
              

City, University of London Institutional Repository

Citation: Halikias, G., Tsoulkas, V., Pantelous, A. & Milonidis, E. (2010). Hankel-norm 

approximation of FIR filters: a descriptor-systems based approach. International Journal of 
Control, 83(9), pp. 1858-1867. doi: 10.1080/00207179.2010.498059 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/14865/

Link to published version: https://doi.org/10.1080/00207179.2010.498059

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Hankel-norm approximation of FIR filters: A descriptor-systems based approach

George Halikias∗, Vasilis Tsoulkas†, Athanasios Pantelous‡ and Efstathios

Milonidis∗

1. Abstract

We propose a new method for approximating a matrix Finite Impulse Response (FIR) filter by an Infinite Impulse
Response (IIR) filter of lower McMillan degree. This is based on a technique for approximating discrete-time
descriptor systems and requires only standard linear algebraic routines, while avoiding altogether the solution of
two matrix Lyapunov equations which is computationally expensive. Both the optimal and the suboptimal cases
are addressed using a unified treatment. A detailed solution is developed in state-space or polynomial form,
using only the Markov parameters of the FIR filter which is approximated. The method is finally applied to the
design of scalar Infinite Impulse Response (IIR) filters with specified magnitude frequency-response tolerances
and approximately linear phase characteristics. A-priori bounds on the magnitude and phase errors are obtained
which may be used to select the reduced-order IIR filter order which satisfies the specified design tolerances.
The effectiveness of the method is illustrated with a numerical example. Additional applications of the method
are also briefly discussed.

Keywords: Hankel-norm approximation, descriptor systems, FIR filters, linear phase response.

2. Introduction and Notation

In this paper we apply Hankel-norm approximation techniques to (matrix) FIR filters. Our technique is based
on results involving approximations of discrete-time descriptor systems (see [1], [2], [10]). This allows us to treat
systems with poles at the origin and has been applied successfully in the context of mixed H∞/H2 optimization
[11]. Our results apply both to the γ-suboptimal and the strictly optimal problem, although in the later case
the resulting state-space realization is non-minimal. Using an all-pass matrix dilation technique, a state-space
parametrization of the complete family of solutions can be obtained, in the form of a linear fractional map of
the ball of unstable contractions [1], [2], [9]. The solution is derived entirely in terms of the Markov parameters
of the FIR filter which is approximated and can be expressed in either state-space or transfer-function form.
Additional advantages of our method over parallel techniques [3], [5], [6], [12], [17] include computational
efficiency and a unified treatment for the optimal and the sub-optimal case. The most recent reference in
the area is [6] which develops an elegant self-contained approach for the solution of the optimal Hankel norm
approximation problem of FIR filters in the scalar case. Our paper develops an alternative procedure for the
solution of this problem using the descriptor-based approach of [1], [2], [9]. The solution, initially developed for
the matrix-valued version of the problem and subsequently specialized to the scalar case, is obtained in terms
of the Markov parameters of the filter which is approximated. This may prove helpful in establishing links
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between model reduction, statistical identification and partial realization theory (Markov parameters are often
obtained by direct measurement in identification experiments).

In the second part of the paper the results are applied to design IIR filters with almost linear phase
characteristics. Finite Impulse Response (FIR) filters are widely used in many digital signal processing
applications, especially in the field of communications, because they can exhibit linear phase characteristics.
Unfortunately, in many cases the order of such filters is prohibitively high for practical implementation. In
general, the number of delay elements and multipliers needed for an FIR design tends to be much higher
compared to similar Infinite Impulse Response (IIR) implementations. This is especially true for filters with
sharp cut-off characteristics which have a long impulse response [14], [18]. It is therefore natural to ask whether
a linear-phase FIR filter H(z) can be approximated by a low-order IIR filter, without degrading significantly
its magnitude and phase characteristics. In this work the approach adopted consists of two steps. First, a
linear phase FIR filter is designed subject to pre-specified magnitude-response tolerances using optimization
methods. This is subsequently approximated in the second step of the design by a reduced-order IIR filter
which has approximately linear phase-response characteristics. Magnitude and phase error bounds of the
approximation error can be obtained in terms of the Hankel singular values of H(z), which allows the a-priori
determination of the IIR filter order satisfying specified magnitude (“ripple”) specifications and an acceptable
phase deviation from linearity. The effectiveness of the method is illustrated via a numerical example, involving
the approximation of a high-order linear-phase FIR filter, designed using linear programming techniques [16].
Finally, extensions and further applications of the method are briefly discussed.

Most of the notation used is standard and is reproduced here for completeness. D denotes the open unit disc
D = {ζ ∈ C : |ζ| < 1}, with D̄ and ∂D its closure and boundary respectively. L2(∂D) denotes the Hilbert space
of all matrix-valued functions F defined on the unit circle such that

∫ 2π

0

trace[F ∗(ejω)F (ejω)]dω < ∞

where (·)∗ denotes the complex conjugate transpose of a matrix. The corresponding inner product of two
L2(∂D) functions F and G of compatible dimensions is given as:

〈F, G〉 =
1
2π

∫ 2π

0

trace[F ∗(ejω)G(ejω)]dω

H2(∂D) and H⊥2 (∂D) are the closed subspaces of L2 consisting of all functions analytic in C \ D̄ and D,
respectively. L∞(∂D) is the space of all uniformly-bounded matrix-valued functions in ∂D, i.e. all functions
defined on the unit circle whose norm:

‖F‖∞ = sup
ω∈[0,2π)

σ̄[F (ejω)]

is finite. Here σ̄(·) denotes the largest singular value of a matrix. H∞(∂D) and H−∞(∂D) denote the closed
subspaces of L∞(∂D) consisting of all functions analytic in C \ D̄ and D, respectively, while H−,k

∞ (∂D) is
the set of all functions in L∞(∂D) with no more than k poles in D. Spaces of real-rational functions will
be indicated by the suffix R before the corresponding space symbol. The unit ball of H−∞(∂D) is the set
BH−∞(∂D) = {U ∈ H−∞(∂D) : ‖U‖∞ ≤ 1}. If G ∈ L∞(∂D), then the Hankel operator with symbol G is defined
as:

ΓG : L2(∂D) → H2(∂D), ΓG = Π+MG|H⊥2 (∂D)

in which MG denotes the multiplication operator MG : L2(∂D) → L2(∂D), MGf = Gf and Π+ denotes the
orthogonal projection Π+ : L2(∂D) → H2(∂D). If

H =

(
H11 H12

H21 H22

)
∈ RL(p1+p2)×(m1+m2)∞ (∂D)
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with Hij ∈ RLpi×mj∞ (∂D), i = 1, 2, j = 1, 2 and U ∈ RLm2×p2∞ (∂D), we define the lower linear fractional map
of H and U as Fl(H, U) = H11 + H12U(I −H22U)−1H21, provided that det(I −H22(∞)U(∞)) 6= 0. If U is a
set of m2 × p2 matrix functions, then Fl(H,U) denotes the set {Fl(H, U) : U ∈ U}.

3. Hankel-norm approximation of FIR filters

In this section we propose a Hankel-norm method for approximating FIR filters via lower-order IIR filters. The
method is based on a recent result involving model-reduction of descriptor discrete-time systems [1], [2].

The main advantage of Hankel-norm approximation methods over other model-reduction techniques is that
they offer tight bounds on the infinity-norm of the approximation error; in particular, it is shown in [9] how to
construct k-th order approximations X(z) ∈ RH∞(∂D) of H(z) ∈ RH∞(∂D) with degX(z) = k < degH(z) =
n, such that:

‖H(z) + X(z)‖∞ ≤
n∑

i=k+1

σi(ΓH) (1)

where σi(ΓH) denotes the i-th singular value of ΓH , indexed in non-increasing order of magnitude. This
inequality can be used to determine a-priori the order k of the low-order system X(z) which satisfies magnitude
error specifications. The method was extended by [8] to discrete-time systems, under the assumption that the
system which is approximated does not have poles at the origin. This assumption is not valid for the problem
under consideration in this work where FIR filters are considered. Although the assumption is technical and
can be easily removed (e.g. via bilinear transformations) the more general descriptor approximation framework
of [1], [2] is more appropriate to our purposes.

Theorem 2 below parametrises all solutions X(z) to the Hankel-norm approximation problem ‖ΓH + ΓX‖ ≤ γ,
in which H(z) is the matrix FIR filter

H(z) = H0 + H1z
−1 + . . . + Hnz−n

and X(z) is a matrix IIR filter of degree degX(z) ≤ k. The parametrisation is given in descriptor form and
hence applies both in the sub-optimal case (σk+1(ΓH) < γ < σk(ΓH)) and the optimal case (γ = σk+1(ΓH)).
Before stating this theorem, however, the following preliminary result is needed:

Theorem 1: Let
H̃(z) = H(z)−H0 = H1z

−1 + H2z
−2 + . . . + Hnz−n

with Hi ∈ Rp×l for i = 1, 2, . . . , n. Then:

1. The singular values of ΓH̃ , σi(ΓH̃) (indexed in decreasing order of magnitude) are the singular values of
the (Hankel) matrix:

R1 =




H1 H2 . . . Hn−1 Hn

H2 H3 . . . Hn 0
H3 H4 . . . 0 0
...

...
...

...
Hn−1 Hn . . . 0 0
Hn 0 . . . 0 0



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2. A state-space realisation of H̃(z) is given by H̃(z) = C(zI −A)−1B with:

A =




0 0 0 . . . 0 0
Ip 0 0 . . . 0 0
0 Ip 0 . . . 0 0
...

...
...

...
...

0 0 0 . . . Ip 0



∈ Rnp×np

B =
(

Ht
n Ht

n−1 . . . Ht
2 Ht

1

)t

∈ Rnp×l

C =
(

0 0 . . . 0 Ip

)
∈ Rp×np

Further, the realisation is output balanced, i.e. the unique solution of the Lyapunov equation Q =
AtQA + CtC is given by Q = Inp.

3. The controllability grammian of the realisation in part 2, i.e. the unique solution of the Lyapunov equation
P = APAt + BBt, can be factored as P = R2R

t
2 where:

R2 =




Hn 0 . . . 0
Hn−1 Hn . . . 0

...
...

. . .
...

H1 H2 . . . Hn




Equivalently P can be block-partitioned as:

(Pij)
j=1,2,...n
i=1,2,...n where Pij =

min(i,j)∑

k=1

Hn−i+kHt
n−j+k

and σ2
i (ΓH̃) = λi(P ) for each i.

Proof: Straightforward and hence omitted. ¤

The following Theorem gives a complete parametrization of all k − th order γ-suboptimal Hankel-norm
approximations of matrix FIR filters in state-space form. All optimal k-th order approximations can also
be obtained from the result given in the Theorem by setting γ = σk+1(ΓH̃).

Theorem 2: Let H̃(z) = C(zInp − A)−1B be the realization of the matrix FIR filter defined in Theorem 1.
Let γ satisfy σk+1(ΓH̃) ≤ γ < σk(ΓH̃) and assume that the matrix A0 := P − γ2ZAtZ−t is non-singular, where
P is defined in Theorem 1 and Z := Inp + A. Then all X(z) ∈ H−,k

∞ (∂D) such that ‖H̃(z) + X(z)‖∞ ≤ γ are
generated via the lower linear fractional transformation:

X = {Fl(Ha, U) : γU ∈ BH−∞(∂D)}

where:
Ha(z) = DH + CH(zI −AH)−1BH

with

AH = −Ipn − (γ2Ipn − P )A−1
0 Z, BH = −(γ2In − P )A−1

0

(
B B0

)

CH = −
(

CZ−1P

C0

)
A−1

0 Z, DH =

(
CZ−1B − CZ−1PA−1

0 B γI − CZ−1PA−1
0 B0

γI − C0A
−1
0 B −C0A

−1
0 B0

)

where B0 := γZZ−tCt and C0 = γBtZ−t.
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Proof: Let H̃(z) be the matrix FIR filter defined in Theorem 1 and assume that σk+1(ΓH̃) ≤ γ < σk(ΓH̃).
Then, it follows from [1], [2] that all X(z) ∈ H−,k

∞ (∂D) such that ‖H̃(z) + X(z)‖∞ ≤ γ are generated via the
lower linear fractional transformation:

X = {Fl(Sa, U) : γU ∈ BH−∞(∂D)} = S11 + γ−1S12BH−∞(∂D)(I − γ−1S22BH−∞(∂D))−1S21

where:

Sa(z) =

(
S11(z) S12(z)
S21(z) S22(z)

)
= DS + CS(zES −AS)−1BS

with S11(z) ∈ RLp×l(∂D), S12(z) ∈ RLp×p(∂D), S21(z) ∈ RLl×l(∂D) and S22(z) ∈ RLl×l(∂D); further,

ES =

(
Inp 0
0 0

)
, AS =

(
−Inp γ2Inp − P

Z A0

)

BS =

(
0 0
B B0

)
, CS =

(
0 CZ−1P

0 C0

)

and

Ds =

(
CZ−1B γIp

γIl 0

)

where A, B, C and P are defined in Theorem 1, and Z = Inp + A, A0 = P − γ2ZAtZ−t, B0 = γZZ−tCt and
C0 = γBtZ−t. The equivalent state-space realization of Ha(z), the generator of all k-th order Hankel-norm
approximations of H̃(z) given in the Theorem, follows from a standard procedure of transforming descriptor
realisations to state-space form. ¤

The proof of Theorem 2 follows by specialising the results of [1] and [2] to the matrix FIR case considered here.
Note that the generator of all Hankel norm approximations Sa(z) defined in the proof of the Theorem is given in
descriptor form; this is subsequently converted into state-space form given by the indicated realisation of Ha(z)
using the standard approach. In particular, it is always possible to obtain a state-space realisation of Sa(z) of
order 2np − Rank(A0); if A0 is non-singular, we obtain a state-space description of order np. Note also, that
although Theorem 2 is still valid in the optimal case γ = σk+1(ΓH), the resulting realisation is non-minimal.
In this case, a minimal realisation can be obtained in closed form via a singular perturbation argument (see [2]
for details).

It is clear from Theorem 2 that the solution of a pair of Lyapunov equations used to obtain a balanced realisation
of the system which is approximated is completely avoided in our framework; in fact the generator Ha(z) of all
Hankel-norm approximations H̃(z) is completely defined by the Markov parameters of H̃(z) (and parameter γ

defining the level of sub-optimality). This dependence is made explicit in Theorem 3 below which specialises the
parametrisation of Theorem 2 to the scalar case. In particular, Theorem 3 below shows that in the state-space
realization of the generator Ha(z) of all Hankel-norm approximations defined in Theorem 2 above has a special
structure. In particular, the state-matrix of the realization is in companion form, which allows us to obtain
an analytic expression for the transfer function of the so-called “central approximation” (obtained by setting
U(z) = 0 in the linear fractional transformation which defines the parametrisation of solutions).

Theorem 3: Let all variables be defined as in Theorems 1-2 above, set p = m = 1 and assume that A0

is non-singular and that σk+1(Γh̃) < γ < σk+1(Γh̃) (sub-optimal case). Then the realization of Ha(z) =

5



(AH , BH , CH , DH) defined in Theorem 2 is of the form:

AH =




a1 a2 a3 . . . an−1 an

1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

...
...

0 0 0 . . . 1 0




, BH =




b1 b2

hn−1 0
hn−2 0

...
...

h1 0




CH =

(
0 0 0 . . . 0 −1
c1 c2 c3 . . . cn−1 cn

)
, DH =

(
0 0
0 d22

)

where h̃(z) = h1z
−1 + h2z

−2 + . . . + hnz−n and

ai =
γ2(θi + θj)
1− γ2θ1

(i = 1, 2, . . . , n− 1), an =
γ2θn

1− γ2θ1

b1 = hn +
γ2

1− γ2θ1

n∑

i=1

θihn−i+1, b2 = − γ

1− γ2θ1

in which

θj =
n∑

i=1

(−1)iP̂ij , (j = 1, 2, . . . , n), P̂ = (P − γ2In)−1

In particular, the transfer function of the central approximation (U(z) = 0) is given as:

X(z) = −h1z
n−1 + (h2 − h1a1)zn−2 + . . . + (hn−1 − h1an−2)z + (b1 − h1an−1)

zn − a1zn−1 − a2zn−2 − . . .− an−1z − an

Proof: First note that since σk+1(Γh̃) < γ < σk(Γh̃), P − γ2In is nonsingular. It is also easy to see that:

Z =




1 0 0 . . . 0 0
1 1 0 . . . 0 0
0 1 1 . . . 0 0
...

...
...

...
...

0 0 0 . . . 1 1




, Z−1 =




1 0 0 . . . 0 0
−1 1 0 . . . 0 0
1 −1 1 . . . 0 0
...

...
...

...
...

(−1)n+1 (−1)n (−1)n+1 . . . −1 1




Thus,

P − γ2In −A0 = γ2(ZAtZ−t − In) =




γ2

0
...
0




(
−1 1 . . . (−1)n

)
:= uvt

and hence, using the matrix inversion lemma,

A−1
0 = (P − γ2In − uvt)−1 = (P − γ2In)−1 + λ(P − γ2In)−1uvt(P − γ2In)−1

where we have defined
λ =

1
1− vt(P − γ2In)−1u

=
1

1− vtP̂ u

Setting
θt =

(
θ1 θ2 . . . θn

)
= vt(P − γ2In)−1

shows that
(γ2In − P )A−1

0 = −In − λuθt
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and hence

AH = −In − (γ2In − P )A−1
0 Z =




λγ2(θ1 + θ2) λγ2(θ2 + θ3) . . . λγ2(θn−1 + θn) λγ2θn

1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
0 0 . . . 1 0




which is of the required form on noting that

λ =
1

1− θtu
=

1
1− γ2θ1

=
1

1− γ2
∑n

i=1(−1)iP̂i1

Next consider BH . Using the fact that

(γ2In − P )A−1
0 = −




1 + λγ2θ1 λγ2θ2 . . . λγ2θn−1 λγ2θn

0 1 . . . 0 0
...

...
...

...
0 0 . . . 1 0
0 0 . . . 0 1




the first column of BH can be written as:

−(γ2In − P )A−1
0 B =




hn + γ2

1−γ2θ1

∑n
i=1 θihn−i+1

hn−1

...
h2

h1




Similarly, since

B0 = γZZ−tCt = γ




1 0 0 · · · 0 0
1 1 0 · · · 0 0
0 1 1 · · · 0 0
...

...
... 1 0

0 0 0 · · · 1 1







−1
1
−1
...

(−1)n




= −γ




1
0
0
...
0




the second column of BH can be written as:

−(γ2In − P )A−1
0 B0 =




1 + λγ2θ1 λγ2θ2 . . . λγ2θn−1 λγ2θn

0 1 . . . 0 0
...

...
...

...
0 0 . . . 1 0
0 0 . . . 0 1







−γ

0
0
...
0




=




− γ
1−γ2θ1

0
0
...
0




as required. Next consider the first row of CH ; this is given by:

−CZ−1PA−1
0 Z = −CZ−1P (P − γ2ZAtZ−t)−1Z

= −CZ−1(P − γ2ZAtZ−t + γ2ZAtZ−t)(P − γ2ZAtZ−t)−1Z

= −C − γ2CAtZ−t(P − γ2ZAtZ−t)−1Z = −C

since CAt = 0. Finally, consider DH . Using a similar argument to the one above, its (1, 1) element is:

DH,11 = CZ−1B − CZ−1P (P − γ2ZAtZ−t)−1B

= CZ−1B − CZ−1B − γ2CAtZ−t(P − γ2ZAtZ−t)−1B = 0

7



Similarly,

DH,12 = γ − γCZ−1P (P − γ2ZAtZ−t)−1ZZ−tCt

= γ − γCZ−tCt − γ3CAtZ−t(P − γ2ZAtZ−t)−1ZZ−tCt

= γ − γCCt = 0

Finally consider the (2, 1) element of DH , DH,21 = γ − C0A
−1
0 B. We first show that A−1

0 B is a zero column
vector, except from its first element which is equal to h−1

n . Write

A0 = P − γ2ZAtZ−t =
(

x1 X2

)

where x1 is a column vector and set

A−1
0 B =

(
φ1

φ2

)

where φ1 is a scalar. Then:
φ1x1 + X2φ2 = B

It is easy that the first column of ZAtZ−t is zero, and hence x1 is the first column of P which is given by

xt
1 =

(
hn hn−1 · · · h1

)
hn

Thus x1 is a multiple of B, from which it follows that φ1 = h−1
n and φ2 = 0, so that

A−1
0 B =

(
h−1

n 0 · · · 0
)t

Thus,

DH,21 = γ − γBtZ−tA−1
0 B = γ − γh−1

n

(
hn hn−1 · · · h1

)




1 −1 · · · (−1)n (−1)n+1

0 1 · · · 0 0
...

...
...

0 0 · · · 1 0
0 0 · · · 0 1




= 0

The transfer function of the central approximation follows by routine calculations since AH is in companion
form. ¤

4. Application: Design of IIR filters with approximately linear phase

The fact that FIR filters can have a linear phase response has been used extensively in many digital signal
processing applications. A filter with a nonlinear phase characteristic causes distortion to its input signal,
since the various frequency components in the signal will be delayed, in general, by amounts which are not
proportional to their frequency, thus altering their mutual harmonic relationships. A distortion of this form
is undesirable in many practical digital signal processing applications such as music, video, data transmission
and biomedicine and can be avoided by using filters with linear phase over the frequency range of interest [18].
One of the earlier and simpler methods for designing FIR filters with linear phase-response characteristics [16]
is outlined in the next few paragraphs.

Suppose that the unit pulse response of an FIR filter is given by {h(0), h(1), h(2), . . . , h(N)}. For this filter to
have a linear phase response, say θ(ω) = −αω for α constant, it must have an impulse response with positive
symmetry, i.e. h(n) = h(N −n− 1), where n varies as n = 0, 1, 2, . . . , N−1

2 for N odd and n = 0, 1, 2, . . . , N
2 − 1

for N even. Such a filter has identical phase and group delay and these are independent of frequency, i.e.

Tp = −θ(ω)
ω

= Tg = −dθ(ω)
dω

= α
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An FIR filter whose impulse response has negative symmetry, i.e. h(n) = −h(N − n− 1), has an affine phase-
response characteristic of the form θ(ω) = β − αω with α and β constant and its group delay Tg = α is
independent of ω.

The simple relationship between the impulse response of an FIR filter and its frequency response has been
exploited to design filters of this type via a variety of optimisation methods [4], [7], [15], [16], [13], [20], [19].
One of the earliest and simplest approaches is [16], in which a linear programming procedure is proposed for
designing linear phase FIR filters with specified magnitude-response characteristics (low-pass, high-pass, etc).
As an example, consider the filter

H(z) = h(0) + h(1)z−1 + . . . + h(p− 1)z−(p−1) + h(p)z−p + h(p + 1)z−(p+1) + . . . + h(2p)z−2p

in which positive symmetry of the impulse response is enforced around the central coefficient h(p) by setting
h(0) = h(2p), h(1) = h(2p− 1), . . . , h(p− 1) = h(p + 1). The frequency response of the filter may be written as:

H(ejω) = ejωpM(ω)

where M(ω) is a real linear function of the filter’s coefficients:

M(ω) = (2 cos(pω) 2 cos((p− 1)ω) . . . 1)




h(0)
h(1)

...
h(p)




Suppose now that we want to satisfy the following specifications: (a) 1− δ ≤ |H(ejω)| ≤ 1+ δ for all frequencies
in the pass-band ω ∈ [0, ωp], (b) |H(ejω)| ≤ δ for all frequencies in the stop-band ω ∈ [ωs, π] where ωp < ωs,
and (c) minimise the “ripple” δ subject to constraints (a) and (b). Specifications (a) and (b) can enforced by
discretising the pass-band and stop-band frequency intervals using n frequencies, say, i.e.

0 = ω1 < ω2 < . . . < ωn = ωp

and
ωs = ωn+1 < ωn+2 < . . . < ω2n = π

and enforcing the specifications via the inequalities:

1− δ ≤ M(ωi) ≤ 1 + δ, i = 1, 2, . . . , n (2)

and
−δ ≤ M(ωi) ≤ δ, i = n + 1, n + 2, . . . , 2n (3)

The optimisation problem: min δ subject to (1) and (2), can now be formulated as a linear programme in the
standard form:

min ctx s.t. Ax ≤ b

where xt = (h(0) h(1) . . . h(p) δ), ct = (0 . . . 0 1), b is a 4n-dimensional vector and A is a 4n×(p+2)-dimensional
matrix. This can be solved efficiently using standard techniques, e.g. the simplex algorithm or interior point
methods.

Once a linear-phase FIR filter has been designed, the next step is to approximate it with a low-order IIR filter
using the Hankel-norm approximation method outlined earlier. In the remaining part of this section we derive
a bound on the phase error due to the approximation. This can be used to determine the minimum degree of
the IIR filter for which the deviation of the phase response from linearity does not exceed a specified tolerance.
Note first, that in the scalar case, the solution to the Hankel-norm approximation problem is, in general, unique
only in the optimal case. The so-called “central solution” is obtained by setting U(z) = 0. Having obtained
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the central approximation, one next needs to remove its anti-stable component. The extraction of the stable
projection can be performed either by factoring the denominator polynomial of X(z),

p(z) = zn − a1z
n−1 − a2z

n−2 − · · · − an−1z − an

which is guaranteed to have k roots (strictly) inside the unit circle and n − k roots (strictly) outside the
unit circle. Alternatively, the stable projection can be extracted from the state-space realization of X(z) by
transforming the system to block-Schur form using an appropriate orthogonal state-space transformation and
ordering the eigenvalues of AH in ascending order of magnitude; decoupling of the stable and anti-stable parts
then requires the solution of a matrix Sylvester equation.

Reference [9] shows that having solved the k-th order Hankel-norm approximation problem, it is always possible
to choose a constant term x0 so that the approximation error satisfies the bound:

‖h(z) + (x(z) + x0)‖∞ ≤
n∑

i=k+1

σi(Γh) (4)

Since this bound applies uniformly in frequency, it can be used to give an immediate bound on the approximation
phase error:

Theorem 4: Let x̂(z) = x(z) + x0 be a k-th order optimal Hankel norm approximation of the scalar FIR filter
h(z) such that (4) holds. Then, if φ(ω) = arg(h(ejω)) + arg(x̂(ejω)), we have that:

| sin(φ(ω))| ≤
∑n

i=k+1 σi(Γh)
|h(ejω)| (5)

for every ω ∈ [0, π). In particular, if the frequency interval [ω1 ω2] lies in the filter’s passband in which
1− δ ≤ |h(ejω)| ≤ 1 + δ, then

| sin(φ(ω))| ≤
∑n

i=k+1 σi(Γh)
1− δ

(6)

for every ω ∈ [ω1 ω2].

Proof: Straightforward and hence omitted. ¤

The phase error bound given in Theorem 4 can be used to select the minimum order of approximation k

consistent with a worst-case phase-error specification; If h(z) is a linear-phase FIR filter, then the RHS of (5)
or (6) quantifies the deviation in the phase of the IIR approximation of h(z) from linearity. If the magnitude
tolerances resulting from the optimization procedure are tight, the specifications need to be tightened to account
for the approximation error.

5. Example

In this section some of the results presented in the paper are illustrated by means of a computer example.
First, a linear phase FIR filter of order n = 21 was designed using the linear programming procedure outlined
in section 3. The design specifications were defined as: ωp = 1 rad/sample, ωs = 1.5 rads/sample and the
frequency intervals [0, ωp] and [ωs, π] were each discretised using 50 equally-spaced frequencies. The linear
programme was then set up and solved using Matlab’s function linprog.m. The minimum ripple was obtained
as δ = 0.0232; the first 11 optimal impulse response coefficients of the resulting filter h(z) are tabulated below
(the last 10 coefficients are symmetric and are not included):
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i h(i) i h(i) i h(i)
0 0.0017 4 0.0358 8 0.0919
1 -0.0212 5 -0.0015 9 0.2995
2 -0.0123 6 -0.0662 10 0.3980
3 0.0178 7 -0.0561

Table 1: Impulse response coefficients

The magnitude frequency response of the filter is shown in Figure 1 below. Note that the response in the
passband and the stopband lies within the desired bounds 1± δ.
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Figure 1: Magnitude frequency response

Next the Hankel-norm approximation method outlined in Theorem 2 was applied to the FIR filter h(z). The
Hankel singular values of h(z) are shown in Table 2. Parameter γ was chosen as γ = 0.03 resulting in a 7-th
order (sub-optimal) Hankel-norm approximation. The seven stable poles of the approximant were obtained as:
0.7467, 0.2841± 0.8152j, 0.4977± 0.6347j and 0.6886± 0.3363j.

i σi i σi i σi i σi

1 1.0000 6 0.1765 11 0.0117 16 0.0116
2 0.9973 7 0.0602 12 0.0117 17 0.0002
3 0.9563 8 0.0232 13 0.0117 18 0.0002
4 0.7791 9 0.0135 14 0.0116 19 0.0000
5 0.4344 10 0.0118 15 0.0116 20 0.0000
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Table 2: Hankel singular values

The magnitude response of h(z) and its IIR approximation is shown in Figure 2. It can be seen that the IIR
filter has a slightly larger ripple in the pass-band. Figure 3 shows the impulse responses of the two filters.
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Figure 2: FIR/IIR magnitude frequency response

Finally, Figure 4 shows the phase error in the passband 0 ≤ ω ≤ 1 rad/sample arising from the approximation
(i.e. the deviation of the phase of the IIR filter from linearity), while Figure 5 shows the pole/zero pattern of
the IIR filter (there is an additional zero at z = −15.6521 not shown in the figure).

6. Conclusions

The paper has presented an algorithm for approximating discrete-time matrix FIR filters by reduced order
IIR filters using Hankel-norm approximation methods. The algorithm is relies only on the Markov parameters
of the filter which is approximated, is computationally efficient and is based on Hankel-norm approximation
techniques of discrete-time descriptor systems [1], [2]. The method can be used to define a systematic approach
for designing low-order IIR filters with approximately linear phase response characteristics. The definition of
a-priori error bounds for the magnitude and phase errors due to the Hankel-norm approximation allows the
designer to choose the minimal IIR filter order consistent with the design specifications. A low-order example
has illustrated the effectiveness of the method.

There are a number of issues related to the proposed technique that we intend to pursue in the future. These
include: (i) Derivation of tighter error bounds than those applying in general for the Hankel-norm approach.
This seems possible given the special structure of FIR filters (all poles lie at the origin). (ii) Investigation of
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Figure 3: FIR/IIR impulse response

the sensitivity properties of the proposed design under finite-precision implementation. (iii) Generalization of
the method to other types of approximation, e.g. relative-error and general frequency weighted approximations.
(iv) Extension of the method to more general application domains in the fields of Signal Processing, Systems
Identification and Control (e.g. multi-dimensional systems, model order selection techniques).
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