

parametric and semi-parametric applications. For instance, Powell and Walker

(1990) apply their semi-parametric procedure to this database. Moreover, the

topic constitutes the most important application of selection models, since

the original developments made by Heckman were intended to be applied

here.

The sample consists of 753 women of whom 428 where working at the

time of the study (the details on the construction of this database are in

the Mroz paper). The dependent variable h is the annual hours of work

and the regressors X included the logarithm of the wage rate (lw, assumed

endogenous), family income less wife’s labor income, indicators for young

and older children in the family and the wife’s number of years of age and

education. The conditioning variables Z included the exogenous variables

in X, plus years of labor experience, other background variables and various

interaction terms (specified in Mroz, 1987, Table IX). Additionally actual

experience was included as a exogenous variable in his Table X.

This model consists of three stages. First, a participation equation is

estimated using the Z exogenous variables. Second, a wage-equation is es-

timated for working women only. Finally, the predicted wage is used in the

hours -equation instead of lw. The paper compares two-stage least squares

in the working women only sub-sample with selection models with different

assumptions about the distributional properties of participation equation

(using normal, logit and log-normal). Mroz concluded that failure to control
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by self-selection yields biased results if actual experience is included as an

additional exogenous regressor, however there is not any evidence of biases if

it is not included. In both cases, similar estimates are found across selection

models with different distributional specifications.

The test statistics proposed in this paper are calculated for both the

wage- and hours-equations. For the latter, we include the predicted value of

the log-wage from the wage-equation. Test statistics appear in Tables 3 and

4- part A excludes actual experience, while part B has this variable as an

additional exogenous regressor.

For both equations we cannot reject the marginal normality hypothesis

except for the two-step estimaton procedures that produce extremely high

values of the correlation parameter, which translate into very high values of

the test statistics. In general, the robust variants of the tests show smaller

values than the non-robust test statistics, and Neyman’s C(α) tests show

more consistent results across estimators than LM tests. These results are in

line with Mroz (1987) and Powell and Walker (1990) assertions that normality

in the participation equation cannot be rejected. Moreover, the tests for

conditional linearity show that this hypothesis cannot be rejected. These

test results are in line with Powell and Walker (1990) who find that semi-

parametric estimators give similar estimates to that of the Heckman’s two-

step method.

8 Conclusions and suggestions for future re-

search

We derived robust variants (in the sense that they have correct asymptotic

size under local misspecification of the alternative hypothesis) of the Lee

(1984) LM tests for distributional misspecification in sample selection models.

Our purpose was to test separately the two conditions needed for applying
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two-step Heckman selection models. We also adjusted LM tests for the case

where the two-step estimator is used instead of MLE, using Neyman’s C(α)

tests statistics.

Monte Carlo results show that bivariate normality is rejected too often,

and therefore, testing fewer restrictions may provide better empirical size.

Robust LM and Neyman’s C(α) statistics show the best size performance for

testing marginal normality of the selection equation error term and condi-

tional linearity of the error terms.

We explore size and power properties of the tests when local perturbations

are applied to selected parameters. In general robust Neyman’s C(α) tests

show good empirical size, but LM tests have better power performances.

When perturbations on the skewness of the distribution of e are used, ro-

bust LM and C(α) tests statistics show good size performances, but LM

procedures have better power properties. When the conditional linearity as-

sumption is affected only the robust variant of the C(α) test have a good

size performance. In this case, the test statistics are responsive only in one

of the two directions considered in the paper.

We apply the tests procedures to the well-known Mroz (1987) database

for women’s labor supply decisions. Our results show that, in general, the

selection equation’s marginal normality and linearity of the conditional ex-

pectation of the error terms hypotheses cannot be rejected.

Robust LM tests provide a satisfactory procedure for testing distribu-

tional misspecification when the alternative hypothesis is not completely

specified. Additional research is needed for studying the covariance struc-

ture of the Hermite polynomials in multivariate distributions, which may be

useful for LM tests robustness under misspecified alternatives. On the other

hand, more research on the estimation of BEE, other than SNP, is neces-

sary to construct likelihood ratio and Wald tests, and to provide an efficient

estimation procedure for this semi-parametric approach.
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Table 1: Monte Carlo simulations - Empirical size

Test statistic Standard Robust

Hypothesis H0 HC1C2
0 HC1

0 HC2
0 HC1C2

0 HC1
0 HC2

0

MLE and LM tests

ρ=-0.2 0.110 0.082 0.068 0.092 0.099 0.074 0.087

ρ=0.2 0.118 0.107 0.093 0.093 0.102 0.084 0.080

Heckman’s two-step and LM tests

ρ=-0.2 0.137 0.121 0.078 0.125 0.100 0.068 0.105

ρ=0.2 0.148 0.141 0.097 0.13 0.131 0.070 0.108

MLE and C(α) tests

ρ=-0.2 0.088 0.091 0.034 0.103 0.103 0.036 0.076

ρ=0.2 0.085 0.094 0.062 0.103 0.195 0.053 0.099

Heckman’s two-step and C(α) tests

ρ=-0.2 0.095 0.111 0.042 0.129 0.075 0.041 0.068

ρ=0.2 0.110 0.114 0.058 0.128 0.070 0.055 0.066

Notes: Theoretical size 0.05. Rejection rates based on 1000 replications.
See text for details.
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Table 2: Monte Carlo simulations - Empirical size and
power against a bivariate distribution with non-linearity
in the conditional expectation

Test statistic Standard Robust
Hypothesis H0 HC1C2

0 HC1
0 HC2

0 HC1C2
0 HC1

0 HC2
0

LM tests
MLE 1.000 0.997 0.999 0.991 0.928 0.525 0.923

Heckman’s two-step 1.000 0.912 0.913 0.903 0.901 0.402 0.896
C(α) tests

MLE 1.000 1.000 0.991 1.000 0.922 0.053 0.743
Heckman’s two-step 1.000 0.960 0.923 0.967 0.938 0.052 0.731

Notes: Theoretical size 0.05. Rejection rates based on 1000 replications.
See text for details.
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Table 3: Empirical application - Tests for marginal nor-
mality

A-Without experience as exogenous covariate
Estimator LM C(α)

Standard Robust Standard Robust
Wage Equation

MLE ρ̂ = 0.129 3.66 4.87 3.12 3.30
Two-step ρ̂ = 0.887 440.3 246.8 284.6 19.96

Hours Equation
MLE ρ̂ = −0.161 4.55 6.21 3.78 4.38
Two-step ρ̂ = −0.275 10.57 4.11 6.77 2.50

B-With experience as exogenous covariate
Estimator LM C(α)

Standard Robust Standard Robust
Wage Equation

MLE ρ̂ = 0.091 0.50 1.36 0.37 0.54
Two-step ρ̂ = 0.731 117.5 4.85 260.4 2.00

Hours Equation
MLE ρ̂ = −0.461 9.60 9.26 13.49 3.00
Two-step ρ̂ = −0.811 431.1 24.5 401.9 4.67

Notes: Critical values for χ2(2): 4.61 (10%), 5.99 (5%) and 9.21 (1%).
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Table 4: Empirical application - Tests for conditional
linearity

A-Without experience as exogenous covariate
Estimator LM C(α)

Standard Robust Standard Robust
Wage Equation

MLE ρ̂ = 0.129 0.34 4.56 0.39 0.78
Two-step ρ̂ = 0.887 469.9 2.46 301.6 2.38

Hours Equation
MLE ρ̂ = −0.161 4.90 0.99 2.80 1.17
Two-step ρ̂ = −0.275 24.2 4.84 20.7 5.87

B-With experience as exogenous covariate
Estimator LM C(α)

Standard Robust Standard Robust
Wage Equation

MLE ρ̂ = 0.091 2.32 6.36 1.79 4.71
Two-step ρ̂ = 0.731 160.0 3.17 298.1 2.66

Hours Equation
MLE ρ̂ = −0.461 21.2 3.28 103.5 6.80
Two-step ρ̂ = −0.811 522.6 4.60 473.7 4.62

Notes: Critical values for χ2(2): 4.61 (10%), 5.99 (5%) and 9.21 (1%).
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Figure 1: BEE with arbitrary values of κ03-LM tests

Figure 2: BEE with arbitrary values of κ03-C(α) tests
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Figure 3: BEE with arbitrary values of κ04-LM tests

Figure 4: BEE with arbitrary values of κ04-C(α) tests
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Figure 5: BEE with arbitrary values of κ12-LM tests

Figure 6: BEE with arbitrary values of κ12-C(α) tests
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Figure 7: BEE with arbitrary values of κ13-LM tests

Figure 8: BEE with arbitrary values of κ13-C(α) tests
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Figure 9: BEE with arbitrary values of κ30-LM tests

Figure 10: BEE with arbitrary values of κ30-C(α) tests
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Figure 11: BEE with arbitrary values of κ21-LM tests

Figure 12: BEE with arbitrary values of κ21-C(α) tests
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Appendix 1: Bivariate Hermite polynomials

In this Appendix we derive the bivariate Hermite polynomials that cor-
respond to r + s ≤ 4. Let

H10(u, e; ρ) = (−1)(u− ρe)/(1− ρ2)

H01(u, e; ρ) = (−1)(e− ρu)/(1− ρ2)

be obtained by taking the first and second derivative of a bivariate normal
distribution with respect to u and e. In a similar fashion:

Define

a =
−1

1− ρ2

b =
ρ

1− ρ2

Then the Hermite polynomials can be obtained by obtaining higher order
derivatives.

H20(u, e; ρ) = H10(u, e; ρ)2 + a

H02(u, e; ρ) = H01(u, e; ρ)2 + a

H30(u, e; ρ) = H10(u, e; ρ)3 + 3aH10(u, e; ρ) + 3a2

H03(u, e; ρ) = H01(u, e; ρ)3 + 3aH01(u, e; ρ) + 3a2

H40(u, e; ρ) = H10(u, e; ρ)4 + 6aH10(u, e; ρ)2 + 3a2

H04(u, e; ρ) = H01(u, e; ρ)4 + 6aH01(u, e; ρ)2 + 3a2

H21(u, e; ρ) = H01(u, e; ρ)H10(u, e; ρ)2 + aH01(u, e; ρ) + 2bH10(u, e; ρ)

H12(u, e; ρ) = H10(u, e; ρ)H01(u, e; ρ)2 + a ∗H10(u, e; ρ) + 2bH01(u, e; ρ)

H31(u, e; ρ) = H01(u, e; ρ)H10(u, e; ρ)3+3aH01(u, e; ρ)H10(u, e; ρ)+3bH10(u, e; ρ)2+3ab

H13(u, e; ρ) = H10(u, e; ρ)H01(u, e; ρ)3+3aH10(u, e; ρ)H01(u, e; ρ)+3bH01(u, e; ρ)2+3ab
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H22(u, e; ρ) = H01(u, e; ρ)2H10(u, e; ρ)2 + aH01(u, e; ρ)2 + aH10(u, e; ρ)2

+3bH01(u, e; ρ)H10(u, e; ρ) + 2b2 + a2

Some useful algebra:

(u− ρe)2 = u2 − 2ρue + ρ2e

(u− ρe)3 = u3 − 3ρu2e + 3ρ2ue2 − ρ3e3

(u− ρe)4 = u4 − 4ρu3e + 6ρ2u2e2 − 4ρ3ue3 + ρ4e4

(e− ρu)2 = e2 − 2ρeu + ρ2u

(e− ρu)3 = e3 − 3ρe2u + 3ρ2eu2 − ρ3u3

(e− ρu)4 = e4 − 4ρe3u + 6ρ2e2u2 − 4ρ3eu3 + ρ4u4

(u− ρe)(e− ρu) = −ρu2 + (1 + ρ2)ue− ρe2

(u− ρe)2(e− ρu) = −ρu3 + (1 + 2ρ2)u2e− ρ(2 + ρ2)e2u + ρ2e3

(e− ρu)2(u− ρe) = −ρe3 + (1 + 2ρ2)e2u− ρ(2 + ρ2)u2e + ρ2u3

(u−ρe)3(e−ρu) = −ρu4+(1+3ρ2)u3e−3ρ(1+ρ2)u2e2+ρ2(3+ρ2)ue3−ρ3e4

(e−ρu)3(u−ρe) = −ρe4+(1+3ρ2)e3u−3ρ(1+ρ2)e2u2+ρ2(3+ρ2)eu3−ρ3u4

(u−ρe)2(e−ρu)2 = ρ2u4−2ρ2(1+ρ2)u3e+(1+4ρ2+ρ4)u2e2−2ρ2(1+ρ2)ue3+ρ2e4

Appendix 2: Truncated conditional moments

Denote φ(e|u) ≡ N(ρu, 1− ρ2). Then we have:

(23)
∂φ(e|u)

∂e
= −e− ρu

1− ρ2
φ(e|u)

By multiplying by (1−ρ2)ej−1, integrating by parts parts and rearranging
terms we obtain the following recursive formulas:

(24)∫ ∞
−zγ

ejφ(e|u)de = ρu

∫ ∞
−zγ

ej−1φ(e|u)de+(1−ρ2)(j−1)

∫ ∞
−zγ

ej−2φ(e|u)de+(1−ρ2)(−zγ)j−1φ(−zγ|u)

35



(25)∫ −zγ

−∞
ejφ(e|u)de = ρu

∫ −zγ

−∞
ej−1φ(e|u)de+(1−ρ2)(j−1)

∫ −zγ

−∞
ej−2φ(e|u)de−(1−ρ2)(−zγ)j−1φ(−zγ|u)

(24) corresponds to the truncation in the case of c = 1, and (25) to c = 0.
Define:

(26) λui
=

φ(νi)

Φ(νi)
√

1− ρ2

where νi is defined as in (14). Therefore we have the following expressions
for the truncated expectations:

E∗
i (e

j|ui) ≡ E(ej|ui, e > −ziγ), j = 1, 2...

E∗
i (e|ui) = ρui + (1− ρ2)λui

E∗
i (e

2|ui) = ρuiE
∗
i (e|ui) + (1− ρ2) + (−ziγ)λui

E∗
i (e

3|ui) = ρuiE
∗
i (e

2|ui) + 2(1− ρ2)E∗
i (e|ui) + (1− ρ2)(−ziγ)2λui

E∗
i (e

4|ui) = ρuiE
∗
i (e

3|ui) + 3(1− ρ2)E∗
i (e|ui) + (1− ρ2)(−ziγ)3λui

To evaluate the censored model we also need the double integration of
the Hermite polynomials. Define:

(27) λi =
φ(−ziγ)

Φ(−ziγ)

Therefore we have:

Ei∗(e
juh) ≡ E(ejuh|e < −ziγ), j, h = 0, 1, 2...

Ei∗(e) = λi

Ei∗(e
2) = Ei∗(e) + (−ziγ)λi

Ei∗(e
3) = 2Ei∗(e) + (−ziγ)2λi
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Ei∗(e
4) = 3Ei∗(e) + (−ziγ)3λi

Ei∗(u) = ρEi∗(e)

Ei∗(u
2) = ρ2Ei∗(e

2) + (1− ρ2)

Ei∗(u
3) = ρ3Ei∗(e

3) + 3ρ(1− ρ2)Ei∗(e
3)

Ei∗(u
4) = ρ4Ei∗(e

4) + 6ρ2(1− ρ2)Ei∗(e
2) + 3(1− ρ2)2

Ei∗(eu) = ρEi∗(e
2)

Ei∗(ue2) = ρEi∗(e
3)

Ei∗(ue3) = ρEi∗(e
4)

Ei∗(u
2e) = ρ2Ei∗(e

3) + (1− ρ2)Ei∗(e)

Ei∗(u
2e2) = ρ2Ei∗(e

4) + (1− ρ2)Ei∗(e
2)

Ei∗(u
3e) = ρ3Ei∗(e

4) + 3ρ(1− ρ2)Ei∗(e
2)
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