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Abstract. 

The paper presents a general three dimensional hydro-elastic tool for the analysis of different types of 

fishing nets and aquaculture facilities. Flexible net strands are modeled by non linear truss elements 

having two nodes. Hydrodynamic loads due to relative motion of the net with the surrounding fluid are 

computed using Morison equation. The coupled hydrodynamic-elastodynamic equations are solved 

using finite element (FE) approximations. Furthermore, experimental data are presented for the drag 

resistance of a purse seine net, commonly used as fishing tool in the Mediterranean sea. The 

measurements were conducted in the towing tank of NTUA on a sample of a net. The net was tested 

in three configurations: vertical, horizontal and inclined at 45º. The derived drag coefficients are 

compared to predictions of the FEM developed model. The vertical submergence behavior of the 

seine in calm water is also examined, both experimentally and theoretically. Moreover, the shooting 

phase of the purse-seine fishing is simulated with the aim to investigate the diving behavior of the net. 

The flow shading effect of neighboring strands is identified as a critical parameter for the consistent 

predictions of the diving behavior.  
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1. Introduction 

Purse seining is a traditional fishing method commonly used in the Mediterranean Sea. It is 

appropriate for fishing pelagic fishes or other species, swimming in dense groups (schools) near the 



sea surface. A typical purse seine, shown in Figure 1, is composed by (a) a lacing rope at the top, 

bearing distributed floaters, (b) the net itself, and (c) the lower rope, running along the bottom edge 

and having distributed lead weights (sinkers) which serve submersion. The rope is linked via rings 

(pursing rings) to a pursing wire. The mesh of the seine, usually of diamond type, has a size that 

varies depending on the aimed species. Fishing starts by setting the head floater and deploying the 

net, encircling a herd of fish. During the shooting phase the net submerges by the action of the sinkers 

and, eventually, impounds the fish. At closing the circle the pursing process begins. The pursing wire 

is being tightened, giving a purse-like shape to the seine (Figure 2). The hauling phase follows and the 

net with the fish is led aboard.  

An important parameter of the shooting phase is the depth reached by the net during the circular 

motion of the trawl. If the depth reached is too low the herd may escape. On the other hand, reaching 

ground during net deployment may cause serious damages to the ecosystem of the sea bed, apart 

from the inevitable destruction of the seine itself. In order to prevent environmental disasters, 

authorities have issued pertinent regulations [European Union, 2006], applying restrictions on the 

fishing areas and controlling the drop (height) of the net according to the depth of the fishing area. 

Evidently, the drop to depth ratio is not the only parameter influencing the grounding of the seine. In 

fact, due to the influence of the currents, the method of deployment and the action of waves, the 

submerging speed is actually so small that, regardless of the net height, the boat can draw a small or 

medium circle, set the seine and start pursing, before the net reaches the sea bed. 

The analysis of the static and dynamic behavior of the seine should be based on reliable drag 

resistance estimations. Drag force dominates the hydrodynamic loading of a net subjected to sea 

currents or moving in still water. The determination of the normal and tangential forces can be 

achieved either by examining the local to the twines flow [see Morison et al, 1950 and Løland, 1993] 

and obtaining values corresponding to the local Reynolds number, or by using averaged global values 

for a larger portion of the net, based on experiments. In the latter case Kawakami (1959 and 1964) 

among others, studied analytically the resistance to currents and proposed simple formulae for the 

drag coefficient. Aarsnes et al. (1990) carried out tests on net panels and cage systems and 

developed formulae for drag and lift forces due to constant current. In his analysis, Aarsnes 

considered also the effect of the flow direction. Zhan et al (2006) derived expressions for the drag 

coefficient that depend on the solidity ratio of the net and examined experimentally the effect of 

Reynolds number, mesh pattern and flow direction on the drag force of planar and circular nets. 



In the modeling of fishing nets or other aquaculture systems like net cages, two main groups of 

structural dynamics analysis methods are found in the literature. In the first group the twines of the net 

are considered as rigid bars [see Bessonneau and Marichal, 1998] or lumped masses connected 

through concentrated springs [see Lee et al, 2005 and Shimizu et al, 2005], or truss elements 

exhibiting linear or non linear elastic behavior [see Gignoux and Messier, 1999, Tsukrov et al, 2003 

and DeCew et al 2010]. In the latter case the net system is treated numerically in the context of finite 

element method (FEM). In this group of methods the hydrodynamic loading is determined by 

examining the local to the twine flow. Usually Morison equation is applied in the calculation of the 

normal and tangential loads while naturally hydrodynamic added mass contribution is accounted for. 

Since the number of cells of the actual net is too big, mesh mapping methods have been devised, in 

order to retain computational cost at reasonable levels. Following such methods, equivalent less 

dense meshes are defined that resemble the actual net in terms of hydrodynamic loading [Gignoux 

and Messier, 1999 and Tsukrov et al, 2003]. 

The second approach is to model the net by dividing it into planar four side super-elements, where 

each element has properties (inertial and structural) that simulate the twine and the knot structure of 

the netting [Lader and Fredheim, 2006 and Chuang et al, 2006]. The nodes of the super-element are 

connected with springs having stiffness calibrated on the basis of tensile-tests, carried out on a 

sample of the net. The hydrodynamic loads on the whole net element (and not the individual twine) is 

separated into drag and lift components, which can be calculated using global force coefficients that 

depend on the solidity and Reynolds number, like those proposed by Aarnes et al (1990) and Zhan et 

al (2006). 

All the above mentioned methods have been extensively applied to the modeling of several types of 

nets, like trawling nets [Bessonneau and Marichal, 1998], purse seine nets [Lee et al, 2005] and net 

cages [Tsukrov et al, 2003] and they have been validated against measurements and in situ 

observations in towing tanks [Lader and Enerhaug, 2005] or in ocean environment [Shimizu et al, 

2005]. 

Herein a general, three dimensional hydro-elastic tool for the analysis of different types of fishing nets 

is presented. Flexible net strands are modeled by two noded non linear truss elements, applying the 

tangent stiffness matrix approach [see Crisfield, 1991]. Hydrodynamic loads due to relative motion of 

the net with the surrounding fluid are computed using Morison equation. Consistent equivalent nets 

are defined which retain both the drag and the inertia properties of the real net. Hydrodynamic load 



coefficients have been corrected based on resistance tests performed at NTUA’s towing tank by 

Katsaounis et al (2009), in order to account for the flow shading effect caused by upstream strands. 

The vertical submergence behavior of a seine in still water is examined, both using the FEM tool but 

also experimentally by means of submergence tests performed at NTUA. In situ observations are 

compared to the predictions of the tool as well as to the predictions of a simplified one dimensional 

non-elastic net model that reproduces the basic mechanics of the submerging system. A good 

agreement of the predictions of the FEM code with the submergence test observations is obtained if 

consistent correction is made to the drag of the submerging net, in order to account for the interaction 

of the strands. Moreover, the shooting phase of the purse-seine fishing is simulated with the aim to 

investigate the diving behavior of the real net. 

 

2. The numerical model 

A consistent 3D model of the net is developed, in which the structural dynamic behavior of the net is 

modeled using finite element method. Hydrodynamic loading on the net, due to the relative motion of 

the net twines in the surrounding fluid, is calculated by means of Morison equation. Consistent 

equivalent net panels retaining the projected area and mass of the actual net are defined. 

 

2.1 Finite-element analysis of fishing nets 

Prediction of the hydro-elastic response of fishing nets is performed on the basis of finite element 

analysis. The twines of the fishing net are represented by truss elements exhibiting a non linear elastic 

behavior. Such elements transfer only the tensile forces while their compression stiffness is zero.  

In Figure 3 a truss element 0 0P Q  of initial undeformed length 0 02   is shown. The non-dimensional 

coordinate   (ranging from -1 to 1) is used to define the arbitrary point 0R  along the element. The 

position vector of this point initially is 0r . As a result of rigid body motion and elastic deformation the 

truss element will move to a new position n nP Q . The arbitrary point along the element (point nR ) will 

now have a position vector nr  given by the following expression: 

n 0 r r u  (1) 



where vector u  represents displacement due to elastic deflection and rigid body motion of the 

element. 

Applying the virtual work principle [see Crisfield, 1991] the dynamic equations of a truss element in 

space are obtained. The principle requires that, for an arbitrary virtual displacement field u : 

 
0 0

e i

V

dV d 0       u q q  
(2) 

where 
i

q  and 
e

q  are the inertial and external (hydrodynamic, gravitational and buoyancy) per unit 

length forces acting on the element,   and   are the axial stress and the incremental variation of the 

axial strain caused by the relative motion of the element ends P  and Q , and 
0V  the volume of the 

undeformed element. 

Using Green’s definition of the axial strain [Crisfield, 1991], 
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
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the variation   is determined.  

We define the differentials 0dr  and ndr  along the initial 0 0P Q  and deformed element n nP Q  

respectively as, 
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Assuming a linear variation of geometry and displacements along the length of the element, it holds: 
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 Substitution of (5) into (3) gives the strain displacement relation: 



2 2 T T
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Considering that the displacements of the two end nodes P  and Q  of the element are degrees of 

freedom (d.o.f) of the problem, the displacement of any intermediate point along the element is written 

as 

 u Ν p   ,     1 1 1 2 2 2

node P node Q

u v w u v w
 
 

  
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p  (7) 

where, 
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is the matrix of the shape functions considered linear in the present analysis. In a similar manner 

(using the same linear interpolation functions) the coordinates of the arbitrary point 0R  along the 

undeformed element can be defined if the coordinates of the end points 0P   1 1 1x , y , z  and 0Q  

 2 2 2x , y , z  are known, 

0 r Νx   ,      1 1 1 2 2 2x y z x y z x  (9) 

Using (7) and (9) and (6) the incremental variation of the strain   can be expressed in terms of the 

virtual displacement p  of the element end nodes: 
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where in the above expression the matrix d / d  Ν Ν is constant along the length of the element, 

due to the linear shape functions considered. 

The stress field is determined through application of Hooke’s laws by making the assumption of linear 

elastic material: 

    (11) 



As already stated, the Young modules   of the twine material will be different in compression and 

extension. The compression value will be equal to zero but in practical terms is taken very small, for 

numerical stability. 

By introducing (10) into (2) and integrating over the cross section area 
0 , the following system of 

non-linear dynamic equations is obtained: 

 
1 1

T e i

0 0 0 0 0

1 1

d A d 2 Α

 

           N q q b b f  (12) 

From the above derivation, it is made clear that the non linearity of equations (12) lies in two distinct 

reasons. The first is the inherent capability of the model to accommodate both large displacements 

and deformations (geometric non-linearity) through the use of Green’s strain definition in its non linear 

form. The second is due to the different stiffness characteristics of the elements in tension and 

compression (material non-linearity). However, non linearity of the stress-strain state equations is not 

addressed in the present work (as done by Tsukrov et al 2005).  

Non linear equations (12) are next expressed in perturbed form (linearization about a reference 

deflected position 
0

p ) and then solved iteratively, until perturbations converge to zero. Taylor’s 

expansion of the non linear expression of the internal loads f  about a reference deflected position 

0
p yields: 

   0 0

t


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

f
f f x p p f x p K p

p
 (13) 

Thereby, the element tangent stiffness matrix 
tK  is obtained. If the density of the material of the twine 

  is assumed constant along its length then: 
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where,  0 w
  is the linear mass distribution of the wet twine (original dry mass increased by the 

water trapped within the twine fibers). The external loads, comprising the hydrodynamic and 

hydrostatic (buoyancy) forces on the element as well as the gravity loads are denoted with Q :  



1

T e

0

1

d



  Q N q  (15) 

They are non-linear, since they depend on the velocity in a nonlinear (quadratic) manner. Their 

linerarization is treated in the next section. Combining (12), (13), (14) and (15) the final linearized 

system of the dynamic equations of the truss element takes the form: 

0 0

t )     p Κ p =Q p f(x +p   (16) 

The above set of equations represents the dynamic equations of a single element. For multi-element 

configurations like the fishing net, the local matrices of the various elements are assembled to global 

matrices for the full configuration in the standard FEM way. In this assembling procedure no 

coordinates transformation is needed because the dynamic equations (14) of the single element have 

been expressed in the global inertial frame. 

The final set of equations is integrated in time using the Newmark second order implicit scheme 

[Bathe, 1996]. In every time step of the simulation the equations are solved iteratively until Δp  goes to 

zero, by applying a full Newton-Rapshon iterative scheme. 

2.2 External loads  

The external loads 
e

q  on the fishing net consist of (a) the hydrodynamic forces due to the relative 

motion (velocity and acceleration) of the net and the surrounding fluid, (b) the effect of buoyancy, and 

(c) the gravity loads. Amongst them, only the hydrodynamic forces are non-linearly coupled to the 

d.o.f’s p  of motion of the net elements. Buoyancy and gravity forces are constant and only depend on 

the geometric and material properties of the elements. The hydrodynamic loads establish a non-linear 

hydro-elastic interaction. Thereby, hydrodynamic forces appearing in (16) must be linearized about the 

reference state 
0

p  similar to internal and inertial loads. 

For the calculation of the hydrodynamic forces on the elements of the net, Morison’s (1950) equation 

is applied. It is appropriately modified to account for the relative motion of the twines with respect to 

the sea water [see Tsukrov et al, 2003]. According to Haritos and He (1992), the force per unit length 

on the twines (considered cylindrical) is given by:  

e

1 R n 2 R t 3 n 4 R nC C C C       q V V V Vhydro  (17) 



where R nV  and R tV  are the normal and tangential to the element components of the relative velocity 

of the water, nV  is the normal to the element component of the water acceleration and R nV  is the 

normal to the element component of the water relative acceleration (see Figure 4) given by: 

     R n       v v v vV V u n n V Np n n  

     R t       V V u t t V Np t t  

     R n a a a a      V V u n n V Np n n  

  n a a  V V n n  

(18) 

In the above expressions, t  is the unit vector along the element length and n  is the unit vector 

normal to the element, on the plane defined by the relative velocity (or acceleration) and vector t .  

The coefficients of equation (17) are given by the following expressions: 

w
n RnC C d V


1

2
,  t2 CC  ,  wC A 3   w mC A C  4  (19) 

Where d  and A , are the diameter and the cross section area of the element respectively, w  is the 

water density, nC  and tC  are the normal and tangential to the element drag force coefficients and mC  

the added mass coefficient. The above expression gives good predictions of the hydrodynamic force 

on cylindrical elements the diameter of which is small compared to the wave lengths involved in the 

computation [Morison, 1950]. 

The normal and tangential force coefficients are given as functions of the Reynolds number 

nRe [Tsukrov et al, 2003]: 
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 (20) 

and 



1/2 2/3

t n nC (0.55 Re 0.084 Re )      (21) 

where 

)Re/8ln(077215665.0s n  (22) 

and 

w Rn
n

d V
Re





 (23) 

where   is the water dynamic viscosity. The added mass coefficient mC , usually takes the value 

5.0Cm  . 

Hydrodynamic drag force also acts on the leading weights dragging the net towards the sea floor. In 

the present dynamic analysis, the leading weights are considered as concentrated masses of 

spherical shape centered at the nodes of the truss elements. In this case, their drag force is given by:  

e

1 R 3 4 RC C C       q V V Vhydro weights  (24) 

where again subscript R denotes relative velocity/acceleration, and: 

w
1 s Ds RC A C V

2


  , 3 w sC V    and 4 w s mC V C    (25) 

where sA  and sV , are the projected to the flow area and the volume of the sphere of diameter sD . 

Finally gravitational loads, as well as buoyancy are taken into account on the net elements as well as 

on the leading weights. On the truss elements, the force per unit length is given by: 

2
e

/ w

d
( )

4


    q ggrav buoy  (26) 

where g is the gravitational acceleration vector. Similarly the concentrated gravity force on the weights 

is: 

e

w s( ) V    q ggrav / buoy weights  (27) 

Summing up all the above contributions, the external loads matrix Q  is written as: 
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where,   denotes the Dirac function. The use of Dirac function implies that concentrated forces are 

applied at certain positions 
k  along the elements. The summation is taken over the number of 

weights distributed over the twine. Taking into account that the leading weights are usually placed at 

the nodes of the element, the maximum number of weights per element is two.  

An approximate linearization of the hydrodynamic loads about the current configuration (i.e. without 

taking into account the variations of the established unit vectors 
vn , t ,

an v and a ) results in the 

following additional mass and damping matrices: 
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where R R/v = V V  and R R/a = V V . 

Besides the external forces acting on the weights, their inertia loads must be also taken into account. 

This is done my adding the following additional mass matrix to the original mass matrix of (14): 

1

T

k 0

k 1

m ( ) d



      N Nweights weight  (31) 

Based on the above derivation system (16) takes the form: 

   0 0 0
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2.3 Definition of the equivalent net  

Given the extremely high number of cells in a real fishing net, it becomes impractical to simulate the 

real net, because in this case the memory and computational time requirements would be vast. As an 

example for a purse seine with dimensions 800x120 m - typical dimensions for deep water fishing in 

the Aegean sea – the number of cells would be    864000 14000 8.96 10 . For this reason it is 

convenient to define a consistent equivalent net with a bigger size than that of the real net (several 

cells of the real net can fit into one cell of the equivalent net) which however exhibits a similar 

hydroelastic behavior. The new equivalent net is defined in such a way that there is similarity of the 

hydrodynamic drag is satisfied [Tsukrov et al, 2003]. The way that the equivalent net is defined 

depends a lot on the shape of the cell (whether they are of square or of diamond type). In either case, 

the total strand length of the net needs to be determined which for a net with square type cells is: 

  total 2 1 1L n 2n 1 n      (33) 

where  is the half mesh size, as shown in Figure 6 and 1n , 2n  is the number of cells in each 

direction: lengthwise and depth respectively, shown in Figure 5. Accordingly, in the case of a net with 

diamond shape cells the total strand length is given by: 

total 1 2L 4n n  (34) 

The calculation of the diameter 
eq

D  of the equivalent net twines is performed in such a way that the 

total projected area to the flow remains the same. To this end, if 1n , 2n  is the number of cells in each 

direction of the real net  and totalL  is the total strand length of the net and eq1n , eq 2n  and eq totalL  

denote the same parameters for the equivalent net, by considering that: 

2 eq2 1 eq1 eqn / n n / n / a a 1     (35) 

where eq  is the half mesh size of the equivalent net, the equivalent diameter is given by  

eq eq total totalD L d L    (36) 

The equivalent eqD  diameter is used in the calculation of the hydrodynamic forces as presented in the 

previous section, while the real diameter d  is used in determining the Reynolds number of the flow 

nRe . As argued by Tsukrov et al (2003), through the above definition of the equivalent diameter the 



mass of the net is not retained. In order to retain the total mass, the cross section area of the 

equivalent net strands is not calculated on the basis of eqD . Instead the following expression is used: 

2 2
eq total

eq

eq total

D Ld d

4 d 4 L

     
        

   

 (37) 

The equivalent cross section area eq  is used in calculating the linear mass distribution of the 

equivalent twine  
eq

  as well as its axial stiffness  
eq

  considering that the material density   

and Young’s modulus  are that of the actual twine. 

 

3. Model Validation 

3.1 Hydrodynamic model validation against semi-empirical formulas 

In the present section, the hydrodynamic model presented in section 2.2 and 2.3, (including the 

equivalent net definition) is validated against various semi-empirical formulae proposed in the 

literature. Semi empirical formulae found in the literature have been derived by means of appropriate 

fitting to measurements on net panels, usually of square type mesh. The present validation is 

extended in a following section with comparisons against measurements performed at NTUA’s towing 

tank on a typical purse seine with diamond type mesh.  

It is common that drag force 
DF  of a net panel is expressed as function of a non-dimensional drag 

coefficient. For a net panel having outline dimensions a b  and positioned normal to the free stream, 

Kawakami’s (1959 and 1964) definition of the drag coefficient is given by: 

2w
D dF C V Ld

2


  (38) 

where dC  is the mesh drag coefficient, w  the water density, V the free stream velocity, d  the twine 

diameter; and L the total length of twine, which may be approximated by: 

outa b
L 2 2


   (39) 



(or calculated by (33) or (34) depending on the cell type) where  is the half mesh size of the net (i.e. 

the length between adjacent knots); and 
out a b    the outline area. The projected area Ld  used in 

equation (38), becomes then: 

out

2d
Ld    (40) 

where S 2d /  is the solidity ratio of the net. The above definition of solidity, as obtained through 

equation (40) is not universal. As discussed in Tsukrov et al (2011) it depends on the type of the 

mesh, whether it formed by rectangular or diamond shape cells but also on the 3D nature of the 

intertwines.  

Based on Kawakami definition, Milne (1972) proposed the following empirical formula for the drag 

coefficient of a knotless net, positioned normal to the free stream velocity: 

2

d

d d
C 1 2.73 3.12

 
    

 
 (41) 

Aarsnes et al (1990) derived expressions of the lift and drag force on an inclined, with respect to the 

free stream velocity direction, net panel based on experimental observations. The drag coefficient 
DC  

and lift coefficient LC in Aarsnes formulae is referred to the outline area S  of the net. According to this 

definition the total force on the net will be written as: 

2w w
D LC S V C S V

2 2

 
   LF D L V + n  (42) 

and the lift and the drag coefficients are given by: 

2 3

D w

d d d
C 0.04 0.04 2.00 4.96 109.60 cos

    
          

     

 

2 3

L w

d d d
C 1.14 14.16 80.80 sin 2

    
       

     

 

(43) 

where w  is the angle formed between the free stream velocity V  and the vector n  normal to the net 

panel (directed downstream). The direction of the lift force is defined through the unit vector Ln  

(normal to the free stream velocity) that can be expressed in terms of V  and n  by: 



( )

( )

 


 
L

V n V
n

V n V
 (44) 

As seen in (43), Aarsnes drag formula contains a constant term that accounts for the drag on the 

panel that is parallel to the current direction (
0

w 90  ). 

Formulae (41) and (43) were based on experiments with plane nets having solidity ratios in the range 

between 0.13 and 0.30. Furthermore, formula (43) was based on measurements with a Reynolds 

number (defined on the basis of the twine diameter) in the range from 1400 to 1800, as noted by 

Lader and Enerhaug (2005) and Lader and Fredheim (2006). The empirical formulation was optimized 

for the middle solidity ratio range. The formulae provide a constant value for the drag coefficient, 

independently of the Reynolds number. 

Solidity being the most convenient geometrical parameter obviously does not cover all field of 

parameters defining the drag force on the net. Zhan et al (2006) conducted experiments in a towing 

tank on planar nets and examined the effects of Reynolds number, net solidity and flow direction on 

the drag force. The solidity ratios were in the range from 0.128 to 0.223 while Reynolds numbers 

ranged from 170 to 1400. Exploiting their experimental results, the following formula for the normal 

drag coefficient was proposed: 

2

d

0.137 d d
C 1 1.002 2.230

V

 
     

 
 (45) 

A more recent formula of the drag on nets is that due to Balash et al (2009), who proposed an 

analytical model and a corrected formula based on experimental data. The analytical formula utilizes 

the drag coefficient of circular cylinders 
cyl

DC  from White (1974): 

cyl 2/3 3

D n nC 1 10Re Re 5 10     (46) 

and defines the drag coefficient on the basis of the outline area out  as: 

cyl

D D 2

S
C C

(1 S)



 (47) 

The corrected formula was obtained through least square fitting to experimental data and is given by: 

 cyl 2

D DC C 8.03S 0.74S 0.12    (48) 



Balash argued that in order to calculate the drag force of inclined nets with respect to the incoming 

flow, one can apply the formula derived by Stekalova (1964): 

3

D w D wC ( ) C sin
2

 
   

 
 (49) 

In the sequel predictions of the hydrodynamic loads on a net panel with square type mesh are 

presented and compared against the above discussed semi-empirical formulae. Loads on the net are 

calculated for different values of the free stream velocity and orientation of the net panel with respect 

to the free stream velocity. 

The geometric and structural parameters of the benchmark net considered in the present analysis are 

[Tsukrov et al, 2003]: half mesh size 0.0155 m , twine diameter d 0.0016 m , strand material 

density 
31150 kg / m   and Young modulus 

92 10 Pa   . The range of the Reynolds number 

variation (as defined in (23), with reference to the twine diameter) considered in the analysis is 

35 1400 , for a free stream velocity range 0.025 1m / s . 

For the simulation of 
21 m  panel, an equivalent net with mesh size 20 20  (equivalent mesh ratio 

eqa n / n 3.2  ) is used, as shown in Figure 7. In the same figure, the deformed state of the net is 

presented for 1m / s  current velocity. Given that the net is set perpendicular to the free stream velocity 

and is supported along its perimeter the highest deformation appears at the centre. 

In Figure 8 and Figure 9, the drag force per square meter of the net and the drag coefficient DC  are 

shown as function of the incoming current speed, for a net panel placed perpendicular to the free 

stream velocity (
0

w 0  ). The agreement of the FEM code with Milne and Aarsnes predictions is 

better at high current speeds. This was expected since, as already discussed, the abovementioned 

formulae are calibrated at high Reynolds numbers. Balash’s formula predicts 15% higher drag for 

current speeds higher than 0.2 m/s ( Re 280 ) This is in agreement with the results reported in 

Tsukrov et al (2011) where drag predictions on nets of different geometry and material are compared 

to measurements. On the other hand better agreement is obtained for very low Reynolds 

numbers.The shape of the DC  curve predicted by the FEM model is similar to that obtained using 

Zhan’s and Balash’s formulae, which both account for the variation of the drag with Reynolds number. 

Both curves increase rapidly at low current speeds, corresponding to Reynolds number below 400, 



with Zhan’s formula though providing significantly higher 
DC  values both compared to the FEM code 

but also to Balash’s formula. It is noted that at high current speeds, the model predicts slightly lower 

drag as compared to all analytical expressions. Closer is the agreement with Zhan’s formula.  

Figure 10 and Figure 11 present drag and lift force per square meter of the same net panel as function 

of the inclination angle of the panel 
w . The current speed is taken equal to 0.5 m / s . It is noted that 

for moderate incidence angles, up to 
040 , the shape of the variation compares well with Aarsnes 

results. There is a slight under-prediction of the drag consistent with the results presented earlier for 

the 
00  case. For the same range, the lift coefficient shows a very good agreement. For inclination 

angles higher that 
0 050 60  predictions of the present method start to deviate from Aarsnes results. It 

is seen that, as the incidence angle increases, the drag force tends asymptotically to a constant value 

while Aarsnes predictions indicate that the drag force continuously drops with increasing angle. The 

drag value obtained with the present model at 
090  angle of the panel is considerably higher than that 

predicted by Aarsnes’ formula. The reason for the above difference is that as the flow gets parallel to 

the net plane, flow shading effect from the upwind twines to the downstream ones become higher. As 

a result downstream twines experience lower speeds and therefore drag force on them is lower. This 

shading effect is not taken into account in the present model. Balash’s formula in conjunction with (49) 

to account for the effect of the inclination of the net panel with respect to the free flow, predicts a much 

faster reduction of the drag which almost drops to zero beyond 
075 inclination angle. 

As concerns lift force, it is consistently under-predicted in the range of w  angles that drag is over-

predicted. However, the zero lift value at 
0

w 90   is captured by the model.  

 

3.2 Hydro-elastic model validation 

There are certain difficulties involved with the validation of the hydro-elastic model based on existing 

simulation or test results for fishing nets. First, most of the test and simulation results available in the 

literature concern specific fishing net designs the exact geometric or structural characteristics of which 

are not available [Shimizu et al, 2005]. Moreover, tests were conducted for complete fishing gears 

containing additional members such as sinkers, buoys, pursing wires. Such complicated systems 

involve a lot of uncertainty and they cannot serve the basic validation of the structural model. On the 

other hand several simple benchmark examples concerning cables and mooring lines can be found in 



the literature. In the present paper baseline validation of the hydro-elastic model is performed for such 

a simple test example. In a following section, validation is extended to comparisons against in situ 

observations performed at NTUA’s towing tank on a real fishing net with known structural and 

geometric characteristics. 

The test case and experimental data on which validation of the present truss element model is based, 

is taken from Lo and Leonard (1982). It concerns relaxation of a single point mooring cable attached to 

a floater, immersed in still water environment as shown in Figure 12. The buoy is displaced from its 

neutral position and then is released to return back to it. This is a simple example to assess the model 

capabilities in predicting the hydrodynamic behavior of the cable which constitutes the first step in the 

consistent modeling of a fishing net, containing a large number of interconnected elements. In the 

present example the un-stretched length and the diameter of the cable are 1.82 m  and 4.14 mm  

respectively, the weight of the cable in the air 0.167 N / m  and in water 0.0347 N / m , the stiffness of 

the cable 21.4 N , the diameter of the floater 50.8 mm , the weight of the floater in the air 0.11 and 

in the water 0.538  . The added mass coefficient for the cable is taken 
mC 1  and for the buoy 

mC 0.5  while the water dynamic viscosity is taken 
3 21.13 10 Ns / m   . The added mass 

coefficient of the buoy was selected in accordance with the definitions of Haritos and He (1992) who 

have also simulated the same case. 

In the simulations the cable was modeled by a number of 15  truss elements of equal length. The time 

step used was t 0.005 s  . Before simulating the transient response of the cable while moving from 

each disturbed position towards its equilibrium position, the deformed cable state at the displaced 

position needs to be defined first. At this stage the effect of the cable/sea bed interaction was taken 

into account. The reaction force of the sea floor was simulated through constant springs applied at the 

nodes of the truss elements. The stiffness of the springs becomes very high when the nodes approach 

the sea floor level. The deformed state of the cable at the displaced position was defined through a 

time domain simulation in which the cable/buoy attachment node was constrained and the cable was 

released from some initial arbitrary position to reach equilibrium. 

Figure 13 and Figure 14 present the vertical and horizontal motion of the buoy in the first 3s  after it 

has been released. Comparison against test results from Lo and Leonard (1992) shows good 

agreement with the test data for both d.o.fs of motion. A small difference is seen in the vertical 



displacement after the first 0.5s  which is also noted in the simulation results presented by Lo and 

Leonard (1992). The quicker return to equilibrium indicates lower hydrodynamic drag predicted by the 

model. This implies that the drag of the buoy might have been underestimated. Figure 15 shows the 

return velocity of the buoy. It is noted that the test data exhibit a very large scatter. However, 

predictions of the maximum speed at the beginning of the buoy’s motion and also of the rate at which 

this speed drops in the sequel compare well with the test data. Finally, Figure 16 presents the tension 

at the bottom of the cable at the connection with the sea floor. It is seen that also in terms of loads 

consistent results are provided. 

 

4. Test campaign results and comparison with FEM predictions 

The hydrodynamic behavior of a purse seine net was investigated in the towing tank of the Laboratory 

for Ship and Marine Hydrodynamics, of the National Technical University of Athens (NTUA). The 

rectangular basin of the tank is 100m long, 5m wide and 3.5m deep. The tank is equipped with a 

carriage, capable to tow models at speeds up to 5 m/sec. 

The aim of the test was: (a) to measure the drag on the net for different inclination angles 
w  (b) to 

assess its submergence behaviour in terms of the critical submergence speed and deployment time. 

The properties of the examined purse seine including the dimensions of the leading weights and the 

weight of the upper and lower rope are shown in Table 1. This is a typical example of the kind of nets 

being used in the Mediterranean Sea. Test results are compared to predictions of the FEM tool 

described and validated in the previous sections. Cross checking of the FΕΜ predictions and 

experimental observations is also carried out against the results of a simplified one dimensional 

submersion model. 

 

4.1 Resistance tests – comparisons with FEM code 

Aim of the measurements was to examine the net in conditions similar to that encountered during the 

submergence phase, i.e. without trawling forces. To this extent, a sample of the net was extracted 

from a larger purse seine, taking special care to avoid any stretching, which could result in a deviation 

in the net geometry. Thus, the seine was laid down and got the shape determined by tightening the 

upper and lower ropes. A section 2.315 m in height (about 230 cells) and 2.00 m in width (about 



160 cells) was then extracted, attached to a rectangular aluminium frame and mounted on the load 

cell of the carriage, as shown schematically in Figure 17. In order to compensate for the frame 

resistance, the tests were conducted in two phases, the frame being outfitted with and without the net. 

The towing post of the carriage was instrumented with an R35-I Kempf & Remmers dynamometer, 

capable of measuring forces up to 200N, having a sensitivity of 1.8 mV/V at this load and an accuracy 

of 3.3%. 

Figure 18-Figure 20 (a), show the measured drag (force in the direction of flow velocity), plotted 

against speed, for inclination angles 
0

w 0  , 
045  and 

090  respectively. A quadratic best-fit curve is 

also included in the graphs and shown with a dashed line. The displayed values are valid for fresh 

water (temp. 22.4 °C) and correspond to the total drag force per unit of the outline area of the net. 

Also, Figure 18-Figure 20 (b) show a close up of the area of low speeds, up to 0.2 m / s . This range is 

of interest when studying the low speed submersion of the net. 

In the same plots predictions of the FEM code are also presented. FEM simulations are performed for 

an equivalent net with mesh ratio eqa n / n 8   ( 20 29  cells). The properties of the equivalent net 

have been defined following the analysis of section 2.3 and they are given in Table 2. An excellent 

agreement is obtained at 
0

w 0   both at low and high speeds. As the inclination angle increases 

deviations become higher. As a result of the shading effect, already discussed in section 3.1, higher 

drag is predicted at 
0

w 45   and 
090 . At 

0

w 45   shading effect is small and therefore deviations 

are also expected to be small. However, at the inclination angle of 
090  the predicted drag is more than 

double the measured one for all speeds. 

Figure 21 presents the variation of the drag coefficient DC , as function of the flow speed for all three 

inclination angles 
0

w 0  , 
045  and 

090 . It is noted that due to the very small diameter of the net 

twines (0.35 mm) the Reynolds number range of the test was considerably lower than that of the 

benchmark case examined in section 3.1. For the current speeds varying in the range 0.05 0.7m / s  

Reynolds varies in the range 15 215 . Similar to the drag force the predicted drag coefficient agrees 

well with the measured data for the angle of 
00 . Only at very low Reynolds numbers (current speed 

0.1m / s ) predictions slightly underestimate measured DC , however, they reproduce the steep 

increase of DC  with decreasing flow speed. At 
045  inclination angle predictions overestimate DC  at 



high speeds while the opposite occurs at low speeds. Nevertheless, up to the angle of 
045  predictions 

are still reasonably close to measurements. Finally big deviations are noted at 
090  inclination where 

the predicted drag coefficient appears to be more than two times the measured one. The difference is 

higher at high current speeds. 

In Figure 22, predicted and measured 
DC  for the inclination angle of 

00  are compared to the results 

provided by the formulas of Aarsnes and Balash. For the diamond shape cells of the net, the solidity 

was defined according to the definition of Tsukrov et al (2011): 

2 2

1 2n n
S 2 d

a b

 
        

    
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 (50) 

A better agreement with the results of Balash formula is obtained in terms of the shape of the variation 

of the drag coefficient with the current speed. Balash’s formula overestimates drag coefficient by 15% 

as compared to the measured data. As discussed in the previous section this is expected since Balash 

formula accounts for the dependency of the drag coefficient with Reynolds number. On the other hand 

Aarsnes’ formula considerably underestimates drag coefficient especially at very low Reynolds 

numbers. At higher Reynolds numbers, where it is supposed to perform better, the under-prediction is 

about 25%.  

In Figure 23 the ratio of the measured over the predicted drag is shown as function of the free stream 

velocity. The ratio is calculated using the quadratic best fit curves shown in Figure 18-Figure 20 

(dashed lines). It is noted that this ratio is almost independent of the flow speed for flow velocities 

beyond 0.2 m / s . At lower speeds the ratio rapidly increases but this is only because regression 

curves deviate from the measured data in the low speeds region. They provide higher drag values 

especially at 
0

w 0  , 
045  (see Figure 18(b) and Figure 19(b)) which reflects on the ratios shown in 

Figure 23. Based on the fact that the ratio of the measured to predicted drag is almost independent of 

the current velocity, a correction to the drag can be proposed in order to account of the drag reduction 

resulting from the twines shading effect. Such a correction factor is absolutely necessary in order to 

obtain consistent drag predictions of the submerging net. In such a case, the relative velocity (net 

diving velocity) is parallel to the net provided that the sea current and wave induced velocities are 

negligible (still water assumption). The correction curve shown in Figure 24, is tuned based on the 

measured to predicted drag ratios. It is noted that if the relative flow is parallel to the net (maximum 



shading effect) the correction factor of the drag takes the value of 0.39 . As will be shown in the next 

section, in the absence of a consistent flow shading model, the application of a global correction factor 

to the drag is considered absolutely necessary in the case of submerging nets, in order to obtain 

reasonable net deployment times. 

In Figure 25, the drag coefficient of the net is presented as function of the inclination angle 
w . 

Results of the FEM, obtained using the above correction curve are compared to measurements (at the 

three measured angles  
0

w 0  , 
045  and 

090 ). The correction is applied on the basis of the local 

relative velocity associated with each cell of the net. After calculating this velocity, the correction is 

applied to each individual twine composing the cell. Moreover, results of Aarsnes and Balash formulae 

are plotted in the same figure. It is seen that Aarsnes results underestimate the drag coefficient at low 

inclination angles however they fit better at higher angles close to 
090 . It is noted that Aarsnes’ results 

are restrained by the fact that the dependency to Reynolds number is not taken into account. 

Furthermore, at 
090  inclination angle, the drag coefficient obtains a constant value of 0.04 

independent of the solidity of the net or any other geometric parameter. In general, the cosine shape 

of the curve matches well the shape of the corrected for the shading effect predictions. As regards 

equation (49) which considers a cubic sinus dependency of the drag coefficient with the inclination 

angle, seems to predict an unrealistic drop of the drag coefficient with w  as compared to the 

measured data. Moreover, the drag coefficient tends to zero at 
090  which is not supported by the 

measurements. 

Besides steady state tests and results, the dynamic behavior of the net is investigated under a current 

field combined with an airy wave. The wave period is T=2 s and the deterministic wave height is 

H=0.5. The analysis was performed for the test net immersed at the depth of 1 m in a water tank with 

a depth of 5 m. The current field is considered linearly varying from 0 m/s at the tank floor to 0.5 m/s at 

the mean water level. In Figure 26, the time history of the drag force and the displacement of the net 

midpoint are plotted for three values of the equivalent mesh rate, eqa n / n 4, 8,16  . Aim of the 

analysis is to prove the consistency of the equivalent net in terms of the hydrodynamic loads but also 

its inertia characteristics. It is seen that grid independent solution is obtained even for coarser grids. 

Some small difference seen in the displacement of the midpoint of the net, appearing in the form of a 

small level shift, is due to the fact that the grid points of the various equivalent nets do not coincide 

and therefore the closest points are selected. 



 

4.2 Submergence test – comparisons with FEM code and simplified model 

The submergence tests were conducted on a large portion of the purse seine (approx. 20m in length), 

which was deployed on the water surface of the tank and left free to reach the bottom. The aim of 

these tests was to investigate the diving speed during the initial phase of submergence. To this end, 

the seine was released at the water level and subsequently left to fall freely, in front of vertical rulers. 

During the test, an underwater camera was used to record the downward motion (see Figure 27). The 

system made use of the Sony XC-7500 camera and the Matrox Meteor II frame grabber, capturing an 

area of 60x45 cm with a resolution of 640x480 pixels at a rate of 60 frames/sec. 

Table 3 shows the measured submersion speeds, depths and time intervals from the beginning of the 

motion, based on the processing of the video recordings. 

In order to capture and quantify the basic mechanics associated with the net submersion a simplified 

theoretical model for the motion of the net was developed. The model uses as input the drag data 

derived from the experimental work. It has been used as a basis for validating the experimental 

observations as well as the FEM code predictions. 

The net was modeled as a one-dimensional, chain-like body, with infinite stiffness in tension and zero 

stiffness in compression moving in the vertical direction. This configuration is expected to lead to 

maximum submersion speed, since transverse forces, coming either from the net trawling or from sea 

currents, may significantly retard the submersion.  

The seine is assumed to be initially folded and placed on the water surface (see Figure 28). At the 

beginning of the motion the net starts to deploy, with the lower heavy end submerging into the water 

and drawing down a progressively increasing portion of the seine. The equation of the dynamic 

equilibrium is derived through the application of the impulse-momentum principle. The instantaneous 

momentum of the whole system takes the form: 

Q(t) Mz mzz   (51) 

where M  is the mass (per width) of the lower rope and weights, including hydrodynamic added mass, 

m  is the mass (per square meter) of the net and z  the downwards displacement of the net. 

Appling the impulse-momentum principle we get: 



 Q W w z D(z) (z)z t     f  (52) 

where W, w  are the submerged weight (gravity minus buoyancy) of the lower cable and the net 

respectively, D  is the drag force (per unit length) of the lower cable (including the weight of the 

leading weights) and f is the drag force (per square meter) on the net.  

Equations (51) and (52) give the following equilibrium equation: 

 

2Mz mz mzz W wz D(z) (z)z      f  (53) 

with initial conditions: 

z(0) z(0) 0   (54) 

The above equations are supplemented by the requirement of positive tension along the net, ensuring 

in this way the chain-like behavior and the one-dimensional character of the simplified model. In the 

opposite case, the net would buckle at a certain moment, under the action of a negative tension. 

Tension varies linearly along the net: 

2( ) W D(z) w(z ) (z)(z ) Mz mz m(z )z 0 z              f  (55) 

The two extreme values are: 

2(0) mz 0     and 

(z) W D(z) Mz     

Thus, the condition of positive tension is fulfilled, provided that: 

W D(z) Mz 0    (56) 

Equations (53) and (56) are integrated numerically. Inertia and weight properties per unit length of the 

net and the lower rope carrying the leading weights are derived from the data provided in Table 1 and 

they are reported in Table 4. The drag of the leading weights is calculated assuming spherical 

weights. Summing up the drag of the weights and the drag of the lower rope the following expression 

of the viscous drag per unit length of the rope (including the weights) is obtained: 

2D 4.152 z  (57) 



The drag of the net is taken from the regression analysis on the measured data shown in Figure 20 

that led to the following expression for 
0

w 90  :  

211.066 z 0.7256 zf =  (58) 

FEM simulations have been performed for an equivalent net with mesh ratio eqa n / n 32  . The 

properties of the equivalent net are given in Table 2. As already discussed in section 2.2 the weights 

are modeled as point masses of spherical shape which are placed at the nodes of the grid. The 

spacing of the grid points in the equivalent mesh is bigger ( 0.4 m ) than the actual spacing of the 

weights ( 0.3 m ). Thus, simulations are performed with a smaller number of bigger weights (in terms of 

mass and dimensions) while the total drag force on the weights is retained. This requirement is 

satisfied through the condition: 

eq

eq

D n

d n
  (59) 

where n , eqn  is the actual and equivalent number of weights and d , eqD  are the actual and 

equivalent diameter of the weights respectively.  

In Figure 29, FEM predictions of the equivalent net geometry during the initial phase of the 

submergence are shown (time instants t 2, 4, 6  and 10 s ). The upper nodes of the mesh are 

constrained. Before the net is released it is folded close to the water surface (zero level in the figure). 

When the net is released it progressively deploys under the action of the weights. A contraction of the 

net is noted as a result of the sideways tension developing at the two ends. In the middle part of the 

net symmetry conditions lead to zero sideways tension and so the cells appear unstretched. This is an 

indication that the dynamic behavior of this portion of the net complies with the assumptions of the 

simplified one dimensional model. It also becomes clear that the net length to depth ratio is a critical 

parameter in order to ensure such a one dimensional behavior of the middle portion of the net. 

In Figure 30 the time history of the submersion depth is shown. A good agreement of the predictions 

of both models with the observations is obtained, especially in the initial part of the submersion (at 

4s ). Also the two models give very similar results, thus confirming the validity of the assumptions of 

the simplified model for the centre of the net. In Figure 31 predictions of the diving speed are 

compared to observations. In this figure three areas of interest are distinguished. The first corresponds 



to the beginning of the event; the speed increases rapidly and reaches a maximum value, mainly due 

to the action of the lead weights. After this phase, the drag forces and the increasing inertia of the 

deploying system dominate and balance the action of the gravity. The speed is decreasing and 

eventually, during the last phase, reaches smoothly an asymptotic value. It is noted that the critical 

speed is captured well by the models (asymptotic value of the speed at third phase; an asymptotic 

formula for this parameter has been obtained by Katsaounis et al, 2009). For the second phase (net 

deceleration phase), measured velocity is unrealistically high (velocity at 4s ) and does not seem to be 

in accordance with recorded depths and the agreement with predictions obtained therein. In this 

phase, a significant uncertainty was involved in the velocity measurements due to the fast change of 

the shape of the net, which at the beginning of the deployment has not yet acquired a planar form. In 

addition, the lower lead weights rope was not actually submerging as a straight line, mainly due to the 

influence of the weights and the flexibility of the net. As a result, the velocity at different points along 

the net was scattered and for this reason we are referring to ‘observations’ rather than ‘measurements’ 

of velocity. 

In the FEM results presented in Figure 30 and Figure 31 a correction to the drag has been performed 

according to the correction factor shown in Figure 24 for 
0

w 90  , in the absence of any current or 

wave induced velocity or relative motion due to trawling action. Thus, a correction factor 0.39  is 

applied according to Figure 24. In Figure 32 and Figure 33 FEM results for the depth and the speed 

are shown with and without the application of the correction factor. It is clear that under the action of a 

higher drag on the net both the initial phase and the critical velocity are significantly affected. Both the 

maximum speed reached at the initial drop phase as well as the critical diving speed, are quite lower. 

Also the deceleration rate in the second phase is quite bigger. Due to the higher drag, diving of the net 

is significantly retarded, which implies that a consistent modeling of the shading effect is absolutely 

necessary in order to obtain realistic values of the depths reached during submergence of the net. 

This is especially true in case that the aim of the simulation is to identify that the demand of the 

regulation that the net must not reach the sea floor during the trawling cycle is satisfied.  

 

5. Net dynamic response in cyclic deployment 

In the present section, the dynamic behavior of the purse seine in cyclic deployment is investigated. 

Cyclic deployment simulates the shooting phase of the fishing cycle where the auxiliary fishing boat 



(skiff) releases the net while moving in a cyclic path. In the numerical simulations of the shooting 

phase we assume that the net is initially compacted at a very low depth (approximately 0.5 m below 

the sea level) and it is gradually deployed along the circumference of a cycle, the arc length of which 

is equal to the length of the lacing rope. We also assume that the nodes of the grid located on the 

lacing rope are constrained (zero displacements) along the cyclic path as shown in Figure 34. This 

assumption, made for the sake of simplicity, means that the lacing rope remains fixed in the cyclic path 

and cannot be drifted by sea currents. When the simulation starts, all the nodes of the grid are 

constrained. Cyclic motion of the boat and shooting of the net is simulated by gradually releasing 

nodes of the grid overtaken by the boat. We also assume that the fishing boat travels with a constant 

speed along the circumference of a cycle of constant radius.  

In the simulations, an equivalent net, with a mesh ratio eqa n / n 256   is used. This value of the 

mesh ratio is at least one order of magnitude higher than that employed in the preceding simulations. 

However, the use of finer meshes is prohibitive in terms of computational time and memory 

requirements. The dimensions of the purse seine modeled in the present study are 635 m x 65 m and 

consists of about 50000 cells in the circumferential direction and 7500 cells in the depth direction. This 

means that in order to simulate the real net one needs a computational grid consisting of about 

 87.5 10  cells and  92.25 10  d.o.fs. Even with a mesh ratio of a 256  the equivalent net consists of 

about 10000 nodes (3x10000=30000 d.o.fs) and the average computational time for the simulation of 

one fishing cycle is about 10 days on a cluster with 64 cores. For the modeling of the leading weights, 

the same approach to that of section 4.2 is followed. At the two edges of the fishing net two thin strips 

of stiffer net (bigger cells and thicker twines) are sutured. These strips prevent the net from acquiring 

its full length in the direction of depth and thereby reduce the maximum depth that the net reaches 

during submersion. The length of those strips is about 35 m, significantly lower than the length of the 

actual net (120 m) and almost equal to the maximum depth of the fishing site. For the modeling of 

those strips, equivalent stiffer cells are placed at the two edges of the net as shown in Figure 34. 

Two different speeds of the skiff are simulated, 1 m/s and 2 m/s respectively. In the simulations 

performed, sea currents are neglected. This corresponds to the most unfavorable situation in terms of 

the submersion depth, since in the presence of a component of the flow perpendicular to the plane of 

the net the drag force becomes higher. In Figure 35, two snapshots of the net submersion are shown. 

The first corresponds to the low speed and the boat has barely exceeded 
0270  azimuth while the 

second to the high and the boat has just completed the fishing cycle.  



It is noted that the speed of 1 m/s is representative of skiffs used for fishing in the Aegean Sea. In 

Figure 36 and Figure 37 the submersion depths, of various points on the leading rope, corresponding 

to different azimuth locations along its circumference are shown for the two speeds respectively. It is 

seen that with the typical boat speed, the depth reached by the first quadrant of the net exceeds the 

limit of 30 m (dashed line in the plots), which corresponds to a representative depth of fishing sites in 

the Aegean Sea. For the particular depth, the sea bed will be reached long before the boat completes 

the fishing cycle. It is noted that although the first part of the net is constrained by the stiff strip 

attached to the edge, finally this part (located at 
05  azimuth) will reach a depth of about 40 m. 

Furthermore, the part of the net which is located at 
045  azimuth will go deeper at almost 45 m depth. 

As indicated by the vertical line of Figure 36, the net will touch the sea floor for the first time quite 

early, 260 s after the beginning of the fishing cycle when the boat is located at the azimuth of 
0135 .  

For the speed of 2 m/s (see Figure 37) the maximum depth reached by the net is about 25 m. In 

Figure 38 the submersion velocity is also presented for the same azimuth positions on the leading 

rope. It is seen that as in the case of the vertical submersion, the different points on the leading rope 

when released they obtain a high vertical velocity which is about equal to 0.5 m/s for all points. This is 

slightly lower that the maximum speed seen in the case of the vertical deployment. The difference is 

due to the loads acting to the moving net by the constrained (not yet released) part. For the same 

reason, the critical speed of the net is lower (about 0.05 m/s) and it is almost the same for all the 

positions along the leading rope. The transient of the submersion speed is very similar for the different 

points on the rope but for the first point at 
05  azimuth which is constrained by the stiff strip at the edge 

of the net. 

 

6. Conclusions 

A general three dimensional hydro-elastic tool for the analysis of different types of fishing nets and 

aquaculture facilities was presented. The finite element formulation includes the concept of an 

equivalent net and the consistent application of the Morison formula for the prediction of the 

hydrodynamic loads. In contrast to existing methods, the present formulation retains both drag and 

inertia of the net during this idealization. 

Furthermore, the drag resistance of a common purse seine net was measured during towing tank 

experiments. The examined configuration and the tested speeds correspond to values of the net 



solidity and Reynolds number not covered by existing experimental results. Three inclination angles 

were examined. The obtained drag coefficients were found compatible with predictions of empirical 

formulae.  

The comparison of the results of the finite element model against the measured data revealed the 

importance of the correct modelling of the shading flow effect, which dominates the hydrodynamic 

behaviour at large angles of incidence. Pertinent correction factors for the drag coefficient were 

derived for this case. 

The vertical submersion of the seine was examined experimentally (for the early stage of motion) and 

numerically. For the latter case, an analytical approach was presented and a good agreement 

between the numerical results and the experimental observations was achieved. 

Finally the cyclic deployment of the purse-seine net is simulated. The aim of this analysis was to 

investigate the diving behavior of the net in the actual fishing conditions and in particular to study the 

effect of the speed of the skiff on the maximum depth reached by the net during the fishing cycle.It has 

been identified that for typical skiff speeds the net will reach the sea floor at the early stages of the 

shooting cycle. 
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Figure 1: Purse seine components 

 

 

 

Figure 2: Purse seining (Source:www.eurocbc.org/purseseine.gif) 
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Figure 3: Deformation of a truss element. 
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Figure 4: Illustration of relative water velocity and acceleration. 
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Figure 5: Numbering of the net cells. 
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Figure 6: Definition of the equivalent net with a less fine mesh 
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Figure 7: Deformed 1x1 net panel (square type cells) at current velocity 1 m/s 
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Figure 8: Drag force of net panel with square type mesh as function of the current velocity – 

comparison with semi-empirical expressions (Reynolds range 35 1400 ). 
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Figure 9: Drag coefficient of net panel with square type mesh as function of the current velocity – 

comparison with analytical expressions (Reynolds range 35 1400 ). 
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Figure 10: Drag force of net panel with square type mesh as function of the current orientation – 

comparison with Aarsnes and Balash analytical fomulae ( V 0.5 m / s, Re 700  ). 
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Figure 11: Lift force of net panel with square type mesh as function of the current orientation – 

comparison with Aarsnes analytical fomula ( V 0.5 m / s, Re 700  ). 
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Figure 12: Configuration of single point moored buoy. 
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Figure 13: Vertical displacement of moored buoy. 
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Figure 14: Horizontal displacement of moored buoy. 



 

0

5

10

15

20

25

0.5 1 1.5 2 2.5 3

b
u

o
y
 v

e
lo

c
it
y
 [
in

/s
]

t [s]

prediction
measurements

 

 

Figure 15: Displacement velocity of moored buoy. 
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Figure 16: Tension of the cable at the sea bed connection point 



 

 

cell type diamond 

Seine weight (dry) in air 0.307 Ν/m2 

Seine weight in water 0.065 N/ m2 

Seine wet mass (inertia) 75.5 gr/m2 

Twine diameter 0.35 mm 

Half mesh size 8 mm 

Twine material density 1269.54 kg/m3 

Twine material Young’s modulus 2x109 Pa 

Upper and lower rope diameter 6.5 mm 

Bottom rope weigh (dry) in air 0.5673 N/m 

Bottom rope weigh in water 0.2418 N/m 

Bottom rope wet mass (inertia) 135 gr/m 

Dimensions of lead weights 

Ellipsoids, 28mm max.  

11mm hole  

Length 33mm 

Spacing 300mm 

Mass of lead weights 100 gr 

Table 1: Purse seine net properties. 

 

 

 
eqa n / n 8   eqa n / n 32   

Equivalent half mesh size 64 mm 256 mm 

Equivalent twine diameter 

(cylindrical twine) 

2.8 mm 11.2 mm 

Equivalent twine (dry) weight in air 0.00959 N/m 0.03834 N/m 

Equivalent twine weight in water 0.00203 N/m 0.00814 N/m 

Equivalent wet twine mass (inertia) 2.357 g/m 9.428 g/m 

Equivalent twine axial stiffness 1539 N 6158 N 

Table 2: Equivalent net properties. 
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Figure 17: Arrangement for the Resistance tests. 
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 (a) (b) 

Figure 18: Drag force on fishing net with diamond type mesh as function of the current speed at 

0

w 0  (a) full range (b) focused at low speeds (Reynolds range 15 215 ). 
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 (a) (b) 

Figure 19: Drag force on fishing net with diamond type mesh as function of the current speed at 

0

w 45  (a) full range (b) focused at low speeds (Reynolds range 15 215 ). 
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 (a) (b) 

Figure 20: Drag force on fishing net with diamond type mesh as function of the current speed at 

0

w 90  (a) full range (b) focused at low speeds (Reynolds range 15 215 ). 
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Figure 21: Drag coefficient on fishing net with diamond type mesh as function of the current speed at 

0 0 0

w 0 , 45 , 90   (Reynolds range 15 215 ). 
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Figure 22: coefficient on fishing net with diamond type mesh as function of the current speed at 

0

w 0   comparison against Aarsnes and Balash formulae (Reynolds range 15 215 ). 
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Figure 23: Predicted and measured drag ratio at 
0 0 0

w 0 , 45 , 90   
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Figure 24: Drag coefficient correction curve. 
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Figure 25: Drag coefficient as function of the current orientation – comparison with Aarsnes and 

Balash analytical fomulae ( V 0.3 m / s, Re 100  ). 
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Figure 26: Drag force and net midpoint point deflection in airy wave (wave height H=0.5 m, wave 

period T=2 s)  



 

 

 

Figure 27: Arrangement for the submergence tests. 

 

 

Depth (m) 

Submersion speed 

(m/sec) Time  (sec) 

1.65 0.5 3.62 

2.23 0.25 6.73 

2.93 - 9~9.5 

 

Table 3: Purse seine submersion tests 
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Figure 28: Forces on the free falling net. 
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Parameter Value 

M 446.7 gr/m 

m 75.5 gr/m2 

W 3.173 N/m 

w 0.0652 N/m2 

Table 4: Simplified model parameters 
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Figure 29: Submerged net geometry at t=2, 4, 6, 10 s 
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Figure 30: Submersion depth – comparison of measured and predicted data 
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Figure 31: Submersion velocity – comparison of measured and predicted data 
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Figure 32: Submersion depth – comparison of measured and predicted data with and without the use 

of correction factor on the drag. 
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Figure 33: Submersion speed – comparison of measured and predicted data with and without the use 

of correction factor on the drag. 
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Figure 34: Arrangement of simulated purse seine. 

 



 

  

 U=1 m/s U=2 m/s 

Figure 35: Snapshot of purse seine submersion for two different speeds of the fishing boat. 
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Figure 36: Submersion depth of different points along the circumference of the purse seine (U=1 m/s) 
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Figure 37: Submersion depth of different points along the circumference of the purse seine (U=2 m/s) 
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Figure 38: Submersion velocity of different points along the circumference of the purse seine 

(U=2 m/s) 

 

 


