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Abstract

A novel state-space model of a multi-node supply chain is presented, controlled via local

proportional inventory-replenishment policies. The model is driven by a stochastic

sequence representing customer demand. The model is analyzed under stationarity

conditions and a simple recursive scheme is developed for updating its covariance

matrix. This allows us to characterize the “bullwhip effect” (demand amplification) in

the chain and to solve an optimization problem for a three-node model involving the

minimization of inventory subject to a probabilistic constraint on downstream demand.

Finally, issues related to estimation schemes based on local historical data are briefly

discussed.

Keywords: Bullwhip effect, State-space model, Supply Chain, Covariance matrix

Estimation, Information-sharing.
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1. Introduction

The work presented in this paper aims to analyze the effects of certain aspects of

proportional (continuous) inventory policies on the stability and performance of serial

multi-node supply chains. A short version of the paper has appeared in [9].

In contrast to more traditional inventory-replenishment policies commonly used for

supply chain control (e.g. (S, s) policies), continuous policies (e.g., P or PI policies)

have only recently been proposed, apparently inspired from the area of classical process

control engineering [5], [7], [10]. Their main characteristic is that orders take place

continuously, rather than being triggered by specific events (e.g., when the inventory

falls below a certain target level). Despite possible practical limitations of continuous

ordering policies in some cases, these in principle can offer additional flexibility (e.g.,

by smoothing out flows) which can be beneficial for the stability and performance

properties of the supply chain. In practice, continuous ordering policies are applicable

when cost savings due to batch ordering are not significant.

Relative stability is supply chain dynamics is often quantified via the concept of

“bullwhip effect”. The bullwhip effect is a well known instability phenomenon in

supply chains, related to increased volatility in demand profiles in the upstream

nodes of the chain [15]. This may limit significantly the smooth operation of the

chain and result in high costs arising due to its implications on production planning,

high levels of inventory costs, poor customer service, etc. The bullwhip effect has

been analyzed extensively in recent literature, and many contributing factors for this

phenomenon have been identified [11], [12], [7], [10]. These include poor coordination,

aggressive stock replenishment/demand forecasting policies and uncertain lead times

in the chain. Note that these factors apply for general ordering policies, not only

proportional policies considered in this paper. In this work, we will present explicit

methods for analyzing and predicting the bullwhip effect via covariance analysis of

proportional control schemes in supply chain models of arbitrary complexity. Moreover,

we study issues related to supply chain performance under such schemes, the potential

advantages of information-sharing and the applicability of local estimation schemes
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based on historical data. The benefits of using a state-space (rather than a transfer-

function) approach arise mainly from its suitability for the recursive updating of the

covariance matrix of structured multi-node systems of the type used in this work.

Moreover, the covariance analysis undertaken in the first part of the work provides

important information on the overall stability and performance of the chain which is

not directly available by other means of analysis.

An additional feature of our paper is that the model is driven by a stochastic process

representing customer demand which is initially assumed to be “white”, i.e., a time-

series of uncorrelated normally distributed random variables. In case this is not a

realistic representation of customer demand profiles, we can always use a filtered version

of this signal via an ARMA model [16] to generate arbitrary spectral characteristics

representing more complex correlation patterns, seasonal variations, etc. A specific

illustration involving the analysis of the bullwhip effect for a three-node chain with a

first-order AR filter is provided at a later section of the paper.

The main objective of the paper is to derive results based on a generic supply-chain

model which is easy to analyse quantitatively but at the same time is sufficiently generic

to capture the essential issues under investigation, which include: (a) The analysis of

the bullwhip effect in serial multi-node chains, arising especially due to aggressive

ordering policies; (b) Issues of optimisation under information-sharing and their effect

on the overall stability and performance of the chain (e.g. customer satisfaction levels);

and, (c) The possibility of estimation of policy parameters of adjacent nodes using only

local historical data. Thus we do not consider explicitly multiple vendors on either the

upstream or downstream side of a particular node and the flow of orders and products

through a specific node is interpreted in aggregate terms (i.e., as arising from multiple

sources).

2. The supply chain model

A simple series multi-stage supply chain is considered as shown in Figure 1. There are

n individual stages between generic Customer and Manufacturer and we denote as i
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Figure 1: Series supply chain with n stages

the intermediate supplier index (i ≥ 1). Figure 1 also depicts the flow of goods and

information (orders) within the supply chain. Let Ii(t) denote the inventory level of

node i at time t. We let also Yi,i−1(t) indicate the amount of goods to be delivered to

node i− 1 by the upstream node i at time instant t. We also introduce a time delay L,

which is the lead time needed for the goods to be dispatched to the downstream node

(i.e., the goods dispatched at time t are delivered at time t + L). For further analysis

we assume that L = 1. The model is based on [5], from where additional details can be

obtained, including the main linearising assumptions used to make the mathematical

analysis tractable. We consider the supply chain network as a decentralised control

system where there is no global moderator and decisions are taken locally at each

node.

Balancing the inventory Ii(t) of node i at time step t gives:

Ii(t) = Ii(t− 1) + Yi+1,i(t− L)− Yi,i−1(t) (1)

where Ii(t − 1) is the inventory level at node i at time step t − 1 and Yi,i+1(t − L)

represents the products dispatched by the upstream node i + 1 to node i, which are

assumed to arrive with a delay of L time steps. Although inventory level is a key

variable in supply chain operation, each node i can better monitor the changes in

inventory level at time t by using inventory position, IPi(t), which is given by:

IPi(t) = IPi(t− 1) + Yi+1,i(t)− Yi,i−1(t) (2)
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We denote by Oi,i+1(t) the amount of orders placed by node i to node i + 1, given by:

Oi,i+1(t) = ki(SPi − IPi(t)) (3)

where SPi represents a target set-point (assumed constant) and ki is the corresponding

inventory replenishment gain factor.

For the purposes of further analysis it is assumed that Yi,i−1(t) = Oi−1,i(t − 1). This

implies that the amount of goods dispatched from node i to the downstream node i−1

at time t is the amount of orders placed on node i at time t− 1. This is essentially a

linearisation assumption as it assumes that there is always enough inventory to meet

downstream demand. This assumption is also made in [5] as it simplifies the subsequent

analysis.

The above equations for the i-th node may be written more compactly in state-

space form by selecting IPi(t − 1) and Yi,i−1(t) as state space variables. The input

and output variables of the i-th node are also selected as (Oi−1,i(t), Yi+1,i(t)) and

(Yi,i−1(t), Oi,i+1(t)), respectively.

With this choice, the state-space model of the i-th node can be written more compactly

as:

 IPi(t)

Yi,i−1(t + 1)


 =


 1 −1

0 0





 IPi(t− 1)

Yi,i−1(t)


 +


 0 1

1 0





 Oi−1,i(t)

Yi+1,i(t)




and

 Yi,i−1(t)

Oi,i+1(t)


 =


 0 1

−ki ki





 IPi(t− 1)

Yi,i−1(t)


+


 0 0

0 −ki





 Oi−1,i(t)

Yi,i+1(t)


+


 0

ki


SPi

The equivalent state-space model of the manufacturer (node n + 1) is:

xφ(t + 1) = Aφxφ(t) + BφOn,n+1(t) and Yn+1,n(t) = Cφxφ(t)

where xφ denotes the state of node n + 1. We shall assume that the manufacturer acts

as a pure time-delay, i.e. that he is able to meet the orders placed on him with a delay

of one time-step. Consequently, we simply have that Yn+1,n(t) = On,n+1(t− 1) and we

can select Aφ = 0 and Bφ = Cφ = 1.
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A state-space realisation of the whole chain (n + 1) can be obtained by augmenting

the realisations of all n + 1 nodes. The full derivation is included in Appendix A. As

an example, the state-space realisation of the three-node chain is given as:




IP1(t)

Y1,0(t + 1)

IP2(t)

Y2,1(t + 1)

Y3,2(t + 1)




=




1 −1 0 1 0

0 0 0 0 0

0 0 1 −1 1

−k1 k1 0 −k1 0

0 0 −k2 k2 −k2







IP1(t− 1)

Y1,0(t)

IP2(t− 1)

Y2,1(t)

Y3,2(t)




+




0

1

0

0

0




O0,1(t) +




0 0

0 0

0 0

k1 0

0 k2





 SP1

SP2




which is of the form x(t + 1) = Ax(t) + Be(t) + F (SP ). Note that for an (m + 1)-th

node mode (including the manufacturer’s terminal node) the dimension of the A, B

and F matrices are (2m + 1)× (2m + 1), (2m + 1)× 1 and (2m + 1)×m, respectively.

We make this dependence explicit in the following section (where models with various

number of nodes are considered) by writing the state-transition matrix as A = A2m+1.

3. Computation of model’s covariance matrix

In this section we outline a method for calculating the covariance matrix of the state-

vector x(t) of the overall model developed in the previous section using symbolic

computations. In our application, symbolic computations are essential, since we wish

to obtain the solution as a function of the gain parameters {ki}, which will allow

further investigation of the bullwhip effect using our model. We first outline a general

solution method based on Kronecker matrix products and vectorisation operations [4];

subsequently, the special structure of the state-space model is exploited to derive a

simple recursive solution procedure which can be applied to models of arbitrarily high

complexity. Proofs for all results of this section can be found in [8].
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Consider the LTI discrete-time state-space model: x(t + 1) = Ax(t) + Be(t), y(t) =

Cx(t) where {e(t)} denotes a white vector-noise sequence of unit intensity, representing

customer demand, assumed to have been applied as input to the model since the

infinite past. Then, assuming that A is asymptotically stable (all eigenvalues of A

have modulus less than one), the (steady-state) covariance of the state-vector x(t),

E[x(t)x′(t)], is given by the (unique, positive semi-definite) solution of the discrete

Lyapunov equation: P − APA′ − BB′ = 0. Further, E(yy′) = CPC ′. In our case,

A depends linearly on n parameters k1, k2, . . . , kn which are assumed constant (but

possibly unknown). Hence, the solution of the above Lyapunov equation is the steady-

state covariance of x(t) for all combinations of {ki} for which A is asymptotically

stable. It is shown next that this condition is satisfied if and only if the parameter

vector k = (k1, k2, . . . , kn) lies in the hypercube:

Kn = (0, 2)n := {k ∈ Rn : 0 < ki < 2, i = 1, 2, . . . , n}

This agrees with a parallel result in [7].

Lemma 1: Consider the (m + 1)-th node model depending on m real gain parameters

k = {k1, k2, . . . , km}. Then the system is asymptotically stable if and only if k ∈ Km.

In particular, if A = A2m+1 denotes the “A”-matrix of the state-space realization of the

system, then the eigenvalues of A are {1 − k1, 1 − k2, . . . , 1 − km, 0, . . . , 0}, where the

multiplicity of the zero eigenvalue is m + 1.

Next, let A⊗B denote the Kronecker product of two matrices A and B; let also vec(A)

be the operation which stacks the elements of a matrix A in a column vector (sweeping

along the rows of A). Applying the vec(·) operation to the Lyapunov equation gives

(In2 − A ⊗ A)vec(P ) = vec(BB′) where n = 2m + 1 (see [4]) which may be solved

as: vec(P ) = (In2 − A ⊗ A)−1vec(BB′). The next Lemma guarantees that the above

indicated inverse exists.

Lemma 2: Matrix In2 − A ⊗ A is non-singular for all k such that k ∈ Km. In fact,

In2 − A⊗ A is singular if and only if (1− ki)(1− kj) = 1 for any two indices i and j

such that 1 ≤ i ≤ m and 1 ≤ j ≤ m, where n = 2m + 1.
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The calculation of the covariance matrix P essentially involves the solution of a system

of n2 linear equations in the elements of P , which depend parametrically on the ki’s.

Since the solution of the Lyapunov equation is symmetric, however, this system of

equations is redundant (with n(n− 1)/2 equations being repeated). The solution can

be simplified using the following procedure: For a symmetric matrix P let vec(P )

denote vec(P ) with all the entries of P below the main diagonal eliminated. Clearly,

if P ∈ Rn×n, then vec(P ) ∈ Rr, where r = n(n + 1)/2. Define W ∈ Rn2×r so

that vec(P ) = Wvec(P ). Let also S ⊂ {1, 2, . . . , n} be the subset of the n(n − 1)/2

indices of vec(P ) which are eliminated when constructing vec(P ). Then we can write

V (In2 −A⊗A)Wvec(P ) = V vec(BB′) where V ∈ Rr×n2
denotes the unit matrix with

all rows corresponding to indices in S eliminated. Clearly, multiplication from the right

by matrix V eliminates the n(n− 1)/2 redundant equations. Further we have:

Lemma 3: Matrix V (In2 − A⊗ A)W is non-singular for all k ∈ Km.

Using Lemma 3 we can obtain the unique solution p = vec(P ) = [V (In2 − A ⊗
A)W ]−1V vec(BB′) from which P can be recovered as P = vec−1(p).

Example: Using the two methods described in the earlier part of this section the

covariance matrices corresponding to the three-node models were obtained using the

symbolic Matlab toolbox [6], as:

P5 =




1
k1(2−k1)

0 − k1−1
(k1−2)k

1
k1−2

(k1−1)k2

(k1−2)k

0 1 0 0 0

− k1−1
(k1−2)k

0 k1(k+2)
k2(2−k1)(k2−1)k

(k1−1)k1

(k1−2)k
(k+2)k1

(k1−2)(k2−2)k

1
k1−2

0 (k1−1)k1

(k1−2)k
k1

2−k1
− (k1−1)k1k2

(k1−2)k

(k1−1)k2

(k1−2)k
0 (k+2)k1

(k1−2)(k2−2)k
(k1−1)k1k2

(2−k1)k
(k+2)k1k2

(k1−2)(2−k2)k




(4)

where k = k1k2 − k2 − k1.
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A superior method for calculating the covariance matrix of the state-vector is to use the

special structure of the state-space model, which leads to a simple recursive updating

algorithm. This is outlined in the following result:

Lemma 4: Let (A2j+1, B2j+1) denote the (j + 1)th node state-space model, depending

on the j parameters {k1, k2, . . . , kj} where j ≥ 1. Then:

1. There is a state-space transformation defined by a permutation matrix Qj, such

that

QjA2j+1Qj := A =


 A11 0

A21 A22




and QjB2j+1 = B2j+1 := B in which: (i) A11 = A2j−1, (ii) A21 and A22 have

rank one, and (iii) B is of the form [B′
1 02j−1]

′.

2. The Lyapunov equation P − APA′ − BB′ = 0 has a unique symmetric positive-

semidefinite solution P for all (k1, k2, . . . , kj) ∈ (0, 2)j. Let P be partitioned

conformally with A, i.e,

P =


 P11 P12

P ′
12 P22




where P11 = P ′
11 ∈ R(2j−1)×(2j−1), P12 ∈ R(2j−1)×2 and P22 = P ′

22 ∈ R2×2.

Then P11 = P2j−1 where P2j−1 is the covariance matrix of the jth-node model,

i.e, the unique symmetric solution of the discrete Lyapunov equation: P2j−1 −
A2j−1P2j−1A

′
2j−1 − B2j−1B

′
2j−1 = 0. Further, P12 and P22 have rank at most

one and may be obtained from the unique solutions of the linear equations:

P12 − A11P12A
′
22 = A11P11A

′
21 and P22 − A22P22A

′
22 = A21P11A

′
21 + A22P

′
12A

′
21 +

A21P12A
′
22 respectively.

3. If (k1, k2, . . . , kj) ∈ (0, 2)j, the Lyapunov equation: P2j+1 − A2j+1P2j+1A
′
2j+1 −

B2j+1B
′
2j+1 = 0 has a unique symmetric positive semi-definite solution given by:

P2j+1 = Qj


 P2j−1 P12

P ′
12 P22


 Qj
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Remark: The Lemma shows that the covariance matrix of the j+1-th node model may

be obtained recursively from the solution of the j-th node model by solving two linear

equations of order 2(2j−1) and 4, respectively (in fact of order 2j−1 and 2, taking into

account that P12 and P22 have both rank at most one). This can be achieved by the

vectorization approach outlined earlier. Hence the bulk of the computation involving

the solution of a (2j − 1) × (2j − 1) matrix equation is completely avoided. After P

has been assembled from P2j−1, P12 and P22, P2j+1 may be obtained by reversing the

permutation through matrix Qj.

4. Characterisation of Bullwhip effect

The covariance analysis of the model allows us to analyze the effect of the inventory

replenishment policies on the bullwhip effect. Recall that end-customer demand O0,1(t)

has been modelled as a sequence of independent and identically distributed random

variables of unit variance. Hence, the variance of the demand signal at any node of the

chain may be calculated easily from the covariance matrix. Consider the three-node

model. The orders placed by the second node (on the manufacturer) correspond to

signal O2,3(t) and we can write:

O2,3(t) = Y3,2(t + 1) = −k2IP2(t− 1) + k2Y2,1(t)− k2Y3,2(t) + k2SP2

which can be written as a linear combination of the state-variables (and SP2) in

the form O2,3(t) = C ′x(t) + k2SP2 where x(t) is the state-vector of the model and

C ′ = (0 0 − k2 k2 − k2). The bullwhip effect, representing the amplification in order

“fluctuations” placed on nodes 1 and 3 is given by:

β =
Var(O2,3)

Var(O0,1)
= C ′P5C =

k1k2(2 + k1k2 − k1 − k2)

(2− k1)(2− k2)(k1 + k2 − k1k2)
(5)

To find the regions in the (k1, k2) plane where demand amplification and demand

attenuation occurs, β was set to one, and the resulting equation was solved to give k2

as a function of k1. This gives two solutions:

k2 = f(k1) =
2− 5k1 + 2k2

1 ±
√

4− 12k1 + 13k2
1 − 4k3

1

2(k1 − 1)2
(6)
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Figure 2: Boundary between demand amplification and attenuation regions as a

function of α

which are valid for k1 6= 1. It can be easily seen that the positive square root should

be chosen, as with this choice, k1 values in the interval 0 ≤ k1 ≤ 2 are mapped

to k2 values inside the same interval. The resulting curve is plotted in Fig. 4 (for

α = 0), and indicates the boundary between the demand-amplification and demand-

attenuation regions. As expected, aggressive replenishment policies (i.e, large values

of k1 and k2) reinforce the bullwhip effect. The analysis can be easily extended for

correlated profile signals, modelled via arbitrary ARMA models driven by white noise

of (unit) intensity e(t). Assuming, for example, that O0,1 is a first-order autoregressive

(AR), i.e.

O0,1(t + 1) = αO0,1(t) + (1− α)e(t)

where α is a correlation (smoothing) parameter lying in the interval −1 < α < 1, it

can be shown that the demand attenuation factor region expands at the expense of the

demand amplification region as shown in Figure 4, plotted for values α = 0, 0.2 , 0.5

and 0.8. Note that, as expected, “smoother” customer demand fluctuations result in

the alleviation of the bullwhip effect.
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5. Optimal policies under information-sharing

In this section we specialize our system to a three node model. We still assume linear

dynamics (i.e., that all inventories are sufficiently high to meet downstream demand

with no back-orders). The manufacturer (node 3) is again modelled as a unit delay,

i.e., he delivers the requested products with a delay of one time period. Assume further

that customer demand is normally distributed as e(t) = O0,1(t) ∼ N(µ, σ2). Provided

that the system is stable (0 < k1 < 2 and 0 < k2 < 2) all signals in the limit are

stationary.

Remark: The assumption that customer demand is normally distributed is not

essential for the analysis of this section and can be easily removed (by assuming that

the customer demand signal is made up of independent and identically distributed

random variables). This is also true of the local estimation schemes presented in the

next section, which do not rely on a-priori knowledge of any specific distribution.

The normality assumption is only made for the purposes of obtaining distributions for

the various variables of the model and for supporting the main results via concrete

simulations.

The expected values of the state variables can be found using the state space model,

which is of the form:

x(t + 1) = Ax(t) + Be(t) + F (SP )

where SP is the (deterministic) vector of set-points SP = (SP1 SP2)
′ (assumed

constant). Thus under stationary conditions,

x(t) = (I − A)−1Be(t) + (I − A)−1F (SP )

and hence

E[x(t)] = µ(I − A)−1B + (I − A)−1F (SP )

Note that the indicated matrix inverse exists as the spectral radius of A is less than

one as long as 0 < k1 < 2 and 0 < k2 < 2. Thus, the five state variables are distributed

12



as:

IP1(t) ∼ N

(
SP1 − µ

k1

,
σ2k1

2− k1

)

Y1,0(t) ∼ N(µ, σ2)

IP2(t) ∼ N

(
SP2 − µ

k2

,
σ2k1(k1k2 − k1 − k2 + 2)

k2(2− k1)(2− k2)(k1 + k2 − k1k2)

)

Y2,1(t) ∼ N

(
µ,

σ2k1

2− k1

)

O2,3(t) ∼ N

(
µ,

σ2k1k2(k1k2 − k1 − k2 + 2)

(2− k1)(2− k2)(k1 + k2 − k1k2)

)

Next, we define a new variable (excess inventory position), EI2(t) = IP2(t−1)−O1,2(t)

which monitors the ability of node 2 to meet the downstream demand placed on it. It

follows that:

EI2(t) ∼ N

(
SP2 − µ(k2 + 1)

k2

, σ2
EI2

(k1, k2)

)

where

σ2
EI2

(k1, k2) =
σ2k1(2− 5k2k1 + k2

2k1 − k3
2 + k3

2k1 − k1 + 3k2 + 4k2k
2
1 − 2k2

2k
2
1)

k2(2− k2)(k1 + k2 − k2k1)(2− k1)

Note that under step demand changes IPi (i = 1, 2) does not track the set-point SPi

exactly, but with a steady-state error µ/ki characteristic of type zero feedback systems.

As expected, the information pattern is asymmetric, i.e., node 2 (Distributor) is affected

by the inventory policy of node 1 (Retailer) but not vice versa. Suppose now that

the Retailer makes his policy gain-factor k1 known. In this case the Distributor can

make use of this information to minimize his own costs, typically related to excessive

inventory levels. Although this objective is situation-specific (e.g., due to possible

existence of capacity constraints, depreciation effects, etc) it is reasonable to assume

that the objective of the Distributor is to minimize both his average inventory and his

inventory fluctuations. Note that in our model the Distributor is always capable of

controlling his average inventory-level through his choice of SP2, which can be used to

shift E(IP2) to any required level.

An additional requirement is that the Distributor should have enough inventory to

meet (fluctuating) downstream demand, at least for most orders placed on him. This

13



is in order to ensure the smooth operation of the chain, to which he has an interest

as a participant. One way of modelling this requirement is to include explicit penalty-

terms in the Distributor’s “objective function”, reflecting real or virtual costs (e.g.,

penalty terms for not fulfilling a contract, loss of sales due to Customer dissatisfaction,

etc). Here we impose a probabilistic constraint for fulfilling orders, i.e., we require that

Prob[EI2 < 0] ≤ δ for some (small) parameter δ.

Let Φ(z) denote the cumulative distribution function of the normal distribution N(0, 1),

i.e.:

Φ(z) =
1√
2π

∫ z

−∞
e−ξ2/2dξ

Then, using the distribution of EI2(t) above, the “order-fulfilling” constraint takes the

form:

SP2 − µ(k2 + 1)

k2

+ σEI2(k1, k2)Φ
−1(δ) ≥ 0 (7)

Thus, the optimization problem faced by the Distributor is to choose his inventory

replenishment policy parameters, k2 and SP2, to minimize his inventory costs subject

to the constraint of equation (7). (Note that parameter k1 is not under the control of

the Distributor and has been assumed to be fixed and known).

Modelling inventory costs can be achieved in various ways depending on the specific

practical situation faced by each Distributor and essentially involves the assessment of

the relative importance attached to costs due to a high average inventory and to costs

due to excessive inventory fluctuations. One of the following three approaches can be

followed:

• The first approach, which is a compromise between the two tradeoffs discussed

above (i.e. mean vs variance), is to assume that a price function q(ξ) is attached

to each possible inventory level. The function would be typically increasing and

concave to reflect decreasing marginal costs. Then the total expected inventory

cost can be expressed as the weighted integral:

C(k2, SP2) =
1√

2πσIP2

∫ ∞

0

q(ξ) exp(−(ξ − µIP2)
2/2σ2

IP2
)dξ

14



assuming that q(ξ) = 0 for ξ ≤ 0. Note that µIP2 and σIP2 (and thus also

the expected cost C) depend on the two parameters k2 and SP2 (assuming k1

is fixed and known). An optimisation objective can then be formulated as the

minimisation of C(k2, SP2) subject to constraint (7) and solved via Lagrange

multipliers. Although the problem is tractable in principle (at least for fixed

values of the parameters), its solution is likely to depend critically of q(ξ) and

therefore would not reveal any interesting information about the optimal policies.

• The second approach places emphasis on the minimisation of the average

inventory µIP2 (subject to constraint (7). This method would be appropriate

when the bulk of inventory costs is determined by the average inventory stored,

rather than its fluctuations. To solve the problem in this case, note that

µEI2 − µIP2 = µ (constant) and hence constraint (7) can be written as µIP2 ≥
µ− σEI2Φ

−1(δ). In the interesting case that δ is small (it suffices that δ ≤ 0.5),

Φ−1(δ) < 0 and µIP2 is minimised by making the inequality (7) tight (i.e.

equality) and minimising σEI2 (over k2 for any fixed k1). This would determine

an optimal policy k2 = f̂(k1), say, from which the minimum value of µIP2 can be

obtained as µIP2 = µ−σEI2Φ
−1(δ), where k2 = f̂(k1) has been substituted in the

expression for σEI2); note that the variance of IP2 is also uniquely determined

(as a function of k1). Equation (7) (with equality) can then be used to determine

the optimal setting of SP2. We will not pursue this approach in detail.

• The third approach which is analysed in detail, relates to the case when the bulk

of inventory costs are due to excessive fluctuations in inventory stored, rather than

the average inventory level. Here, for any given k1 in the interval 0 < k1 < 2, we

seek the optimal choice of k2, k?
2 = f ?(k1) say, which minimizes the variance of

IP2; subsequently we minimize the mean of IP2 subject to constraint (7). Note

that once the optimal policy k?
2 = f ?(k1) has been determined, we need to set:

SP ?
2 =

µ(k?
2 + 1)

k?
2

− σEI2(k1, k
?
2)Φ

−1(δ)

resulting in the constrained minimum µIP2 = E[IP2] = SP ?
2 − µ

k?
2
. It has been

assumed that the Customer demand parameters µ and σ are known or can

15



be estimated accurately from the data. The optimal solution in this case is

summarised by the following Proposition.

Proposition 1: The minimizing solution is given by:

k2 = f ?(k1) =
4 cos(φ/3− 2π/3) + 3k1 − 4

3(k1 − 1)

where φ = φ(k1) is defined as:

φ = tan−1

(
3
√

3k1(2− k1)(27k2
1 − 54k1 + 32)

27k2
1 − 54k1 + 16

)
(8)

Remark: Since tan−1(·) is a multi-function, it is stressed in the above proposition φ

takes values in the interval 0 ≤ φ < π.

Proof: The proof follows via routine but complex manipulations by setting the

derivative of the variance of IP2 with respect to k2 to zero and solving the resulting

cubic equation to express k1 as a function of k2 = f ?(k1). Due to the high complexity of

the expressions involved Matlab’s symbolic toolbox [6] was used to verify the minimising

solution in the interval 0 ≤ k1 ≤ 2. ¤

Note that f ?(1) is not formally defined by the equation k2 = f ?(k1), so we set f ?(1) = 1

to make the function continuous and continuously differentiable at k1 = 1. A plot

of k?
2 = f ?(k1) (along with the boundary between the attenuation and amplification

regions) is shown in Figure 3. An important observation is that the optimal curve

lies entirely in the attenuation region. Thus, under information-sharing (disclosure of

policy parameter k1 to the Distributor), a “selfish” policy by the Distributor (resulting

from his attempt to minimize his own inventory costs) can not give rise to the bullwhip

effect. Of course this conclusion should be qualified by the assumptions of the model

and the assumed form of the cost function.

The minimum variance Var?(IP2) can be obtained by substituting the optimal policy

k?
2 = f ?(k1) into the (3, 3) element of P5. A plot of Var?(IP2) versus k1 reveals

that Var?(IP2) is a monotonically increasing function of k1. The optimal curve

k?
2 = f ?(k1) (which is a monotonically decreasing function) starts at point (2, 0) (where
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Figure 3: Optimal policy k?
2 = f?(k1) and boundary between amplification and

attenuation regions

Var?(IP2) = 0), passes through the point (1, k?
2(1) = 1) (where Var?(IP2) = σ2) and

approaches zero as k1 → 2 (where Var?(IP2) → ∞ as this corresponds to the edge of

the stability region).

Example: The results of the optimal policy k?
2 = f ?(k1) for three values of k1 =

0.5, 1, 1.5 are summarized in Table 1. The parameters for the demand distribution

were chosen as µ = 10 and σ = 1, while parameter δ was set to δ = 0.05. The

distributions of IP2 and IP2−O1,2 for the three values of k1 are shown in Figure 4 and

Figure 5 respectively. Note that all three distributions of EI2 = IP2 − O1,2 suggest

that inventory IP2 is insufficient to meet downstream demand O1,2 with probability

0.05, as set by parameter δ.

k1 k?
2 E[IP2] Var[IP2] E[EI2] Var[EI2]

0.50 1.43 11.41 0.26 1.41 0.73

1.00 1.00 12.33 1.00 2.33 2.00

1.50 0.57 14.23 2.38 4.23 6.61

Table 1: Summary of optimal policy results
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6. Local Estimation schemes

We continue our analysis of the three node model by removing the assumption that

policy parameter k1 (corresponding to the Retailer’s proportional replenishment policy)

is communicated to the Distributor. A natural question arising in this case is whether

k1 can be estimated by the Distributor (node 2). Naturally, the data on which the

estimation should be based are restricted only to the input/output and state variables

local to node 2. In this section we develop three estimation techniques based on the

covariance matrix of the model. The first, uses only partial information and can be

implemented recursively. The second and third techniques use the full information of

the part of the covariance matrix corresponding to the data available to the distributor.

Note that in this section we do not make use of normality assumptions (see Remark in

section 5) and hence the techniques are applicable to demand-profile data drawn from

arbitrary distributions. We continue to assume, however, that these random variables

are independent and identically distributed.

6.1 Estimation method 1: Partial information

Since E(Y2,1) = µ, the mean customer demand (µ) can be estimated from Y2,1(t),

which is an output signal of node 2 (e.g., an unbiased estimate µ̂ of µ can be obtained

asymptotically). Consider next the part of the covariance matrix P5 corresponding to

the state variables of node 2; this is the diagonal block of P5 corresponding to the third

and fourth rows and columns, i.e.:

Cov(IP2, Y2,1) = σ2




k1(2−k1−k2+k1k2)
k2(2−k1)(2−k2)(k1+k2−k1k2)

k1(k1−1)
(2−k1)(k1+k2−k1k2)

k1(k1−1)
(2−k1)(k1+k2−k1k2)

k1

2−k1


 := (Pij) (9)

One way of estimating k1 and σ is to define:

α =
P12

P22

=
k1 − 1

k1 + k2 − k1k2

⇒ k1 =
1 + αk2

1 + αk2 − α

and note that:

σ2 =
P22(2− k1)

k1
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Now, using the data {IP2(t), Y2,1(t)} and noting that parameter k2 is known, we can

obtain estimates for P11 = Var(IP2), P22 = Var(Y2,1) and P12 = E[(IP2−E(IP2))(Y21−
E(Y2,1)], say P̂11, P̂22 and P̂12 respectively, and use them to estimate k1 and σ via

equations:

α̂ =
P̂12

P̂22

, k̂1 =
1 + α̂k2

1 + α̂(k2 − 1)
, σ̂2 =

P̂22(2− k̂1)

k̂1

This estimation scheme will produce asymptotically unbiased estimates for k1 and σ2

and can implemented efficiently in a recursive fashion (see Appendix B).

6.2 Estimation method 2: Structured covariance approximation

A limitation of the first method is that it does not take full advantage of the available

information structure (e.g., the information contained in Var(IP2) is ignored). A

superior approach is to formulate the estimation problem as a structured-covariance

approximation, e.g.,

min
k1∈(0,2),σ>0

∥∥∥W ◦ (P̂ − σ2P 3,4
5 )

∥∥∥
2

F

in which P̂ denotes the estimated covariance matrix (constructed from the data) and

P 3,4
5 denotes the sub-matrix of P5 consisting of its third and fourth rows and columns

(local information to node 2). The choice of Frobenious-norm makes the problem

easily transformable into a scalar sum-of-squares type non-linear optimisation, while

W is a weighting matrix which can be used to emphasize/de-emphasize different matrix

elements in the approximation (here ‘◦’ denotes the Hadamard product, i.e., element

by element product, of two matrices [4]). For example, choosing W11 = W22 = 1 and

W12 = W21 = 1
2

results in the objective function:

g(k1) =

(
P̂11 − σ2k1(2− k1 − k2 + k1k2)

k2(2− k1)(2− k2)(k1 + k2 − k1k2)

)2

+

(
P̂22 − σ2k1

2− k1

)2

+

(
P̂12 − σ2k1(k1 − 1)

(2− k1)(k1 + k2 − k1k2)

)2

which can be easily minimised (over k1 ∈ (0, 2) and σ2 > 0) via gridding or local search

methods.

Example: We illustrate the estimation scheme by means of a simulation example.

Assume that O1,2 ∼ N(µ, σ2) with µ = 10 and σ2 = 1. We simulate the 3-node chain
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with parameters k1 = k2 = 1.5, SP1 = SP2 = 20 and IP1(0) = IP2(0) = 20 for

n = 1000 time-steps. Parameter k1 is assumed unknown to node 2 (Distributor) and

is estimated using the first method described earlier. The results of the estimation are

summarised below:

E[IP1] E[IP2] E[Y10] E[Y21] E[Y3,2] Var[Y3,2] α σ2 k1

Estimated 13.35 13.35 9.99 9.99 9.98 15.94 0.63 1.09 1.48

True 13.33 13.33 10.00 10.00 10.00 15.00 0.66 1.00 1.50

Table 2: Estimated and true parameters (method 1)

Applying the second estimation method described in this section (structured covariance

approximation) produced a (slightly) more accurate estimate k̂1 = 1.51. The

minimisation was carried over k1 using the estimated variance of the end-customer

demand signal σ̂2 = 1.09. The graph of the cost function which is minimised is shown

in Figure 6. The minimum was found to be insensitive to the choice of norm (Frobenious

or maximum singular value) and weighting function W .
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Figure 6: Cost function in covariance structured approximation (method 2)
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The main advantage of using the (computationally more demanding) covariance

structured approximation method (method 2) for estimating k1 is illustrated in

Figure 7. This shows how the estimates of k1 for the two schemes vary with the

length of the data records (note that only method 1 is truly recursive). It can be seen

from Figure 7 that the estimates based on method 2 converge much faster to the true

parameter value k1 = 1.5. This was consistently observed in all simulations and is not

surprising as the full structure of the covariance matrix is used.

6.3 Estimation method 3: Inverse covariance approximation

The third estimation scheme is based on the observation that the inverse of the

covariance matrix P = Cov(IP2, Y2,1) defined in equation (9) is quadratic in k−1
1 ; thus

estimating k1 using an inverse structured approximation (formulated in terms of the

Frobenious norm) reduces to the solution of a scalar quartic equation.

Proposition 2: Let P = Cov(IP2, Y2,1) be defined as in equation (9), with σ = 1.
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Then, P−1 is quadratic in k−1
1 ; in particular: P−1 = A(k2)k̂

2
1 +B(k2)k̂1 +C(k2) where:

A(k2) =


 k3

2(2− k2) k2
2(2− k2)

k2
2(2− k2) k2(2− k2)




B(k2) =


 −2k2

2(2− k2)(k2 − 1) k2(2− k2)(1− 2k2)

k2(2− k2)(1− 2k2) (k2 − 1)(2− k2)




and

C(k2) =


 k2(2− k2)(k2 − 1)2 k2(2− k2)(k2 − 1)

k2(2− k2)(k2 − 1) −(k2 − 1)2




in which k̂1 = 1
k1

.

Proof: Follows by direct calculations. Details are omitted. ¤

Consider now the inverse covariance matrix approximation problem:

min
k1∈(0,2]

‖P̂ − P̃‖2
F

where P̂ denotes the empirical inverse covariance matrix corresponding to P̃

(constructed from the data). The following result shows that this minimisation is

equivalent to the minimisation of a fourth-order polynomial:

Proposition 3: The optimisation:

γ◦ = min
k̂1∈[ 1

2
,∞)
‖P̃ − P̂‖2

F

is equivalent to:

γ◦ = min
k̂1∈[ 1

2
,∞)
{α0 + α1k̂1 + α2k̂

2
1 + α3k̂

3
1 + α4k̂

4
1}.

where:

α0 = trace(DD′), α1 = −trace(DB′ + BD′),

α2 = trace(BB′ −DA′ − AD′), α3 = trace(BA′ + AB′)

α4 = trace(AA′)

in which D = C − P̂ and A = A(k2), B = B(k2) and C = C(k2) are defined in

Proposition 2.
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Proof: See Appendix C, where detailed expressions of the αi’s are also included. ¤

Next we consider the polynomial:

p(k̂1) = α0 + α1k̂1 + α2k̂
2
1 + α3k̂

3
1 + α4k̂

4
1.

The minimisation problem now involves simply the computation of the first derivative

p′(k̂1) which must be set equal to 0. Now,

p′(k̂1) = α1 + 2α2k̂1 + 3α3k̂
2
1 + 4α4k̂

3
1 = 0 (10)

The solution of the above equation gives 3 roots from which need to identify the real

root in the interval 1
2
≤ 1

k1
< ∞ corresponding to the minimising solution (we may

also need to compare with the value of the function at k1 = 1
2

in case the minimum

occurs at the edge of the allowable interval). The optimal estimate k1 is then obtained

by inverting the minimising k̂1.

Example: We demonstrate the inverse covariance estimation method with the aid of a

simulation example. We consider the three node supply chain with the same parameters

used in previous estimation examples. We set k1 = k2 = 1.5, SP1 = SP2 = 20,

IP1(0) = IP2(0) = 10 and have run the simulation for n = 1000 time-steps.

The solution of the cubic equation gives three roots; two of these are complex

r1 = 0.2855 + 0.3884i and r2 = 0.2855 − 0.3884i and one real r3 = 0.6657 which

corresponds to the minimum value k̂1 = 1
k1

of equation (10). The estimated parameter

is k̂1 = 1.5021, a value which is very close to the true parameter k1 = 1.5. Figure 8

illustrates the minimised cost function in this case.

Once an accurate estimate of k1 has been obtained, node 2 can switch to the optimal

policy k?
2 and IP ?

2 , thus minimizing its average inventory level and its inventory

fluctuations. To assess the “value of information” when policy parameter k1 is disclosed

to the Distributor, it is necessary to carry out a full analysis of the estimation schemes

presented above in order to determine the statistical properties of the estimate (e.g.,

variance, confidence intervals, rate of convergence etc) and their dependance on data

lengths. This analysis is not undertaken here and will be addressed in future work.
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Figure 8: Cost function in inverse covariance estimation

7. Conclusion

A novel state-space model has been presented for analyzing the effect of proportional

policies in multi-node supply chains. Effective computational schemes were developed

for calculating the covariance matrix of the model in closed-form (i.e., as a function of

the policy parameters) using symbolic computations, including a recursive scheme on

the number of nodes. This allows for a full characterization of the bullwhip effect in

three-node models, and leads to the formulation and solution of a constrained inventory

minimization problem under information sharing. It has been shown that under

information-sharing, selfish policies cannot lead to demand amplification. Finally, local

estimation schemes have been investigated in the absence of information sharing.

Although the main purpose of our work was to analyse a generic Supply Chain model

under continuous proportional policies, we believe that our main results contribute

in the understanding of complex dynamic phenomena in real supply chains (such

as the bullwhip effect) and reinforce some of the main conclusions drawn by other

researches based on alternative policies. Thus, volatile customer demand profiles

combined with aggressive ordering policies has the tendency to reinforce the bullwhip
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effect, especially in multi-node systems. This suggests that forecasting policies

which ”smooth-out” rapid short-term random fluctuations can have an important

effect in alleviating the bullwhip effect (in this connection the intuition drawn from

classical control engineering, especially frequency-domain methods, can be particularly

beneficial [7]). In addition, enforcing co-operation between Supply Chain participants

has also been identified by many researches as an effective tool for suppressing

amplification phenomena, a conclusion which is supported by the results of section 5 of

this work. Many methods have been proposed for “engineering” co-operation in Supply

Chains, including the undertaking of contractual obligations between participants. In

general, modelling co-operation in Supply Chains is highly complex, as participants are

potential competitors but also need to cooperate to some extent to ensure the smooth

operation of the chain. In section 5, it was shown that subject to a probabilistic

“cooperation-type” constraint related to guaranteeing a minimum customer service

level, “selfish” policies (related to the minimisation of costs due to excessive inventory

fluctuations) cannot give rise to demand amplification in the chain under information

sharing between neighbouring nodes. In practice many companies are reluctant to

disclose customers’ information which they regard as proprietary. Thus, it is important

to investigate whether policy parameters of adjacent nodes can be effectively estimated

from (local) data in the absence of information sharing, a topic which was briefly

investigated in section 6 of the paper. Although the results obtained seem promising,

further work is needed to determine whether sufficiently accurate estimates can be

obtained with the proposed methods under realistic conditions (small data records,

drift in customer demand parameters, etc).
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Appendix A: Model augmentation

We consider the series supply chain model with n+1 nodes depicted in Figure 1. Each

node i (i = 1, 2, . . . n) has two inputs wi,l(t) and wi,r(t) and two outputs zi,l(t) and

zi,r(t) (left and right respectively). It can be inferred from the nature of the figure’s

interconnections that wi,l(t) = zi−1,l(t) and wi,r(t) = zi+1,l(t). Note that, in contrast

to all other nodes, the terminal (n + 1) node Φ has a single input and output. For

i = 1, 2, . . . , n the discrete-time state-space model of the i-th node’s equations can be

written as:

xi(t + 1) = Aixi(t) +
(

Bi,l Bi,r

)

 wi,l(t)

wi,r(t)




and 
 zi,l(t)

zi,r(t)


 =


 Ci,l

Ci,r


 xi(t) +


 Di,ll Di,lr

Di,rl Di,rr





 wi,l(t)

wi,r(t)




We will assume that Di,ll = 0 for all i = 1, 2, . . . , n + 1 and Di,lr = Di,rl = 0 for all

i = 1, 2, . . . , n (we also define D0,rr = 0). These relations actually hold for the concrete

supply chain model which is presented in section 2. The equivalent state-space model

of the n + 1-th node is:

xφ(t + 1) = Aφxφ(t) + Bφzn,r(t) and wn,r(t) = Cφxφ(t)
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where xφ(t) denotes its state. Considering for instance a four-node model, the state-

space equations as:

x1(t + 1) = A1xi(t) + B1,rC2,lx2(t) + B1,lw1,l(t)

x2(t + 1) = B2,lC1,rx1(t) + (A2 + B2,lD1,rrC2,l)x2(t) + B2,rC3,lx3(t)

x3(t + 1) = B3,lC2,rx2(t) + (A3 + B3,lD2,rrC3,l)x3(t)

xφ(t + 1) = C3,rx3(t) + D3,rrxφ(t)

which can be assembled in matrix form to give the overall model of the chain.

The general (n + 1)-th node model shown in Figure 1 can be aggregated as:

x(t + 1) = Ψx(t) + Γw1,l, x(t) = [x′1(t) x′2(t) . . . x′n(t) x′φ(t)]
′

where,

Ψ =




Ψ11 Ψ12 0 · · · 0

Ψ21 Ψ22 Ψ23
. . .

...

0 Ψ32
. . . . . . 0

...
. . . . . . Ψnn Ψn n+1

0 · · · 0 Ψn+1 n Ψn+1 n+1




Γ =




Γ1

Γ2

...

Γn

Γn+1




More specifically, the elements of Ψ and Γ are defined as:

Ψij =





Ai + Bi,lDi−1,rrCi,l for i = j; i = 1, 2, . . . , n + 1

Bi,rCi+1,l for i = j − 1; i = 1, 2, . . . , n

Bi,lCi−1,r for i = j + 1; i = 2, 3, . . . , n + 1

0 for |i− j| > 1.

and Γi = Bi,l if i = 1, Γi = 0 otherwise.
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Appendix B: Recursive implementation of k1 and σ

(section 6.1)

The parameters k1 and σ can be estimated recursively by the following scheme (where

n is the iteration index):

P̂22(n) =
P̂22(n− 1)

1 + (Y2,1(n)− Y 2,1(n))2P̂22(n− 1)

α̂(n) = α̂(n− 1) + P̂22(n)(Y2,1(n)− Y 1,2(n))

[(IP2(n)− IP 2(n))− (Y2,1(n)− Y 2,1(n))α̂(n− 1)]

k̂1(n) =
1 + α̂(n)k2

1 + α̂(n)(k2 − 1)

σ̂2(n) =
P̂22(n)(2− k̂1(n))

k̂1(n)

where IP 2(n) and Y 2,1(n) denote running estimates of the means of IP 2 and Y2,1

respectively. The recursion can be initialised from arbitrary initial conditions P̂22(0) >

0 and α̂(0).

Appendix C: Proof of Proposition 3

The Frobenius Norm ‖P̃ − P̂‖2
F can be written as:

‖P̂ − P̃‖2
F = trace{(P̂ − P̃ )(P̂ − P̃ )′}

= trace{(D −Bk̂1 − Ak̂2
1)(D

′ −B′k̂1 − A′k̂2
1)}

= trace(DD′)− k̂1trace(DB′ + BD′) + k̂2
1trace(BB′ −DA′ − AD′)

+ k̂3
1trace(BA′ + AB′) + k̂2

1trace(AA′)

= α0 + α1k̂1 + α2k̂
2
1 + α3k̂

3
1 + α4k̂

4
1.

The proof is concluded on noting that as k1 varies over (0, 2], k̂1 varies over [1
2
,∞).
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The coefficients αi defined above may be written in closed form as:

α0 = [P̂11 − k2(2− k2)(k2 − 1)2]2 + 2[P̂12 − k2(2− k2)(k2 − 1)]2 + [P̂22 + (k2 − 1)2]2

α1 = 4[P̂11 − k2(2− k2)(k2 − 1)2]k2
2(2− k2)(k2 − 1) +

4[P̂12 − k2(2− k2)(k2 − 1)]k2(2− k2)(2k2 − 1)− 4[P̂22 + (k2 − 1)2](k2 − 1)2

α2 = 4k2
2(2− k2)

2(k2 − 1)2 + 2k2
2(2− k2)

2(2k2 − 1)2−
2[P̂11 − k2(2− k2)(k2 − 1)2]k3

2(2− k1)− 4[P̂12 − k2(2− k2)(k2 − 1)]k2
2(2− k2) +

4(k2 − 1)4 − 2[P̂22 − (k2 − 1)2]k2(2− k2)

α3 = −4k5
2(2− k2)

2(k2 − 1)− 4k3
2(2− k2)

2(2k2 − 1) + 4k2(2− k2)(k2 − 1)2

α4 = k6
2(2− k2)

2 − 2k4
2(2− k2)

2 + k2
2(2− k2)

2

¤
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