

City, University of London Institutional Repository

Citation: Booth, T., Stumpf, S., Bird, J. and Jones, S. (2016). Crossed Wires:
Investigating the Problems of End-User Developers in a Physical Computing Task. Paper
presented at the Conference on Human Factors in Computing Systems (CHI), 7-12 May
2016, San Jose, USA.

This is the accepted version of the paper.

This version of the publication may differ from the final published
version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/14844/

Link to published version: http://dx.doi.org/10.1145/2858036.2858533

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral
Rights remain with the author(s) and/or copyright holders. URLs from
City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or
charge. Provided that the authors, title and full bibliographic details are
credited, a hyperlink and/or URL is given for the original metadata page
and the content is not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

 Crossed Wires: Investigating the Problems of End-
User Developers in a Physical Computing Task

Tracey Booth
1
, Simone Stumpf

1
, Jon Bird

1
, Sara Jones

2

City University London

London, UK
1
Centre for HCI Design; School of Mathematics, Computer Science and Engineering

2
Centre for Creativity in Professional Practice; Cass Business School

{tracey.booth.1, simone.stumpf.1, jon.bird, s.v.jones}@city.ac.uk

ABSTRACT

Considerable research has focused on the problems that end

users face when programming software, in order to help

them overcome their difficulties, but there is little research

into the problems that arise in physical computing when

end users construct circuits and program them. In an

empirical study, we observed end-user developers as they

connected a temperature sensor to an Arduino

microcontroller and visualized its readings using LEDs. We

investigated how many problems participants encountered,

the problem locations, and whether they were overcome.

We show that most fatal faults were due to incorrect circuit

construction, and that often problems were wrongly

diagnosed as program bugs. Whereas there are development

environments that help end users create and debug

software, there is currently little analogous support for

physical computing tasks. Our work is a first step towards

building appropriate tools that support end-user developers

in overcoming obstacles when constructing physical

computing artifacts.

Author Keywords

Physical computing; End-user development; Electronics;

End-user support; Debugging.

ACM Classification Keywords

H.5.m. Information interfaces and presentation (e.g., HCI):

Miscellaneous.

INTRODUCTION

The rise of the Maker Movement and DIY creation [41],

underpinned by the ready availability of open source tools

and affordable components, has resulted in a growing

number of end-user developers—artists, designers,

researchers, and hobbyists—who create interactive physical

computing artifacts. Increasing numbers of end-user

developers are also building complex systems using the

'Internet of Things' [28,22,14], for example, taking charge

of their well-being and health by adapting programmable

medical devices and developing health-related information

appliances [1]. This area is of burgeoning interest to HCI

research, both as a cultural phenomenon and for developing

tools to support people who are interested in building these

interactive systems and devices [39,40,2].

While users' engagement with physical computing is

beyond a doubt [6], the challenges faced by end-user

developers are still considerable: they must learn and apply

both programming and electronics concepts, and also

develop some understanding of the relationship between the

software and hardware of their systems in order to solve

problems that arise. We already know from the literature

that program debugging is difficult but it has been

suggested that localizing errors may present even greater

challenges for inexperienced end-user developers when

both hardware and software are involved [43].

There has been considerable work in end-user software

engineering (EUSE) that aims to understand the problems

Figure 1. A participant constructing a prototype circuit in

our study. The task involved connecting a temperature

sensor to an Arduino and writing a program to read the

sensor and visualize the values using LEDs.

that users face in programming, in order to provide an

empirical basis for the design of development environments

and support tools [7,8,9,18,24,36]. There are development

tools that aim to make physical computing development

easier [17, 20], however, to date, there has been little

research into the problems faced by end users as they

develop physical computing artifacts, in order to provide

appropriate help in overcoming the challenges they face.

Our work provides the first step in addressing this lack of

knowledge and in establishing an empirical foundation for

future tool design. We conducted an empirical study

involving 20 participants who constructed and programmed

a 'Love-O-Meter' (Figure 1)—a relatively simple interactive

device that uses an Arduino microcontroller and three LEDs

to visualize the readings of a temperature sensor when it is

touched. We present an account of where participants'

problems occurred, and describe the relationship between

these problems and participants' background experience.

We investigate how difficult these problems were to

overcome, and the faults that led to task failure. We offer

some initial suggestions about how end-user developers can

be best supported in physical computing tasks. Our research

questions were:

 How many problems do users encounter, and where are

they located? Are there aspects of developing physical

computing devices that are particularly prone to

problems?

 How do users' backgrounds and experience affect the

challenges they face in physical computing tasks?

 What are the problems that can be easily overcome,

and what problems prove insurmountable?

The contribution of our paper is to provide the first

systematic investigation of the problems faced by end users

in physical computing tasks, extending findings from end-

user software engineering (EUSE) beyond programming to

physical computing. Our results can inform the design of

tools to support end-user developers overcome the physical

computing challenges they commonly face.

In the remainder of the paper, we first give an overview of

related work in end-user programming and physical

computing. We then describe our study design and present

the results of our analyses. Finally, we discuss implications

for how users can be supported, and describe future work.

BACKGROUND

End-User Programming and Software Engineering

Previous research has investigated the difficulties faced by

end-user programmers [35,27,9,24], in order to help

overcome them. Much of this work focuses on simplifying

programming languages or environments, for example,

programming by demonstration [33,15] eases the effort of

learning a new programming language. A different way to

help users is through providing features built directly into

the programming environment, in order to support problem-

solving activities during programming. For example,

StratCel and WYSIWYT aimed to help end users test and

debug spreadsheets [18,8], and this approach has also

proven effective in programming web mashups [30], and

supporting end users in debugging intelligent systems [29].

We draw inspiration from this work for end users

developing physical computing prototypes, and are

investigating the problems these end users face, with the

aim of building appropriate support tools.

There are a number of different approaches to categorizing

the programming problems end-user programmers face.

One frequently used approach is to categorize end-user

programming problems in terms of 'learning barriers' [27].

Learning barriers have been shown to occur when end users

develop web mashups [10] and debug machine learning

systems [29]. Another way is to focus on the causes of

software errors [26], based on research in human error [37],

that has suggested that errors are due to 'cognitive

breakdowns' in which end users encounter problems

applying skills, rules, or knowledge. Breakdowns can be

investigated by classifying the action being performed, the

interface the action is performed on, and the information

being acted on. The data analysis in this study was

informed by a focus on breakdowns.

Although there is some evidence of learning barriers

occurring in programming environments for physical

computing [5], very little research has investigated the

problems that end users face when constructing physical

computing devices that combine elements of both

programming and electronics. The goal of our study was to

address this by identifying these problems, as a first step

towards developing support solutions that can help end

users to overcome the common problems they face in

physical computing.

Physical Computing Tools

Physical computing integrates computing with the physical

world, often in the form of electronic devices or systems

that interact with the environment via sensors and actuators

[21]. These devices can take input from the world, through

sensors that measure aspects of the environment, such as

temperature, proximity, or light, and respond in some way,

for example, though sound, motion or vibration. [4,23,16].

Developing a physical computing device typically involves

coordinating the behavior of sensors and actuators by

connecting them to a microcontroller and programming

their behavior. Platforms like Arduino [3] aim to lower the

barriers to entry to this type of activity, but creating

electronic circuits and programming them still requires

some knowledge and skill, and troubleshooting physical

computing issues can be tricky.

Some work in this area has aimed to make it easier to

construct the electronics or hardware. For example,

'Programmable Bricks' [38] enabled children to easily

create physical computing devices by connecting sensors

and motors to a computer embedded in a LEGO brick and

program them using the Logo programming language.

Phidgets [17] are 'physical widgets' that facilitate rapid

prototyping with minimal electronics knowledge. Other

systems, such as .NET Gadgeteer [45], also aim to make it

easier for end-user developers by providing plug-and-play

hardware components.

A different strand of research has focused on lowering the

bar for programming, by providing visual programming

environments for physical computing platforms, which are

proposed as being easier for end users to master (for

example, [20,34]).

Very few support systems have been developed to help

build and debug the simple circuits typically involved in

physical computing. SHERLOCK [32] is an environment

for teaching sophisticated electronics troubleshooting to

fighter airplane engineers. Tools aimed at end-user

developers include Fritzing [25], which allows users to

graphically lay out circuits on a virtual breadboard (see

Figure 2 for an annotated example), and Autodesk's 123D

Circuits Electronics Lab web application [48], which

combines virtual circuit construction with a code editor and

a simulator, so that users can 'upload' their program to their

virtual circuit and simulate run-time behavior.

However, there is very limited empirical evidence of what

problems end-user developers face in physical computing

tasks that can be used to inform the design of appropriate

support tools. Our study addressed this issue.

STUDY SETUP

We conducted an empirical study, using a 'think-aloud'

approach, in which participants undertook a naturalistic

physical computing task. In order to analyze the nature of

the problems they faced, we collected a rich set of data,

including video transcripts, the artifacts that participants

constructed, and information about participants'

backgrounds and experience.

Participants

We recruited 20 adult participants (8 female, 12 male, mean

age of 32 years) through local Maker communities and

universities, targeting hobbyists with some experience of

using the Arduino platform, but excluding professionals

who develop physical computing artifacts for monetary

gain. All participants received a £20 gift voucher as an

incentive.

Physical Computing Development Task

We used an Arduino microcontroller in our study. Arduino

has achieved wide adoption by many types of end-user

developers, including hobbyists, and is currently the most

popular physical computing platform. We chose the official

Arduino UNO revision 3 as the development board—a

commonly used starter board included in the official

Arduino Starter Kit. As the development environment we

used the official Arduino IDE (version 1.61 for Windows),

running on a Microsoft Windows 7 desktop PC.

The task was a simplified version of project 3 in the official

Arduino Starter Kit [50]. The physical computing device

that the participants attempted to build was a 'Love-O-

Meter': this uses three LEDs to visualize the values read

from a temperature sensor, lighting up one LED at lower

temperatures, two at medium temperatures and three at

higher temperatures. The temperature can be increased by

touching the sensor. Building this device involves

connecting seven electronic components to a

microcontroller and writing a short program to coordinate

their behavior. Participants used a breadboard and jumper

wires to build the electronic circuit and no soldering was

involved in the task.

We now briefly describe the steps involved in successfully

completing the task, so that the problems that participants in

our study had when constructing the circuit and the

program (see Results section, What Went Fatally Wrong?)

are better understandable.

It is possible to first build the complete circuit and then

write the program controlling it, or to decompose the task

into smaller parts and complete them in turn, for example,

first build the sensor circuit and write the code for reading

the temperature values, and then move on to building and

programming an LED circuit. Here we describe how to

build the circuit first and then the associated program.

Building the circuit

This involves connecting the electronic components to the

Arduino board. Figure 2 shows how the components could

be wired up successfully.

The temperature sensor (TMP36) [49] is an analog device

that has three legs, each of which has to be correctly wired

into an Arduino analog pin, ground and power in order for

the sensor to operate correctly. Miswiring the connections

to the sensor can result in unusual readings, or the sensor

itself heating up to a high temperature. The Arduino analog

pin readings are converted into digital values between 0 and

1023. No additional components are needed for the sensor

Figure 2. The simplest way to build the circuit for the study

task. Each wire or resistor connects two locations in the

circuit: either a pin on the Arduino or the leg of a

component.

to work correctly. Participants can cause noticeable changes

in the readings by touching it.

Each LED has two legs, and its positive leg (anode) needs

to be connected to an Arduino digital output pin and its

negative leg (cathode) connected to ground. Because it is a

diode, reversing the signal and ground connections means

the LED will not light up. A resistor of appropriate value

should be wired either between the positive leg and the

digital pin, or the negative leg and ground, to regulate

electrical current to the LED. If the resistor value is too

high, the LED will not light up. If no resistor is used, it

may cause other problems, such as the LED burning out

prematurely and even damaging the Arduino board.

Additionally, we found that when resistors were not

included in the circuit, the LEDs drew large currents from

the Arduino, which in turn affected the temperature

readings from the sensor.

Given that an Arduino UNO has only three ground pins but

wiring all of the components into the circuit requires four

connections to ground (one for the sensor and one for each

of the three LEDs), it was necessary for participants to set

up a ground rail on the breadboard that could be shared by

the components.

Writing the program

An Arduino program has two main parts: a setup()

function which executes only once when the program is

first run, and a loop() function that then executes

repeatedly at a very high speed. Variables such as which

Arduino pins are being used are typically declared globally

at the top of the program, outside of the setup() and

loop() functions.

We first describe the programming steps involved in

reading and displaying the temperature sensor values in the

Arduino IDE and then describe the programming steps to

control the LEDs.

Sensor program

The first step is to state which analog pin on the Arduino

board is connected to the sensor, so that the temperature

values can be read. In order to display the temperature

values being sent to the Arduino in the monitor built into

the IDE, it is then necessary to add a line of code to the

setup() function, to set up serial communication between

the Arduino and the computer. The rest of the program code

goes in the loop() function. First, the analog pin that is

connected to the temperature sensor has to be read, and the

value ideally stored in a variable. Then, the current

temperature value can be written to the Serial Monitor built

into the Arduino IDE, where it can be viewed.

LED program

The first step is to state which digital pin on the Arduino

board each of the LEDs is connected to. Each of these

digital pins can then be used as a switch in the program to

turn the connected LED on or off. Each of the digital pin

numbers used can be stored in global variables at the top of

the program. In the setup() function, each digital pin

connected to an LED has to be configured as an output pin,

so it can be used to switch an LED on or off. In the loop()

function, each LED can be switched on or off by reference

to its pin.

Conditional statements are needed to switch on the

appropriate number of LEDs to visualize the temperature

read from the sensor. In order to write this code, a

participant has to understand the range of temperature

values that can be generated by holding the sensor between

their fingers, what the sensor value is at room temperature,

and determine appropriate temperature value thresholds that

should be used to switch the LEDs on and off.

Procedure

During the session, participants first completed two

background questionnaires that gathered information about

their demographics, background and experience, and self-

efficacy in physical computing. They then were given a task

instruction sheet, giving a brief description of the goals that

the artifact had to satisfy. They had 45 minutes to complete

the task. We chose this length of time because this is the

recommended time for project 3 in the Arduino Starter Kit,

and attempts at building it unaided during a pilot study took

approximately 30 minutes. Participants had access to the

task instruction sheet that specified the artifact they had to

build, an Arduino UNO microcontroller, a breadboard, a

labeled kit of electronic components, a digital multimeter

and the Arduino IDE. They were allowed to follow their

usual working method, including using the help content and

examples built into the Arduino IDE, searching online for

sources of information and copying code snippets. As they

were working, they were asked to think aloud. A facilitator

helped the participants to become familiar with the task

specification but did not assist in building the prototype or

overcoming development problems. The facilitator only

intervened to remind participants to think aloud (if they fell

silent for approximately 10 seconds), or when there was a

danger of physical harm to a participant. At the end of the

task participants were asked to demonstrate their prototype.

Data Collection

We captured participants' relevant experience and self-

efficacy in physical computing. They self-assessed their

programming, electronics, physical computing development

and Arduino expertise on 7-point scales, from complete

beginner (1) to expert (7). Self-efficacy was rated on a scale

of 0-100 through an adapted questionnaire based on

computer self-efficacy [11], in which participants rated

their self-confidence in completing a physical computing

task of moderate complexity using the Arduino platform.

We video-recorded the participants during the task from

multiple vantage points and also recorded screen activity

using Morae Recorder software. We synchronized and

merged these videos to a single, composite, split-screen

video (Figure 3) per participant, for use in analysis. We

used digital photographs and Fritzing breadboard diagrams

[25] to capture circuit configuration, and saved all programs

created or adapted by each participant.

Analysis

We first established whether each participant had

successfully completed the task. The task was counted as

completed when the prototype was shown to meet the

specification given—the participant demonstrated the

prototype at the end of the session, and after the session we

examined the circuit and program for evidence that they

were indeed correctly constructed.

We analyzed the split-screen video recordings of each

session, for evidence of problems encountered by

participants when they were doing the physical computing

task. We transcribed key events from these videos and

coded them, first distinguishing three different kinds of

problems: obstacles (where participants hit hurdles to

overcome), breakdowns (on evidence of errors in action or

thinking) and bugs (on evidence of faults introduced).

Obstacles were coded in the following circumstances: 1)

when participants stated that they did not know or

understand something; 2) when they said that they needed

to do something but there was evidence that they faced a

problem doing it, for example, if a participant said that they

needed to wire up the LEDs, and then searched online for

information that showed them how to do this; 3) if a

participant showed signs of confusion or frustration, for

example, a puzzled expression on viewing sensor readings

in the Serial Monitor. Hence, our obstacle code includes

what previous research has termed 'information gaps' [24].

Inspired by previous classifications of errors [37,26], we

also looked for evidence of breakdowns. In our analysis, we

coded breakdowns when there was evidence that: 1)

participants carried out a wrong action, that is, they made a

slip or mistake, for example, mistyping a variable name or

using an inappropriate command; 2) they made an incorrect

assessment, for example, saying something was working

when in fact it was not; 3) there were observed faults in

their knowledge or reasoning, for example, stating

something factually incorrect.

An obstacle might cause a breakdown but it could also be

overcome without causing any further problem, for

example, when a participant said that they did not

understand the online tutorial page they were reading, but

then simply closed it and instead found one that they did

understand.

A breakdown could result in a bug, that is, a fault that a

participant introduced through their actions or beliefs. For

example, a breakdown in which a participant forgot to add a

semi-colon to the end of a variable declaration statement

would lead to a bug in the program which needed to be

fixed. On the other hand, adding extraneous code to the

program, such as declaring a variable that is never used, is

an example of a breakdown that does not lead to a bug. We

coded as bugs all the individual faults created by the

participant that needed to be solved. For example, if a

participant forgot, in their program, to configure all three of

the digital pins connected to the LEDs as outputs (using the

pinMode() function), we coded this as three separate bugs.

Importantly, the participant might not have been aware that

they had introduced a bug that needed solving; while some

bugs provide clues that make it easy for a user to spot that

there is a problem, other bugs can impact more subtly on

the behavior of the prototype in a way that makes fault

localization and diagnosis very difficult.

We then analyzed where each of these three problem types

originated, either relating to the circuit, the program, or the

development environment, similar to [26]. For example, if a

breakdown occurred in which a participant used a wrong

comparison operator in their code, it was assigned the

'program' location. If a participant encountered an obstacle

in which they were unable to figure out where to find a

particular function/option in the development environment,

then the 'IDE' location code was assigned.

In some cases, problems straddled both program and circuit,

for example, when a participant had difficulty

understanding the sensor readings in the Serial Monitor

(which are the result of interaction between the circuit and

the program), misunderstood the relationship between the

program and the circuit, or said that they did not know how

to wire up and program a component. In these cases, we

assigned the 'circuit+program' code to the observed

problem.

Having identified all the obstacles, breakdowns and bugs

for each participant, we then analyzed whether they were

overcome or not during the session.

Figure 3. Composite, split-screen video of physical computing

task, showing onscreen activity, participant's face, overhead

zoom of circuit construction, and wider frontal view of

equipment use.

RESULTS

We considered participants' expertise, its role in task

success and the impact on how much they struggled. We

then investigated the location of problems encountered and

whether participants managed to overcome these problems.

We finally examined sources of failures in detail and which

kinds of activities were challenging for participants.

How Many Problems?

To be successful at a physical computing task, end-user

developers need to be sufficiently proficient at

programming and at building an electronic circuit but we

would hardly expect them to be experts. Participants in our

study rated their expertise in physical computing between

complete beginner and expert on a 7-point scale

(mean=3.60, SD=1.19), with their programming expertise

(mean=4.40, SD=1.47) being slightly higher than their

electronics expertise (mean=3.10, SD=1.33). Participants

usually had more years of programming experience

(mean=10.89, SD=7.53) than electronics experience

(mean=6.75, SD=7.63) or physical computing development

experience (mean=3.23, SD=2.03). Participants reported

receiving some form of training or instruction in

programming but mostly being self-taught in constructing

circuits, which might explain this difference. Our study task

involved the Arduino platform and our participants

considered themselves reasonably knowledgeable in this

environment (mean=3.75, SD=1.41) and relatively self-

confident at tackling a task of moderate complexity

(mean=69.70, SD=10.78).

However, only six of the 20 participants—P3, P5, P6, P7,

P17, P18—successfully built a working prototype that met

the specification given. We found no significant

relationships between successful task completion and self-

efficacy or self-rated expertise.

Every participant was impeded in their progress in

completing the task in some way (Figure 4), through

obstacles, breakdowns or bugs; most participants

experienced all three types of problem. Participants

encountered a mean of 41.60 obstacles (SD=14.17), 21.05

breakdowns (SD=13.4), and created 13.7 bugs (SD=9.85)

over the 45 minutes they worked on the task. This means

that participants struggled a great deal, even though the task

was appropriate for their experience and background.

We then investigated whether task success was linked with

how many problems were encountered. A Mann-Whitney

test showed that the six participants who succeeded had

significantly lower total numbers of obstacles (U=13.00,

p=0.015) and breakdowns (U=10.00, p=0.006) than

participants who did not succeed. Furthermore, although

not significant (U=18.00, p=0.051), successful participants

also marginally introduced fewer bugs. It appears that the

successful participants were simply better at physical

computing development—either knowing more, or doing

fewer things wrong—than their unsuccessful counterparts.

Where Did Problems Occur?

We were interested in where participants' problems were

located. Figure 5 shows the distribution of obstacles,

breakdowns and bugs in the circuit, program,

circuit+program and IDE.

The overwhelming majority of obstacles (49%) occurred in

relation to the program (mean=20.40, SD=8.93), followed

by 28% associated with circuit construction (mean=11.55,

SD=6.36), while 20% of obstacles occurred in the

interaction between the program and circuit (mean=8.25,

SD=7.87). The same pattern also held for breakdowns: 52%

occurred in the program (mean=10.95, SD=8.41), while

31% of breakdowns were circuit-related (mean=6.45,

SD=5.97). This means that participants carried out more

wrong actions, and made more incorrect assessments and

factually incorrect statements when they were programming

than when they were constructing the circuit. We also found

that bugs introduced by participants related overwhelming

to their program (66%) instead of their circuit (33%).

Considering that participants rated their programming

expertise higher than their electronics expertise, we were

surprised that they appeared to struggle more with program-

related than circuit-related problems. We did not find any

significant correlation between their electronics expertise

and how many circuit-related obstacles, breakdowns or

bugs they had in constructing the prototype, nor a

relationship between their self-assessed programming

expertise and their program-related obstacles, breakdowns

or bugs. Although not significant, there was a marginal

relationship between programming expertise and program-

Figure 5. Number of obstacles (blue), breakdowns (orange)

and bugs (green) per location.

0

50

100

150

200

250

300

350

400

Circuit Program Circuit+
Program

IDE

C
o

u
n

t

Figure 4. Number of obstacles (blue), breakdowns (orange)

and bugs (green) per participant. Successful participants are

indicated with a green smiley.

related obstacles (r=-0.431, p=0.058) and breakdowns (r=-

0.400, p=0.081). Taken together, this means that in general

participants were poor judges of how good they are at

constructing physical computing prototypes.

Only very few obstacles (3%) stemmed from use of the IDE

(mean=1.05, SD=1.39). This echoes findings from end-user

programming which showed that users tend to have few

information gaps about features of the programming

environment and that the majority of problems arise due to

issues in problem-solving on a strategic level, that is,

knowing how to test or debug or what to do next [24].

It might be tempting to deduce that programming was the

major challenge for participants in the task. However, the

number of problems encountered and where they occurred

does not show the severity of problems or whether they

were successfully resolved. We now turn to our analysis of

whether these problems could be overcome.

Were Problems Overcome?

Some problems might be more easily overcome than others

by end-user developers. For this analysis, we looked only at

obstacles and bugs, since they represent faults which can be

overcome, whereas breakdowns manifest as actions or

spoken thoughts that cannot be 'undone'. Initially, it

appeared that a large number of all obstacles and bugs were

overcome by participants, wherever their location (Figure

6). However, when obstacles involved the interaction of the

circuit with the program, less than half were resolved

(46%), highlighting that these problems seemed to be

particularly challenging.

We then investigated differences between participants who

were successful at completing the task and those who were

unsuccessful (Figure 7). Successful participants overcame

97% of their obstacles and all of their bugs. Unsuccessful

participants, on the other hand, only overcame 69% of their

obstacles and 64% of their bugs. Three participants—P09,

P16, P19—did not complete the task due to a fault in their

program code, however, they all managed to construct the

circuit correctly. These participants did much better than

the rest of the unsuccessful participants, in both overcoming

obstacles and resolving bugs. In particular, even

unsuccessful participants who constructed a working circuit

overcame 100% of their circuit-related obstacles and 75%

of their circuit-related bugs, whereas the other unsuccessful

participants only solved 79% and 59% of the same problem

types, respectively. Unsuccessful participants with circuit

problems also did much worse when the obstacles

concerned the interaction between the circuit and the

program: they overcame only 35% of 'circuit+program'

obstacles, whereas participants who correctly constructed

the electronic circuit overcame 63% of these.

It seems then that some types of obstacles and bugs

prevented participants from completing the task. We

wondered what activities caused these fatal problems, and

we present the analysis in the next section.

What Went Fatally Wrong?

We now present a detailed analysis of what participants did

which caused them to not complete the task, that is,

breakdowns that led eventually to task failure or were very

difficult to address. It should be noted that often it was not

just one problem that caused task failure but rather a series

of bugs were introduced that compounded the difficulty of

overcoming them. We will compare the 'ideal' solutions

(see Study Setup section, Physical Computing Development

Task) with participants' actions.

Program construction

Three participants constructed the circuit correctly but had

some faults in their program that prevented them from

completing the task. Common faults included using the

wrong temperature thresholds in the conditional statements,

incorrect conditional logic, and numerous problems with

variable declarations, assignment and referencing (compare

Study Setup section, Writing the program). For example,

participant P16 forgot to add a statement to read the sensor

in their program and then referred to the wrong variable in

their conditional statements. As a result, the participant saw

temperature readings that always remained at 0, regardless

of whether they touched the sensor. To remedy this issue,

they copied in code, but this did not address the previous

two bugs. To compound the issue, they forgot to change the

variable names in the code they had copied in, so now these

did not match the ones they were already using in their

program. Challenges in learning to program have been

explored extensively (for example, [31]), and it seems that

many participants struggled with very basic and common

programming activities.

Circuit construction

The most common fatal error that caused ten participants

not to succeed in the task was some kind of fault in circuit

construction. We looked in more detail at what went wrong

in these cases.

A surprisingly high number of breakdowns involved

miswiring: incorrectly connecting circuit components. We

Figure 6. Total number of resolved obstacles (blue), resolved

bugs (green) and unresolved obstacles and bugs (red).

0

50

100

150

200

250

300

350

400

O
b
s
ta

c
le

s

B
u

g
s

O
b
s
ta

c
le

s

B
u

g
s

O
b
s
ta

c
le

s

B
u

g
s

O
b
s
ta

c
le

s

B
u

g
s

Circuit Program Circuit+
Program

IDE

C
o
u
n
t

observed 87 of these miswiring breakdowns. All but one of

the unsuccessful participants encountered these mistakes

and for five participants—P01, P04, P08, P10, P11—this

caused a fatal error that prevented them from completing

the task successfully. The most common miswiring

breakdown was connecting the legs of the temperature

sensor or LEDs to the wrong types of Arduino pin (compare

section Study Setup, Building the circuit). For example,

participant P01 accidentally miswired the sensor very early

in the task, resulting in unpredictable sensor readings.

Deciding it was an "accuracy" problem, they searched

online for ways to programmatically make the readings

more reliable, and copied in unnecessary code, to no avail.

Forum posts found online—none relevant to the bug—led

them to make yet more changes to both their circuit and

program, none of which addressed the original miswiring,

and eventually they gave up: "It's the world. It's just

unpredictable in the world. […] It's technically doing what

I want it to do, but it's the world that's breaking, as in, I

can't get it to get to the right temperature" (P01).

A particular case of miswiring—bad seating of the sensor

or an LED into the breadboard—was observed for three

participants. In one case, the participant did not realize that

a badly seated sensor, not connected to the rest of the

circuit, was the cause of the unpredictable sensor readings

they experienced and the bug went unresolved, leading to

task failure: "So why does the sensor don't work? [sic] It

should be work. [sic] So it goes to zero. I didn't change

anything with the sensor" (P04).

Another kind of circuit error that prevented task success

involved five participants either not using resistors with the

LEDs or adding extraneous resistors to the sensor (compare

section Study Setup, Building the circuit). In this task, the

missing resistors caused a very insidious problem because it

affected the behavior of the temperature sensor and made

readings very unpredictable: "I mean, it should work. The

problem is just that the sensor doesn't seem to be very

responsive. Because it starts at 150 and when you put your

hand there it went over 180, and never came back to 150"

(P20). None of the five participants who did not use

resistors with their LEDs ever fixed this bug. Instead,

unable to determine the fault location in the circuit, three of

these participants tried to fix the fault through extraneous

program code.

We also noticed that four participants chose too high a

value of resistor to use with the LEDs. For three

participants this meant that the LEDs lit up but were dim,

while one participant wired a single resistor of such a high

value to all of their LEDs that two did not light up and the

third only blinked intermittently. To address this they

disconnected the resistor from two of the LEDs, causing the

same insidious sensor readings problem mentioned in the

previous paragraph—a problem they never resolved.

Testing

Testing a physical computing artifact is more complex than

testing a program. In two instances, participants who had

constructed their prototype correctly, touched their

temperature sensor and the LEDs did not light up. In fact,

they had cold fingers, that is, their test 'input' was bad. In

one instance, this led a participant to believe there was a

fault when there was not. In software, a more appropriate

test strategy would be to use a variety of test inputs

including edge cases, something that is sometimes difficult

to do in physical computing prototype development.

Debugging

Professional software development environments usually

provide a debugger, which helps programmers to locate and

fix faults, and end-user programming environments have

started to do the same [8]. Unfortunately, physical

computing does not have analogous support tools and thus

it was sometimes difficult for participants in our study to

identify what the problem was.

Figure 7. Total number of resolved obstacles (blue), resolved bugs (green) and unresolved obstacles and bugs (red) by task

success.

0

50

100

150

200

250

300

O
b
s
ta

c
le

s

B
u

g
s

O
b
s
ta

c
le

s

B
u

g
s

O
b
s
ta

c
le

s

B
u

g
s

O
b
s
ta

c
le

s

B
u

g
s

O
b
s
ta

c
le

s

B
u

g
s

O
b
s
ta

c
le

s

B
u

g
s

O
b
s
ta

c
le

s

B
u

g
s

O
b
s
ta

c
le

s

B
u

g
s

O
b
s
ta

c
le

s

B
u

g
s

O
b
s
ta

c
le

s

B
u

g
s

O
b
s
ta

c
le

s

B
u

g
s

O
b
s
ta

c
le

s

B
u

g
s

Circuit Program Circuit+
Program

IDE Circuit Program Circuit+
Program

IDE Circuit Program Circuit+
Program

IDE

Task completed Task failed Task failed but circuit OK

C
o
u
n
t

One particular miswiring fault that four participants were

able to identify and fix was when they erroneously reversed

the power and ground connections of the temperature

sensor. This meant that the component overheated, and as a

result they burnt themselves momentarily when they

touched it: although slightly uncomfortable, this helped

them localize the fault to a particular part of the circuit.

We have already highlighted the insidious problem

resulting from missing and extraneous resistors. The only

way that participants were able to spot this problem was by

noticing that the sensor readings were incorrect when

viewing them in Arduino IDE. However, perhaps because

their focus was on the programming environment at this

point, they usually tried to debug this issue by making

changes to their program code.

Summary

Why did it go so wrong for many of the participants? The

study showed that problems in physical computing are to be

expected, even for users who are eventually successful, but

we also showed that problems resulting from faults in

circuits were particularly hard to identify and remedy. Five

participants did not even realize that a circuit-related error

was preventing their prototype from working, and

attempted to fix the perceived fault by changing their code.

Obviously, that proved in vain, and also caused four of

them to introduce more bugs into their program. This might

also explain why we observed so many program-related

obstacles, breakdown and bugs, and the high proportion of

problems that were associated with the interaction of circuit

and program; once participants started to incorrectly believe

that the issue was in the program instead of the circuit, they

often created further problems in this location. A major

contributory factor here might be that testing and debugging

physical computing prototypes are both very challenging

and appropriate support tools are not currently available.

DISCUSSION

We believe that our findings can generalize beyond our

simple task in an Arduino environment. The most common

breakdown in our study—miswiring—can in fact occur

during any activity that is part of constructing a physical

component, even when setting up and configuring off-the-

shelf devices, for example, setting up a home router and

Wi-Fi network. Hence, our study holds important lessons

for interactions between end users and other physical

devices that possibly require less electronics and

programming expertise.

How might we better support end users' physical computing

activities? While software engineering has been brought to

end-user programming [8], a similar approach is still

lacking for end-user physical computing development.

Thus, we propose tackling this in two ways: 1) providing

tools that offer in-context support to improve the practice of

creating, testing and debugging physical computing

artifacts; and 2) better educating the physical computing

end-user developer.

Tools for Good Physical Computing Practice

Currently, there are no development environments for

physical computing that are as comprehensive as the

professional ones available for writing software. What

would such a development environment look like? There

are already some encouraging approaches for end-user

programmers that we could leverage for this domain. For

example, the Idea Garden is a plug-in to existing

development environments that offers novice programmers

hints and strategies to try out, based on background analysis

of what they are doing [9]. We can distinguish two areas

where this kind of help would be useful for developing

physical computing artifacts: first, supporting the

construction of circuits; and secondly, helping to

systematically test and debug them if needed.

Construction

Good software engineering practice is to decompose the

program into modules and unit test these to incrementally

build a working solution. In our study, we had one

participant who, although less experienced, encountered

fewer problems through such a careful, systematic approach

and was successful in completing the task. She quickly

broke the task down into simpler parts, then built and tested

them individually. For example, she first wired up the

temperature sensor and wrote the code to read its values, to

ensure that they were understandable. She then wired up a

single LED, added code for it and tested that it worked,

before building the circuit for the other two LEDs and

testing them. Finally, she combined the LED code and

sensor code. We could imagine providing strategies and

heuristics in a physical computing environment that

encourage people to follow systematic development

approaches, including encouraging users to develop unit

tests or offering design patterns that might be appropriate.

Such a development environment for physical computing

could also include a run-time simulator, such as the 123D

Circuits Electronics Lab [48] described earlier. Once the

virtual circuit and program work as desired, they could be

reproduced with actual components and the code uploaded

to a physical microcontroller. The virtual aspect would

allow more targeted support to be made available during

construction of a circuit, which would otherwise be very

difficult to provide.

Testing and Debugging

Software engineering also deals to a great extent with

finding and fixing bugs: "the realization came over me with

full force that a good part of the remainder of my life was

going to be spent in finding errors in my own programs"

[47]. Unlike software, there are no compilers or debuggers

to help localize bugs in circuits. Where a bug manifests is

often far from the actual cause of the problem. For example,

in our task, the sensor readings were displayed in the

Arduino IDE but they could be incorrect because of

miswiring bugs in the sensor or LED connections. Fault

localization strategies could also be communicated in such

a development environment, possibly drawing from

existing troubleshooting checklists (such as [12,42]).

Additional features could help end users test their circuits,

by creatively considering possible input values, edge cases

and testing strategies, akin to WYSIWYT and

WYSIWYT/ML [8,19]. Approaches in formally verifying

physical circuits [13] could also be useful in this respect.

Educating the Physical Computing End-User Developer

Physical computing is increasingly used within education to

engage students in STEM subjects. In our study,

participants' programming expertise was higher than their

electronics expertise and they seemed to struggle more with

circuit-related problems. Therefore, we suggest more focus

on teaching concepts useful to circuit construction, testing

and debugging. Given the prevalence of miswiring

problems, end users should be encouraged to follow good

electronic engineering practice, such as correct color coding

conventions for wiring their circuits (for example, power is

always red, ground black, and signals should have different

colors for different components, as in Figure 2), and not

crossing wires, if possible, as it makes it harder to debug a

circuit. It would also be helpful to teach people how to use

a multimeter, for example, to check for continuity or

measure current. We provided one in our study sessions but

only four participants used it.

Finally, it is still an open question how best to teach

electronics subjects to end-user developers. Recent work

has looked at how DIY practices can be supported by online

tutorials [46]; the careful design of information to help end

users understand components and tools used in these

activities seems especially crucial.

Future Work

Our study has pointed to a number of open research

questions that warrant further investigation. First, we did

not look into how people managed to overcome their

problems. We noticed that frequently participants simply

looked up information, copied code from external sources

or fixed bugs through trial-and-error, and future work could

specifically focus on the problem-solving strategies of end-

user physical computing developers. We have begun

analyzing data from the study reported in this paper, to

identify the strategies employed by the participants, and we

look forward to sharing our findings.

Second, we would like to look deeper into what caused the

problems for participants in terms of shortcomings in their

knowledge or skills. Recent work [31] has looked into the

problems that novice programmers face with a view to

addressing specific aspects that prove particularly

troublesome and a similar approach might be useful for

physical computing. Similarly, a key skill in programming

is abstraction, which might also affect physical computing

tasks [44].

Finally, we hope to implement some of the support

mechanisms we suggested in a suitable development

environment for physical computing and assess, in further

studies with end-user developers, the benefits of doing so.

CONCLUSION

This paper reports the results of an empirical study

exploring the problems encountered by end-user developers

undertaking a physical computing task that involves both

circuit construction and programming. We learned that:

 All participants encountered problems, some more than

others, however background factors such as self-efficacy

and self-rated expertise did not predict whether they

would complete the task, or the number and type of

problems they experienced.

 Most problems occurred in programming, however, the

majority of task failures were due to circuit-related

problems. Participants did not always realize there was a

fault or error in their circuit and often incorrectly tried to

fix the perceived problem through their program.

 Miswiring and missing electronic components accounted

for 80% of circuit-related task failures but participants

had serious difficulties localizing these faults.

Our study showed that end-user developers would benefit

from increased support and we suggested two main areas

where they require help: constructing circuits correctly, and

diagnosing errors and implementing appropriate fixes. This

support can be provided by creating development

environments that offer in-context advice during the

construction process, and also by educating end-user

developers in good practice.

Physical computing affords new possibilities to create

artifacts that interact with the world in novel, useful and

meaningful ways. Understanding how best to provide

effective support will be an important step towards the

democratization of physical computing, in which users will

finally become developers.

ACKNOWLEDGEMENTS

We thank our study participants.

REFERENCES

1. Swamy Ananthanarayan, Nathan Lapinski, Katie Siek,

and Michael Eisenberg. 2014. Towards the crafting of

personal health technologies. In Proceedings of the

2014 conference on Designing interactive systems

(DIS '14). ACM, New York, NY, USA, 587-596.

http://dx.doi.org/10.1145/2598510.2598581

2. Rafael Ballagas, Meredith Ringel, Maureen Stone, and

Jan Borchers. 2003. iStuff: a physical user interface

toolkit for ubiquitous computing environments. In

Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (CHI '03). ACM, New

York, NY, USA, 537-544.

http://dx.doi.org/10.1145/642611.642705

3. Massimo Banzi. 2009. Getting Started with Arduino.

Make: Books, O’Reilly Media, Inc., Sebastopol, CA,

USA.

4. Jon Bird, Paul Marshall, and Yvonne Rogers. 2009.

Low-fi skin vision: a case study in rapid prototyping a

sensory substitution system. In Proceedings of the 23rd

British HCI Group Annual Conference on People and

Computers: Celebrating People and Technology (BCS-

HCI '09). British Computer Society, Swinton, UK, UK,

55-64.

5. Tracey Booth and Simone Stumpf. 2013. End-user

experiences of visual and textual programming

environments for Arduino. In End-User Development,

Yvonne Dittrich, Margaret Burnett, Anders Mørch and

David Redmiles (eds.). Springer Berlin Heidelberg,

25–39. http://dx.doi.org/10.1007/978-3-642-38706-7_4

6. Leah Buechley, Mike Eisenberg, Jaime Catchen, and

Ali Crockett. 2008. The LilyPad Arduino: using

computational textiles to investigate engagement,

aesthetics, and diversity in computer science education.

In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (CHI '08). ACM, New

York, NY, USA, 423-432.

http://dx.doi.org/10.1145/1357054.1357123

7. Margaret Burnett, Curtis Cook, Omkar Pendse, Gregg

Rothermel, Jay Summet, and Chris Wallace. 2003.

End-user software engineering with assertions in the

spreadsheet paradigm. In Proceedings of the 25th

International Conference on Software Engineering

(ICSE '03). IEEE Computer Society, Washington, DC,

USA, 93-103.

http://doi.org/10.1109/ICSE.2003.1201191

8. Margaret Burnett, Curtis Cook, and Gregg Rothermel.

2004. End-user software engineering. Commun. ACM

47, 9 (September 2004), 53-58.

http://dx.doi.org/10.1145/1015864.1015889

9. Jill Cao, Scott D. Fleming, Margaret Burnett, and

Christopher Scaffidi. 2014. Idea Garden: Situated

support for problem solving by end-user programmers.

Interacting with Computers 27, 6 (November 2015):

640–660. http://doi.org/10.1093/iwc/iwu022

10. Jill Cao, Yann Riche, Susan Wiedenbeck, Margaret

Burnett, and Valentina Grigoreanu. 2010. End-user

mashup programming: through the design lens. In

Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (CHI '10). ACM, New

York, NY, USA, 1009-1018.

http://dx.doi.org/10.1145/1753326.1753477

11. Deborah R. Compeau and Christopher A. Higgins.

1995. Computer self-efficacy: development of a

measure and initial test. MIS Quarterly 19, 2: 189–211.

http://doi.org/10.2307/249688

12. Brock Craft. 2013. Ten Troubleshooting Tips. In

Arduino Projects for Dummies (1st edition). John

Wiley & Sons, Ltd., Chichester, West Sussex, UK,

359–367.

13. Paul Curzon and Ian Leslie. 1996. Improving hardware

designs whilst simplifying their proof. In Proceedings

of the 3rd International Conference on Designing

Correct Circuits (DCC '96), Mary Sheeran and Satnam

Singh (Eds.). British Computer Society, Swinton, UK.

14. Irena Pletikosa Cvijikj and Florian Michahelles. 2011.

The toolkit approach for end-user participation in the

Internet of Things. In Architecting the Internet of

Things, Dieter Uckelmann, Mark Harrison and Florian

Michahelles (eds.). Springer Berlin Heidelberg, 65–96.

http://doi.org/10.1007/978-3-642-19157-2_4

15. Allen Cypher, Mira Dontcheva, Tessa Lau, and Jeffrey

Nichols. 2010. No Code Required: Giving Users Tools

to Transform the Web. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA.

16. Sarah Gallacher, Jenny O'Connor, Jon Bird, Yvonne

Rogers, Licia Capra, Daniel Harrison, and Paul

Marshall. 2015. Mood Squeezer: lightening up the

workplace through playful and lightweight interactions.

In Proceedings of the 18th ACM Conference on

Computer Supported Cooperative Work & Social

Computing (CSCW '15). ACM, New York, NY, USA,

891-902. http://dx.doi.org/10.1145/2675133.2675170

17. Saul Greenberg and Chester Fitchett. 2001. Phidgets:

easy development of physical interfaces through

physical widgets. In Proceedings of the 14th Annual

ACM Symposium on User Interface Software and

Technology (UIST '01). ACM, New York, NY, USA,

209-218. http://dx.doi.org/10.1145/502348.502388

18. Valentina I. Grigoreanu, Margaret M. Burnett, and

George G. Robertson. 2010. A strategy-centric

approach to the design of end-user debugging tools. In

Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (CHI '10). ACM, New

York, NY, USA, 713-722.

http://dx.doi.org/10.1145/1753326.1753431

19. Alex Groce, Todd Kulesza, Chaoqiang Zhang, Shalini

Shamasunder, Margaret Burnett, Weng-Keen Wong,

Simone Stumpf, Shubhomoy Das, Amber Shinsel,

Forrest Bice, and Kevin McIntosh. 2014. You are the

only possible oracle: effective test selection for end

users of interactive machine learning systems. IEEE

Trans. Softw. Eng. 40, 3 (March 2014), 307-323.

http://dx.doi.org/10.1109/TSE.2013.59

20. Björn Hartmann, Scott R. Klemmer, Michael

Bernstein, Leith Abdulla, Brandon Burr, Avi

Robinson-Mosher, and Jennifer Gee. 2006. Reflective

physical prototyping through integrated design, test,

and analysis. In Proceedings of the 19th Annual ACM

Symposium on User Interface Software and

Technology (UIST '06). ACM, New York, NY, USA,

299-308. http://dx.doi.org/10.1145/1166253.1166300

21. Dan O'Sullivan and Tom Igoe. 2004. Physical

Computing: Sensing and Controlling the Physical

World with Computers. Course Technology Press,

Boston, MA, United States.

22. Tom Jenkins and Ian Bogost. 2014. Designing for the

Internet of Things: prototyping material interactions. In

CHI '14 Extended Abstracts on Human Factors in

Computing Systems (CHI EA '14). ACM, New York,

NY, USA, 731-740.

http://dx.doi.org/10.1145/2559206.2578879

23. Vaiva Kalnikaite, Yvonne Rogers, Jon Bird, Nicolas

Villar, Khaled Bachour, Stephen Payne, Peter M.

Todd, Johannes Schöning, Antonio Krüger, and Stefan

Kreitmayer. 2011. How to nudge in Situ: designing

lambent devices to deliver salient information in

supermarkets. In Proceedings of the 13th International

Conference on Ubiquitous Computing (UbiComp '11).

ACM, New York, NY, USA, 11-20.

http://dx.doi.org/10.1145/2030112.2030115

24. Cory Kissinger, Margaret Burnett, Simone Stumpf,

Neeraja Subrahmaniyan, Laura Beckwith, Sherry

Yang, and Mary Beth Rosson. 2006. Supporting end-

user debugging: what do users want to know?. In

Proceedings of the Working Conference on Advanced

Visual Interfaces (AVI '06). ACM, New York, NY,

USA, 135-142.

http://dx.doi.org/10.1145/1133265.1133293

25. André Knörig, Reto Wettach, and Jonathan Cohen.

2009. Fritzing: a tool for advancing electronic

prototyping for designers. In Proceedings of the 3rd

International Conference on Tangible and Embedded

Interaction (TEI '09). ACM, New York, NY, USA,

351-358. http://dx.doi.org/10.1145/1517664.1517735

26. Andrew J. Ko and Brad A. Myers. 2005. A framework

and methodology for studying the causes of software

errors in programming systems. J. Vis. Lang. Comput.

16, 1-2 (February 2005), 41-84.

http://dx.doi.org/10.1016/j.jvlc.2004.08.003

27. Andrew J. Ko, Brad A. Myers, and Htet Htet Aung.

2004. Six Learning Barriers in End-User Programming

Systems. In Proceedings of the 2004 IEEE Symposium

on Visual Languages and Human-Centric Computing

(VLHCC '04). IEEE Computer Society, Washington,

DC, USA, 199-206.

http://dx.doi.org/10.1109/VLHCC.2004.47

28. Thomas Kubitza and Albrecht Schmidt. 2015. Towards

a toolkit for the rapid creation of smart environments.

In End-User Development, Paloma Díaz, Volkmar

Pipek, Carmelo Ardito, Carlos Jensen, Ignacio Aedo

and Alexander Boden (eds.). Springer International

Publishing, 230–235. http://doi.org/10.1007/978-3-

319-18425-8_21

29. Todd Kulesza, Simone Stumpf, Weng-Keen Wong,

Margaret M. Burnett, Stephen Perona, Andrew Ko, and

Ian Oberst. 2011. Why-oriented end-user debugging of

naive Bayes text classification. ACM Trans. Interact.

Intell. Syst. 1, 1 (October 2011), 2:1–2:31.

http://doi.org/10.1145/2030365.2030367

30. Sandeep Kaur Kuttal, Anita Sarma, and Gregg

Rothermel. 2013. Debugging support for end user

mashup programming. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems

(CHI '13). ACM, New York, NY, USA, 1609-1618.

http://dx.doi.org/10.1145/2470654.2466213

31. Michael J. Lee, Faezeh Bahmani, Irwin Kwan, et al.

2014. Principles of a debugging-first puzzle game for

computing education. Proceedings of the 2014 IEEE

Symposium on Visual Languages and Human-Centric

Computing (VLHCC '14), IEEE Computer Society,

57–64. http://doi.org/10.1109/VLHCC.2014.6883023

32. Alan Lesgold, Susanne Lajoie, Marilyn Bunzo, and

Gary Eggan. 1992. SHERLOCK: A coached practice

environment for an electronics troubleshooting job. In

Computer-Assisted Instruction and Intelligent Tutoring

Systems: Shared Goals and Complementary

Approaches, Jill H. Larkin and Ruth W. Chabay (eds.).

Lawrence Erlbaum Associates, Hillsdale, NJ, 201–238.

33. Henry Lieberman. 2001. Your Wish is My Command:

Programming by Example. Morgan Kaufmann, San

Francisco.

34. Amon Millner and Edward Baafi. 2011. Modkit:

blending and extending approachable platforms for

creating computer programs and interactive objects. In

Proceedings of the 10th International Conference on

Interaction Design and Children (IDC '11). ACM, New

York, NY, USA, 250-253.

http://dx.doi.org/10.1145/1999030.1999074

35. John F. Pane and Brad A. Myers. 1996. Usability

Issues in the Design of Novice Programming Systems.

Carnegie Mellon University, School of Computer

Science Technical Report CMU-CS-96-132,

Pittsburgh, PA. Retrieved from

http://repository.cmu.edu/isr/820

36. John F. Pane and Brad A. Myers. 2006. More natural

programming languages and environments. In End

User Development, Henry Lieberman, Fabio Paternò

and Volker Wulf (eds.). Springer Netherlands, 31–50.

http://doi.org/10.1007/1-4020-5386-X_3

37. James Reason. 1990. Human Error. Cambridge

University Press, Cambridge England ; New York.

38. M. Resnick, F. Martin, R. Sargent, and B. Silverman.

1996. Programmable Bricks: toys to think with. IBM

Systems Journal 35, 3.4: 443–452.

http://doi.org/10.1147/sj.353.0443

39. Dries De Roeck, Karin Slegers, Johan Criel, Marc

Godon, Laurence Claeys, Katriina Kilpi, and An

Jacobs. 2012. I would DiYSE for it!: a manifesto for

do-it-yourself internet-of-things creation. In

Proceedings of the 7th Nordic Conference on Human-

Computer Interaction: Making Sense through Design

(NordiCHI '12). ACM, New York, NY, USA, 170-179.

http://dx.doi.org/10.1145/2399016.2399044

40. Yvonne Rogers, Jeni Paay, Margot Brereton, Kate L.

Vaisutis, Gary Marsden, and Frank Vetere. 2014.

Never too old: engaging retired people inventing the

future with MaKey MaKey. In Proceedings of the

SIGCHI Conference on Human Factors in Computing

Systems (CHI '14). ACM, New York, NY, USA, 3913-

3922. http://dx.doi.org/10.1145/2556288.2557184

41. Joshua G. Tanenbaum, Amanda M. Williams, Audrey

Desjardins, and Karen Tanenbaum. 2013.

Democratizing technology: pleasure, utility and

expressiveness in DIY and maker practice. In

Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (CHI '13). ACM, New

York, NY, USA, 2603-2612.

http://dx.doi.org/10.1145/2470654.2481360

42. Chris Taylor. 2010. Beginner Troubleshooting -

SparkFun Electronics. SparkFun. Retrieved September

23, 2015 from https://www.sparkfun.com/tutorials/226

43. Daniel Tetteroo, Iris Soute, and Panos Markopoulos.

2013. Five key challenges in end-user development for

tangible and embodied interaction. In Proceedings of

the 15th ACM International Conference on Multimodal

Interaction (ICMI '13). ACM, New York, NY, USA,

247-254. http://dx.doi.org/10.1145/2522848.2522887

44. Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and

Michael L. Littman. 2014. Practical trigger-action

programming in the smart home. In Proceedings of the

SIGCHI Conference on Human Factors in Computing

Systems (CHI '14). ACM, New York, NY, USA, 803-

812. http://dx.doi.org/10.1145/2556288.2557420

45. Nicolas Villar, James Scott, and Steve Hodges. 2011.

Prototyping with Microsoft .Net Gadgeteer.

Proceedings of the Fifth International Conference on

Tangible, Embedded, and Embodied Interaction (TEI

'11), ACM, New York, NY, USA, 377-380.

http://dx.doi.org/10.1145/1935701.1935790

46. Ron Wakkary, Markus Lorenz Schilling, Matthew A.

Dalton, Sabrina Hauser, Audrey Desjardins, Xiao

Zhang, and Henry W.J. Lin. 2015. Tutorial authorship

and hybrid Designers: The Joy (and Frustration) of

DIY Tutorials. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems

(CHI '15). ACM, New York, NY, USA, 609-618.

http://dx.doi.org/10.1145/2702123.2702550

47. Maurice V. Wilkes. 1985. Memoirs of a Computer

Pioneer. The MIT Press, Cambridge, MA, USA.

48. 123D Circuits Electronics Lab. Autodesk 123D

Circuits. Retrieved July 12, 2015 from

https://123d.circuits.io/lab

49. TMP36 datasheet and product info | Voltage Output

Temperature Sensors | Analog Devices. Retrieved

September 21, 2015 from

http://www.analog.com/en/products/analog-to-digital-

converters/integrated-special-purpose-

converters/integrated-temperature-sensors/tmp36.html

50. Arduino Starter Kit. Retrieved July 21, 2015 from

https://www.arduino.cc/en/Main/ArduinoStarterKit

