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ABSTRACT 

Considerable research has focused on the problems that end 

users face when programming software, in order to help 

them overcome their difficulties, but there is little research 

into the problems that arise in physical computing when 

end users construct circuits and program them. In an 

empirical study, we observed end-user developers as they 

connected a temperature sensor to an Arduino 

microcontroller and visualized its readings using LEDs. We 

investigated how many problems participants encountered, 

the problem locations, and whether they were overcome. 

We show that most fatal faults were due to incorrect circuit 

construction, and that often problems were wrongly 

diagnosed as program bugs. Whereas there are development 

environments that help end users create and debug 

software, there is currently little analogous support for 

physical computing tasks. Our work is a first step towards 

building appropriate tools that support end-user developers 

in overcoming obstacles when constructing physical 

computing artifacts. 

Author Keywords 
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ACM Classification Keywords 

H.5.m. Information interfaces and presentation (e.g., HCI): 

Miscellaneous. 

INTRODUCTION 

The rise of the Maker Movement and DIY creation [41], 

underpinned by the ready availability of open source tools 

and affordable components, has resulted in a growing 

number of end-user developers—artists, designers, 

researchers, and hobbyists—who create interactive physical 

computing artifacts. Increasing numbers of end-user 

developers are also building complex systems using the 

'Internet of Things' [28,22,14], for example, taking charge 

of their well-being and health by adapting programmable 

medical devices and developing health-related information 

appliances [1]. This area is of burgeoning interest to HCI 

research, both as a cultural phenomenon and for developing 

tools to support people who are interested in building these 

interactive systems and devices [39,40,2]. 

While users' engagement with physical computing is 

beyond a doubt [6], the challenges faced by end-user 

developers are still considerable: they must learn and apply 

both programming and electronics concepts, and also 

develop some understanding of the relationship between the 

software and hardware of their systems in order to solve 

problems that arise. We already know from the literature 

that program debugging is difficult but it has been 

suggested that localizing errors may present even greater 

challenges for inexperienced end-user developers when 

both hardware and software are involved [43]. 

There has been considerable work in end-user software 

engineering (EUSE) that aims to understand the problems 

 

Figure 1. A participant constructing a prototype circuit in 

our study. The task involved connecting a temperature 

sensor to an Arduino and writing a program to read the 

sensor and visualize the values using LEDs. 

 



that users face in programming, in order to provide an 

empirical basis for the design of development environments 

and support tools [7,8,9,18,24,36]. There are development 

tools that aim to make physical computing development 

easier [17, 20], however, to date, there has been little 

research into the problems faced by end users as they 

develop physical computing artifacts, in order to provide 

appropriate help in overcoming the challenges they face.  

Our work provides the first step in addressing this lack of 

knowledge and in establishing an empirical foundation for 

future tool design. We conducted an empirical study 

involving 20 participants who constructed and programmed 

a 'Love-O-Meter' (Figure 1)—a relatively simple interactive 

device that uses an Arduino microcontroller and three LEDs 

to visualize the readings of a temperature sensor when it is 

touched. We present an account of where participants' 

problems occurred, and describe the relationship between 

these problems and participants' background experience. 

We investigate how difficult these problems were to 

overcome, and the faults that led to task failure. We offer 

some initial suggestions about how end-user developers can 

be best supported in physical computing tasks. Our research 

questions were: 

 How many problems do users encounter, and where are 

they located? Are there aspects of developing physical 

computing devices that are particularly prone to 

problems?   

 How do users' backgrounds and experience affect the 

challenges they face in physical computing tasks?  

 What are the problems that can be easily overcome, 

and what problems prove insurmountable? 

The contribution of our paper is to provide the first 

systematic investigation of the problems faced by end users 

in physical computing tasks, extending findings from end-

user software engineering (EUSE) beyond programming to 

physical computing. Our results can inform the design of 

tools to support end-user developers overcome the physical 

computing challenges they commonly face. 

In the remainder of the paper, we first give an overview of 

related work in end-user programming and physical 

computing. We then describe our study design and present 

the results of our analyses. Finally, we discuss implications 

for how users can be supported, and describe future work. 

BACKGROUND 

End-User Programming and Software Engineering 

Previous research has investigated the difficulties faced by 

end-user programmers [35,27,9,24], in order to help 

overcome them. Much of this work focuses on simplifying 

programming languages or environments, for example, 

programming by demonstration [33,15] eases the effort of 

learning a new programming language. A different way to 

help users is through providing features built directly into 

the programming environment, in order to support problem-

solving activities during programming. For example, 

StratCel and WYSIWYT aimed to help end users test and 

debug spreadsheets [18,8], and this approach has also 

proven effective in programming web mashups [30], and 

supporting end users in debugging intelligent systems [29]. 

We draw inspiration from this work for end users 

developing physical computing prototypes, and are 

investigating the problems these end users face, with the 

aim of building appropriate support tools. 

There are a number of different approaches to categorizing 

the programming problems end-user programmers face. 

One frequently used approach is to categorize end-user 

programming problems in terms of 'learning barriers' [27]. 

Learning barriers have been shown to occur when end users 

develop web mashups [10] and debug machine learning 

systems [29]. Another way is to focus on the causes of 

software errors [26], based on research in human error [37], 

that has suggested that errors are due to 'cognitive 

breakdowns' in which end users encounter problems 

applying skills, rules, or knowledge. Breakdowns can be 

investigated by classifying the action being performed, the 

interface the action is performed on, and the information 

being acted on. The data analysis in this study was 

informed by a focus on breakdowns.   

Although there is some evidence of learning barriers 

occurring in programming environments for physical 

computing [5], very little research has investigated the 

problems that end users face when constructing physical 

computing devices that combine elements of both 

programming and electronics. The goal of our study was to 

address this by identifying these problems, as a first step 

towards developing support solutions that can help end 

users to overcome the common problems they face in 

physical computing.  

Physical Computing Tools 

Physical computing integrates computing with the physical 

world, often in the form of electronic devices or systems 

that interact with the environment via sensors and actuators 

[21]. These devices can take input from the world, through 

sensors that measure aspects of the environment, such as 

temperature, proximity, or light, and respond in some way, 

for example, though sound, motion or vibration. [4,23,16]. 

Developing a physical computing device typically involves 

coordinating the behavior of sensors and actuators by 

connecting them to a microcontroller and programming 

their behavior. Platforms like Arduino [3] aim to lower the 

barriers to entry to this type of activity, but creating 

electronic circuits and programming them still requires 

some knowledge and skill, and troubleshooting physical 

computing issues can be tricky. 

Some work in this area has aimed to make it easier to 

construct the electronics or hardware. For example, 

'Programmable Bricks' [38] enabled children to easily 

create physical computing devices by connecting sensors 

and motors to a computer embedded in a LEGO brick and 



program them using the Logo programming language. 

Phidgets [17] are 'physical widgets' that facilitate rapid 

prototyping with minimal electronics knowledge. Other 

systems, such as .NET Gadgeteer [45], also aim to make it 

easier for end-user developers by providing plug-and-play 

hardware components. 

A different strand of research has focused on lowering the 

bar for programming, by providing visual programming 

environments for physical computing platforms, which are 

proposed as being easier for end users to master (for 

example, [20,34]).  

Very few support systems have been developed to help 

build and debug the simple circuits typically involved in 

physical computing. SHERLOCK [32] is an environment 

for teaching sophisticated electronics troubleshooting to 

fighter airplane engineers. Tools aimed at end-user 

developers include Fritzing [25], which allows users to 

graphically lay out circuits on a virtual breadboard (see 

Figure 2 for an annotated example), and Autodesk's 123D 

Circuits Electronics Lab web application [48], which 

combines virtual circuit construction with a code editor and 

a simulator, so that users can 'upload' their program to their 

virtual circuit and simulate run-time behavior. 

However, there is very limited empirical evidence of what 

problems end-user developers face in physical computing 

tasks that can be used to inform the design of appropriate 

support tools. Our study addressed this issue. 

STUDY SETUP 

We conducted an empirical study, using a 'think-aloud' 

approach, in which participants undertook a naturalistic 

physical computing task. In order to analyze the nature of 

the problems they faced, we collected a rich set of data, 

including video transcripts, the artifacts that participants 

constructed, and information about participants' 

backgrounds and experience. 

Participants 

We recruited 20 adult participants (8 female, 12 male, mean 

age of 32 years) through local Maker communities and 

universities, targeting hobbyists with some experience of 

using the Arduino platform, but excluding professionals 

who develop physical computing artifacts for monetary 

gain. All participants received a £20 gift voucher as an 

incentive. 

Physical Computing Development Task 

We used an Arduino microcontroller in our study.  Arduino 

has achieved wide adoption by many types of end-user 

developers, including hobbyists, and is currently the most 

popular physical computing platform. We chose the official 

Arduino UNO revision 3 as the development board—a 

commonly used starter board included in the official 

Arduino Starter Kit. As the development environment we 

used the official Arduino IDE (version 1.61 for Windows), 

running on a Microsoft Windows 7 desktop PC.  

The task was a simplified version of project 3 in the official 

Arduino Starter Kit [50]. The physical computing device 

that the participants attempted to build was a 'Love-O-

Meter': this uses three LEDs to visualize the values read 

from a temperature sensor, lighting up one LED at lower 

temperatures, two at medium temperatures and three at 

higher temperatures. The temperature can be increased by 

touching the sensor. Building this device involves 

connecting seven electronic components to a 

microcontroller and writing a short program to coordinate 

their behavior. Participants used a breadboard and jumper 

wires to build the electronic circuit and no soldering was 

involved in the task. 

We now briefly describe the steps involved in successfully 

completing the task, so that the problems that participants in 

our study had when constructing the circuit and the 

program (see Results section, What Went Fatally Wrong?) 

are better understandable.  

It is possible to first build the complete circuit and then 

write the program controlling it, or to decompose the task 

into smaller parts and complete them in turn, for example, 

first build the sensor circuit and write the code for reading 

the temperature values, and then move on to building and 

programming an LED circuit. Here we describe how to 

build the circuit first and then the associated program.  

Building the circuit 

This involves connecting the electronic components to the 

Arduino board. Figure 2 shows how the components could 

be wired up successfully.  

The temperature sensor (TMP36) [49] is an analog device 

that has three legs, each of which has to be correctly wired 

into an Arduino analog pin, ground and power in order for 

the sensor to operate correctly. Miswiring the connections 

to the sensor can result in unusual readings, or the sensor 

itself heating up to a high temperature. The Arduino analog 

pin readings are converted into digital values between 0 and 

1023. No additional components are needed for the sensor 

 

Figure 2. The simplest way to build the circuit for the study 

task. Each wire or resistor connects two locations in the 

circuit: either a pin on the Arduino or the leg of a 

component. 



to work correctly. Participants can cause noticeable changes 

in the readings by touching it.  

Each LED has two legs, and its positive leg (anode) needs 

to be connected to an Arduino digital output pin and its 

negative leg (cathode) connected to ground. Because it is a 

diode, reversing the signal and ground connections means 

the LED will not light up. A resistor of appropriate value 

should be wired either between the positive leg and the 

digital pin, or the negative leg and ground, to regulate 

electrical current to the LED. If the resistor value is too 

high, the LED will not light up.  If no resistor is used, it 

may cause other problems, such as the LED burning out 

prematurely and even damaging the Arduino board. 

Additionally, we found that when resistors were not 

included in the circuit, the LEDs drew large currents from 

the Arduino, which in turn affected the temperature 

readings from the sensor. 

Given that an Arduino UNO has only three ground pins but 

wiring all of the components into the circuit requires four 

connections to ground (one for the sensor and one for each 

of the three LEDs), it was necessary for participants to set 

up a ground rail on the breadboard that could be shared by 

the components. 

Writing the program 

An Arduino program has two main parts: a setup() 

function which executes only once when the program is 

first run, and a loop() function that then executes 

repeatedly at a very high speed. Variables such as which 

Arduino pins are being used are typically declared globally 

at the top of the program, outside of the setup() and 

loop() functions. 

We first describe the programming steps involved in 

reading and displaying the temperature sensor values in the 

Arduino IDE and then describe the programming steps to 

control the LEDs.  

Sensor program 

The first step is to state which analog pin on the Arduino 

board is connected to the sensor, so that the temperature 

values can be read. In order to display the temperature 

values being sent to the Arduino in the monitor built into 

the IDE, it is then necessary to add a line of code to the 

setup() function, to set up serial communication between 

the Arduino and the computer. The rest of the program code 

goes in the loop() function. First, the analog pin that is 

connected to the temperature sensor has to be read, and the 

value ideally stored in a variable. Then, the current 

temperature value can be written to the Serial Monitor built 

into the Arduino IDE, where it can be viewed. 

LED program 

The first step is to state which digital pin on the Arduino 

board each of the LEDs is connected to. Each of these 

digital pins can then be used as a switch in the program to 

turn the connected LED on or off.  Each of the digital pin 

numbers used can be stored in global variables at the top of 

the program. In the setup() function, each digital pin 

connected to an LED has to be configured as an output pin, 

so it can be used to switch an LED on or off. In the loop() 

function, each LED can be switched on or off by reference 

to its pin. 

Conditional statements are needed to switch on the 

appropriate number of LEDs to visualize the temperature 

read from the sensor. In order to write this code, a 

participant has to understand the range of temperature 

values that can be generated by holding the sensor between 

their fingers, what the sensor value is at room temperature, 

and determine appropriate temperature value thresholds that 

should be used to switch the LEDs on and off.  

Procedure 

During the session, participants first completed two 

background questionnaires that gathered information about 

their demographics, background and experience, and self-

efficacy in physical computing. They then were given a task 

instruction sheet, giving a brief description of the goals that 

the artifact had to satisfy. They had 45 minutes to complete 

the task. We chose this length of time because this is the 

recommended time for project 3 in the Arduino Starter Kit, 

and attempts at building it unaided during a pilot study took 

approximately 30 minutes. Participants had access to the 

task instruction sheet that specified the artifact they had to 

build, an Arduino UNO microcontroller, a breadboard, a 

labeled kit of electronic components, a digital multimeter 

and the Arduino IDE. They were allowed to follow their 

usual working method, including using the help content and 

examples built into the Arduino IDE, searching online for 

sources of information and copying code snippets. As they 

were working, they were asked to think aloud. A facilitator 

helped the participants to become familiar with the task 

specification but did not assist in building the prototype or 

overcoming development problems. The facilitator only 

intervened to remind participants to think aloud (if they fell 

silent for approximately 10 seconds), or when there was a 

danger of physical harm to a participant. At the end of the 

task participants were asked to demonstrate their prototype.  

Data Collection 

We captured participants' relevant experience and self-

efficacy in physical computing. They self-assessed their 

programming, electronics, physical computing development 

and Arduino expertise on 7-point scales, from complete 

beginner (1) to expert (7). Self-efficacy was rated on a scale 

of 0-100 through an adapted questionnaire based on 

computer self-efficacy [11], in which participants rated 

their self-confidence in completing a physical computing 

task of moderate complexity using the Arduino platform.  



We video-recorded the participants during the task from 

multiple vantage points and also recorded screen activity 

using Morae Recorder software. We synchronized and 

merged these videos to a single, composite, split-screen 

video (Figure 3) per participant, for use in analysis. We 

used digital photographs and Fritzing breadboard diagrams 

[25] to capture circuit configuration, and saved all programs 

created or adapted by each participant. 

Analysis 

We first established whether each participant had 

successfully completed the task. The task was counted as 

completed when the prototype was shown to meet the 

specification given—the participant demonstrated the 

prototype at the end of the session, and after the session we 

examined the circuit and program for evidence that they 

were indeed correctly constructed. 

We analyzed the split-screen video recordings of each 

session, for evidence of problems encountered by 

participants when they were doing the physical computing 

task. We transcribed key events from these videos and 

coded them, first distinguishing three different kinds of 

problems: obstacles (where participants hit hurdles to 

overcome), breakdowns (on evidence of errors in action or 

thinking) and bugs (on evidence of faults introduced).  

Obstacles were coded in the following circumstances: 1) 

when participants stated that they did not know or 

understand something; 2) when they said that they needed 

to do something but there was evidence that they faced a 

problem doing it, for example, if a participant said that they 

needed to wire up the LEDs, and then searched online for 

information that showed them how to do this; 3) if a 

participant showed signs of confusion or frustration, for 

example, a puzzled expression on viewing sensor readings 

in the Serial Monitor. Hence, our obstacle code includes 

what previous research has termed 'information gaps' [24].  

Inspired by previous classifications of errors [37,26], we 

also looked for evidence of breakdowns. In our analysis, we 

coded breakdowns when there was evidence that: 1) 

participants carried out a wrong action, that is, they made a 

slip or mistake, for example, mistyping a variable name or 

using an inappropriate command; 2) they made an incorrect 

assessment, for example, saying something was working 

when in fact it was not; 3) there were observed faults in 

their knowledge or reasoning, for example, stating 

something factually incorrect.  

An obstacle might cause a breakdown but it could also be 

overcome without causing any further problem, for 

example, when a participant said that they did not 

understand the online tutorial page they were reading, but 

then simply closed it and instead found one that they did 

understand.  

A breakdown could result in a bug, that is, a fault that a 

participant introduced through their actions or beliefs. For 

example, a breakdown in which a participant forgot to add a 

semi-colon to the end of a variable declaration statement 

would lead to a bug in the program which needed to be 

fixed. On the other hand, adding extraneous code to the 

program, such as declaring a variable that is never used, is 

an example of a breakdown that does not lead to a bug. We 

coded as bugs all the individual faults created by the 

participant that needed to be solved. For example, if a 

participant forgot, in their program, to configure all three of 

the digital pins connected to the LEDs as outputs (using the 

pinMode() function), we coded this as three separate bugs. 

Importantly, the participant might not have been aware that 

they had introduced a bug that needed solving; while some 

bugs provide clues that make it easy for a user to spot that 

there is a problem, other bugs can impact more subtly on 

the behavior of the prototype in a way that makes fault 

localization and diagnosis very difficult.  

We then analyzed where each of these three problem types 

originated, either relating to the circuit, the program, or the 

development environment, similar to [26]. For example, if a 

breakdown occurred in which a participant used a wrong 

comparison operator in their code, it was assigned the 

'program' location. If a participant encountered an obstacle 

in which they were unable to figure out where to find a 

particular function/option in the development environment, 

then the 'IDE' location code was assigned.  

In some cases, problems straddled both program and circuit, 

for example, when a participant had difficulty 

understanding the sensor readings in the Serial Monitor 

(which are the result of interaction between the circuit and 

the program), misunderstood the relationship between the 

program and the circuit, or said that they did not know how 

to wire up and program a component. In these cases, we 

assigned the 'circuit+program' code to the observed 

problem. 

Having identified all the obstacles, breakdowns and bugs 

for each participant, we then analyzed whether they were 

overcome or not during the session. 

 

Figure 3. Composite, split-screen video of physical computing 

task, showing onscreen activity, participant's face, overhead 

zoom of circuit construction, and wider frontal view of 

equipment use.  



RESULTS 

We considered participants' expertise, its role in task 

success and the impact on how much they struggled. We 

then investigated the location of problems encountered and 

whether participants managed to overcome these problems. 

We finally examined sources of failures in detail and which 

kinds of activities were challenging for participants. 

How Many Problems? 

To be successful at a physical computing task, end-user 

developers need to be sufficiently proficient at 

programming and at building an electronic circuit but we 

would hardly expect them to be experts. Participants in our 

study rated their expertise in physical computing between 

complete beginner and expert on a 7-point scale 

(mean=3.60, SD=1.19), with their programming expertise 

(mean=4.40, SD=1.47) being slightly higher than their 

electronics expertise (mean=3.10, SD=1.33). Participants 

usually had more years of programming experience 

(mean=10.89, SD=7.53) than electronics experience 

(mean=6.75, SD=7.63) or physical computing development 

experience (mean=3.23, SD=2.03). Participants reported 

receiving some form of training or instruction in 

programming but mostly being self-taught in constructing 

circuits, which might explain this difference. Our study task 

involved the Arduino platform and our participants 

considered themselves reasonably knowledgeable in this 

environment (mean=3.75, SD=1.41) and relatively self-

confident at tackling a task of moderate complexity 

(mean=69.70, SD=10.78).  

However, only six of the 20 participants—P3, P5, P6, P7, 

P17, P18—successfully built a working prototype that met 

the specification given. We found no significant 

relationships between successful task completion and self-

efficacy or self-rated expertise. 

Every participant was impeded in their progress in 

completing the task in some way (Figure 4), through 

obstacles, breakdowns or bugs; most participants 

experienced all three types of problem. Participants 

encountered a mean of 41.60 obstacles (SD=14.17), 21.05 

breakdowns (SD=13.4), and created 13.7 bugs (SD=9.85) 

over the 45 minutes they worked on the task. This means 

that participants struggled a great deal, even though the task 

was appropriate for their experience and background. 

We then investigated whether task success was linked with 

how many problems were encountered.  A Mann-Whitney 

test showed that the six participants who succeeded had 

significantly lower total numbers of obstacles (U=13.00, 

p=0.015) and breakdowns (U=10.00, p=0.006) than 

participants who did not succeed. Furthermore, although 

not significant (U=18.00, p=0.051), successful participants 

also marginally introduced fewer bugs. It appears that the 

successful participants were simply better at physical 

computing development—either knowing more, or doing 

fewer things wrong—than their unsuccessful counterparts. 

Where Did Problems Occur? 

We were interested in where participants' problems were 

located. Figure 5 shows the distribution of obstacles, 

breakdowns and bugs in the circuit, program, 

circuit+program and IDE. 

The overwhelming majority of obstacles (49%) occurred in 

relation to the program (mean=20.40, SD=8.93), followed 

by 28% associated with circuit construction (mean=11.55, 

SD=6.36), while 20% of obstacles occurred in the 

interaction between the program and circuit (mean=8.25, 

SD=7.87). The same pattern also held for breakdowns: 52% 

occurred in the program (mean=10.95, SD=8.41), while 

31% of breakdowns were circuit-related (mean=6.45, 

SD=5.97). This means that participants carried out more 

wrong actions, and made more incorrect assessments and 

factually incorrect statements when they were programming 

than when they were constructing the circuit. We also found 

that bugs introduced by participants related overwhelming 

to their program (66%) instead of their circuit (33%).  

Considering that participants rated their programming 

expertise higher than their electronics expertise, we were 

surprised that they appeared to struggle more with program-

related than circuit-related problems. We did not find any 

significant correlation between their electronics expertise 

and how many circuit-related obstacles, breakdowns or 

bugs they had in constructing the prototype, nor a 

relationship between their self-assessed programming 

expertise and their program-related obstacles, breakdowns 

or bugs. Although not significant, there was a marginal 

relationship between programming expertise and program-

 

Figure 5. Number of obstacles (blue), breakdowns (orange) 

and bugs (green) per location.  
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Figure 4. Number of obstacles (blue), breakdowns (orange) 

and bugs (green) per participant. Successful participants are 

indicated with a green smiley. 



related obstacles (r=-0.431, p=0.058) and breakdowns (r=-

0.400, p=0.081). Taken together, this means that in general 

participants were poor judges of how good they are at 

constructing physical computing prototypes.  

Only very few obstacles (3%) stemmed from use of the IDE 

(mean=1.05, SD=1.39). This echoes findings from end-user 

programming which showed that users tend to have few 

information gaps about features of the programming 

environment and that the majority of problems arise due to 

issues in problem-solving on a strategic level, that is, 

knowing how to test or debug or what to do next [24].  

It might be tempting to deduce that programming was the 

major challenge for participants in the task. However, the 

number of problems encountered and where they occurred 

does not show the severity of problems or whether they 

were successfully resolved. We now turn to our analysis of 

whether these problems could be overcome. 

Were Problems Overcome? 

Some problems might be more easily overcome than others 

by end-user developers. For this analysis, we looked only at 

obstacles and bugs, since they represent faults which can be 

overcome, whereas breakdowns manifest as actions or 

spoken thoughts that cannot be 'undone'. Initially, it 

appeared that a large number of all obstacles and bugs were 

overcome by participants, wherever their location (Figure 

6). However, when obstacles involved the interaction of the 

circuit with the program, less than half were resolved 

(46%), highlighting that these problems seemed to be 

particularly challenging. 

We then investigated differences between participants who 

were successful at completing the task and those who were 

unsuccessful (Figure 7). Successful participants overcame 

97% of their obstacles and all of their bugs. Unsuccessful 

participants, on the other hand, only overcame 69% of their 

obstacles and 64% of their bugs. Three participants—P09, 

P16, P19—did not complete the task due to a fault in their 

program code, however, they all managed to construct the 

circuit correctly. These participants did much better than 

the rest of the unsuccessful participants, in both overcoming 

obstacles and resolving bugs. In particular, even 

unsuccessful participants who constructed a working circuit 

overcame 100% of their circuit-related obstacles and 75% 

of their circuit-related bugs, whereas the other unsuccessful 

participants only solved 79% and 59% of the same problem 

types, respectively. Unsuccessful participants with circuit 

problems also did much worse when the obstacles 

concerned the interaction between the circuit and the 

program: they overcame only 35% of 'circuit+program' 

obstacles, whereas participants who correctly constructed 

the electronic circuit overcame 63% of these.  

It seems then that some types of obstacles and bugs 

prevented participants from completing the task. We 

wondered what activities caused these fatal problems, and 

we present the analysis in the next section. 

What Went Fatally Wrong? 

We now present a detailed analysis of what participants did 

which caused them to not complete the task, that is, 

breakdowns that led eventually to task failure or were very 

difficult to address. It should be noted that often it was not 

just one problem that caused task failure but rather a series 

of bugs were introduced that compounded the difficulty of 

overcoming them. We will compare the 'ideal' solutions 

(see Study Setup section, Physical Computing Development 

Task) with participants' actions.  

Program construction 

Three participants constructed the circuit correctly but had 

some faults in their program that prevented them from 

completing the task. Common faults included using the 

wrong temperature thresholds in the conditional statements, 

incorrect conditional logic, and numerous problems with 

variable declarations, assignment and referencing (compare 

Study Setup section, Writing the program). For example, 

participant P16 forgot to add a statement to read the sensor 

in their program and then referred to the wrong variable in 

their conditional statements. As a result, the participant saw 

temperature readings that always remained at 0, regardless 

of whether they touched the sensor. To remedy this issue, 

they copied in code, but this did not address the previous 

two bugs. To compound the issue, they forgot to change the 

variable names in the code they had copied in, so now these 

did not match the ones they were already using in their 

program. Challenges in learning to program have been 

explored extensively (for example, [31]), and it seems that 

many participants struggled with very basic and common 

programming activities. 

Circuit construction 

The most common fatal error that caused ten participants 

not to succeed in the task was some kind of fault in circuit 

construction. We looked in more detail at what went wrong 

in these cases. 

A surprisingly high number of breakdowns involved 

miswiring: incorrectly connecting circuit components. We 

 

Figure 6. Total number of resolved obstacles (blue), resolved 

bugs (green) and unresolved obstacles and bugs (red). 
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observed 87 of these miswiring breakdowns. All but one of 

the unsuccessful participants encountered these mistakes 

and for five participants—P01, P04, P08, P10, P11—this 

caused a fatal error that prevented them from completing 

the task successfully. The most common miswiring 

breakdown was connecting the legs of the temperature 

sensor or LEDs to the wrong types of Arduino pin (compare 

section Study Setup, Building the circuit). For example, 

participant P01 accidentally miswired the sensor very early 

in the task, resulting in unpredictable sensor readings. 

Deciding it was an "accuracy" problem, they searched 

online for ways to programmatically make the readings 

more reliable, and copied in unnecessary code, to no avail. 

Forum posts found online—none relevant to the bug—led 

them to make yet more changes to both their circuit and 

program, none of which addressed the original miswiring, 

and eventually they gave up: "It's the world. It's just 

unpredictable in the world. […] It's technically doing what 

I want it to do, but it's the world that's breaking, as in, I 

can't get it to get to the right temperature" (P01). 

A particular case of miswiring—bad seating of the sensor 

or an LED into the breadboard—was observed for three 

participants.  In one case, the participant did not realize that 

a badly seated sensor, not connected to the rest of the 

circuit, was the cause of the unpredictable sensor readings 

they experienced and the bug went unresolved, leading to 

task failure: "So why does the sensor don't work? [sic] It 

should be work. [sic] So it goes to zero. I didn't change 

anything with the sensor" (P04). 

Another kind of circuit error that prevented task success 

involved five participants either not using resistors with the 

LEDs or adding extraneous resistors to the sensor (compare 

section Study Setup, Building the circuit). In this task, the 

missing resistors caused a very insidious problem because it 

affected the behavior of the temperature sensor and made 

readings very unpredictable: "I mean, it should work. The 

problem is just that the sensor doesn't seem to be very 

responsive. Because it starts at 150 and when you put your 

hand there it went over 180, and never came back to 150" 

(P20). None of the five participants who did not use 

resistors with their LEDs ever fixed this bug. Instead, 

unable to determine the fault location in the circuit, three of 

these participants tried to fix the fault through extraneous 

program code. 

We also noticed that four participants chose too high a 

value of resistor to use with the LEDs. For three 

participants this meant that the LEDs lit up but were dim, 

while one participant wired a single resistor of such a high 

value to all of their LEDs that two did not light up and the 

third only blinked intermittently. To address this they 

disconnected the resistor from two of the LEDs, causing the 

same insidious sensor readings problem mentioned in the 

previous paragraph—a problem they never resolved. 

Testing 

Testing a physical computing artifact is more complex than 

testing a program. In two instances, participants who had 

constructed their prototype correctly, touched their 

temperature sensor and the LEDs did not light up. In fact, 

they had cold fingers, that is, their test 'input' was bad. In 

one instance, this led a participant to believe there was a 

fault when there was not. In software, a more appropriate 

test strategy would be to use a variety of test inputs 

including edge cases, something that is sometimes difficult 

to do in physical computing prototype development. 

Debugging 

Professional software development environments usually 

provide a debugger, which helps programmers to locate and 

fix faults, and end-user programming environments have 

started to do the same [8]. Unfortunately, physical 

computing does not have analogous support tools and thus 

it was sometimes difficult for participants in our study to 

identify what the problem was.  

 

Figure 7. Total number of resolved obstacles (blue), resolved bugs (green) and unresolved obstacles and bugs (red) by task 

success. 
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One particular miswiring fault that four participants were 

able to identify and fix was when they erroneously reversed 

the power and ground connections of the temperature 

sensor. This meant that the component overheated, and as a 

result they burnt themselves momentarily when they 

touched it: although slightly uncomfortable, this helped 

them localize the fault to a particular part of the circuit.  

We have already highlighted the insidious problem 

resulting from missing and extraneous resistors. The only 

way that participants were able to spot this problem was by 

noticing that the sensor readings were incorrect when 

viewing them in Arduino IDE. However, perhaps because 

their focus was on the programming environment at this 

point, they usually tried to debug this issue by making 

changes to their program code.  

Summary 

Why did it go so wrong for many of the participants? The 

study showed that problems in physical computing are to be 

expected, even for users who are eventually successful, but 

we also showed that problems resulting from faults in 

circuits were particularly hard to identify and remedy. Five 

participants did not even realize that a circuit-related error 

was preventing their prototype from working, and 

attempted to fix the perceived fault by changing their code. 

Obviously, that proved in vain, and also caused four of 

them to introduce more bugs into their program. This might 

also explain why we observed so many program-related 

obstacles, breakdown and bugs, and the high proportion of 

problems that were associated with the interaction of circuit 

and program; once participants started to incorrectly believe 

that the issue was in the program instead of the circuit, they 

often created further problems in this location. A major 

contributory factor here might be that testing and debugging 

physical computing prototypes are both very challenging 

and appropriate support tools are not currently available. 

DISCUSSION 

We believe that our findings can generalize beyond our 

simple task in an Arduino environment. The most common 

breakdown in our study—miswiring—can in fact occur 

during any activity that is part of constructing a physical 

component, even when setting up and configuring off-the-

shelf devices, for example, setting up a home router and 

Wi-Fi network. Hence, our study holds important lessons 

for interactions between end users and other physical 

devices that possibly require less electronics and 

programming expertise. 

How might we better support end users' physical computing 

activities? While software engineering has been brought to 

end-user programming [8], a similar approach is still 

lacking for end-user physical computing development. 

Thus, we propose tackling this in two ways: 1) providing 

tools that offer in-context support to improve the practice of 

creating, testing and debugging physical computing 

artifacts; and 2) better educating the physical computing 

end-user developer. 

Tools for Good Physical Computing Practice 

Currently, there are no development environments for 

physical computing that are as comprehensive as the 

professional ones available for writing software. What 

would such a development environment look like? There 

are already some encouraging approaches for end-user 

programmers that we could leverage for this domain. For 

example, the Idea Garden is a plug-in to existing 

development environments that offers novice programmers 

hints and strategies to try out, based on background analysis 

of what they are doing [9]. We can distinguish two areas 

where this kind of help would be useful for developing 

physical computing artifacts: first, supporting the 

construction of circuits; and secondly, helping to 

systematically test and debug them if needed.  

Construction 

Good software engineering practice is to decompose the 

program into modules and unit test these to incrementally 

build a working solution. In our study, we had one 

participant who, although less experienced, encountered 

fewer problems through such a careful, systematic approach 

and was successful in completing the task. She quickly 

broke the task down into simpler parts, then built and tested 

them individually. For example, she first wired up the 

temperature sensor and wrote the code to read its values, to 

ensure that they were understandable. She then wired up a 

single LED, added code for it and tested that it worked, 

before building the circuit for the other two LEDs and 

testing them. Finally, she combined the LED code and 

sensor code. We could imagine providing strategies and 

heuristics in a physical computing environment that 

encourage people to follow systematic development 

approaches, including encouraging users to develop unit 

tests or offering design patterns that might be appropriate. 

Such a development environment for physical computing 

could also include a run-time simulator, such as the 123D 

Circuits Electronics Lab [48] described earlier. Once the 

virtual circuit and program work as desired, they could be 

reproduced with actual components and the code uploaded 

to a physical microcontroller. The virtual aspect would 

allow more targeted support to be made available during 

construction of a circuit, which would otherwise be very 

difficult to provide. 

Testing and Debugging 

Software engineering also deals to a great extent with 

finding and fixing bugs: "the realization came over me with 

full force that a good part of the remainder of my life was 

going to be spent in finding errors in my own programs" 

[47]. Unlike software, there are no compilers or debuggers 

to help localize bugs in circuits. Where a bug manifests is 

often far from the actual cause of the problem. For example, 

in our task, the sensor readings were displayed in the 

Arduino IDE but they could be incorrect because of 

miswiring bugs in the sensor or LED connections. Fault 

localization strategies could also be communicated in such 

a development environment, possibly drawing from 



existing troubleshooting checklists (such as [12,42]). 

Additional features could help end users test their circuits, 

by creatively considering possible input values, edge cases 

and testing strategies, akin to WYSIWYT and 

WYSIWYT/ML [8,19]. Approaches in formally verifying 

physical circuits [13] could also be useful in this respect. 

Educating the Physical Computing End-User Developer 

Physical computing is increasingly used within education to 

engage students in STEM subjects. In our study, 

participants' programming expertise was higher than their 

electronics expertise and they seemed to struggle more with 

circuit-related problems. Therefore, we suggest more focus 

on teaching concepts useful to circuit construction, testing 

and debugging. Given the prevalence of miswiring 

problems, end users should be encouraged to follow good 

electronic engineering practice, such as correct color coding 

conventions for wiring their circuits (for example, power is 

always red, ground black, and signals should have different 

colors for different components, as in Figure 2), and not 

crossing wires, if possible, as it makes it harder to debug a 

circuit. It would also be helpful to teach people how to use 

a multimeter, for example, to check for continuity or 

measure current. We provided one in our study sessions but 

only four participants used it.  

Finally, it is still an open question how best to teach 

electronics subjects to end-user developers. Recent work 

has looked at how DIY practices can be supported by online 

tutorials [46]; the careful design of information to help end 

users understand components and tools used in these 

activities seems especially crucial. 

Future Work 

Our study has pointed to a number of open research 

questions that warrant further investigation. First, we did 

not look into how people managed to overcome their 

problems. We noticed that frequently participants simply 

looked up information, copied code from external sources 

or fixed bugs through trial-and-error, and future work could 

specifically focus on the problem-solving strategies of end-

user physical computing developers. We have begun 

analyzing data from the study reported in this paper, to 

identify the strategies employed by the participants, and we 

look forward to sharing our findings. 

Second, we would like to look deeper into what caused the 

problems for participants in terms of shortcomings in their 

knowledge or skills. Recent work [31] has looked into the 

problems that novice programmers face with a view to 

addressing specific aspects that prove particularly 

troublesome and a similar approach might be useful for 

physical computing. Similarly, a key skill in programming 

is abstraction, which might also affect physical computing 

tasks [44]. 

Finally, we hope to implement some of the support 

mechanisms we suggested in a suitable development 

environment for physical computing and assess, in further 

studies with end-user developers, the benefits of doing so.  

CONCLUSION 

This paper reports the results of an empirical study 

exploring the problems encountered by end-user developers 

undertaking a physical computing task that involves both 

circuit construction and programming. We learned that: 

 All participants encountered problems, some more than 

others, however background factors such as self-efficacy 

and self-rated expertise did not predict whether they 

would complete the task, or the number and type of 

problems they experienced. 

 Most problems occurred in programming, however, the 

majority of task failures were due to circuit-related 

problems. Participants did not always realize there was a 

fault or error in their circuit and often incorrectly tried to 

fix the perceived problem through their program. 

 Miswiring and missing electronic components accounted 

for 80% of circuit-related task failures but participants 

had serious difficulties localizing these faults.  

Our study showed that end-user developers would benefit 

from increased support and we suggested two main areas 

where they require help: constructing circuits correctly, and 

diagnosing errors and implementing appropriate fixes.  This 

support can be provided by creating development 

environments that offer in-context advice during the 

construction process, and also by educating end-user 

developers in good practice.  

Physical computing affords new possibilities to create 

artifacts that interact with the world in novel, useful and 

meaningful ways. Understanding how best to provide 

effective support will be an important step towards the 

democratization of physical computing, in which users will 

finally become developers.   
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